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On minimax density estimation on R
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The problem of density estimation on R on the basis of an independent sample X, ..., Xy with
common density f is discussed. The behaviour of the minimax L, risk, I < p < oo, is studied when
f belongs to a Holder class of regularity s on the real line. The lower bound for the minimax risk is
given. We show that the linear estimator is not efficient in this setting and construct a wavelet
adaptive estimator which attains (up to a logarithmic factor in N) the lower bounds involved. We show
that the minimax risk depends on the parameter p when p <2+ 1/s.
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1. Introduction

Let X; ..., Xy be a vector of independent realizations of a random variable X with
cumulative distribution function F which possesses a density f(-) with respect to Lesbesgue
measure on the real line. Our objective is to recover the unknown density function
f:R— R" given the sample X ..., Xy.

This is a basic problem which has been extensively studied in the literature on
nonparametric estimation; for an overview of various methods and approaches, see Devroye
(1987) and Silverman (1986). When constructing an estimation algorithm, it is generally
supposed that the estimated density f has certain regularity properties. In other words, f
belongs to some functional class F. This a priori knowledge allows us to form an estimator
f~ (a measurable function of observations) of f. However, its statistical properties can only
be studied asymptotically (when the sample size N tends to co). Then in order to derive the
properties of the proposed estimator for finite N we have to establish the properties of the
maximal risk over F. This explains the common use of the so-called minimax approach.

In this set-up the risk

p(fn: ) =Efllfv = £l

is associated with an estimator f, where || - || is a functional norm or a seminorm. Then the
minimax estimator f f, is the minimizer (over the set of all estimators) of the maximum risk
R(fy, F) over the class F:

R(fn, F) = sup p(fn, /)
feF

Thus in the minimax framework f ; is the optimal estimator with accuracy Ry(F) =
R(f%, F). Ry(F) is also referred to as the minimax risk. The principal question in the

1350-7265 © 2004 ISI/BS



188 A. Juditsky and S. Lambert-Lacroix

minimax framework is how to form a minimax estimator and what is the value of the
minimax risk Ry(F).

We consider the following estimation problem. Suppose that the density f(x),
f R — R, belongs to a Holder class F = F(s, L), that is, the derivative £ of f,
k = max{i € N|i < s}, exists and

(k) (v _ (k)
UL+l =L [f] =sup LoD SO

x#£y |x_ yls_k

Our objective is to estimate f given independent observations X ..., Xy with common
density f.
The results obtained can be summarized as follows. Consider the minimax risk

RP(F(s, L)) =inf sup [Efllfy — fI51"2 1<p<oo
IN feF(s,L)

here the infimum is taken over all estimates f of f. We show that there exist ‘universal’
constants ¢ and C depending only on the regularity parameters s and p such that, for
1 = p < oo, the minimax risk

co(N) < RY(F(s, L)) < C(In N)? (N, (1)
where

L(P=D/(p(s+1) p=s/@s+1) T L p < oo,
S

o(1) = 1
L=/ (p(s+1)) g=s(p=1)/(p(s+1)) ifl<p=<2+4-,
s

with 8 = 6(s, p) > 0. Further, when p = oo,

N (50) N
cp (m) = RY(F(s, 1) = Co <M>

This result can be compared with the minimax rates for linear estimators. In the latter case
we consider the minimax risk

1, . Al 2
RY(F(s, 1) = minmax(E /3 — /1),

where the minimum is taken over the class of linear estimators f' (Al,) . Then we obtain
L,
cp(N) < RyP(F(s, L) < Cp(N),
where

(1) = L(p=D/(p(s+1) g=s(1=1/ p)/@2s(1=1/ p)+1) if 2 < p < oo,
g @(1) if1<p=<2.

Note that the linear estimator is minimax (up to a constant) for 1 < p < 2. However, for
2 < p < oo, the rate of the linear estimator is worse than that of a general nonlinear
estimator.
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These results deserve some comment.

Remark 1. From the large literature on minimax density estimation it is known that, as far as
the estimation of a density on [0, 1] is concerned (cf. Ibragimov and Khas’minskij 1981), the
minimax risk R(P)(F(s, L)) satisfies

R(F(s, L)) < LYETON=/AD - for | < p < o0,
and

InN s/(2s+1)
R(OO) F , L)) = Ll/(23+1) )
WG, 1) o

Except for p = oo, this rate of convergence does not depend on p. Furthermore, let the
regularity class F be that of densities of ‘spatially inhomogeneous smoothness’, for instance,
let F be a Besov class F(s, p’, ¢, L) with small p’; see Donoho et al. (1996) for details. In
this case the rate of convergence starts to deteriorate when p > (2s+ 1)p’ and depends
heavily on p.

When the estimated density is supported on R, the known results are as follows.
Bretagnolle and Huber (1979) studied the behaviour of the maximal risk

RP(fy, Fy = sup[Ey||fy — fI[}]"2
feF

for a family of density classes F = G(s, p, L), 2 < p < oo, of finite jauge. That is, a density
[ €G(s. p. L) if its jauge psp(f) = £ O/ ||f]l /2 is bounded by L. It is shown that
the maximal risk of the kernel estimator fy is of order N=%/@*D on f € G(s, p, L). Note
that here the parameter p is the same in the definition of the risk and of the functional class.
Ibragimov and Khas’minskij (1980) established minimax rates of convergence for Sobolev
classes on R, F = F(s, p, L), 2 < p < o0, and the risk R(A’,”) . They showed that in this set-up
the maximal risk

R(A};)(]:) — N-S/@stD).
When p = oo an extra logarithmic factor appears in the minimax risk:

In N) s/(2s+1)

(c0) -
R = (4

Golubev (1992) gave the exact asymptotics of the minimax risk in this set-up when p = 2.

On the other hand, Donoho et al. (1996) studied the behaviour of the risk R(,é’)(]-"),
1 < p < o0, for a family of Besov functional classes F = F(s, p’, ¢, L) (here p’ and p
can be different). The result from their paper which is relevant to our study can be stated as
follows: when 2 < p’ < p, the minimax rates of convergence R(,{,’)(]-'(s, p', g, L)) for the
density estimation on R are the same (up to a constant) as the minimax rates for the Besov
class F(s, p', g, L) on [0, 1]. However, the problem of minimax density estimation on R
when p < p’ remains open: minimax rates of convergence and minimax estimators are
unknown in this case.
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Remark 2. We observe in (1) that the minimax risk R(]\f)(]—' ) on a Holder class F = F(s, L)
on R is cardinally different when compared to that for F(s, L) on a compact. When
p > 2+ 1/s, the minimax risk R(A‘;’)(]-' ) is of the same order as in the equivalent estimation
problem on [0, 1]. However, the behaviour of the minimax risk changes dramatically when p
becomes smaller than the critical value 2+ 1/s. In this zone the minimax risk depends
heavily on p. To the best of our knowledge, the phenomenon observed is new.

