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We prove that multifractal functions, characterized by their wavelet representation, can be estimated in

the white noise model by a Bayesian method. We give rates of convergence for two different models.

Further, we study empirical methods for estimating the hyperparameters of the model, which lead to a

fully tractable estimator.
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1. Introduction

In the last decade much emphasis has been placed on nonparametric estimation by wavelet

methods. The reasons for the success of wavelets in nonparametric statistics are mainly

twofold. First, wavelet bases are unconditional bases of at most all the usual function spaces

(Meyer 1987). Further, estimates built on wavelets are easy to compute (Mallat 1989) and

are asymptotically optimal (Donoho et al. 1995; Delyon and Juditsky 1996; Härdle et al.

1998).

In this paper, we will focus on wavelet estimates of highly irregular functions, namely

multifractal functions. Roughly speaking, a multifractal function is a function whose Hölder

local regularity index is not constant. That means that the function may be very regular in

some areas, but very irregular in others. Such functions with rapid changes of regularity

were first introduced to model physical phenomena such as turbulence (Bacry et al. 1991),

or network events such as road or data traffic (Riedi et al. 1999). One way to study these

functions is the multifractal analysis first introduced in Frisch and Parisi (1985). This

analysis is concerned with the partitioning of points having a given regularity.

We will also focus on the estimation on multifractal functions defined on the compact

[0, 1]. In this framework, Jaffard and colleagues (Arneodo et al. 1999; Jaffard 2000a;

2000b; Aubry and Jaffard 2001) and Roueff (2001) have recently shown that some lacunary

random series built on wavelets have multifractal properties. In others words, using

wavelets, they constructed a random process having trajectories in a multifractal set of

functions. Such a random process is a probability measure P on this set. We will consider
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here an unknown function f � on [0, 1] lying in the support of P. More precisely, we will

set

f � ¼
X1
j¼0

X2 j

k¼0

w�jkł jk ,

where the wavelet coefficients w�jk are realizations of random variables drawn according to a

lacunary random model, and, for any integers j, k, ł jk ¼ ł(2 j � �k) is the k th periodized

wavelet at level j (ł has some specific regularity assumptions, discusssed in Section 2). In

this paper, we aim to estimate the function f � observed in a Gaussian white noise model.

Hence, we observe the noisy wavelet coefficients

d jk ¼ w�jk þ E jk , E jk � N 0,
� 2

n

� �
with j > 0, k ¼ 0, . . . , 2 j � 1, , where � is the variance and n the number of observations,

and 0 < J < 1 is the maximal number of resolution levels observed. In a theoretical

approach J ¼ 1, while J ¼ logn if the coefficients come from a discrete wavelet transform.

Our aim is to estimate a multifractal signal, using a Bayesian procedure. We show that the

Bayesian estimate converges in mean in L2 and give the rate of convergence. This model

differs from the one recently studied by Abramovich et al. (1998) and Johnstone and

Silverman (2001). Here, indeed, the prior involves not only the decay of the wavelet

coefficients but also their location. An important drawback when characterizing a function by

its belonging to a Besov space, is that any information concerning correlations on the

location of large wavelet coefficients is lost. As a matter of fact, Besov norms are invariant

under permutations of wavelet coefficients. This information is important when studying very

irregular functions since it is well known that large wavelet coefficients are located at the

singularities. The rate of convergence found here also differs from the usual ones (found

using thresholding procedures). The Bayesian estimate studied in this paper could be used in

practical situations to denoise multifractal functions, for example speech signal in a noisy

environment (see www-rocq.inria.fr/fractales/ for more on problems of this kind).

The paper is organized as follows. In the next section, we present the model described by

Jaffard and colleagues to construct multifractal functions with wavelet series. Section 3 is

devoted to the study of a Bayesian estimate using upper bounds proved in Section A.1.

Section 4 provides an estimation of the hyperparameters of the prior either by an

algorithmic procedure or by a direct approach. In Section 5, a step towards an adaptive

estimation of multifractal functions is given. The simulations are presented in Section 6,

while all the proofs and the technical lemmas are gathered in the Appendix.

2. Multifractal wavelet models

Multifractal analysis of a function was first introduced in a physical framework in Frisch

and Parisi (1985). Given a function f , one of the main goals of this analysis is the

computation of its spectrum of singularities d f . Roughly speaking, for h . 0, d f (h) is the
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Hausdorff dimension of the set where f may be approximated at order h by a polynomial

having degree not greater than h. The multifractal properties of a function f may be

studied through its expansion on a wavelet basis. Indeed, Arneodo et al. (1999) and Jaffard

(2000a; 2000b) show that if f is written as

f ¼
X1
j¼0

X2 j

k¼0

wjkł jk , (2:1)

and setting, for Æ 2 (0, 1),

N j(Æ) ¼ #fk, jwjk j > 2�Æ jg,

r(Æ) ¼ inf
E.0

lim sup
j!1

log2(N j(Æþ E) � N j(Æ� E))
j

,

where log2 is the base 2 logarithm (henceforth, log will denote the natural logarithm), then,

for h . 0,

d f (h) ¼ h sup
Æ2(0,h]

r(Æ)

Æ
: (2:2)

The functions N j and r quantify the sparsity of the wavelet coefficients wjk . Roughly

speaking, for Æ 2 (0, 1) and large j, there are about 2r(Æ) j coefficients (wj,k) j2N of size of

order 2�Æ j. We will now construct stochastic wavelet models where the spectrum of

singularities is not random.

2.1. Random multifractal model

We assume now that the wavelet coefficients in the decomposition (2.1) are drawn

randomly. In this framework, let P be the probability distribution on the Borel measurable

space L2([0, 1]) induced by the previous random series. In this paper, we will make

Bayesian inference with P. We will consider simple statistical models (simple choices of

the wavelet coefficients) such that the spectrum of singularities is not random and may be

computed using a formula like (2.2). These multifractal models will be characterized by two

parameters, 
0 and Æ0, lying in (0, 1). On the one hand, 
0 will describe the lacunarity of

the wavelet series (that is, its sparsity). On the other hand, the value of the coefficient Æ0

will be exponentially inversely proportional to the intensity of the value of the wavelet

coefficients. These parameters will completely characterize the spectrum of singularity of

the random functions involved. The probabilistic results concerning these models and

leading to the spectrum of singularities may be found in Aubry and Jaffard (2001).

