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Flexible stationary diffusion-type models are developed that can fit both the marginal distribution and

the correlation structure found in many time series from, for example, finance and turbulence.

Diffusion models with linear drift and a known and prespecified marginal distribution are studied, and

the diffusion coefficients corresponding to a large number of common probability distributions are

found explicitly. An approximation to the diffusion coefficient based on saddlepoint techniques is

developed for use in cases where there is no explicit expression for the diffusion coefficient. It is

demonstrated theoretically as well as in a study of turbulence data that sums of diffusions with linear

drift can fit complex correlation structures. Any infinitely divisible distribution satisfying a weak

regularity condition can be obtained as a marginal distribution.
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1. Introduction

We consider the problem of choosing a continuous-time model based on discrete-time

observations X t1 , . . . , X tn . Ideally the choice of a model should be based on an

understanding of the processes governing the system from which the data are obtained.

Often such a description of a system is made using a number of ordinary differential

equations – in the case of a single ordinary differential equation,

dX t

dt
¼ b(X t), t > 0:

A natural extension of this model is to add a white noise term,

dX t ¼ b(X t)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
v(X t)

p
dWt, t > 0,

where W is a standard Wiener process. This introduces an uncertainty in the description of

the system behind the data and results in dependence between the observations. See Pedersen

(2000) for an example of this approach in the modelling of nitrous oxide emissions from the
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soil surface. In this paper we show how, with a given drift function b, any probability density

satisfying weak regularity conditions can be obtained as a marginal distribution by choosing

v suitably. This result is useful when choosing a parametrized class of diffusion coefficients v

in the light of data. A linear specification of b is studied in detail.

In many cases the mechanisms driving the process of interest are not understood well enough or

are too complicated to be described using a simple drift function, b, and a more data-driven

approach must be taken. The main aim of this paper is to propose a method of choosing a model

based on data also in such cases. Specifically, we show how to construct a model for X with a given

marginal density f , X t � f , and autocorrelation function r(t) ¼ corr(X s, X sþ t), s, t > 0, where

f is infinitely divisible and satisfies a weak regularity condition, and where r(t) belongs to a large

and very flexible class of autocorrelation functions. The model is usually not Markovian.

Expressions for f and r are typically chosen so that they fit a histogram of the data and the

empirical autocorrelation function. Aı̈t-Sahalia (1996) took the same approach as we do in the case

of an exponentially decreasing autocorrelation function, but instead of a parametric model for the

marginal density, he estimated this density nonparametrically. In Bibby and Sørensen (1997;

2001) a similar approach based only on the marginal density f was used in connection with

financial data. The construction in this paper, which involves sums of diffusion processes, is

related to the sums of Ornstein–Uhlenbeck processes driven by Lévy processes introduced by

Barndorff-Nielsen et al. (1998) and provides a continuous-path alternative to these jump

processes. Therefore, the models introduced in this paper can be used to construct stochastic

volatility models without jumps that are alternatives to the models of Barndorff-Nielsen and

Shephard (2001); see Bibby and Sørensen (2004). Constructions different from ours of Markovian

martingales with prescribed marginal distributions have recently been considered by Madan and

Yor (2002).

In Section 2 we introduce the method in the situation where X is a diffusion process with a linear

drift and hence has an exponentially decreasing autocorrelation function. For a large number of

commonly used probability distributions, explicit diffusion models are given with linear drift and

with these distributions as marginal distributions. Moreover, general expressions for exponential

families and normal variance mixtures are established. Also nonlinear drift functions are

considered. Section 3 contains a result on an approximation of the squared diffusion coefficient

that enlarges the class of possible marginal densities for which a diffusion model can be handled in

practice. The approximation is based on saddlepoint techniques, and the marginal density of the

resulting model is approximately proportional to the saddlepoint approximation of the original

marginal density. In Section 4 models for X with more realistic autocorrelation functions are

constructed based on the results in Sections 2 and 3. These models are finite sums of diffusion

processes and hence not Markovian. Here the marginal distribution must be infinitely divisible.

Relations to long-range dependence are investigated. Infinite sums of diffusions are also briefly

considered. In Section 5 multivariate models are introduced. Finally, in Section 6 we study an

example involving turbulence data.

2. Construction of diffusions

In this section we describe the construction of diffusion process models with an exponential
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autocorrelation function and a specified marginal distribution. The diffusion will be

constructed such that the marginal distribution is concentrated on a set (l, u)

(�1 < l , u < 1), and has a prespecified density f with respect to the Lebesgue

measure on the state space (l, u). The construction of a diffusion from its marginal

distribution and an exponential autocorrelation function first appeared in Aı̈t-Sahalia (1996),

who instead of using a parametric model estimated the marginal density nonparametrically.

In this way he obtained a nonparametric estimator of the diffusion coefficient. In particular,

Aı̈t-Sahalia (1996) also derived the basic equations (2.2) (2.4) and (2.9) below. In the rest

of this section, let f be a probability density satisfying the following condition.

Condition 2.1. The probability density f is continuous, bounded, and strictly positive on

(l, u), zero outside (l, u), and has finite variance.

Consider the stochastic differential equation

dX t ¼ �Ł(X t � �)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
v(X t)

p
dWt, t > 0, (2:1)

where Ł . 0, � 2 (l, u) and v is a non-negative function defined on the set (l, u). Theorem

2.1 below shows that if

v(x) ¼
2Ł

ðx
l

(�� y) f (y)dy

f (x)
¼

2Ł�F(x) � 2Ł

ðx
l

yf (y)dy

f (x)
, l , x , u, (2:2)

where F is the distribution function associated with the density f , then the solution X is

ergodic with invariant density f . The process X is mean-reverting, and if it is stationary the

autocorrelation function is e�Ł t.

Theorem 2.1. Suppose the probability density f has expectation � and satisfies Condition

2.1. Then the following holds.

(i) The stochastic differential equation given by (2.1) and (2.2) has a unique

Markovian weak solution. The diffusion coefficient is strictly positive for all

l , x , u.

(ii) The diffusion process X that solves (2.1) and (2.2) is ergodic with invariant

density f .

(iii) The function f (x)v(x) satisfiesðu
l

v(x) f (x)dx , 1, (2:3)

and E(X sþ t j X s ¼ x) ¼ xe�Ł t þ �(1 � e�Ł t). If X0 � f , then X is stationary, and

the autocorrelation function of X is given by

corr(X sþ t, X s) ¼ e�Ł t, s, t > 0: (2:4)

(iv) If �1 , l or u , 1, then the diffusion given by (2.1) and (2.2) is the only

ergodic diffusion with drift �Ł(x� �) and invariant density f . If the state space is
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R, it is the only ergodic diffusion with drift �Ł(x� �) and invariant density f for

which the condition (2.3) is satisfied.