Remark 3. The lower and the upper bound differ by a logarithmic factor. We suppose that the
extra logarithm of N in the upper bound is due to the specific estimator we use. Note that in
the case p = oo, the extra logarithm also appears in the lower bound, and in this case the
upper and the lower bound are equivalent up to a constant.

In fact, an interesting question can be asked: why do convergent nonparametric
estimators of a density on a real line exist at all? Note that we wish to estimate a function
on an infinite domain given only a finite number of observations. Then why would the
expected L, error, | < p < oo, be small in this situation? The general (and sloppy) answer
to this question is quite simple: the function we estimate is a probability density. Therefore,
the function f not only belongs to a ‘regularity class’ F, but also satisfies the conditions
f(x) =0 and [ f(x)dx =1, that is, f € F N W], where W{ is the intersection of an L,
ball of radius 1 with the positive octant. This condition provides an additional constraint
when maximizing the risk R(”), p > 1 over F. Note that this also provides an intuitive
‘explanation’ of the negative result in Devroye and Gyorfi (1985) on the rates of
convergence for the R() risk: this extra constraint is of no use when the error is measured
in the L; norm.

Note that the class F N W] is that of functions of ‘non-homogeneous’ smoothness. It is
well known (cf. Donoho et al. 1995) that linear estimators are suboptimal on such a class.

The rest of this paper is organized as follows. The lower bound for the minimax risk in
(1) is given in Section 2. In Section 3 we study the properties of linear estimators, and in
Section 4 we construct a wavelet adaptive estimator f,, of f which provides the upper
bound in (1). The proofs of the results are gathered together in Section 5.

2. Lower bound for density estimation

Our objective here is to establish the lower bound for the minimax risk on the Holder class
F(s, L).

Theorem 1. There is a positive constant ¢y = co(s, p) such that, for any estimate f N of f,
the maximal risk RPP(fy, F(s, L)) satisfies

o L(P=D/(Ps+1) Nr=s(p=1)/(p(s+1) forl<p<2+ l,
RO(fy, Fs. 1)) = . )
COL(p‘1)/(”(S+1))N_S/(25+1), for 24+ - < p < .
N
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Moreover, when p = oo, we have
In N s/(2s41)
R, 7o, )= o (B) G)

Our next objective is to provide an upper bound for the risk Ry(F). We start with a
linear density estimator.

3. Linear estimation

We recall some basic properties of a biorthogonal wavelet basis.

3.1. Biorthogonal wavelet basis

Let the tuple (¢, v, ¢, ) be such that {@(x — k), w2/x—k), j=0, ke Z} and
{@(x — k), (2/x — k), j= 0, k € Z} constitute a biorthogonal pair of bases for L(R).
Some popular examples of such bases are given in Daubechies (1992). We requlre the
reconstruction wavelet 9P and ¢ to be CM*! for some M €N, (¢, , ¢, P) to have
compact support and the analysis wavelet ¥ to be orthogonal to polynomials of degree no
greater than M.

This implies that any function f € L,(R) can be represented as

fx) = Z arprx) + > Zﬂ,kw,k(x)
j=0

where
o = Jf<x>¢k(x)dx, B = jf(x)wjku)dx.

For technical reasons, in the wavelet estimator below we use a specific choice of the
biorthogonal basis (¢, 1, ¢, ¥), due to Donoho (1994). This is the basis generated using the
function ¢(x) = 1_/2<<1/2, and, following Donoho (1994), we call it a blocky biorthogonal
basis. The functions 1, ¢ and ¢ are compactly supported. We denote by 0 (0x) the support
set of 1u(x) (P4(x)):

. 1 1
6jk:{xeR:—%<21x—k<§}, 6k:{x€R:—§$x—k<§}.

for some me R, m = 1.
The feature of this particular basis which is intensively used in the proof of Theorem 4
below is that there exists v > 0 such that the analysis wavelet y(x) satisfies

lw(x)| = v for f%$x<%, )]

that is, |1(x)| = v on the support of .
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3.2. Estimation algorithm

Consider the following estimation algorithm (cf. the linear wavelet estimator of f,
suggested in Donoho et al. 1996):

Algorithm 1.

1. Let jo satisfy

LD N1/ D) < 2o < 2 [MHD N1/@s(=1/ py) for2 < p < oo,
Ll/(s+1)N1/(s+1) <2 < 2L1/(S+1)N1/(S+1), for 1< p= 2. (5)

2. Compute empirical wavelet coefficients

1 & 2jo/2 N
Viok =~ E D jok(Xi) = E Lyio k< xi<2-J0 (k1)
N i=1 N i=1

and form the estimator

N =" vk i),
k

Theorem 2. Let F(s, L), s < M + 1, be a Holder class. The linear wavelet estimator f N
above satisfies, for N large enough,

sup [Efllfv = fI3]'? < pus. p. N, L),
€

where

C(s, p)LP=D/(pls+D) N=s1=1/p)/(s+1) for 1< p=<2,
pis, p, N, L) = C(s, p)LP=D/GGHD) N=s0=1/D/s1=1/DHD) | [0 < p < o0,

Remark 4. We observe that when 1 < p < 2 the maximal risk of the estimator f ~» computed
by Algorithm 1, corresponds up a constant to the lower bound (2) of Theorem 1. Otherwise,
for 2 < p < oo, the rate of convergence of such an estimator is much worse than that
suggested by the corresponding lower bound. It is important to note that this is a property not
of a particular wavelet estimator, but of the whole class of linear estimators f (,\l,)(x) such that

. R 1 &
74000 = [ T paFv0) = - T ) ©)
i=1

(we call the estimator linear if it is a linear functional of the empirical cdf Fy). We have the
following lower bound for any estimator of that kind:

Theorem 3. Let p = 2. There exists ¢ = c(s, p) such that, for N large enough and any linear
estimator f (]é),
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A1
sup [Ef|IF5) = fI51"2 = epils. p. N, L).
feF(s,L)

4. Adaptive wavelet estimator

Let (¢, ¥, ¢, ) be a blocky biorthogonal wavelet basis as defined above. We suppose that
1 is orthogonal to polynomials of degree no greater than M. Consider the following
algorithm:

Algorithm 2.