2.1.1. Bernoulli constrained model

The first simple model is an exact representation of the structure of the multifractal

processes described in terms of wavelet series in Aubry and Jaffard (2001). At each
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resolution level j, pick at random [2
0 j] locations from the 2 j wavelet coefficients, and

assign these coefficients the value 2�Æ0 j while setting the rest to zero. This choice of

coefficients is made independently between each level. Generating a function with this

method may seem too restrictive. However, such processes appear naturally when studying

multifractal processes, and their spectrum of singularity can be described using parameters

Æ0 and 
0. As a matter of fact the assumptions over the wavelet coefficients lead to the

following spectrum of singularities (see Aubry and Jaffard 2001):

d f (h) ¼

0, if h 2 (0, Æ0),


0

Æ0

h, if h 2 [Æ0, Æ0=
0],

1 otherwise:

8>>><
>>>: (2:3)

Thus, the Bernoulli constrained model enables us to model functions with linear spectrum of

singularity.

In Figure 1 we plot a realization of a multifractal function of the Bernoulli constrained

model. The lacunarity coefficient is 
0 ¼ 0:4, while Æ0 ¼ 0:3.

Figure 1. Multifractal process.
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2.1.2. Gaussian extension to Bernoulli constrained model

The second model we consider is an extension of the previous one. It allows more

flexibility in the choice of the wavelet coefficients. In the first model, they could only take

two values: either 2�Æ0 j or 0. Here, we allow non-zero coefficients to take values different

from 2�Æ0 j but still close to that value. Hence, we assume that these coefficients have a

Gaussian distribution with mean 2�Æ0 j and variance ˜2
j . 0 (N (2�Æ0 j, ˜2

j)). The other

coefficients are still equal to zero. This model is a generalization of the first rough model. It

is an extension of the model described in Aubry and Jaffard (2001).

3. Bayesian estimation

Assuming that a multifractal function f � is drawn from the Bernoulli constrained model (or

its extension), our aim is to estimate this function when it is observed in the white noise

model. Such a function is characterized not only by the decay of its non-zero wavelet

coefficients but also by their location. As a consequence, estimation will be performed

using a Bayesian procedure which, thanks to the choice of a proper prior, takes into account

the multifractal properties of f �.

In the white noise model, we observe all the wavelet coefficients w�jk (we put a � when

dealing with realizations of random variables) of the function f �, together with a Gaussian

white noise E having variance � 2=n, where n is the size of an original sample. Hence, the

observations are

d�jk ¼ w�jk þ E jk , j > 0, k ¼ 0, . . . , 2 j � 1:

The prior distribution is defined on the space of wavelet coefficients. Our Bayesian estimator

will be the posterior mode. This estimate maximizes the posterior likelihood (the law of the

coefficients given the observations). We first consider the Bernoulli constrained model. Then

we will extend our results to the more general case.

3.1. Bernoulli constrained model

Let us briefly return to the prior distribution of the wavelet coefficients. Given Æ0 . 0 and


0 . 0, at each level j > 0, we randomly set [2
0 j] coefficients wjk to the value 2�Æ0 j and

the other coefficients to zero. Thus, at level j, the wavelet coefficients of the unknown

function f � lie in the set:

� j ¼ ø ¼ (øk)k¼0,...,2 j�1 2 f0, 2�Æ0 jg,
X2 j�1

k¼0

øk ¼ 2(
0�Æ0) j

( )
, j 2 N:

The prior on this set is the uniform probability. Hence, if wj ¼ (wj0, . . . , wj2 j�1)T, then

8ø 2 � j, P(wj ¼ ø) ¼ 1

C
[2
0 j]
2 j

:
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Thus, at each level j > 0, the prior on the coefficients is uniform. The distribution of wj on

� j is [C
[2
0 j]

2 j ]�1
P

ø2� j
�ø. For ø 2 � j, the canonical distribution of d j ¼ (d j1, . . . , d j2 j�1)

given fø j ¼ øg is the Gaussian distribution N (ø, � 2 Id2 j ): Given d j ¼ d�j , the posterior

distribution puts the weight

exp(�(2� 2)�1kd�j � øk2)

C
[2
0 j]
2 j

X
ø j2� j

exp(�(2� 2)�1kd� � ø jk2)

on the configuration ø 2 � j. The posterior mode ŵw j therefore satisfies

ŵ jw j ¼ arg max
w j2� j

p(wjjd�j ) ¼ arg min
w j2� j

� log p((wj)jd�j )

¼ arg min
w j2� j

1

2� 2

X2 j

k¼0

jd�jk�w jk
j2, (3:1)

where p(:jd�j ) is the posterior density with respect to the uniform measure on � j. With the

particular form of the optimization problem (3.1), we recognize a constrained least-squares

estimator, whose solution can be found as follows. First, observe that

jxj , jx� 2�Æ0 jj if and only if x , 2�Æ0 j�1: (3:2)

So, to take into account the constraint that the number of non-zero coefficients at each scale

is [2
0 j], we sort, for each j . 0, the d�jk in descending order:

d�j,(0) > . . . > d� j,([2
0 j]) > . . . > d� j,(2 j�1):

Then, using (3.2), we estimate the [2
0 j] corresponding wavelet coefficients by 2�Æ0 j and the

others by zero. As a result, the Bayesian estimator of f � is given by

f̂f n ¼
Xj1
j¼0

X2 j

k¼0

2�Æ0 j1jd�jk j>d�
( j[2
0 j ])

ł jk ,

where the maximum resolution level, namely the integer j1 ¼ j1(n), will be chosen in an

optimal way (see below). In order to study this estimator, we fix the following framework.

