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We define a negative multinomial distribution on N, where Ny is the set of non-negative integers, by
its probability generating function which will be of the form (A(ai, ..., a,)/A(a1z2, ..., anzy)),
where

A= > ar]]=

re{12,..ny i€l

ag # 0, and A is a positive number. Finding couples (4, 1) for which we obtain a probability generating
function is a difficult problem. We establish necessary and sufficient conditions on the coefficients of 4
for which we obtain a probability generating function for any positive number A. In consequence, we
obtain all infinitely divisible negative multinomial distributions on N.
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distribution; probability generating function

1. Negative multinomial distributions

In order to generalize a given standard distribution on the set Ny of non-negative integers to
Ny, one could simply replace its generating function f(z) by f(a1z) + ...+ a,z,). Thus,
for instance, the Bernoulli distribution ¢dg + pd; becomes ag + a10,, + ... + a,0.,, where
0, denotes the probability measure concentrated at a, (e1, ... e,) is the standard basis
for R", a;>0, and 7 ,a;=1. Similarly, the negative binomial distribution
S o) TAA+1) ... (A+n—1)p*q"S,, whose probability generating function is
f(2)=pr(1 - qz)_’l, becomes ) 4eny Pada, Whose generating function is

Z Pazyl 20 = p A,
! " 1 —q(pizi + ...+ pnzs)

aeNg

Some authors (see Johnson et al. 1997, p. 93) call this distribution a negative multinomial
distribution.

However, it seems natural to have a wider generalization, by replacing ¢ + pz in the
Bernoulli case or 1 — gz in the negative binomial case by an affine polynomial P, that is, a
polynomial which is affine with respect to each z; j=1,...,n or for which
82P/8z§ =0 for all j=1,...,n For instance, for n=2, P has the form
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P(z1, z2) = ap + a1z21 + @22 + anziza. Actually, some authors (see references in Bar-Lev
et al. 1994; Doss 1979; Griffiths and Milne 1987) define the multinomial distribution as a
distribution on N whose probability generating function is PV, where P is an affine
polynomial and N € N, the set of positive integers.

Similarly, for the negative binomial case we shall say that the probability distribution
2 aenNy Pada on N§ is a negative multinomial distribution if there exists an affine

polynomial P(z1, ..., zy) and A > 0 such that
3 pazf 2= (Pl ey za)) T (1.1)
aeNg

Of course, not all affine polynomials will give rise to a valid probability generating function.
First of all, the number P(1, ..., 1) must equal 1. Furthermore, the coefficients of P must be
such that (z1, ..., z,) — P~ is analytic at (0, ..., 0), which implies that P(0, ..., 0) # 0.
Finally, the Taylor expansion given by (1.1) must have non-negative coefficients. These
negative multinomial distributions occur naturally in the classification of natural exponential
families in R” (see Bar-Lev et al. 1994).

However, finding exactly which pairs (P, 1) are compatible is an unsolved problem.

Before giving details, let us make some observations. If z = (Z15 -5 Zn) € R” and
a=(ay...,a,) €Ng, then we denote
n

2 =]z == (1.2)

i=1

Let A be any affine polynomial such that A(0,...,0) =1, and suppose that the Taylor
expansion

—
(A(z, - za)) =Y a2 (1.3)
aeNg
has non-negative coefficients ca(). Let ay,...,a, be positive numbers such that
Saengca(A)alt .. a% < +oo. With such a sequence a = (ai, ..., a,) we associate the

negative multinomial distribution Z%NS PoO¢ defined by

A
sza: A(al,...,an)
¢ A(arz1, -, anzy)

aeNg

(thus P(z1, ..., z,) = A(a1z1, - .., anzs)/A(a1, ..., a,) in the notation of (1.1)).