Remark. When f has infinite second moment but finite first moment, the stochastic

differential equation given by (2.1) and (2.2) also has a unique Markovian weak solution with

invariant density f . In this case (2.3) is not satisfied. A finite first moment is obviously

needed for the construction (2.2).

Remark. If the state space is the real line, the stochastic differential equation given by (2.1)

and (2.8) with C . 0 has a unique Markovian weak solution with invariant density f .

Remark. When one (or both) of l or u is finite, densities that are unbounded at the finite

boundary can be of interest, for instance a gamma distribution with shape parameter smaller

than one. The scale measure will in all cases of practical interest be finite at the boundary

where the density is unbounded, so that with positive probability the diffusion will hit this

boundary at a finite time. A stationary diffusion with density f is also obtained in this case

with v given by (2.2) provided that the diffusion is made instantly reflecting at the boundary,

because f will satisfy the appropriate differential equation. This is a nice theoretical solution

to the problem that is, however, less easy to implement when simulating the process.

The following lemma is used in the proof of Theorem 2.1.

Lemma 2.2. Suppose the expectation of f is smaller than or equal to �, and that v is given

by (2.2). Then the function

g(x) ¼ f (x)v(x) ¼ 2Ł

ðx
l

(�� y) f (y)dy (2:5)

is strictly positive for all l , x , u, and limx! l g(x) ¼ 0. If f has expectation equal to �,

then limx!u g(x) ¼ 0.

Proof. Since g(x) ¼ 2Ł
Ð x
l
(�� y) f (y)dy, we see that g is strictly increasing on (l, �) and

strictly decreasing on (�, u), and that limx! l g(x) ¼ 0 and limx!u g(x) > 0. Hence g(x) . 0

for all l , x , u. h

Proof of Theorem 2.1. That v(x) . 0 for all l , x , u follows from Lemma 2.2 and the fact

that f is continuous. For l , x , u, define the scale density

s(x) ¼ exp 2Ł

ðx
x�

y� �

v(y)
dy

� �
¼ g(x�)

g(x)
, (2:6)

for some interior point l , x� , u, and the scale function

S(x) ¼
ðx
x�
s(y)dy ¼ g(x�)

ðx
x�

1

g(y)
dy:
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The function g is given by (2.5), and we have used the fact that (log g(y))9 ¼
�2Ł(y� �)=v(y). The function S is strictly increasing, twice continuously differentiable

and maps (l, u) onto R. If (l, u) ¼ R, this follows immediately from Lemma 2.2. If u is

finite, it follows from Condition 2.1 that there exists a K . 0 such that

g(x) ¼ 2Ł

ðu
x

(y� �) f (y)dy < K(u� x),

which implies that limx!u S(x) ¼ 1. If l is finite, a similar argument shows that

limx! lS(x) ¼ �1.

The stochastic differential equation

dYt ¼ s(S�1(Yt))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(S�1(Yt))

p
dWt (2:7)

satisfies the conditions of Engelbert and Schmidt’s (1985) Theorem 2.2 because the function

s(S�1(x))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(S�1(x))

p
is continuous on R. Hence it has a unique Markovian weak solution

with state space R. By Itô’s formula, the process S�1(Yt) solves (2.1). This is the only

solution because if X is a solution of (2.1), then S(X t) solves (2.7), again by Itô’s formula.

We have thus proved (i).

Regarding (ii), we need only check that the scale measure diverges at both end-points and

that the speed measure has a density proportional to f (and hence is finite); see, for

example, Skorokhod (1989). The invariant density is proportional to the density of the

speed measure; see Karlin and Taylor (1981). We have already proved the first assertion,

and the second follows easily because the speed measure has density

1

v(x)s(x)
¼ f (x)

g(x�)
,

where we have used (2.5) and (2.6).

Now to (iii). Note that if we can show that (2.3) holds, then it easily follows from (2.1)

that E(X sþ t j X s ¼ x) ¼ xe�Ł t þ �(1 � e�Ł t), which again implies (2.4). If �1 , l and

u , 1, (2.3) follows from Lemma 2.2. Otherwise it must be checked that v(x) f (x) goes

sufficiently fast to zero at infinite boundaries. The condition that f has finite variance is

exactly enough to ensure this. If u ¼ 1,ð1
�
g(x)dx ¼ 2Ł

ð1
�

ð1
x

(y� �) f (y)dy dx ¼ 2Ł

ð1
�

ð y

�
dx(y� �) f (y)dy

¼ 2Ł

ð1
�

(y� �)2 f (y)dy , 1,

where we have used Tonelli’s theorem. If l ¼ �1, (2.3) is verified in a similar way.

Finally, to show (iv), note that for an ergodic diffusion of the form (2.1) with invariant

density f , necessarily

f (x) ¼ K

v(x)
exp �2Ł

ðx
x�

y� �

v(y)
dy

� �
for some positive constant K. Here we have used the general expression for the speed
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measure. We see that the function g ¼ f v is differentiable and that (log g(x))9 ¼
�2Ł(x� �)=v(x) or g9(x) ¼ �2Ł(x� �) f (x). Thus

v(x) ¼
2Ł

ðx
l

(�� y) f (y)dyþ C

f (x)
, (2:8)

for some constant C. To ensure that v(x) . 0 for all l , x , u, it is necessary that C > 0,

since by Lemma 2.2 the integral goes to zero at the boundaries. If one of the boundaries is

finite, it is necessary that C ¼ 0 for the scale measure 1=( f v) to diverge at that boundary,

again because the integral in (2.8) goes to zero at the boundaries. If both boundaries are

infinite, (2.8) defines an ergodic diffusion with invariant density f for all C > 0. However,

(2.3) holds only when C ¼ 0. h

By the arguments used to prove (2.3) for u ¼ 1 and l ¼ �1, it follows that under the

assumptions of Theorem 2.1,ðu
l

v(x) f (x)dx ¼ 2Ł

ðu
l

(y� �)2 f (y)dy ¼ 2Ł var(X 0):

The last equality holds, of course, only when X0 � f .

The construction in Theorem 2.1 is a particular case of the following general result, the

proof of which is analogous to the proof of Theorem 2.1.