First of all, to simplify the notation, we fix a resolution level j > 0 and neglect indices in

j for a while. Set l ¼ 2 j, p ¼ 2
0 j and, for x ¼ (x1, . . . , xl) 2 R l, let k(x) 2 f1, . . . , lg l be

the reordering permutation associated with x:

xk1(x) > xk2(x) > . . . > xk l(x):

So k1(x) is the location of the greatest value of (xi)i¼1,..., l, k2(x) the location of the second

largest coefficient and so on. We consider

k̂k ¼ k(d) (3:3)

where d� ¼ (d�i )i¼1,..., l are the observed data. We thus obtain

d�̂
kk1
> d�̂

kk2
> . . . > d�̂

kk l
:
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According to our earlier calculations, the Bayesian estimate is constructed with the estimated

coefficients (ŵw jk) defined as follows:

ŵw jk ¼ 2�Æ0 j, if k 2 f k̂k0, . . . , k̂k pg,

ŵw jk ¼ 0, if k 2 f k̂k pþ1, . . . , k̂k ng:

	
(3:4)

Hence, the accuracy of our approximation will depend on the quality of the estimation of the

true location of the maximal wavelet coefficients. Bounds for bias and variance are given in

the following lemma.

Lemma 3.1. There exists a constant C such that, for any j1 2 N and for n large enough,

k f � � E f̂f nk2
2 < C2�(1�
0þ2Æ0) j1 ,

Ek f̂f n � E f̂f nk2
2 < n exp � n2 j1(
0�1�2Æ0)

4

� �
:

There is a trade-off between the two terms. Hence, the maximum resolution level to be used

for the reconstruction minimizes the L2 error. The following theorem describes the

asymptotic behaviour of our nonparametric estimator in the asymptotically optimal case.

Theorem 3.2. Assume that Æ0 , 1
2
. Let ( j1(n)) be such that

2 j1 ¼ O
n

log n�


 �1=(1þ2Æ0�
0)
 !

,

with � . 8. Then there exists a positive constant c1 such that:

E k f � � f̂f nk2
2

h i
< c1

log n

n
: (3:5)

Remark 3.1. The condition Æ0 , 1
2

implies that the wavelet coefficients cannot be too small.

Otherwise, the function f � cannot be differentiated from the noise, which prevents any

estimation.

The proof of Theorem 3.2 will follow from the study of cluster analysis in a Gaussian

mixture, whose parameter depends on n.

3.2. Gaussian model

Hitherto, we have tried to recover functions whose wavelet coefficients can only take two

values: 0 and 2�Æ0 j. Henceforth, we extend our results to the case where we allow non-zero

coefficients to take values different from 2�Æ0 j as stated in Section 2.1.

We may rewrite the model as follows. For j 2 f0, . . . , j1g, let Fj ¼ ( f jk)k¼0,...,2 j�1 be a

random vector valued in f0, 2�Æ0 jgð Þ2 j

. Assume that the sequence Fj has uniform

distribution on � j (see Section 3.1) and is independent. Let (z jk), j ¼ 0, . . . , j1,
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k ¼ 0, . . . , 2 j � 1 be independent variables distributed as N (0, ˜2
j). Assume, moreover, that

(z jk) are independent of (Fj) and the noise. The variances ˜ j . 0 are such thatP
j2

� j˜2
j , 1. The coefficients of the observed random function

f � ¼
X1
j¼0

X
k

w�jkł jk

are

w�jk ¼ f �jk þ z�jk1 f jk 6¼0, j ¼ 0, . . . , j1, k ¼ 0, . . . , 2 j � 1: (3:6)

We observe this function with a Gaussian additive noise:

d�jk ¼ w�jk þ E jk , j > 0, k ¼ 0, . . . , 2 j � 1: (3:7)

We propose to use an estimator close to the Bayesian one used previously. We first look for

the highest coefficients that will be non-zero and then smooth them:

f̂f n ¼
Xj1
j¼0

X2 j�1

k¼0

ŵw jkł jk

where

ŵw jk ¼
2�Æ0 j þ

˜2
j

˜2
j þ � 2=n

(d�jk � 2�Æ0 j), k 2 f k̂k0, . . . , k̂k pg,

0, k =2 f k̂k0, . . . , k̂k pg,

8><
>: (3:8)

with k̂k ¼ k(d�), d� ¼ (d jk)k¼0,...,2 j�1, corresponding to the location for a fixed level j of the

p highest observed coefficients which must correspond to the true non-zero coefficients.

The following theorem describes the behaviour of our new estimator.

Theorem 3.3. Assume that f � has been drawn according to the Gaussian extension of the

Bernoulli constrained model. Further, assume that Æ0 , 1
2
. Let ( j1(n)) be such that

2 j1 ¼ O
n

log n�


 �1=(1þ2Æ0�
0)
 !

,

with � . 8. Then, this sequence is asymptotically optimal and there exists a positive constant

c3 such that

Ek f � � f̂f nk2
2 < c3

log n

n
: (3:11)

Remark 3.2. The notion of the linear smoothing effect comes from the following statement.

Consider two independent Gaussian variables

X � N m1, �2
1

� �
, Y � N m2, �2

2

� �
:

We have
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E(X jX þ Y ) ¼ m1 þ
�2

1

�2
1 þ �2

2

(X þ Y � (m1 þ m2)),

var(X � E(X jX þ Y )) ¼ �2
1�

4
2 þ �4

1�
2
2

(�2
1 þ �2

2)2
:

4. Estimation of hyperparameters

From here on, we consider the model of Section 3.1. In that section, we constructed a

Bayesian estimator that depends on two parameters. We have carried out Bayesian

estimation assuming that these parameters were known. In the Bayesian terminology, they

are the hyperparameters of the model. In this section, we provide two different methods to

estimate them. The first uses the EM algorithm which leads to a maximum likelihood

estimate. The second is an empirical method based on moments. For a complete theoretical

study, we refer to Gamboa and Loubes (2001). In both cases, we deal with the case where

we observe a real multifractal signal corrupted by a Gaussian white noise. Hence the

wavelet coefficients are obtained using the discrete wavelet algorithm (Mallat 1998) and the

maximum number of resolution levels available j1 is given by 2 j1 ¼ n, the number of

observations.