1. Choose the parameters

(% (128]pl3 | 16
p=10 VZOQ 2 x +? and A =14, (7)
where v is defined in (4). Set my = pIn N and compute j; = 0 such that
< N i, )
my

2. For 0 < j < j, compute empirical wavelet coefficients

RN . RN .
Vi = N;’l)jk()ﬁ), if #0x = my, 2= N;Qbk()(i), if #0x = my,
0, if #0 < my, 0, if #0r < my;

here 40 = Z?jzll{xleé,k} is the ‘cardinality’ of the support set Oy of the wavelet
Yir. Then, for j and k such that #0 ;. = my, compute empirical estimates 63,{ of the
variance of yj:

) 1
G =3 2_ WX = ¥,
i=1

3. Compute shrunk wavelet coefficients

Bix = vicl =50 ©)
where
Vi =AVInNGj.
4. Compute the estimate
Ji

Iv@ =" ziporx) + Y Zﬁjkﬂ)jk(x)-
x

k Jj=0
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The properties of the estimator f ~, computed by the above algorithm, are summarized in the
following result:

Theorem 4. Let FM = {F(s, L),0<s< M+ 1,0 <K < oo} be a family of Holder
classes. Then, for any class F(s, L) € FM, there exists a constant C = C(s, p) such that,
for N large enough,

S(p=1)/(p(s+1)
L(P=D/(p(s+1) <lnN> forl<p<2+ l,
N s
N InN s/(2s+1) 1
sup E/flfv—fll,=<C Ll/(2S+l)1nN(—> for p=2+-—,
fEF(s,L) N s
s/(2s+1)
LP-D/(pls 1) (m]\jv> Jor p>2 41,
S

Remark 5. The choice of the parameters p and A in (7) is extremely conservative. We impose
the lower bounds on p and A in order to obtain very rough estimates of probabilities of
moderate deviations which underlie the proof of Theorem 4 (see Lemma 8 and Proposition
1). When implementing the method an appropriate choice of these parameters would be
A€[V2,2] and p €1, 2].

Note that the wavelet shrinkage estimator described above is closely related to that of
Donoho et al. (1996). For the problem of adaptive estimation on the Besov classes on
[0, 1], the proposed estimator attains the same performance as the wavelet adaptive
estimator in the latter paper.

The main difference between the adaptive estimator of Donoho et al. and the estimator
given in Algorithm 2 is the implemenation of a data-driven thresholding procedure. The
idea of data-driven thresholds for wavelet estimators is not new and has been used, for
instance, in Birgé and Massart (2000), Donoho and Johnstone (1995) and Juditsky (1997),
among many others. However, it is implemented differently in Algorithm 1, where the
thresholds are computed individually for each wavelet coefficient. In other words, in order
to take the decision to keep or to cut the empirical coefficient yj it is compared to the
estimate 0 of its standard deviation. A closely related notion of spacing selection for B-
splines Bayesian density estimator was implemented in Ciesielski and Kamont (1999) — cf.
also the adaptive window selection procedure for kernel estimators in Juditsky and Nazin
(2001) and Butucea (2000).

Note that another implementation of the same idea is provided by the celebrated +/f-
estimator of a density (cf. Anscombe 1948; Nussbaum 1996), when the empirical wavelet
coefficients are ‘normalized’ to stabilize the value of o .

One may observe that the estimator f ~ 1s adaptive. Indeed, the parameters of the
estimation algorithm do not depend on a particular functional class F(s, L), but the
maximal risk of f n over F(s, L) coincides up to a logarithmic factor with the lower bound
(2) of Theorem 1. The extra logarithm factor is the price often paid in adaptation
procedures (cf. Lepskij 1992; Goldenshluger and Nemirovski 1997). However, we think that
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in our case (L, risks and Holder function classes) this extra factor is due to the particular
construction of the estimator. Note that in the density estimation problem on [0, 1] one can
get rid of the extra logarithm (Juditsky 1997). Nevertheless, at present we do not know of
an estimator of f which attains the lower bound in (2).

5. Proofs

In the proofs below, C, C' and C” stand for positive constants whose values may depend
only on s, p and the wavelet parameters.

5.1. Proof of Theorem 1

The lower bound for the minimax risk R(")( f ~» F(s, L)) when p > 2+ 1/s can easily be
obtained using the construction of Theorem 5.1 in Ibragimov and Khas’minskij (1981). Our
objective here is to show the bound in (2) in the case 1 < p <2+ 1/s.

To this end, consider a density fy € F(s, L/2) such that fy(x) = c;(s)LY/C+HD N=/G6+D for
0<x=< L VEEONS/6HD for some ¢(s) >0. Now let y=(LN)""/6*D and y, =
1(k — 1)y, ky] for k=1, ..., N; and let 1, be a finite function such that

1/10(?5) =0, Vx ¢ [_%’ % P ||w0||00 =1

Yo(—x) = Yo, Vx €[4 1], J%(x)dx — 0,

Consider the set Zy of 2V binary vectors &= (&}, ..., Ey), &k € {-1,1}, k=1,..., N.
For each vector & we define the function £ in the following way:

N
O = fo) + D Ewi@), i) =y — (k- hy),
k=1

where P(x) = a(s)Ly*ywo(x/y), in which a = a(s) is a poitive constant small enough to
ensure that 1 belongs to F(s, L/4) and that

|1/}(x)| < ¢ (S)Ll/(s+l)N7S/(S+l).

Note that [ f ©(x)dx = 1, so such a function is really a density. Further, due to the definition
of v, the function f© — f;, belongs to F(s, L/2). This immediately implies f© € F(s, L).
Now let pg(&, &) be the Hamming distance between two vectors of =y, namely

pHE &) =#{k: 1< k=N, & # &}

There exist (see Korostelev and Tsybakov 1993, Lemma 2.7.4, p. 79) M = [2V/%] vectors
&, ..., EM such that py(&/, E¥)= N/16, 1 < j <k < M. We denote by F), the set of
functions £, ..., f€"). Note that the || - || p distance between two distinct functions f and
g of Fy is at least C(p)N'/?||y|| ,. The problem of proving the lower bound over F(s, L)
can be reduced to that over F,,, that is,
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sup [Efllfv — fI5172 = sup [Efllfy — fI51"2
feF(s,L) fe€Fu

We associate with any estimator f v a method M for distinguishing between the M
hypotheses, the kth of the them stating that the observations X, ..., Xy are drawn from the
kth element of the set F),. This method M is as follows: given observations, use an
estimator fN to find the closest element in Fj, to f y in L, norm (any one of them in the
non-uniqueness case) and claim that this is the density which underlies the observations.

Assume that the true hypothesis is associated with f € F,. Note that if the method M
fails to recognize the true density, this implies that f n 1is at least at the same L, distance
from f as from other g € F,;. In other words,

1= flly = llg = fllp/2 = C NP .

On the other hand, the Fano inequality states that the probability of the wrong choice among
M hypotheses is not less than

Nmaxy ger, K(f, g)—l—an

1—
In M

where K(f, g) is the Kullback distance between f and g (cf. Birge 1983). Otherwise,

N K In2
C(l - maXf,gEfM (f’ g)+ n >N2/p|1/)|i7 (10)

; 2
sup E - N — =
fe€F M fo pr In M

We have the following lemma.