Theorem 2.3. Let b be a drift function with reversion defined on (l, u), that is, there exists a

k 2 (l, u) such that b(x) . 0 for l , x , k and b(x) , 0 for k , x , u. Suppose f is a

strictly positive, continuous probability density on (l, u) satisfyingðu
l

b(x) f (x)dx ¼ 0,

and that the function bf is continuous and bounded on (l, u) Then

v(x) ¼
2

ðx
l

b(y) f (y)dy

f (x)
. 0 (2:9)

for all l , x , u, and the stochastic differential equation

dX t ¼ b(X t)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
v(X t)

p
dWt, t > 0

has a unique Markovian weak solution which is ergodic with invariant density f .

The condition that b has reversion is only made for convenience. A sufficient condition is

that the inequality (2.9) holds for all l , x , u.

In Bibby and Sørensen (2001) another method of constructing diffusion processes with a

given marginal density was discussed. In that paper the squared diffusion coefficient was

chosen proportional to the inverse of the marginal density raised to a power and an

expression for the drift was then determined from the relationship between the drift, the
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diffusion coefficient and the invariant density. In Bibby and Sørensen (1997) a special case

of this approach was considered, namely a diffusion process with no drift and diffusion

coefficient proportional to 1=
ffiffiffiffi
f

p
.

When the invariant density belongs to an exponential family with a linear component in

the canonical statistic the squared diffusion coefficient can be determined from the

following theorem.

Theorem 2.4. Consider an invariant density for a diffusion process which belongs to an

exponential family of the form

f (x; �) ¼ a(�)b(x)e�1xþÆ(�)� t(x), (2:10)

where � ¼ (�1, . . . , � p), and where Æ and t may be vectors. Then the squared diffusion

coefficient is given by

v(x; �) ¼ � 2Ł

f (x; �)

@

@�1

F(x; �), l , x , u: (2:11)

Proof. Since the cumulant transform for f is given by

k(t) ¼ log a(�) � log a(�1 þ t, �2, . . . , � p),

we obtain that

� ¼ � 1

a(�)

@

@�1

a(�),

and hence that

@

@�1

F(x; �) ¼ F(x; �)

a(�)

@

@�1

a(�) þ
ðx
l

yf (y; �)dy

¼ ��F(x; �) þ
ðx
l

yf (y; �)dy,

yielding (2.11). h

The result of simple linear transformations is given in the following lemma, from which

it follows that we need only consider centred and standardized distributions.

Lemma 2.5. Let X be a stationary diffusion process with linear drift and invariant density f .

Consider the linear transformation given by

Yt ¼ Æþ � X t, � . 0, Æ 2 R:

Then

v g(y) ¼ � 2 � v f

y� Æ

�

� �
,
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where g denotes the invariant density of Y , and v f and v g denote the squared diffusion

coefficients obtained by (2.2) from f and g, respectively.

We shall now give an extensive list of examples to show that the diffusion coefficient can

be found explicitly for many much-used probability distributions, so that our modelling

approach is often easy to use in practice. We begin by considering in detail examples of

diffusions with an invariant density on the whole real line, that is �l ¼ u ¼ 1, on the half-

line, and with compact support.

Example 2.1 Student’s t distribution. In this example we consider a diffusion process with

invariant density equal to a t(�) distribution, that is,

f (x) ¼ ˆ((�þ 1)=2)ffiffiffiffiffiffi
��

p
ˆ(�=2)

1 þ 1

�
x2

� ��(�þ1)=2

, x 2 R, � . 0:

Here we have taken � ¼ 0. We only consider t distributions for which the variance exists, so

we assume that � . 2. In this caseðx
�1

yf (y)dy ¼ � ˆ((�þ 1)=2)��=2

(�� 1)
ffiffiffi
�

p
ˆ(�=2)

(�þ x2)�(��1)=2,

so we obtain that

v(x) ¼ 2Ł

�� 1
(�þ x2), x 2 R:

The function v is also well defined for � ¼ 2, and we saw above that it defines an ergodic

diffusion with the t( 2) distribution as invariant distribution.

In the following example we consider an invariant density on the half-axis (l, 1), where

l . �1. In this situation it may be more convenient to rewrite the expression in (2.2) as

v(x) ¼
2Ł

ð1
x

(1 � F(y))dy� (�� x)(1 � F(x))

� �
f (x)

, x . l: (2:12)

In the case of positive diffusions, where l ¼ 0, the squared diffusion coefficient can be

expressed in terms of the hazard function º and the integrated hazard function ¸ in the

following way:

v(x) ¼
2Ł e¸(x)

Ð1
x

e�¸( y)dyþ x� �
� �

º(x)
, x . 0: (2:13)

Example 2.2 The gamma distribution. Consider a diffusion process with an invariant density

from the gamma distribution, that is,

f (x) ¼ ºÆ

ˆ(Æ)
xÆ�1e�ºx x . 0, Æ . 0, º . 0:
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In order for the density to be bounded, we suppose that Æ > 1. In this case the expectation is

� ¼ Æ=º. The distribution function is given by

F(x) ¼ ˆ(ºx; Æ)

ˆ(Æ)
,

where

ˆ(x; Æ) ¼
ðx

0

yÆ�1e� y dy

is an incomplete gamma function. For the gamma invariant density we get thatðx
0

yf (y)dy ¼ Æ

º
F(x) � x

º
f (x),

and therefore

v(x) ¼ 2Łx

º
:

This process is well known and was proposed by Cox et al. (1985) as a model for the short-

term interest rate.

The following is a simple example of an invariant density with compact support.

Example 2.3 The beta distribution. Consider a diffusion process with an invariant density

corresponding to the beta distribution, that is,

f (x) ¼ B(Æ, �)�1xÆ�1(1 � x)��1, 0 , x , 1, Æ . 0, � . 0,

where B(a, b) ¼ ˆ(a)ˆ(b)=ˆ(aþ b) is the beta function. In this case the distribution function

is given by

F(x) ¼ I x(Æ, �) ¼
Ð x

0
yÆ�1(1 � y)��1dy

B(Æ, �)
, 0 , x , 1,

and the mean is � ¼ Æ=(Æþ �). Similarly, we obtain thatðx
0

yf (y)dy ¼ Æ

Æþ �
I x(Æþ 1, �), 0 , x , 1:

Since we have that

I x(Æ, �) � I x(Æþ 1, �) ¼ ˆ(Æþ �þ 1)

ˆ(Æþ 1)ˆ(�þ 1)
xÆ(1 � x)�,

the squared diffusion coefficient takes the form

v(x) ¼ 2Ł

Æþ �
x(1 � x), 0 , x , 1:
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Inverse gamma
�º

ˆ(º)
x�º�1e��=x (0, 1)

�

º� 1
� . 0, º . 1

2Ł

º� 1
x2

Inverse Gaussian

ffiffiffiffiffiffiffiffiffiffi
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This process has been used to model the variation of exchange rates in a target zone by De

Jong et al. (2001) (for Æ ¼ �) and Larsen and Sørensen (2003).