4.1. Estimation of model parameters with EM algorithm

The EM algorithm is a recursive algorithm used to maximize the log-likelihood when the

variables are not directly observed. A direct application is the classification problem in

mixture settings (see, for instance, McLeish and Small 1986). Let us illustrate this

algorithm on a single Gaussian mixture model. Let Y1, . . . , Yn be an independent and

identically distributed (i.i.d.) sample of a random vector Y having density

f y, �ð Þ ¼ �	 y; �1, �ð Þ þ (1 � �)	 y; �2, �ð Þ,

where 	 y; �i, �ð Þ is the Gaussian density function with mean �i and variance � 2, for

i 2 f1, 2g. The parameter of interest is � ¼ (�1, ŁT)T, where Ł ¼ (�1, �2, � )T. The log-

likelihood is

L �ð Þ ¼
Xn
j¼1

log �1	 Y j; �1, �
� �

þ (1 � �1)	 Y j; �2, �
� �� �

:

To apply the EM algorithm, we transform this model into a missing-observation model. For

j 2 f1, . . . , ng, let Z j, be a random variable equal to 1 if Y j comes from the first

component, i.e. with law N (�1, � ), and 0 otherwise. The complete data are

Xc ¼ (XT
1 , . . . , XT

n), with X1 ¼ (Y1, Z1)T, . . . , Xn ¼ (Yn, Zn)
T: Suppose that X1, . . . , Xn

are i.i.d. with Z1, . . . , Zn, an n-sample of a Bernoulli trial with parameter �. In the complete

model the log-likelihood is
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Lc �ð Þ ¼
Xn
j¼1

z j log �1	 yj; �1, �
� �� �

þ (1 � z j)log (1 � �1)	 yj; 0, �
� �� �

: (4:1)

Set yobs the values of the data (Y1, . . . , Yn)
T. From the theory of EM algorithm, we know that

maximizing in the parameter of interest � the log-likelihood is equivalent to maximizing in a

recursive way the following quantity, where all the estimated quantities are taken at the kth

step:

Q �, � kð Þ
� �

¼ E Lc �ð Þjyobs; �
kð Þ

� �

¼
Xn
j¼1

E Z jjyobs; �
kð Þ

� �
log �1	 yj; �1, �

� �� �
þ E((1 � Z j)jyobs; �

(k)Þlog (1 � �1)	 yj; 0, �
� �� �

:

We now may apply this general algorithm to our wavelet model with known variance � 2.

Write m ¼ 2�Æ0 j and � ¼ 2(
�1) j. At a fixed level j, the augmented likelihood is

L(d�jk , m, �) ¼
X
k

log�z jk exp � n

2� 2
(d�jk � m)2z jk

� �
(1 � �)1�z jk exp � n

2� 2
d�jk(1 � z jk)

� �

¼ log
�

1 � �
; m2; m

� � X
k

z jk ; � n

2� 2

X
k

z jk;
n

� 2

X
k

d�jk z jk

 !T

þ2 j log (1 � �)

¼ a(Ł)Tb(X ) þ c(Ł) þ d(X ):

We recognize an exponential family. Then, EM algorithm can be written at the (iþ 1)th step

as follows.

• E step:

E(b(X )jd�, Łi) ¼
X
k

ẑz
(i)
jk ; � n

2� 2

X
k

ẑz
(i)
jk ;

n

� 2

X
k

d�jk ẑz
(i)
jk

 !
,

where ẑz
(i)
jk ¼ P(z jk ¼ 1jd�, Ł(i)).

• M step: in order to maximize the functions

f (�) ¼ log
�

1 � �

� �X
k

z jk þ 2 j log (1 � �),

g(m) ¼ � n

2� 2
m2
X
k

z jk þ
nm

� 2

X
k

d�jk z jk ,

write the first-order condition and this gives rise to the two estimated parameters
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m̂m(iþ1) ¼

X
k

d�jk ẑz
(i)
jkX

k

ẑz
(i)
jk

, �̂�(iþ1) ¼ 1

2 j

X
k

ẑz
(i)
jk : (4:2)

In the numerical simulations of Section 5, we use the EM algorithm in the following way:

using j1 ¼ log2n resolution levels, we run the algorithm with the successive data

d�j:, for all j < j1. The starting point of each iteration is the estimator obtained in the

previous step.

4.2. Parametric estimation of lacunarity wavelet series

A natural way to construct empirical estimates of (
0, Æ0) is to use the moment method. To

begin with, observe that we have

Ed jk ¼ 2(
0�1�Æ0) j, Ed2
jk ¼

� 2

n
þ 2(
0�1�2Æ0) j:

This leads to the following empirical moments estimates of Æ0:

Æ̂Æn ¼
1

j1log 2
log

Xj1
j¼1

X2 j�1

k¼0

d jk

Xj1
j¼1

X2 j�1

k¼0

d2
jk � � 2

2
666664

3
777775

0
BBBBB@

1
CCCCCA: (4:3)

If we rescale the coefficients by
ffiffiffi
n

p
we obtain the distributionffiffiffi

n
p

d jk � 2(
0�1) jN (mj, �
2) þ (1 � 2(
0�1) j)N (0, � 2), (4:4)

with mj ¼ 2 j1=2�Æ0 j, j ¼ 1, . . . , j1. Under the hypothesis of Theorem 4.1 below we have that

mj goes to infinity with j. As a result, the two components of the rescaled mixture in (4.4)

are asymptotically well separated. So, the two kinds of wavelet coefficients can be efficiently

separated using a thresholding procedure. We will use this idea to construct an estimator of

the lacunarity parameter 
0.

Let ln be an increasing sequence of positive real numbers and set

Sn ¼
1

n

Xj1
j¼1

X2 j�1

k¼0

1 ffiffiffi
n

p
d jk> l n

:

Define the estimator

~

n ¼ 1 þ 1

log2n
log2 Snð Þ: (4:5)

Since the two groups of random variables are well separated when the level of resolution j

increases, the number of rescaled coefficients
ffiffiffi
n

p
d jk above a fixed level ln ¼ log2n can be
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used to estimate the proportion of coefficients which belong to the second group. We have the

following theorem on the asymptotics of our estimates.