Lemma 1. There exists a > 0 such that

N j k 1
N xRS, pEy <2
InM ren reber, AR 2

Proof. Recall that the Kullback distance between f and g is defined by

VAC))

Mﬁgzﬁmm()
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Then for f(g"), f(ék) € Fu, we have

So(x) + Ei(x)
fox) + Efpux)’

(& - ENyix)
fo(x) + Eji(x)

. k N B
K&, 7 =3 J [ fo(x) + Elpi()]in
Vi

=1

N .
<3| o + el
Yi

=1
SZNJ l+a/ci(s) a
y L—=a/ei(s) ei(s)
$C1+Q/CI(S) a
1L —a/ci(s) ci(s)
Further, note that N/In M = 8/In2. Thus a positive a can be found such that the quantity
N l+a/c(s) a 1

=

InM 1—ajci(s) ci(s) 2

Jo(x)dx,

Hence, from (10) and Lemma 1 we conclude that

fSL;P [Ef||fN _f||i’]l/2 = CNl/p”pr = o LP~D/(Ps+D) y=s(p=D/(p(s+1))
JE€F M

5.2. Translation into the sequence space

In what follows we will use some properties of the blocky biorthogonal multi-resolution
analysis {¢(x — k), w(2/x — k), j =0, k€ Z} and {@(x — k), p(2/x — k), j=0, k€ Z},
described in Section 3.1.

Let f € Ly(R). Let {ax, B, j =0, k € Z} be the wavelet coefficients of f. Then for
0<p g<oo, I/p—1<s<M+1, the quantity

1/q
1 llspg = lleell » + (Z 2‘”’“‘“/2‘”m||ﬁ,-.||2>

=0

is equivalent to the norm [ f1| s, of the Besov space B, (Donoho 1994; Delyon and Juditsky
1997).

When using classical injection theorems (see, for instance, Triebel 1992), we conclude
that there exist C;, which may depend only on s, p, such that:

[I71: =<1 implies that ||a||; < 1 and sugZ‘-7/2||ﬂj.\|l < Cj; (11)
=

for any f € F(s, L), l|ctllo + sup 27CTV2||B) | < CoL; (12)
Jj=0
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1/u
/1l < Cs ||a||‘;,+Zz""<‘/2“/”’||ﬂj-||;] . u=min(2, p). (13)

70

The latter inequality implies, in particular, that if

Fv@ = api) + Y > By (),
k

=0 Tk
then
u/p u/p M
Ifv=rll,=<cC <Z |0 — aﬂ) +y 200 (Z B _ﬁjk)|p) (14)

k =0 k

Otherwise, when p = 2,
1/p
1£1» = Calllally + ;2j(p/21)||ﬂ_j-||§] : (15)
=

5.3. Proof of Theorem 3

In order to prove the lower bound we implement the following idea which is due to
Nemirovskii (1986) (cf. also the proof of Theorem 2 in (Donoho et al. 1996)). We construct
a family of densities G C F and a probability measure P on G. Then we replace the
original problem with the equivalent parameter one, that of estimating the vector of wavelet
coefficients (B;x) of f € G by those of the linear estimator f ) that is,

R N 1
!
B = [ Aoty = > 7 Xt (16)
i—1
We use the Cramér—Rao inequality to show that the Bayesian risk of any esimator of that
type on the family (G, P) is bounded from below.
Let j satisfy

Ll/(s+1)N1/(2s(1—1/p)+1) <2 < 2L1/(S+1)N1/(2s(1—1/17)-4-1). (17)

Consider a density vy € F(s, L/2) such that vg(x) = Ci(s)2~ L for 0 < x < 2/°/L with
some Ci(s) > 0. Now let uy be a density in F(s, L/2) such that uy(x) = Cy ()LD,
Cy(s)L/6HD | Cy(s) > 0, for 0 < x < L~'/6+D; it is a polynomial of degree [s] when x < 0
and x > L~ V6D Let [* = [NY/C6=1/PHD] We set, for [ =0, ..., " —1,

gi(x) = 5 (0o(®) + uo(x — L7/EHD1)). (18)

One can easily verify that g, € F(s, L/2). Let  be a random variable such that
Plp=1)=1/I" for [ =0,..., " —1. We set r=[2/6*D/L]. Now consider a random
vector § = (&1, ..., &) with independent components such that P(§; = 1) = P(§, = —1) = %
for k=1, ..., r. For each realization of (7, £) we define the function
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S0 = gy () + D EPP
k=1

where the coefficient
B = Ci(s)L27/H1/2) (19)
is chosen to ensure that /") € F(s, L) along with the condition
@) < 5gy().

We consider the family G of functions /%) with the associated probability P = P, ® P: on
G. We denote by E¢ (E,) the expectation over the distribution of the vector & (77) and by E the
expectation associated with P.

Now let

N 1 <
JAeE)) ZNZ T(x, X;)
P

be a linear estimator of f € G, and

n

B =3 |1 X o

N
be the corresponding ‘estimate’ of the wavelet coefficient S = &;f for k=1,..., r.
Lemma 2. Let Bjk be an estimator of By, k=1, ..., r, as above and [ € G. Then

E/(Bjx —Bi)* = Clan’N~! min g, (x) + BB — Bul’.
XEO0 jk
where Oy is the support of Y and

OE /B .
A = #’if" - JT(x, DY) dy.

Proof. Let f(x) = f @9(x) be a function in G. The Cramér—Rao inequality, applied to any
estimate S, gives

(OE B/ 0B )

Ef B o — Bi) = Ny + (EfB i — B’

where [ is the Fisher information of the density f with respect to the parameter 3

X )2
[jk+J7(af (f)(/jﬁ LN
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Let us compute a bound for /. Note that

9 0 =5 j

and

72 -1 -1
=] e (o) =2(apaco)

where 0, is the support of 1/7 k. Further,

OF B . ) y
a/?ﬁ - ijkm T(x, ») gé? dxdy = M(x) TG Y jelr)dx dy = L.

Putting all these results together gives the statement of the lemma.

Lemma 3. E¢|E B — Bul? = 2Au — 112,

Proof. First, note that if

FH) = gy + Y EBi(x) + B (),
I#k

[r0) = g+ > EBP) — B,
£k

then

E, B —Er B = JT(x, DPRILS TG — fr(0)]dxdy

— 2B T P dy = 2
As |x[* + |y[* = i|]x — y[?, when averaging over the distribution of &; we obtain
Eg,[EBj — Bl =3l[Es: Bix — B + |Es B + B

= ﬂEf;ﬁjk —B—EsBu— B> = ﬁzlljk — 1%

Let us now bound from below the risk of the estimate f (jé) on the family G. Recall (cf.