In Table 1 the squared diffusion coefficient is given for a large number of common

distributions. In the table, � denotes the standard normal distribution function, ˆ(x; Æ) the

incomplete gamma function given by (2.14), and Ei is the exponential integral function

given by

Ei(x) ¼ �
ð1
�x

y�1e� y dy, x , 0:

Furthermore, ª denotes Euler’s constant, ª � 0:577 22.

Example 2.4 Normal variance mixtures. Consider the normal variance mixture

f (x) ¼
ð1

0

1ffiffiffiffiffiffiffiffi
2�u

p e�x2=(2u)h(u)du,

where the mixing distribution has density h on Rþ and finite expectation �h. Let f � be the

normal variance mixture with mixing density h�(u) ¼ uh(u)=�h. From the fact that a

diffusion with marginals that are normally distributed with variance u is obtained when

v(x) ¼ 2Łu (the Ornstein–Uhlenbeck process), it follows easily that a diffusion with marginal

density f emerges when

v(x) ¼ 2Ł�h f
�(x)

f (x)
:

If h belongs to a family of densities with a factor of the form xk (k . 0), h� belongs to the

same class. An example is the class of generalized inverse Gaussian densities which contains,

among many others, the inverse Gaussian densities, the gamma densities and the inverse

gamma densities. When h is a generalized inverse Gaussian density, both f and f � are

explicitly known generalized hyperbolic densities. This result provides an alternative

derivation in the case of the Student distribution, which is a normal variance mixture with

an inverse gamma mixing distribution. As another example, a diffusion with a symmetric

variance-gamma density, that is, (3.9) with � ¼ 0, is obtained when

v(x) ¼ jx� �j
Kºþ1

2
(Æjx� �j)

Kº�1
2
(Æjx� �j) ,

where Kº is the modified Bessel function of the third kind with index º. The variance-gamma

distribution was introduced in the finance literature by Madam and Seneta (1990) and has

often been connected with jump processes. For details of generalized inverse Gaussian and

generalized hyperbolic distributions, see Bibby and Sørensen (2003).
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3. Approximations

For some useful classes of distributions it is not possible to determine an explicit expression

for the squared diffusion coefficient. However, for several such distributions the moment

generating function exists and is known explicitly, so that the following approximation can

be applied. Let M denote the moment generating function corresponding to the density f ,

that is,

M(t) ¼
ðu
l

e tx f (x)dx, (3:1)

defined for t in the set

T ¼ t 2 R

����
ðu
l

e tx f (x)dx , 1
	 


:

Similarly, we let k denote the cumulant transform, k(t) ¼ logM(t), and note that it is twice

differentiable for all t 2 int(T ). Consider the approximation to v given by

~vv(x) ¼ 2Ł(x� �)

t̂tx
, (3:2)

where t̂tx is the saddlepoint given by

k9( t̂tx) ¼ x: (3:3)

Clearly ~vv(x) is positive for l , x , u since x� � ¼ k9( t̂tx) � k9(0) and k is a convex

function. Since k is analytic the singularity of ~vv(x) at x ¼ � is removable; in fact, the limiting

value of ~vv is 2Łk 0(0) and ~vv has derivatives of all orders.

The function ~vv emerges in a natural way when making a substitution in the expression

for v in (2.2). Define

rx ¼ sign( t̂tx)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(xt̂tx � k( t̂tx))

q
: (3:4)

Then the saddlepoint approximation to the density can be written

f (x) � (k 0( t̂tx))�1=2j(rx), (3:5)

where j is the standard normal density function. For the following computation, note that rx
is increasing in x, that rx drx ¼ t̂tx dx and that (x� �)=rx is a differentiable function when

extended by continuity at x ¼ � where rx ¼ 0. Now define

I(x) ¼
ðu
x

(y� �) f (y) dy ¼
ð ru
rx

ryj(ry)G(ry) dry,

where

G(ry) ¼
(y� �)

ry

f (y)

j(ry)

dy

dry
¼ (y� �)

t̂t y

f (y)

j(ry)
:

Integration by parts now yields
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I(x) ¼ �j(ry)G(ry)
� �ru

rx
þ
ð ru
rx

j(ry)G9(ry) dry

� j(rx)G(rx) ¼ f (x)
x� �

t̂tx
,

from which the approximation (3.2) is obtained using v(x) ¼ 2ŁI(x)= f (x). In this

computation we have discarded two terms for the following reasons. First the upper limit

ru is usually infinity even if u is finite, but if ru is finite, the term �j(ru)G(ru) is

exponentially small in standard asymptotic analysis because of the factor j(ru). Second,

although there are no asymptotic considerations in the present setting, we may consider what

happens when the density, f , corresponds to (a standardized version of) a convolution of n

independent replications, thus approaching the normal. In particular, this fits in naturally with

the infinitely divisible distributions. In that case the integral arising in the integration by parts

above will be of low order compared to the leading term. More precisely, it is of order

O(n�1=2) relative to the leading term uniformly, improving to a relative error of order O(n�1)

for large deviations, that is, for arguments x� � growing proportionally to
ffiffiffi
n

p
in the

standardized scale. In view of Condition 4.1 in the next section, it may be noted that these

asymptotic results are valid as n ! 1 for a family of densities, f n say, with characteristic

functions

Cn(t) ¼ fC0(t=
ffiffiffi
n

p
)gnei t�, (3:6)

where C0 is the characteristic function, some power of which must be integrable, of a centred

distribution with finite Laplace transform in some neighbourhood of zero. For integer values

of n this follows from asymptotic results for saddlepoint approximations. Using the method

of contour integrals for the saddlepoint approximation (see Daniels 1954; 1987), the same

techniques may be used to prove the validity for real (positive) values of n when C0

corresponds to an infinitely divisible distribution. In summary, we may expect the

approximation ~vv to work reasonably well near the mean and very well in the tails.

The approximation may be refined by inclusion of further terms according to the method

outlined in Bleistein (1966). In asymptotic analysis as described above, the order of error

would improve to O(n�1) by the approximation

I(x) � j(rx)G(rx) þ G9(0)(1 ��(rx))

where � is the standard normal distribution function and

G9(0) ¼ f (0)

j(0)
� k3

2
ffiffiffiffiffi
k2

p þ f 9(0)

f (0)
k3=2

2

� �
,

where k2 and k3 are the second and third cumulants of the distribution with density f .