Theorem 4.1. Assume that 
0 � 2Æ0 . 0. Then

log (n)
ffiffiffi
n

p 
0 (Æ̂Æn � Æ0)�!L N (0, 1), (4:6)

n
0=2 log (n) ~

n � 
0ð Þ�!L N 0, 1ð Þ: (4:7)

The proof of this theorem can be found in Gamboa and Loubes (2001).

5. Numerical simulations

The following results were obtained using Matlab software for the Bernoulli constraint

model. In Figure 2, we present the Bayesian reconstruction of the multifractal function

generated with a choice of 
0 ¼ 0:4 and Æ0 ¼ 0:1 observed with a Gaussian noise with

variance 4. Figure 3 shows the same signal with a noise with variance 8. In Figure 4, the

coefficients of the multifractal function are drawn with a choice of 
0 ¼ 0:5 and Æ0 ¼ 0:05,

while the function is observed with a Gaussian noise with variance 4. Each figure is divided

into four parts: in the top left-hand part, we plot the multifractal function; the top right

shows the observed data, while the bottom left shows the estimator of the function; finally,

in the bottom right-hand part, we plot the absolute difference of the true signal and the

estimator.

We can see that, even if some peaks are badly allocated, the Bayesian reconstruction

provides good visual performance and preserves the energy of the signal. Moreover, most of

the errors are encountered at the border of the interval, which is due to boundary effects.

Figure 5 shows estimation errors with classical thresholded estimators, using VisuShrink and

SureShrink (Donoho and Johnstone 1994).

Tables 1 and 2 compare the estimation efficiency of the different estimators constructed

in this paper, the Bayes estimate with known prior, the two adaptive versions of the

previous estimator, with the classical hard thresholded estimator. The thresholding level is

selected using the SureShrink procedure. We present here the mean of the L2 error obtained

from 50 simulations for two different signals with two different Gaussian noises with

n ¼ 104 observations. The first signal is constructed with a lacunarity parameter 
0 ¼ 0:5
and an intensity parameter Æ0 ¼ 0:05, while for the second function we have 
0 ¼ 0:4 and

Æ0 ¼ 0:1.

The following notation is used in Table 1. f̂f � is the Bayesian estimator with the true

coefficients and the optimal cut-off level j�1 (n) . Since all the adaptive type estimators are

constructed with a maximum number of levels that does not depend on the characteristics

of the signal, we will use for comparison the estimator f̂f , the estimator for known

parameters Æ0 and 
0 but with ĵjn ¼ log2(n). f̂fEM stands for the Bayesian estimator whose

coefficients are given by the EM algorithm while those of f̂f param are calculated by the

empirical estimators. Finally, f̂fH is the theoretical hard-thresholded estimator. In Table 2, we
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Figure 2. Bayesian reconstruction with snr ¼ 4.
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Figure 3. Bayesian reconstruction with snr ¼ 8.
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Figure 4. Bayesian reconstruction with snr ¼ 4.
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Figure 5. Thresholded reconstruction with snr ¼ 4.
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have studied the estimators ~ffEM and ~ff param, which differ from f̂fEM and f̂f param since the

optimal resolution level is computed with the estimated values of both lacunarity and

intensity parameters, for the two estimation methods.

The results show clearly that the classical thresholding procedure outperforms the Bayes

procedure. This is not surprising since the methodology aims to reconstruct this particular

kind of signal and is well adapted to separate small wavelet coefficients from the noise,

while the thresholded estimator oversmooths the noisy data.

Also, the asymptotic behaviour of both the Bayes adaptive estimator and parametric

adaptive estimator is similar to the behaviour of f̂f . This shows that the parametric

estimation of the hyperparameters of the prior law works well and provides an efficient way

of denoising multifractal functions. Using the estimated parameters to find the optimal level

also improves the estimation procedure.

6. Concluding remarks: Towards an adaptive estimation

We have constructed a Bayesian estimator with a prior that relies heavily on two

hyperparameters. In order to obtain a fully tractable estimator, we provided two ways of

estimating them, either by using the maximum likelihood approach or with moment

estimates. For a full theoretical approach, we should study the rate of convergence of the

estimator with estimated parameters. Hence, it is natural to try to replace the true

parameters by the estimates given in Section 4. Unfortunately, we do not obtain precise

rates of convergence in either case, since we face two main difficulties.

On the one hand, when using the EM algorithm, we only obtain an approximation of the

Table 1. Mean square error for level-dependent estimators

Multifractal functions MSE:

f̂f �
MSE:

f̂f

MSE:

f̂fEM

MSE:

f̂fparam

MSE:

f̂fH


0 ¼ 0:5, Æ0 ¼ 0:05, snr¼3 9:10�4 0.015 0.034 0.032 0.102


0 ¼ 0:5, Æ0 ¼ 0:05, snr¼6 3:10�3 0.058 0.0772 0.0796 0.290


0 ¼ 0:4, Æ0 ¼ 0:1, snr¼3 2:10�3 0.03 0.048 0.055 0.104


0 ¼ 0:4, Æ0 ¼ 0:1, snr¼6 7:10�3 0.079 0.092 0.109 0.298

Table 2. Mean square error for adaptive estimators

Multifractal functions MSE:

f̂f �
MSE:
~ffEM

MSE:
~ffparam


0 ¼ 0:5, Æ0 ¼ 0:05, snr¼3 9:10�4 0.01 0.012


0 ¼ 0:5, Æ0 ¼ 0:05, snr¼6 3:10�3 0.038 0.032


0 ¼ 0:4, Æ0 ¼ 0:1, snr¼3 2:10�3 0.022 0.028


0 ¼ 0:4, Æ0 ¼ 0:1, snr¼6 7:10�3 0.072 0.078
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parameters Æ̂Æ(k)
n and 
̂
(k)

n , for k large enough. So the estimator f̂f (k)
n is an approximation of

f̂f n and the algorithm does not provide precise control over the convergence.