(15)) that for p =2,

o0
£ = €Y 22 D)Bifly = 2772018, 1
i=0
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for any j = 0. Using Lemmas 2 and 3, by the Minkowski inequality,
, 2/p
1 L .
EE, ||/ = f 09|, = C2/' "2/ VEE, (Z Bk - ﬁ,-kv)
k=1

I

2/p
= (2/1-2/p) [Z(EEfwAjk _ ﬁjk|2)p/21

k=1
I3 /2 2/p
= ¢'2/1-2/p) lz <|;ij|pr/2 <E,7 )162(1311 gn(x)> + BP i — 1|p>]
k=1 g
(20)
Note that by definition of the family G (cf. (18)),
. CLY/(s+D)
E, n &)= —5—>

and
/2 o /Q2(s+1)) (s+1/2)/2s(1-1/p)+1)
— : s+ —p(s+ s(1— +
NP (E,7 ?e%ﬁ gn(x)> =LP NP P+ = cpp

since, by definition of 5 (cf. (19)) and j,
_ —j(s+1/2) — 1 71/Q(s+1) Ar—(s+1/2)/2s(1-1/ p)+1)
p=CL2 <=C'L N .
Thus, from (20) we obtain

EE /[ / — U9, = 2/ [Zﬂmmp A= 1|7y | = 2N,
k=1

Substituting the latter inequality into the bound for 2/ from (17), one finally obtains
EE || — 092 = Cr20-1/p/etD =201 p/Csi=/ pD),

Since

~(1 2 ~(1 2 A1 2
sup Ef| /Y — /1, = swp s Y = £ = BESIFR - £,
feF(s,D) /€6

this implies the desired bound.

5.4. Proof of Theorem 2
Let p > 2. We have the following simple lemma:

Lemma 4. Let € F(s, L) be a density on R. Then there exists C = C(s, p) < oo such that
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1A llsa-1/pnpoe < CLTHP,

that is, f belongs to the ball of radius CL'~'/?, C < co, of the Besov space B;(éo’l/l’).
Proof. We have ||a||, < ||a| for any p = 1. Further, since 3| < 1811 1B, 127", we
have from (11) and (12),

1 1-1 j 1/ pr— (s - 1) pe— i(s(1— _
181, < ||ﬁj.||1/17||ﬁj.||0O P < /2P 1=/ pp=ist1/DU=1/p) — cp1=1/pp=i(s(=1/p)+1/2-1/p)
what implies the statement of the lemma. O
Now the upper bound of Theorem 2 when p > 2 follows from Theorem 1 of Donoho et al.

(1996).
Now let 1 < p <2. Let 0;; be the support bin of ¢ and pjy = Ié;k f(x)dx. Note that

aj =Epu=2"py and E@% (X)) =2/ J f(x)dx =2/ py.

O

As 0 and O are disjointed for k # k', we conclude that > xpy = 1.
We have the following bound for the error of the estimation:

o0
Ifn = fllp < €202y — |, + €Y 202D, |, = 65 + 6.
J=Jo

The bound for the second term is an immediate consequence of (11) and (12):

o 1/p
o2 = 32 1 Yl
k

J=o
o0
< Z2]‘(1/2*1/1')[41*1/P2*J(S+1/2)(1*1/17)2]/2}7 < "~V pp—ies(1=1/p). 1)
J=Jo
Let us now estimate 6(]\1,) . To this end, we decompose the general term of the sum in 6(]\1,):
|yj0k - ajok| = |yj0k - ajok|(1pb,-ok21</N + 1PJ0K<IC/N)’

where k = e #/(P~D_ First, notice that

2]0p k p/2 . p k
(E[yjor — ajok\zlp,-okz;c/zv]p/z =< (Tjﬂ> Lpoizie/n < 2’”’“#' (22)

Further, let #0;; stand for the number of data points which hit 0. We have
|y.iuk - ajok|1p,-0k<k/N = ‘yjok|1p‘,-0k<zc/N —+ |ajok‘1p_,-ok<zc/N
= ‘yjnk‘lpf0k<K/N, #0j0k=1 + |yjok|1P/Uk<K/N, H#0j0k=2 + 2j/zpjok- (23)

We now use the following result:

Lemma 5. Let k < e ?/(P=D. Then there exists C < oo such that
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2.1'( ijk)Z/ p
Ey]k P/k<’C/N #6/1(/ Nzﬁ °
Proof. From the Stirling formula we have
O N..(N—-r+1) , vor _ (Npj)e
P(#d =r1) = p Pl —pw)" " =< S i’
so that
o~ (Npj)'e” 2/ p N~ (Np) " 2/re”
E#éjkIP/KK/N #0=2 ; N i) rz; V2mrr-3/2
(ijk)z/ P Z (ijk)z/ r
\/— >

since (ijk)z’z/ Pe? < 1. To obtain the result of the lemma it suffices to note that

Ey/klpj/:<l</N #0 ;=2 E#6]k1p1k<K/N #0 =2+
O

Let us now gather together the terms of the decomposition of 6(,\1,) (cf. (23)). By the
Minkowski inequality, we have

2/p
EGY) = 2027Ey, — a, I} < 2"°(”“’)C<Z[E|yfok ~ el )
k
2/p
+ 2/0(1=2/P) CE (Z |yj0k|p1#é/0k_l>
k
2/p
2]0(1 2/p)C<Z[E|yjok| 1P10k<"/N#6/ok/2] />

2/p
4 0i(1=2/p) (Z sz/zpf)kl p/0k<K/N>
k

-2/ [ 21" e
= CP S S T pj (by (22))
K %
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1 112/ Prgo \-2+2/ p (since Viok Ly et = 2j0/2/N)

2Jop/2

19jo(1-2/p)
ewan(2

2/p
Z pj(,kN> (by Lemma 5)
k

2Jjop/2

2/p
cemn(2s,)
k

< C"20(1-1/p) =201/ (24)

Substituting into (24) and (21) the value of 2/ from (5), we obtain the bound of the theorem.

5.5. Proof of Theorem 4

We start with some technical results. Let 0 be the support bin of v, and 0y that of ¢.
We put

P = J FEdy,

(3]/,

0% = BE, = B4 — ),
where & = yjx — Eyir = yjx — Bjx. We also denote v = Egj‘k and
Vik = AWIn No jk-
Note that 0% and y ; are the deterministic counterparts of the empirical values 6% and 7,
that is,
s =Y A=

Since 27/m is the diameter of the support bin Ok, the wavelets 1, ,,; and v; ,,» have disjoint
supports. Thus

Zk: Pik = IX’"; ij,MH—l < zm1 Jf(x)dx =m. (25)
This relation will be often used in what follows.
Lemma 6.
Ok < % min(ZL"/CD, 27 (| y|2 pie), (26)

Vi < 279t (PN 7 + pAN ). 27)
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Proof. Note that
By, (X)) = Likwimf(x)dx < Irl V= ]
and |
Ey2(X1) = Lkwik(x>f(x>dx < ol =21l

By the Kolmogorov inequality, as f € F(s, L), ||floe = L'V, which implies (26).
Further,

u YUEpt (X)) (BuR (X))
i=1

N3 N2
Pjk  Pjk
< 2%|y|I% ( 2 +—’>

N2
O
Lemma 7. Let my = 301In N. Then for any j, k and any N large enough,
2my
P{#0j < my, pjx = N < PJkN (28)
2my p3'k
(#6jk/mNs ij< 2N> <N_J3~ (29)

Proof. We start with the proof of (28). By the Bernstein inequality,

_ _ _ _ (N pji)?
P(#(Sjk < my) < P(#(Sjk — Npjp < —ijk/Z) sexp| —————F—

8(Npj = 3Npp)
Npji my
< - < =),
exp < 11 > eXp( 6 )

When my = 30In N the latter probability is less than N>, which implies (28).