Some properties of a diffusion process

dX t ¼ Ł(�� X t)dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
~vv(X t)

p
dWt, t > 0, (3:7)

with ~vv as squared diffusion coefficient, are stated in the following theorem.
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Theorem 3.1. Let the density f have expectation � and satisfy Condition 2.1. Assume that

the function

h(x) ¼ xt̂tx � k( t̂tx)

is such that
Ð x
� expfh(y)g dy tends to 1 as x tends to l and as x tends to u. Then, for a

normalizing constant c . 0, the density

~ff (x) ¼ c

~vv(x)
e�(x t̂tx�k( t̂tx)), x 2 (l, u), (3:8)

has mean �, is the marginal density of a diffusion process given by the stochastic differential

equation (3.7), and conclusions (i), (ii), and (iii) of Theorem 2.1 hold with v and f replaced

by ~vv and ~ff .

Remark. Note that ~ff in (3.8) is approximately proportional to the saddlepoint approximation

to f . This is seen by observing that both ~vv(x) and
ffiffiffiffiffiffiffiffiffiffiffiffi
k 0( t̂tx)

p
are approximately proportional to

k 0(0) þ 1
2
k(3)(0) t̂tx near the mean of the distribution, while the exponential is identical to that

of the saddlepoint approximation. Moreover, ~vv is continuous, and hence so is ~ff .

Remark. The condition on the function h is satisfied at the upper end if u ¼ 1 and also if u

is finite and either the limiting value or any of the derivatives of f at u is non-zero. Similarly

at the lower end, l. The proof of this assertion is trivial in the case u ¼ 1 because h(x) tends

to infinity; the other part is derived from Tauberian theorems on the Laplace transform of the

density. It seems a reasonable conjecture that the theorem holds without the condition on h,

but we have not been able to prove this. Incidentally, the inverse Gaussian distribution

provides an example of a density with a (lower) end-point of support at which the density and

all its derivatives vanish; the conclusion of the theorem is, however, also valid for this

distribution.

Proof of Theorem 3.1. Notice first that h is strictly convex with derivative h9(x) ¼ t̂tx and

with minimum h(�) ¼ 0. For later use we now prove that h(x) tends to infinity as x tends to

u. This is trivial if u ¼ 1; otherwise, assume without loss of generality that u ¼ 0. Then k(t)

is decreasing in t with k(t) ! �1 as t ! 1. For x satisfying l , x , 0 we have

tx� k(t) , h(x),

for any t 6¼ t̂tx, because k is strictly convex and the derivative of the left-hand side vanishes at

t ¼ t̂tx. For arbitrary but fixed t . 0, we see that h(x) > �k(t) for x sufficiently close to zero,

because h is increasing and hence has a limit. Since this holds for any t . 0 and �k(t) tends

to infinity, so does h(x) as x approaches zero. Thus, h tends to infinity at the upper end-point,

u, and the same result holds for the lower end-point, l, by the same argument.

Next we prove that the squared diffusion coefficient corresponding to ~ff derived from

(2.2) is ~vv from (3.2). For x . �, consider the integralðx
�
(y� �) ~ff (y) dy ¼

ð h(x)

0

c

2Ł
e�h dh ¼ c

2Ł
1 � e�h(x)
� �

,
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where we have used h9(x) ¼ t̂tx to substitute h for y in the integral. Similarly, for x , �, we

have ð�
x

(y� �) ~ff (y) dy ¼ � c

2Ł
1 � e�h(x)
� �

:

Thus, since h tends to infinity at both ends, the mean of ~ff is �. Furthermore, substitution in

(2.2) shows that ~vv is indeed the squared diffusion coefficient calculated from this equation

when the density is ~ff .

The proof that the pair consisting of ~vv and ~ff admits the remaining conclusions in (i)–

(iii) of Theorem 2.1 now copies the arguments of the proof of that theorem, except that

instead of providing Condition 2.1 for ~ff we have directly assumed that the scale function is

unbounded at the two end-points. Furthermore, notice that the integral in (2.3) in the

present case is proportional to
Ð

expf�h(x)g dx, so that the convexity of h directly implies

that the integral is finite. h

Let us consider some examples. For background material and detail about the variance-

gamma distribution, the normal-inverse Gaussian distribution, and other generalized

hyperbolic distributions, see Bibby and Sørensen (2003).

Example 3.1 The variance-gamma distribution. The variance-gamma distribution is a special

case of the generalized hyperbolic distribution that has proved useful in the modelling of

turbulence and financial data. The density function is given by

f (x) ¼ (Æ2 � �2)ºffiffiffi
�

p
ˆ(º)(2Æ)º�1=2

jx� �jº�1=2Kº�1=2(Æjx� �j)e�(x��), x 2 R, (3:9)

where Kº is the modified Bessel function of the third kind with index º. The domain of the

four parameters is º . 0, Æ . j�j and � 2 R. The mean is of the form

� ¼ �þ 2�º

Æ2 � �2
: (3:10)

Apart from the symmetric case (� ¼ 0) treated in Example 2.4, it is not obvious how to

determine an expression for the squared diffusion coefficient v. The moment generating

function is, however, rather simple:

M(t) ¼ e� t
Æ2 � �2

Æ2 � (�þ t)2

� �º

, j�þ tj , Æ: (3:11)

The cumulant transform and its first derivative are given by

k(t) ¼ �t þ º(log(Æ2 � �2) � log(Æ2 � (�þ t)2)),

k9(t) ¼ �þ 2º(�þ t)

Æ2 � (�þ t)2
,

and so the saddlepoint is
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t̂tx ¼
��, x ¼ �,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

º2 þ Æ2(x� �)2
p

� º

x� �
� �, x 6¼ �:

8><
>:

The approximate squared diffusion coefficient thus takes the form

~vv(x) ¼

4Łº

Æ2 � �2
, x ¼ �,

2Ł(x� �) x� �� 2�º=(Æ2 � �2)ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ Æ2(x� �)2

p
� º� �(x� �)

, x 6¼ �:

8>>><
>>>: (3:12)

Example 3.2 The normal-inverse Gaussian distribution. The normal-inverse Gaussian

distribution is another member of the class of generalized hyperbolic distributions. According

to Barndorff-Nielsen and Shephard (2001), it often fits the distribution of financial returns

very well. Its density is given by

f (x) ¼ ÆºK1(Æ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 � (xþ �)2

p
)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ (x� �)2

p � eº
ffiffiffiffiffiffiffiffiffiffi
Æ2��2

p
þ�(x��), x 2 R, (3:13)

where we assume that º . 0, Æ . j�j, and � 2 R. The mean is

� ¼ �þ �ºffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p :