On the other hand, the moment estimators Æ̂Æn and ~

n should be plugged into the

expression of the estimate and used to build the estimator

f̂f n ¼
X
j< ĵ1j1 n

X2 j�1

k¼0

2�Æ̂Æ n j1d jk>d
( j[2
̂
 n j ])

ł jk , (6:1)

with 2 ĵ1j1 n ¼ (n=logn)1=(1þ2Æ̂Æ n�
̂
n ): The L2 error thus involves term of the form

j2�Æ̂Æ n j1d jk>d
( j[2
̂
 n j])

� 2�Æ0 j1d jk>d
( j[2
0 j])

j2,

whose behaviour is a very difficult issue. Moreover, to estimate the parameters of the prior,

we need a fixed maximum level of resolution, here with value j1 ¼ log2(n). But the optimal

number of levels for constructing the signal depends itself on the value of these parameters.

As a result, we cannot study the behaviour of (6.1).

However, we can point out that the random wavelet series f � ¼
P

jkw
�
jkł jk , where the

wavelet coefficients are drawn according to one of the two previous statistical models, is

such that, for any p . 0, there exists a finite positive constant C p with,

8 j . 0,
X2 j�1

k¼0

Ejw�jk j p < C p2
(�Æ0 pþ
0) j:

This implies that the function f � belongs almost surely to the sparse Besov spaces Bs
p1 for

s < Æ0 þ (1 � 
0)=p (see Jaffard 2000b). As a consequence, the classical adaptive

thresholded estimator converges at a rate of n�1þ1=(2þ2Æ0�
0): This adaptive rate of

convergence is far from the rate of convergence found in Section 3. Indeed, our estimation

procedure is based on a parametric approach and a choice of a good prior, well suited to fit

the model of multifractal functions.

Appendix

A.1. Technical lemmas

In this section, the analysis of the asymptotic behaviour of a Gaussian mixture provides

upper bounds for the classification problem described in Section 3. The problem can be

stated as follows.

Consider n random variables, Xi, i ¼ 1, . . . , n, of two different populations (I) and (II):

X 1, . . . , Xp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
(I)

, Xpþ1, . . . , Xn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
(II)

where the population (I) consists of independent Gaussian variables N (a, � 2) with a . 0 and

the population (II) consists of independent Gaussian variables N (0, � 2). The two groups are

assumed to be independent. We consider a decreasing reordering of the variables
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X (1) > . . . > X ( p) > . . . > X (n):

This model is a mixture model, as defined by Mc Leish and Small (1986), where we know

precisely the different proportions and the values of the different means. The link with our

Bayesian estimator is the following: at each fixed level j the wavelet coefficients can take two

different values, a ¼ a j ¼ 2�Æ0 j or 0. So if we rescale the coefficients by multiplying them by

the same parameter
ffiffiffi
n

p
=� , the estimation problem turns out to be a classification problem of

random variables following Gaussian laws N (0, 1) or N (
ffiffiffi
n

p
a=� , 1). Our aim here is to

bound the error of misclassifying a variable. Hence, we wish to bound the quantities

P(d k�0 , d k̂k p j
), and P(d k�

2 j�1

, d k̂k p j
)

(see (3.3) for the definition of the notation) which can be rewritten in the previous framework

as

P(X 1 , X ( p)) and P(Xn , X ( p)):

If we define the rank statistics Ri, i ¼ 0, . . . , n� 1, these two probabilities can be rewritten

as P(R1 , p) and P(Rn , p). This problem was studied very early in the history of statistics

(see, for example, Gumbel 1958).

The following lemma gives a first rough upper bound for the errors, which will be

sufficient in our work. The proof follows from straightforward combinatorial calculations:

Lemma A.1.

P(X 1 , X ( p)) < (n� p)P(X1 , Xpþ1),

P(Xn , X ( p)) > P(maxi. p Xi , mini< pXi):

Under the assumption 1 � 2Æ0 . 0, the two groups of Gaussian variables can be

differentiated since the mean mn ¼ 2 j1=2�Æ0 j goes far from zero quickly enough.

The following lemma, whose proof uses Lemma A.1, describes the asymptotic behaviour

of the two previous probabilities:

Lemma A.2. There exist two finite positive constants c1 and c2 such that

P(X 1 , X ( pþ1)) < c1 exp � m2
n

4

� �
,

P(Xn . X ( p)) < c2 exp � 2(
0�1) jm2
n

4

� �
:

7.2. Proofs

Proof of Lemma 3.1. Following Mallat (1998), we consider the approximation spaces (V j) j>0

defining the multiresolution analysis associated with the wavelet ł (for any j 2 N ,

Wavelet estimation of a multifractal function 239



(ł j,k)k¼0,2 j�1 is a basis of V j). Further, let — j be the projector operator on V j. Due to

orthonormality of wavelet bases, we have the following decomposition:

Ek f � � f̂f k2
2 < Ek f̂f �— j1 f

�k2
2 þ k f � �— j1 f

�k2
2:

The bias term is such that there exists a positive constant c2 such that

Ek f � �— j1 f
�k2

2 ¼ O
X
j. j1

2� j
X
k

(w�jk)2

 !
¼ O c22�(1�
0þ2Æ0) j1

� �
:

For the stochastic term, we have:

Ek f̂f �— j1 f
�k2

2 ¼ E
X
( j,k)

2� jjŵw jk � w�jk j2

¼ E
X
j

2� j
Xp j

l¼0

jŵw jk�l � 2�Æ0 jj2 þ
X2 j�1

l¼ p jþ1

jŵw jk�l j
2

0
@

1
A

¼
X
j

2� j2�2Æ0 j
Xpj

l¼0

P(k�l =2 f k̂k0, . . . , k̂k pj
g) þ

X2 j�1

l¼ p jþ1

P(k�l 2 f k̂k0, . . . , k̂k pj
g)

0
@

1
A

<
X
j

2� j2�2Æ0 j [2
0 j]P(d k�0 , d
k̂k p j

) þ (2 j � [2
0 j])(1 � P(d k�
2 j�1

, d
k̂k p j

))
� �

< T1 þ T2,

where we have set pj ¼ [2
0 j] � 1.