To show (29) we consider two cases: my/e’?N < pjy < mN/ZN and py < my/e*N. In
the first case we use the Bernstein inequality and the derivation is completely analogous to
that used to show (28). In the second case, from the Stirling formula,

N..(N—r+1
7!

Nrpr er
r N—r Jk
Pl = py)" " =< PR

P(#éjk* r) =

Then
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PH#0p = my) < >

00 Nrp;ker _ pik N6e3 00 <ijke) r=3
r=my

prilj2 T ON3 72 r
r=my my
3 0 3
_ Pk N6 Z o < Pk
N3 N3
r=my

|

Lemma 8. Let the parameters p and A satisfy (7). We have, for any 0 < j < j| (where j; is
defined in (8))and k € Z:

() If u = max(1, 2LYSD ||y o /54), then

P<|§jk| > m/lnTN> <2N. (30)

(ii) If px = pInN/2N, then

1 212 .
P(lNz’”?k(X")_E‘/’ik(Xl) - Vspjk> < puN*. (31)
i=1

(iii) Moreover, if pIn N/2N < pj <v?/2||y| ., then

ivZp.
2>21/ka

03, = Uk, (32)
and for yj = AV/InNo . we have
P(1&x] >%) < puN~. (33)

Proof. We use the Bernstein inequality. Since ||y e/l < 2/2|[1[lx < [|9]locy/N/(pIn ).
InN 210 N/N
P(Ejk|>‘u\/%> <2exp<— - - u {1 )
ZaijFj”l/)jk”ooN u\/InN/N

2
< 2exp (— wIn N ) (by (26))

2LV £ ctup 2

uln N
< 2exp<— YAV CEEI ||1/)||oc/54> (when u = 1)

— 2 NH/@LYED [yl /54)

(note that as [|y||./v =1, \/p = 36). this implies (i).
Recall that
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By, (X)) = ij‘»k(x)fmdx < 2||y|l%. p.

Then, by the Bernstein inequality,

I~ 2 N
P(‘N;wﬂ‘(){') —ijk(Xl)' > C) < 2eXP <_ ZElpjk(Xl)‘F%C“w%k”oo)

<5 AN
— TP\ T 2y 22 )
[e%e] jk 3 00

Choosing ¢ = 2/v?p /8, we obtain, when p; = pln N/(2N),

~ 2jV2pjk
8

1 N
P (‘ Nz wik(Xi) - E’/)§k(X1)
i=1

2575yt pi N
CXP\ = e 152/-2,,2 2
22759l pi + 32722 il

V4p'kN _5
< 2exp<— —— J4 S | <287
27yl + @432yl
which implies (31).

On the other hand, we have a simple bound for f:

Bl = ijkuocj S = 22l p

jk
Recall that the absolute value of the blocky analysis wavelet y(x) is bounded from below on
its support by v. This implies that

EVACr) = | vofads =2 .

jk

Therefore, for pj < v?/2|y|),

L, 12 22 py
O?k = N(Zjvzpjk - 2]”1/)”0@1730 = 27]\[17
and for those j and k we have 2/ < 2No3, /vpy < 4N*0% /v’pIn N, so that

lealPAVIN 22yl AN _ 2] o0
N N v/p

Now the bound (33) follows from the Bernstein inequality. Indeed,

(34
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AVInNoy | _ A2InNo%,
— | = 2exp| — SR
4 16(20jk+3H'l/)ijQON71/1\/1nNO'jk

P<|§jk >

*InNo?
<2exp( -y O (due to (34))
16022 + 249l /6v+/D)
A2InN s
< Zexp<m) <2N (as /p =36/l /V)
for 1 = 14. O

Using lemma 8, we obtain the following propostion.
Propostion 1. Let p and A be as in the description of Algorithm 2.
(i) If j and k are such that py = pInN/(2N), then

2j+1pjk In N

Pl 7> Alwlls < puN~". (35)

(if) Moreover, if pInN/(2N) < pj < VZ/(.ZH?/)HiC) then, for N large enough,
Py — vl = 3v0) < 2paN*, (36)

P(|Ej| = W) <2puN* (37)

Proof. (i) Using the bounds 62 < (1/N)YY v (X)) and Ey2 (X)) < 2/||y|3 pu. we
obtain

: [ pin N o IWIR2
P\ 7> 2l [ === | = P( 0% > T L0
1 > 2 2 Aj+1
< P 2w > [Wl%2 pi
i=1

e ‘
< P(NZU)%(X,-) — By (X)) > ||1/’||i02]17jk>-

When pjy = pln N/N, the latter probability is bounded by pN~' due to (31).
(ii)) We define the following sets:
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Y jk
Al = { Il <2,
2
gNojk
4 b

1
Ay = {’NZI: PH(X:) — (X))
Then from (33), P(A! W =1-= p,kN 4, and the bound in (31), with o2k =2/v2py/(2N),
implies that P(A D) =1 — pjkN . Thus P(Bjx)=1—-2pgN~ 4 In add1t10n we have

Y jk Y jk
V2= Bl < LEulIBal + ExD < 2 (21850 +25)  on 4}y,

Furthermore, |Bj| < 2/%pu|lyll and oy >2/2v\/pi/@2N) by (32). Thus |Bu|=<

0 ikl lloo\/2px N /v, and

2
2 — gt < 2k (g Bl v2PRND
Ik 7k 16 vAvVIn N 7k
+|Y§k_ﬂ§k|>

Bjr = Ay N A3

Then on By,

|6jgk - 0]21(| 1

. 1
O — 0| < o < Nox (' NZ;‘P?k(Xi) — By (X))

_ o opF N (1 8l /—zpjkzv> _ox

4 16N vivVIn N 2

for N large enough. This establishes inequality (36). Moreover,

{|§;k| = yzjk} - {|§""| - %} N {?'jk - %}

and the bound (37) is a consequence of (33). O

Lemma 9. Let [3 ik be defined as in (9). Then there exists C < oo such that

5 InN
Bix = Bl < C<|§ﬂc| +#\/I;V> H1B, o /mnw (38)

for any u >0, and
Bie = Biul” = C[IEnI"gyp02 + minBicl 707 | + 1Bl 1,23, 0 (39)

Proof. We have, by virtue of Lemma 2 of Delyon and Juditsky (1996),

1Bk = Bil? < 13&i|11g 459,02 + min(|Bxl, 375)" (40)

This implies, in particular, that
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5 InN
B = Birl = BEI +300| 775 <o mwrm + 1Bl o i
On the other hand, we have from (40),

Bix = Birl? = 1BEi|" Vi 55,02 + min(|B el 37 )7 15,3y /2 + 1Bl P15 =3y /2
< C||Ex| iz 59, /2 + min(|B ], '}/jk)p} + 1Bkl " 15> 3y /2
O