As in the previous example, the symmetric case (� ¼ 0) can be handled by the result in

Example 2.4, whereas it is hard to determine the squared diffusion coefficient explicitly in the

general case. Again the approximation is readily obtained. The moment generating function

of the normal-inverse Gaussian distribution is of the form

M(t) ¼ e� tþº(
ffiffiffiffiffiffiffiffiffiffi
Æ2��2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2�(�þ t)2

p
), j�þ tj , Æ, (3:14)

giving the following expression for the derivative of the cumulant transform,

k9(t) ¼ �þ º(�þ t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � (�þ t)2

p :

This means that the saddlepoint is given by

t̂tx ¼
Æ(x� �)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ (x� �)2

p � �,

and therefore the following approximate squared diffusion coefficient emerges:

~vv(x) ¼ 2Ł
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ (x� �)2

p
(x� �� �º=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � �2

p
)

Æ(x� �) � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º2 þ (x� �)2

p : (3:15)

h
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Example 3.3 The inverse Gaussian distribution. For the inverse Gaussian distribution we have

that

v(x) ¼ 4Ł�

ffiffiffiffiffiffiffiffiffiffi
2�x3

º

r
e2º=�eº(x��)2=2�2x� �

ffiffiffi
º

x

r
x

�
þ 1

� � !
, x . 0; (3:16)

see Table 1. In this case the moment generating function is given by

M(t) ¼ exp
º

�
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2�2 t

º

r ! !
t <

º

2�2
:

The cumulant transform and its first derivative take the form

k(t) ¼ º

�
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2�2 t

º

r !
,

k9(t) ¼ �
ffiffiffi
º

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
º� 2�2 t

p :

This means that the saddlepoint is given by

t̂tx ¼
º(xþ �)(x� �)

2�2x2
,

and so

~vv(x) ¼ 4Ł�2x2

º(xþ �)
: (3:17)

In Figure 1 the two versions of the squared diffusion coefficient, (3.16) and (3.17),

corresponding to the parameter values Ł ¼ 1, º ¼ 5 and 25, and � ¼ 5 and 25 are drawn.

Note that M(t) is of the form M0(t)� with � ¼ º=� and M0(t) ¼ exp(1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2�2 t=º

p
), so

from the remarks after (3.6) we expect the approximation to improve as º=� increases, which

is in accordance with Figure 1.

Just as Theorem 2.1 could be generalized to diffusions with nonlinear drift function, as

shown in Theorem 2.3, we may also generalize Theorem 3.1 to such cases. This may be

viewed not only as an approximation but also as a result providing a class of diffusions

with nonlinear drift and an (exact) analytic expression for the stationary density. The

approximation is derived just as for the case with linear drift, and the proof follows that of

Theorem 3.1.

Theorem 3.2. Consider a probability density, f , satisfying the conditions of Theorem 3.1, and

a drift function, b(x), satisfying b(x) . 0 for l , x , � and b(x) , 0 for � , x , u. Assume

further that ðu
l

1

~vv(x)
e�(x t̂tx�k( t̂tx)) dx , 1,
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where

~vv(x) ¼ �2b(x)

t̂tx

(defined by continuity at x¼ 0) replaces (3.2). Then the differential equation

dX t ¼ b(X t) dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
~vv(X t)

p
dWt, t > 0,

has a unique Markovian solution which is ergodic with invariant probability density ~ff given

by (3.8).

Remark. Unlike the linear case, it is no longer true in general that � is the mean of the

distribution with density ~ff . But the mean of the drift function, b(X t), is zero (provided X is

stationary), so when b(x) is anti-symmetric around �, the mean is still �. Similarly, an anti-

symmetric drift guarantees that the same approximation results, relating ~ff to f , hold as in the
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Figure 1. The two squared diffusion coefficients, (3.16) and (3.17), corresponding to the parameter

values Ł ¼ 1, º ¼ 5 and 25, and � ¼ 5 and 25.
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case with linear drift, but in the general case ~ff may not comply with the saddlepoint

approximation to f to the same degree of accuracy around x ¼ 0; see the remark just below

Theorem 3.1.

4. Sums of diffusions

Very often the correlation structure found in time series data is more complex than the

exponentially decreasing autocorrelation of the models defined in Section 2. For diffusion

models with a nonlinear drift the autocorrelation function is usually not known explicitly,

but the autocorrelation function is bounded by a decreasing exponential function for all r-

mixing diffusions. A stationary, ergodic diffusion is r-mixing under rather weak conditions;

see Genon-Catalot et al. (2000). In order to obtain models with a more flexible correlation

structure, we will therefore consider stochastic processes that are sums of processes of the

type introduced in Section 2. Such processes have an explicit autocorrelation function of the

form

r(t) ¼ 	1e�Ł1 t þ 	2e�Ł2 t þ . . . þ 	me�Łm t, t > 0, (4:1)

where 	i . 0, i ¼ 1, . . . , m and 	1 þ 	2 þ . . . þ 	m ¼ 1. This functional form is very

flexible and can be fitted to a lot of empirical autocorrelation functions; see the discussion

below. The construction considered in this section is closely related to the sums of Ornstein–

Uhlenbeck processes driven by Lévy processes introduced in Barndorff-Nielsen et al. (1998)

and used by Barndorff-Nielsen & Shephard (2001) to model financial volatility.

Our aim is to construct a stationary process X with a given marginal density f and with

autocorrelation function given by (4.1) for some given integer m. We assume that f satisfies

the following condition.

Condition 4.1. The probability density f , with characteristic function C, is infinitely divisible,

that is C	 is a characteristic function for all positive 	. Assume, moreover, that there exists a

	0 > 0 such that for 	 . 	0 the probability distribution corresponding to C	 has a density

satisfying Condition 2.1.