It remains to study the asymptotic behaviour of the misclassification errors. Using the

upper bound provided by Lemma A.2 and putting together all the results, we obtain for the

first remainder term:

T1 <
X
j< j1

2� j2
0 j�2Æ0 j P(X 1 , X ( p)) <
X
j< j1

2(
0�2Æ0) j2� j1=22Æ0 j exp � 2 j1�2Æ0 j

4

� �

< exp � 2 j1(1�2Æ0)

4

� �
2(
0�Æ0�(1=2)) j1 :

But since 1 � 2Æ0 . 0 we have 2 j1(1�2Æ0) ! 1 as j1 increases. As a result, we can conclude

that T1 goes to zero with exponential rate of convergence whatever the value of 
0 is. For the

second term, we obtain the upper bound

T2 <
X
j< j1

2�2Æ0 j P(Xn . X ( p)) <
X
j< j1

2 j(1þ
0�2Æ0) exp(�c2m2
n2

(
0�1) j)

< exp(�c2n2(
0�1�2Æ0) j1 )2(1þ
0�2Æ0) j1 : h

240 F. Gamboa and J.-M. Loubes



Proof of Theorem 3.2. Using results of Lemma 3.1, we have the following trade-off between

the two terms:

Ek f̂f � f �k2
2 < c12 j1(
0�1�2Æ0) þ n exp � n2 j1(
0�1�2Æ0)

4

� �
:

Hence an optimal choice of the resolution level is given by 2 j1 ¼ O(n=logn�)1=(1þ2Æ0�
0), with

� . 8. This yields the following rate of convergence:

Ek f̂f � f �k2
2 ¼ O

log n

n

� �
,

which proves the result. h

Proof of Theorem 3.3. We can see that there are slight changes with respect to the first

model. As a matter of fact, an additional estimation issue is added to the original

classification problem. Here, the quadratic loss is divided into three terms corresponding to

wrongly choosing the location of the greatest coefficients and an extra term corresponding to

the estimation error. Working as previously, we decompose the error term into a stochastic

term and a bias term:

Ek f � �— j1 f
�k2

2 <
X
j. j1

2� jEjd�jk j2

<
X
j. j1

2� j˜2
j þ c22� j1(1�
0þ2Æ0):

But
P

j. j1
2� j˜2

j < 1=n:
The stochastic term is bounded by

Ek f̂f �—1 f
�k2

2 ¼ E
Xj1
j¼0

X
k

2� jjŵw jk � w�jk j2

¼
Xj1
j¼0

2� jE
Xpj

l¼0

(w�j,k l
�)21k�l f k̂k0,..., k̂k p j

g

 !

þ
Xj1
j¼0

2� jE
Xpj

l¼0

(ŵw j,k�l � wj,k�l )21
k l
�2f k̂k0,..., k̂k p j

g

 !

þ
Xj1
j¼0

2� jE
X2 j�1

l¼ p jþ1

ŵw2
j,k�l

1
k�l 2f k̂k0,..., k̂k p j

g

0
@

1
A

¼ I þ II þ III :

The three quantities can be bounded as shown in the following lemma.
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Lemma A.3. We have

(I) <
X
j< j1

2(
0�1) j P1=2(k�l =2 f k̂k0, . . . , k̂k p j
g)A

1=2
j ,

(II) <
X
j< j1

2� j
X
l. pj

P1=2(k�l 2 f k̂k0, . . . , k̂k pj
g)E1=2 2�Æ0 j� 2=n

˜2
j þ � 2=n

þ
˜2

j

˜2
j þ � 2=n

E jk

 !4

,

(III) <
X
j< j1

2(
0�1) j(2 j � 2
0 j)
P1=2(k�n 2 f k̂k0, . . . , k̂k p j

g)

(˜2
j þ 2� j1� 2)2

B
1=2
j :

Where, for j ¼ 1, . . . , 2 j1, we have set A j ¼ 2� 4
j þ 6 2�2Æ0 j� 2

j þ 2�4Æ0 j and Bj ¼
32�2 j1� 4˜8

j þ 2�4Æ0 j� 82�4 j1 þ 6� 6˜5
j2

�2Æ0 j2�3 j1 with � 2
j ¼ ˜2

j þ 2� j1� 2.

The proof of this lemma is rather technical and is postponed to the end of this section.

We point out that the coefficients Aj and Bj both tend towards zero as n increases. So,

the convergence of the first and second terms of the quadratic loss will be ensured by the

good classification properties of the model. As a matter of fact the only modification with

respect to the first model is the change of the variance. Observe that these variables still

have the same asymptotic behaviour. Hence, from Lemma A.2, we may conclude that the

probability of misclassifying the coefficients tends to zero exponentially fast (because

˜2
j < ~cc2� j, j 2 N, for some ~cc . 0). As a consequence, the quadratic rate of convergence

will only depend on the central term. Indeed, we may find some positive constants c, c1,

and c2 such that

Xj1
j¼0

2(
0�1) j P1=2(k�l =2 f k̂k0, . . . , k̂k p j
g)A

1=2
j <

Xj1
j¼0

2(
0�1) j n exp � 2 j(
0�1)m2
n

8

� �
3 ˜2

j þ
� 2

n

� �2
"

þ 2:2�2Æ0 j ˜2
j þ

� 2

n

� �
þ 2�4Æ0 j

�

< c1n exp(�c22 j1(
0�1)m2
n)sup

j< j1

(˜2
j)2

(
0�1) j1 :

This term is of the same order as the stochastic term in the proof of Theorem 3.2, since we

made the assumption that the variance term satisfies ˜2
j ¼ O(2� j). We now study the second

term:
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X
j

2� j
X
l. pj

P1=2(k�l 2 f k̂k0, . . . , k̂k pj
g)E1=2 2�Æ0 j� 2=n

˜2
j þ � 2=n

þ
˜2

j

˜2
j þ � 2=n

E jk

 !4

<
Xj1
j¼0

2(
0�1) j
˜2

j�
4=n2 þ ˜4

j�
2=n

(˜2
j þ � 2=n)2

<
Xj1
j¼0

2(
0�1) j �
2

n
<

c22 j1(
0�1)

n
,

which goes to zero as well.