We return now to the proof of Theorem 4. Note that from (14) we have the following
bound for the estimation error:

v = fllp <D 2V =Bl + Nz — all, = v (41)
J=0

We decompose ry as follows:

o0 jl
v s Y 2P Y DB Bl + 2 - el
J=h+l =0
= > 202UPB,

J=i+l
Ji "

+ N /21 p) (Z 1B« —ﬁjk|p1#5ﬁk<’”“’>
=0 g

) 1/p
J1 ~

+30 20 (Z B ﬂjwl#a,.k;m)
—0 P

J

1/p 1/p
+ (Z |z — ak|pl#(§k<mN> +<Z |z — ak|p1#ék>mN>

k k

< Y 2t

J=ii+1

. 1/p
J1

+) 2’“”””(2 |ﬂ_/k|p1#é,,-k<mw1p,vk>2mN/N>
— %

j=0

. 1/p
J1

+ § 2](1/2—1/1))(} :|ﬁjk|p1#6jk<mArlp,,-kssz/N)
j= k

Jj=0
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_|_

. 1/p
J1 R

2421 P) (Z Bjx — Bkl "1 =my lpjk<mN/2N>
=0

Jj= k

j 1/p
J1
+ Z e (Z 1Bk = 'BfkPl#dz‘k?mwlp/k?mxv/z]v)
=0

k

1/p
+ (Z |2k — ak|p1#ak<mN>

k

1/p 1/p
+ (Z |2k — Oﬂk|p1#5k>mN1pksmN/zN> + <Z 2k — ak|P Lo, =my lpk>mN/2N>

k k
: (
— )
=> A
i=1

The principal term in the above expansion is r(AS,). We first need to give the bounds for
the rest of the terms in the sum. Note that the bounds below are valid when N is large
enough:

Lemma 10. r(,\l,) < CLlfl/p(lnN/N)s(lq/p)_

Proof. Inequality (12) implies that [|8;.||o < L27/¢1/2. Moreover, from (11) we conclude
that, for some C < oo,

272 = C.

Now
(1) - i - j 1 1/
A= D0 VB, < D KB,
=it J=i+l

< CLiVP S pH0 e /201 /e

J=ih+1

o0
< cL\-Vr Z 2—is(=1/p) < crp1=1/pPp—jrs(1=1/p)
J=ih+1

Lemma 11. [E("7)]'/2 < C/N.

Proof. Note that, for any p =1, ||B,.]|, < ||8;.|l1. Thus, by the Minkowski inequality,
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12
J1 2

[E(r(ﬁ))z]l/z < E(Z 2j(1/2-1/p)z |ﬁjk|1#é,k<mNlp,»k>2m,v/N>
k

=0

Vi 1/2
< Zz](l/Z—l/p) Z[E|ﬁjk|21#a,-k<mN1p,k>2m,w/zv}
j=0 k

Due to inequality (28) in Lemma 7 we obtain the bound

J1
[ECOY1Y2 < 20027 By | PU2(#0 40 < ma)l oy /v
=0 k

Jj=

Ji
<C) 207p max PO u < my) pysamyyn (s 27728l < ©)
j=0
1-1/p
<C N N?=< <
InN N

Lemma 12. A3 < CLU-V/P/stD(1n N/ N)s1=1/ D)D),

Proof. We split the sum r(ja) into two parts: when 0 < j < jo we use the bound [B| <
272yl o pje- When j > jo we bound |8 by CL27/6+1/2) (cf. (12)). Thus

) 1/p
Ji
3 l -
I"(N) = 22](1/2 1/p) (Z |ﬁjk|p1p,-ké2m1v/N>
=0 k

) 1/p
Jo
<C 2J1/2=1/p) (Z 2jp/2pj1;c1p-k<2mv/N>
=0 3
J1 1/p
FC YD PR (Z |ﬁ,»k|>
J=jo+1 k

Jo p—1 1/p
N\ Hil-1/p) o2 [2my
= C ZZJ( 22 T Pjk
=0 %

J
LC Z 20(1/2=1/p) [1-1/ py s +1/2(1-1/ )9/ @p)
j=jot
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1=1/p
<c” lzfoul/p) (2_’]’\’[N) +L11/pzjos<11/p>]

(by (25)). Finally, choosing jj such that

1/(s+1) 1/(s+1)
N LY < 2jo < 9 N LV,
In N In N

we obtain the statement of the lemma. (|

Lemma 13. [E(+{)?]'/? < Cmax{L0~1/P/6+D(In N /N)(=1/p/6+D | N=1/2),

Proof. We first remark that |ﬁjk — Bl < |&x| + |Bjx| and
B = Bil” < 2711817 + 1Bl -
Thus

; 1/p
J1
4 i(1/2—
r(N) < sz.l(1/2 1/p) (Z |§jk|p1#ajk>mN1p,k<m,\,/zzv>
= k

Jj=0

. 1/p
J1

+ CZ 221D (Z |ﬂjk|plpfk<mN/2N> : (43)
j=0 k

We have already obtained a bound for the second term on the right-hand side of (43) in
Lemma 12:

J1

e th
2 i(1/2—1 L 1-1 s+1
E : al /p)<§k : |ﬂjk|p1p/k<m,v/2N> = (=120 )< N

Jj=0

)S(ll/p)/(sﬂ)

Recall that, by (27),
ElEul* = v < [WII2% (PN + PN 7).
We can estimate the first term on the right-hand side of (43) as follows:

24 1/2

i 1/p
J1
E Z 2J(1/2=1/p) (Z |Ejkpl#éjkBmN,p,k<mN/2N>
j=0 k
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J1
< 3 20D S EIE Py s pcmyon]
=0 k
< 22’(”2 S BRI P GO = e
p1/4
CZZJ(I l/p)z jk P1/4(#6jk = mN)lpjk<mN/2N
Ji
< CY VPN by (by (29))
i— k

N 1-1/p
<C(— N73/2 < cNV2,
InN

Lemma 14. Y < C(In N/N)'"V/? and [E(*)))?]'/? < CN 1.

Proof. The proof of this lemma is completely analogous to that of Lemmas 11 and 12.

Lemma 15. [E(+Y)2]'/2 < Cmax(NV/?~1, N=1/2).

Proof. When p = 2,

2/p
E(ry)? = E(Z |z — akpl#ékBlep/k>2nzly/N>
k

Pk _
E(;zk—akF) = ;W$ CN~!.