Note that Condition 4.1 excludes all distributions on a bounded interval since such

distributions cannot be infinitely divisible. If f satisfies Condition 2.1, the only problem in

the last part of Condition 4.1 is the boundedness of the density corresponding to C	

because infinitely divisible densities are necessarily positive on (l, u). Properties of

infinitely divisible distributions are reviewed in Steutel (1983). The reader is reminded that

if C	 is Lebesgue integrable on R, then the corresponding distribution has a density with

respect to the Lebesgue measure that is continuous and bounded as required in Condition

2.1. This is useful when the density cannot be found explicitly.

Let f (i) denote the density function corresponding to the characteristic function C	i

(i ¼ 1, . . . , m). Since f satisfies Condition 4.1, we can, according to Theorem 2.1, define a

stationary process X (i) of the type introduced in Section 2 with marginal density f (i),
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provided that 	i . 	0, i ¼ 1, . . . , m. We will assume this to be the case. Specifically, let

W (1), W (2), . . . , W (m) be m mutually independent Wiener processes, define

vi(x) ¼
2Łi

ðx
l

(	i�� y) f (i)(y)dy

f (i)(x)
, i ¼ 1, . . . , m, (4:2)

where � is the expectation of f , and let X (i) be the solution of the stochastic differential

equation

dX
(i)
t ¼ Łi(	i�� X

(i)
t )dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi(X

(i)
t )

q
dW

(i)
t , i ¼ 1, . . . , m: (4:3)

Then the processes X
(1)
t , . . . , X

(m)
t are independent, and X

(i)
t � f (i), i ¼ 1, . . . , m, that is, the

distribution of X
(i)
t has characteristic function C	i . Hence the process X constructed as the

sum

X t ¼ X
(1)
t þ X

(2)
t þ . . . þ X

(m)
t , (4:4)

has marginal density f , and since

corr(X
(i)
sþ t, X

(i)
s ) ¼ e�Łi t, i ¼ 1, . . . , m, (4:5)

the autocorrelation function of X is given by (4.1). It is not difficult to see that

	i ¼
var(X

(i)
t )

var(X t)
, i ¼ 1, 2, . . . , m: (4:6)

The spectral density of the process X is given by

e(ø) ¼ 2

�

	1Ł1

Ł2
1 þ ø2

þ . . . þ 	mŁm

Ł2
m þ ø2

 !
, (4:7)

which follows immediately from the fact that a process with autocorrelation function e�Ł t has

spectral density 2Ł=(�(Ł2 þ ø2)).

The motivation for models of the type (4.4) is that the random variation quite frequently

is a compound of processes with different time scales. An example is the velocity

fluctuations in a turbulent wind that are caused by eddies with different time scales. The

process X (i) represents random variation with a time scale Ł�1
i .

The construction of the process X is particularly simple if the marginal distribution of X

belongs to a class of distributions which is closed under convolution. The following two

examples illustrate this.

Example 4.1 The gamma distribution. Here we construct a stationary stochastic process X for

which the marginal density is a gamma distribution, X t � ˆ(Æ, º), and the autocorrelation

function is of the form (4.1). This process can be obtained as the sum of m independent

diffusion processes (4.4), where X
(i)
t is the solution of

dX
(i)
t ¼ Łi

�
	iÆº

�1 � X
(i)
t

�
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Łiº�1X

(i)
t

q
dW

(i)
t , i ¼ 1, . . . , m: (4:8)
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According to Example 2.2, X
(i)
t � ˆ(	iÆ, º), i ¼ 1, . . . , m, and X

(i)
t satisfies (4.5). Here the

	0 of Condition 4.1 equals Æ�1, so the construction is only possible when 	i > Æ�1,

i ¼ 1, . . . , m. If there exists a 	i , Æ�1, then the process X (i) is not ergodic and can hit the

boundary zero in finite time with positive probability.

Example 4.2 The variance-gamma distribution. In this example we construct a stochastic

process X whose marginal density is a variance-gamma distribution, X t � VG(º, Æ, �, �) –

see Example 3.1 – and whose autocorrelation function is of the form (4.1). Let

X (1), . . . , X (m) be independent diffusions constructed according to (4.3) and (4.2) with �
given by (3.10). Then

X
(i)
t � VG(	iº, Æ, �, 	i�), i ¼ 1, . . . , m,

and X given by the sum (4.4) has the right distribution and autocorrelation function. In

practice vi has to be replaced by the approximation ~vvi; see Example 3.1 and Section 6.

Finally, a more difficult example.

Example 4.3 The hyperbolic distribution. The moment generating function of the centred

symmetric hyperbolic distribution is

M(t) ¼ Æ � K1(�(Æ2 � t2))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ2 � t2

p
� K1(�Æ)

, jtj , Æ:

The hyperbolic distribution is infinitely divisible, so M(t)	i is again a moment generating

function, but there seems to be no way of inverting it to get an expression for f (i). If one

wishes to simulate the process of type (4.4) with centred symmetric hyperbolic marginal

distribution, it is therefore necessary to use the approximation introduced in Section 3. This

can clearly only be done numerically.

The following theorem states exactly which autocorrelation functions can be

approximated by an autocorrelation function of the form (4.1).

Theorem 4.1. The class of functions obtained as limits, as m ! 1, of pointwise convergent

sequences rm(t) of autocorrelation functions given by (4.1) equals the class of all Laplace

transforms for distributions on (0, 1), that is, the class of functions given by

r(u) ¼
ð1

0

e�uvdP(v), u > 0,

for some probability measure P on (0, 1).

Proof. An autocorrelation function

rm(t) ¼ 	(m)
1 e�Ł(m)

1
t þ . . . þ 	(m)

m e�Ł(m)
m t

is equal to the Laplace transform of the distribution concentrated in Ł(m)
1 , . . . , Ł(m)

m with
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probabilities 	(m)
1 , :	

(m)
m . If the sequence rm(t) is convergent, the sequence of distributions

converges weakly to a probability distribution on (0, 1) and the limit function is the Laplace

transform of this distribution. On the other hand, any probability distribution on (0, 1) can

be obtained as the limit of probability distributions concentrated on a finite set. To see this

consider a suitable sequence of discretizations of the distribution in question. h

We see, in particular, that we can only approximate autocorrelation functions that are

decreasing and convex. Moreover, the logarithm of the autocorrelation function must also be

convex. In fact, it is well known that the class of all Laplace transforms of distributions on

(0, 1) equals the class of completely monotone functions r with r(0) ¼ 1; see Feller 1971,

p. 439). A function r on [0, 1) is called completely monotone if

(�1)n r(n)(u) > 0, u . 0

for all n 2 N, where r(n) is the nth derivative of r.