To conclude, observe that we may also bound the third term:

Xj1
j¼0

2(
0�1) j(2 j � 2
0 j)
P1=2(k�n 2 f k̂k0, . . . , k̂k p j

g)

(˜2
j þ 2� j1� 2)2

B
1=2
j <

Xj1
j¼0

exp(�c2m2
n)Fj

where

Fj ¼
2
0 j B

1=2
j

(˜2
j þ 2� j1� 2)2

, j ¼ 0, . . . , j1

Since Fj does not go to infinity at an exponential rate, we may conclude that the last term

goes to zero at an exponential rate of convergence. Hence, the two remaining terms (I) and

(II), are of the same order as in the case without noise. As a result, the choice of the same

optimal resolution level j1(n) concludes the proof. h

Proof of Lemma 7.2. First of all, we point out that the probabilities remain unchanged if we

multiply the random variables by the same constant. From now the random variables follow

either N (0, 1) or N (mn, 1), mn ¼ a
ffiffiffi
n

p
=� ). We can see that if Æ0 , 1

2
, when n ! 1 then

mn ! 1. Under this assumption, the two components of the Gaussian mixture are well

divided, and the classification issue leads to efficient results. Otherwise, the coefficients of the

signal are too small to be differentiated from the Gaussian white noise and the estimation

problem is made impossible.

We have, for some c1 > 0,

P(X (1) , X ( pþ1)) < P(X 1 , Xpþ1) ¼ P N (mn, 1) , N (0, 1)ð Þ:

Since the two Gaussian variables are independent, X 1 � Xpþ1 � N (mn, 2). We conclude that

P(X1 , Xpþ1) < c1 exp � m2
n

4

� �
:

For the second probability, we use the law of extreme statistics. Indeed, in each group the

random variables are independently equidistributed. Obviously, the density of mini¼1,..., pYi is
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n� pffiffiffiffiffiffi
2�

p exp � (x� mn)
2

2

� � ðx
�1

1ffiffiffiffiffiffi
2�

p exp � (t � mn)
2

2

� �
dt

� �n� p�1

and the density of maxi¼ pþ1,...,n Yi is

pffiffiffiffiffiffi
2�

p exp � x2

2

� � ð1
x

1ffiffiffiffiffiffi
2�

p exp � t2

2

� �
dt

� � p�1

:

Thus,

1 � P(max
i. p

Xi , min
i< p

Xi)

¼
ðð

x. y

(n� p) pffiffiffiffiffiffi
2�

p exp � x2

2

� �
exp(�(y� mn)

2=2)�(x)n� p�1(1 ��(y� mn))
p�1 dx dy

< p(n� p)

ðð
x. yþmn

exp � x2

2

� �
�(x)n� p�1 exp � y2

2

� �
(1 ��(y)) p�1 dx dy

< p(n� p)

ð ð
x. yþmn

1ffiffiffiffiffiffi
2�

p exp � x2

2

� �
dx

� �
exp � y2

2

� �
(1 ��(y)) p�1 dy

< p(n� p)

ð
exp � (yþ mn)

2

2

� �
exp � y2

2

� �
exp �( p� 1)

y2

2

� �
dy

< p(n� p) exp � 2(
0�1) jm2
n

2(2(
0�1) j þ 1)

� �
:

As a result, we have proved that, there exists a positive constant c such that

P(Xn > X ( p)) < cnp exp � 2(
0�1) jm2
n

4

� �
,

concluding the proof of the lemma. h

Proof of Lemma 7.3. Using the Cauchy-Schwarz inequality, we obtain for I:

I ¼ E
Xj1
j¼0

2� j
Xpj

l¼0

w2
j,k�l1k�l =2f k̂k0,..., k̂k p j

g

<
X
j

2� j( pj þ 1)(Ew4
j,k�0 )1=2P1=2(k�l =2 f k̂k0, . . . , k̂k p j

g)

<
X
j

2(
0�1) j(Ew4
j,k�0 )1=2P1=2(k�0 =2 f k̂k0, . . . , k̂k pj

g):

If X is a Gaussian variable with mean m and variance � 2, then
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EX 4 ¼ 3� 4 þ 6m2� 2 þ m4:

So, since wj,k�l � N (2�Æ0 j, � 22� j1 þ ˜2
j), we obtain

I <
X
j

2(
0�1) j P1=2(k�l =2 f k̂k0, . . . , k̂k pj
g)(2� 4

j þ 6:2�2Æ0 j� 2
j þ 2�4Æ0 j),

where � 2
j ¼ ˜2

j þ 2� j1� 2, j 2 N.

Again using the Cauchy-Schwarz inequality, we obtain for II :

II ¼
X
j

2� jE
Xpj

l¼0

(ŵw j,k�l � wj,k�l )21k�l 2f k̂k0,..., k̂k p j
g

 !

< 2� j( pj þ 1)E(ŵw j,k�0 � w
j,k

�� ��
0

)2

< 2(
�01) j
˜2

j�
4=nþ ˜4

j�
2=n

(� 2=nþ ˜2
j)

2
:

It remains to bound III:

III ¼
X
j

2� jE
X2 j�1

l¼ pjþ1

ŵw2
j,k�l1k�l 2f k̂k0,..., k̂k p j

g

0
@

1
A

<
X
j

2� j
X
l. p j

E 2�Æ0 j þ
˜2

j

˜2
j þ � 2=n

(d jk � 2�Æ0 j)21
k�l 2f k̂k0,..., k̂k p j

g

 !

<
X
j

2� j
X
l. p j

P1=2(k�l 2 f k̂k0, . . . , k̂k p j
g)E1=2 2�Æ0 j� 2=n

˜2
j þ � 2=n

þ
˜2

j

˜2
j þ � 2=n

� jk

 !4

,

where we have set � jk ¼ d jk � 2�Æ0 j: So

III <
X
j

2(
0�1) j(2 j � 2
0 j)
P1=2(k�n 2 f k̂k0, . . . , k̂k p j

g)

(˜2
j þ 2� j1� 2)2

Rj

with

Rj ¼ (3:2�2 j1� 4˜8
j þ 2�4Æ0 j� 82�4 j1 þ 6� 6˜5

j2
�2Æ0 j2�3 j1 )1=2: h
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