When 1 < p <2, we use the bound

EGW? < D Blze — a1 m0my
L k

2/p

P P12 2/p
k -1
= ;(W) 1Pk>2m,V/N] = CN

< C'NYP 2P < C'N P2,

O
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We finally come to the principal term of the error decompostion (42):
J1

I/p
,,(nS) — sz(1/2,1/p) (Z B —ﬂjk|p1#6,k>mN1pjk>mN/2N> )
k

j=0
We split this again:
Ji

1/p
(S) — i(1/2—1/p) 3
r, —Z;-’-J [ <§k: |ﬁfk—ﬁfk|p1#ém>m~lm>m~/2N{lp/»ksvz/euwnic)+ lp,»k>v2/(2w|ic>}> ‘
=

' 1/p
J1

. Z 2J(1/2=1/p) (Z 1Bjx — ﬁjk|p1p,-k>v2/(2wli>>
=0 ,

‘ 1/p
J1
i(1/2—1 )
i Z; e (Zk: i - ﬁ""‘|plmw/2n§m<v2/<zw|io>> : (44)

J

To bound the second term on the right-hand side of (44) we use inequality (39) from
Lemma 9,

1Bjx — Bl < C{Ifjk|p1\5,-k\>y‘fk/z + min(| x|, ij)p] + 1Bkl " 15,3y /2,

to obtain

i 1/p
J1
5 i(1/2—1 2
G Z;ZJ( o <Xk: e = ﬁf"|p1p,k>v2/<zw|i>>
<

; 1/p
J1
i(1/2—1
+Cy 2/ (E |~§jk|”1g,-k>y*,-k/2lmN/znsp,.ksVz/mw|;)>
= K

i 1/p
J1

+CY 2 (Z min(|f3 yjk)"lp,@mw/zN)
j= k

Jj=0

) 1/p
J1
i(1/2—1
+ ZZJ( /2=1/p) (Z |ﬁjk|1?/k>3yjk/21mN/stpjksVz/(z|¢|;)>
j= k

J=0

4
=> oY (45)
i=1
We start with the bound on oY

Lemma 16. [E(0'})2]'/2 < \/InN/N.
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Proof. First, remark that as py < C||f ||002 J for some C < oo which depends only on the
wavelet 1, the inequality py > v?/ (2||1/)|| ) implies that

pi < Wl _ o [FAl
DPjk v2

s (C". (46)

Moreover, for obvious reasons, there exists C (which depends only on the wavelet 1) such
that for any j, > & p,k C and the number of bins such that py > v? /(2||1/)|| ) cannot
exceed C' =2C ||1/)|| /v? at each level j. Now let ;' be the maximal j which satisifies (46).
Then for 0 < j </’ and any £,
EYL(X) _ lpall _ C

N N N

Due to the bound (35) in Propostion 1, we have, for some u < oo,

In N _
<71k>ﬂ\/ ¥ ) =N
j’ ~
[EOV)]? < Zz/(l/zfl/m Z[ijk _ ﬁik|21p,k>v2/<z\\1/f||i>
=0 k

1/2
InN
E[E[? —|—,u N + 1B ] P<y1k = NN )] i ciwlz)

InN 12 In N
h’+“%7+N} =y

E[&uf* =

Using (38), we obtain
:| 1/2

<C§j:2k:

J=0

('}

Lemma 17. [E(07))2]"/2 < cN—1/2.

Proof. We have the bound
:| 1/2

J1

(2)271/2 (1/2—1 2

[E((SN ] / < CZSJ( / /p)Z[E|§Jk‘ 1‘Efk‘>f'jk/21mN/ZNSp//(sz/(2”1/f“i)
Jj=0 k

Ji N
i(1/2—1 4 \1/4 pl/4 Y jk
<c) 20y zk:(Egﬂf) ey ('51"' - %) Loy /v psv/clyl)

j=0
Jj 2 1/2
’ ik 1 2
<C sz/z 1/p>z Nl/; PIENTY by 37)
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2J1/2
" (3) 1/2
<C Nz S = CY'N~
O
Lemma 18. [E(0)))2]'/2 < cN /2.
Proof. Using (36), we obtain
J1
(4)\271/2 j(1/2—1 124
[EQO)1?<C Z;Z-’” / ”)ijlﬁjklf’/ P > 370 sy j2n= pr=v /v )
J=
J1
i(1-1 1/24
= C-Zozj( 1P max PG> 31 0Ly o vt
=
VI 12
=’ sz(lfl/P) m]ilX pjk NﬁzlpjkBmN/ZN
j=0
< C172j1N73/2 < Cerfl/Z.
O
Lemma 19.
s/(2s+1)
L(p=D/(pls+1)) <ln_N> for p>2 _|_l’
N s
s/(2s+1)
6(]3)$C LY@+ N ( N> forp:2+l,
N N
a N s(p=1)/(p(s+1)) 1
L(p 1)/(p(¥+1)) <T) for p < 2 _|__.
s

Proof. We consider here the case 2 < p < oo (the case 1 < p <2 being completely
analogous). Let ;' and ;" satisfy

1/(2s+1) 1/(2s+1)
Ll/(s+l)( N ) < 2] <2L1/(S+l)( N ) ,

InN InN

1/(s+1) 1/(s+1)

Ll/(s+1) N < 2j” < 2L1/(S+1) N .
In N In N

Recall that min(|B x|, v ) < |ﬂjk|qy}k_q, for any 0 < ¢ < 1. Further, due to (26),

2ppIn N LY/6HDIn N
N ’ N '

)/3k = /12 In No'ik = lel’l<
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Thus, we have

7 1/p 1/p
5(13) < 221(1/2—1/17) <ZV/[;C> Z 2i(1/2=1/p) <Z Bl?™ 2ij>
=0 k

Jj=Jj'+l1

1/p
+ Z 2J/(1/2= 1/p)<z 1B~ 1|ﬁjk|>

J=i"+1

J (1/2-1/ p) In NL!/G+D P/z‘llnN2jP/k v
ey (R ()

J=

Jj=J'+1

N2\
+C Z 2J(1/2— l/p)<|ﬁ s ZZ n pﬂf)

00 _ _ 1/p
+C S 2D (8, 2 B )

=i

;
< 'Y oK) /1“NN L(P=D/@ps+ i/

=0

J" _ 1/
oy 21(1/271/;7)(szj(m/z))l z/pzj/p(ln_N) !

ST N
+C Z 2]’(1/2—1/17)(Lz—j(S+1/2))l_l/pzj/(Zp)
AT
p J"
<c" [21"/21 NN oy 4 g2/ (lnN ) S 2@ Py 11y )|
N N J=i+1

When p > (25 + 1)/s, the second term of the above decomposition can be estimated as
follows:

J
Z 27j(sf(2s+l)/p) < szj’(sf(Zerl)/p)’
J=j'+1

and when 2 < p < (2s+ 1)/s,

Z 2= Hs=Qst1)/p) < (=" (s=Q2s+1)/p)
Jj=j'+1

Substituting the values for 27" and 2/, we obtain in these two cases
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f@st) Jis+1)
5D = cpr-D/psy | (IMNYTETT L (In VY TR
5 < .
N N

If p =25+ 1, an extra logarithmic factor appears in the sum

7
Z 27j(sf(2s+1)/p) :jn 7]-/ < CIIIN,
J=j'+1

and

In N\ /7 InN s/(25+1)
8% < Cln NLO-2D/P < (' In NLV/@s+D '
N n N n N

O

Finally, to obtain the statement of the theorem it suffices to combine the bounds of
Lemmas 10—19 for the terms of the decomposition (42).
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