One motivation for using models with autocorrelations of the type (4.1) is to be able to

fit a relatively simple model to data to which some might think it necessary to fit a model

with long-range dependence. Let us therefore briefly discuss the fact that an autocorrelation

function of the type (4.1) can be close to an autocorrelation function of a process with long

memory. Suppose the series

r(u) ¼
X1
j¼1

	 je
�Ł j u (4:9)

is convergent. If we, moreover, assume thatX1
j¼1

	 j=Ł j ¼ 1, (4:10)

then ð1
0

r(u)du ¼ 1,

so r(u) is the autocorrelation function of a process with long memory that can be

approximated as well as we wish by an autocorrelation function of the type (4.1). To give a

specific example, we choose

	 j � j�1�2(1�H), Ł j � j�1

with 0 , H , 1. Then

	 j=Ł j � j�2(1�H),

and when 1
2
< H , 1,

r(u) � L(u)u�2(1�H),

where L is a slowly varying function (for a definition, see Feller 1971, p. 276), so a process

with autocorrelation function r has long memory with Hurst exponent H .
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The convergence of the sum (4.9) implies mean-square and hence almost sure

convergence of the sum

X t ¼
X1
i¼1

X
(i)
t , (4:11)

where the random variables X
(i)
t are given by (4.2) and (4.3) with f (i) denoting the density

function corresponding to C(t)	i . It is again assumed that f (i), i ¼ 1, . . ., are continuous and

bounded on their support. The limit process X is stationary with marginal density f and has

autocorrelation function r(t). It is thus possible to define an infinite version of the sum (4.4).

Usually this is, however, an unnecessary complication because a good fit to data can be

obtained for a small value of m in (4.4). When the long-memory condition (4.10) is satisfied,

the limit process (4.11) is closely related to the long-range dependent processes constructed

in Cox (1984), Barndorff-Nielsen et al. (1990), and Barndorff-Nielsen (1998).

5. Multivariate models

In this section we shall briefly show how to construct multivariate processes where each

coordinate is a process of the type introduced in Section 4.

As in Section 4, we consider a probability density f with characteristic function C

satisfying Condition 4.1. For given 	i . 	0 (i ¼ 1, . . . , m) satisfying 	1 þ . . . þ 	m ¼ 1,

define vi(x) by (4.2). Let the processes X
(k,i)
t , i ¼ 1, . . . , m, k ¼ 1, . . . , d, be given by

dX
(k,i)
t ¼ �Łi X

(k,i)
t � 	i�

� �
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi X

(k,i)
t

� �r
dW

(k,i)
t ,

where W (1,1), . . . , W (d,m) are independent standard Wiener processes. Then we can define a

d-dimensional process X by

X t ¼ X1 t, . . . , X d tð Þ

with

X jt ¼ X
(� j1,1)
t þ . . . þ X

(� jm,m)
t ,

where � ji 2 f1, . . . , dg, i ¼ 1, . . . , m. The point is that some of the � ji can be identical for

different j so that the same process appears in different coordinates. As previously, we can

interpret the process X
(k,i)
t as random variation with time scale Ł�1

i . Dependence between two

coordinates is thus caused by the random variation on certain time scales being the same for

the two coordinates. Extra flexibility in the modelling of dependence can be obtained by

taking some of the Łi to be identical, so that it is possible for only a part of the random

variation on a certain time scale to be the same in two coordinates.

The density of X jt is f , and the autocorrelation function of X j is given by (4.1).

Moreover,
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corr(X j1 t, X j2 t) ¼
X

i2M j1 j2

	i,

where M j1 j2 ¼ fi j � j1 i ¼ � j2 ig. The final process is obtained by making location–scale

transformations of the marginals X jt.

6. Case study

In this section we consider a data set consisting of 5415 measurements of the streamwise

wind velocity component measured at Ferring on the Danish west coast in an experiment

carried out in September 1985. The data were recorded using a sonic anemometer on a 30

metre mast erected on the shore around 60 m from the shoreline, with a 10 Hz frequency.

The experiment is described in further detail in Mikkelsen (1988; 1989); the data were

analysed in Barndorff-Nielsen et al. (1993) using a sum of independent autoregressions and

in Bibby and Sørensen (2001) based on a hyperbolic diffusion model. The data are

presented in Figure 2. See also Barndorff-Nielsen et al. (1990).

In Figures 3 and 4 a histogram and a log histogram of the wind velocity data are given,

along with fitted curves corresponding to a variance-gamma density function; see Example

3.1. The fitted curves are determined by maximum likelihood based on a multinomial

likelihood function where the groups are defined by the points (mid-points) in Figures 3

and 4.

In Figures 5 and 6 the empirical autocorrelation function and its logarithm are drawn for

lag values up to 500. The following three exponential functions (and their logarithms) are

included in the figures:
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Figure 2. Streamwise wind velocity component in metres per second plotted against time in seconds.
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r1(t) ¼ e�0:0093 t,

r2(t) ¼ 0:83e�0:0154 t þ 0:17e�0:0009 t,

r3(t) ¼ 0:80e�0:0125 t þ 0:09e�0:0986 t þ 0:11e�0:0001 t:

Based on Figures 3–6, we wish to consider a stochastic process with a variance-gamma

marginal distribution,

��
��

��
��

��
��

��
��

��
��

��
��

��� ��� ��� ��� ���
�����	�������

�
��

��
��

� !
��

���
�

Figure 3. Histogram of the wind velocity data with a fitted variance-gamma density function
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Figure 4. Log histogram of the wind velocity data with a fitted variance-gamma log-density function.
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X t � VG(º, Æ, �, �),

given as the sum of two diffusion processes,

X t ¼ X
(1)
t þ X

(2)
t ,

where

��
�

��
�
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�
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�
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�
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Figure 5. The empirical autocorrelation function of the wind velocity data with fitted curves

corresponding to one, two, and three exponential functions.
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Figure 6. The log empirical autocorrelation function of the wind velocity data with fitted curves

corresponding to the logarithm of one, two, and three exponential functions.
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corr(X
(i)
sþ t, X

(i)
s ) ¼ e�Łi t, i ¼ 1, 2:

This can be done using the construction given in Example 4.2.

From the fit of the histogram and the empirical autocorrelation function we obtain

º̂º ¼ 3:9134, Æ̂Æ ¼ 13:1760, �̂� ¼ �7:8232, �̂� ¼ 7:8128,

	̂	1 ¼ 0:8346, 	̂	2 ¼ 0:1654, Ł̂Ł1 ¼ 10:0154, Ł̂Ł2 ¼ 0:0009:
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Figure 7. Histogram of the wind velocity data with fitted corresponding to a variance-gamma density

( f ) and an approximate variance-gamma density ( ~ff ).
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Figure 8. Log histogram of the wind velocity data with fitted curves corresponding to a variance-

gamma log-density ( f ) and an approximate variance-gamme log-density ( ~ff ).
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A problem here is that v1 and v2 cannot be determined explicitly by (2.2). Instead we can

consider the approximations given by (3.2). In Figures 7 and 8 the histogram and log

histogram in Figures 3 and 4 are reproduced, now with the addition of the estimated ~ff given

by the convolution of ~ff 1 and ~ff 2 from (3.8). The convolution had to be done numerically.
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