Therefore the problem of finding all negative multinomial distributions, that is, of finding
all acceptable (P, 1), is equivalent to the problem of finding all (A4, 4A) such that
A(0,...,0) =1 and the cq(A) defined by (1.3) are non-negative. This is a venerable and
difficult problem. For instance, if

1 - -2 3-—-
p(x—|—y—|—z)—|—p (xy + yz +zx) + P

Ap(x, y,2) =1+ Xyz, p >0,

Szegd (1933) has shown that 1/4; has positive coefficients and Askey and Gasper (1977)
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generalize Szegd’s result by showing that A;’1 has positive coefficients for A = % and p = 3.
As we shall see, there exist 0 < A < % such that the coefficients of 4_* are not all positive.
Askey and Gasper (1977) show that even finding acceptable (4, A) is a formidable problem.
Therefore the present paper solves the more modest problem of finding the affine
polynomials 4 such that for all A > 0, A~* has non-negative coefficients. This is equivalent
to finding all negative multinomial distributions on N which are infinitely divisible. The
following simple proposition shows that the problem is much simpler.

Proposition 1. Let A(zy, ..., z,) be an affine polynomial such that A0)=1.Let P=1—-4
and consider the following Taylor expansions:

_ 1
(1-P) "= Z ce(A)z* and log 5 Z dez®.
aeNg aeNg\{0}

Then cq(A) = 0 for all 2> 0, for all & € NJ\{0} if and only if dq = 0 for all o € Nj\{0}.

Proof. The “if’ part is clear since (1 — P)fl: exp (l log(1 — P)fl), that is,

Z ce(A)z* = exp (l Z dﬂ“).

aeN! aeN\ {0}

The converse is easy since cq(d) = dod + 0(A) for A — 0. Indeed, since

exp (ﬂ. Z daz“> =1 +§:% (l Z dﬂ“) "’
n=1 """

aeNF\{0} aeNG\{0}

the coefficient of A in cq(1) is obtained for n = 1 and is dg. Thus cq(1) = 0 for all 1 >0
implies dgq = 0. O

Let us write P(z) = ZTeiB*aTZT’ where i@j is the set of non-empty subsets of
{1,...,n} and 2" =[],z "The aim of the present paper is to find necessary and
sufficient conditions such that the d,, in Proposition 1 are non-negative for all a in Nj\{0};
in Theorem 2 we show that this infinite set of inequalities {dq = 0; o € Ny\{0}} is
equivalent to a finite one. More specifically, we shall define 2” — 1 polynomials by in the
coefficients of 4 and we shall prove (Theorem 2) that dy, = 0 for all a in Nj\{0} if and
only if the b7y are non-negative.

Griffiths and Milne (1987) find all infinitely divisible negative multinomial distributions
whose probability generating function is |I, — Q||I, — QZ|~!, where Z = diag(zi, ..., z,),
I, is the n X n identity matrix and Q is a n X n real matrix. Clearly |I,, — QZ] is an affine
polynomial. Since these distributions depend on up to #®> parameters and since our
distributions depend on up to 2" parameters, our distributions are more general. Since
Griffiths and Milne obtain a necessary and sufficient condition (Theorem 2 in their paper)
as we do, it will be interesting to compare their result to ours.

Section 2 expresses the ce(1) and d, in terms of the ar. Section 3 introduces the by,
which are polynomials in the ar, and proves the basic result (Theorem 1) that the d, are
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polynomials in the b7 with non-negative coefficients. From this point, it is easy to conclude
(Theorem 2) that the distribution is infinitely divisible if and only if the 2”7 — 1 inequalities
br = 0 are satisfied. Section 4 applies the above result when n = 2 and 3. Section 5 applies
Theorem 2 of Section 3 to the particular case studied by Griffiths and Milne, namely
P(z)y=1- |1, — QZ|.

2. Computation of the c,(4) and the d,

First we introduce some notation taken from Comtet (1974). Given a positive integer n, we
denote [n]={1,2,...,n}. If o= (ai,...,a,) € Nj, then we denote a!=a!...a,!,
lo| =a; + ...+ a, and aq = aq,.. 4, For any k in N and 1 in the set R, of positive real
numbers, we define the following symbols: (1);=A(A—1)...(A—k+1) and (1)y= I;
Mr=AA+1)...(A+k—1) =T+ k)/T(A), where T is Euler’s gamma function and
(A)o = 1. In particular, for A = n in N, for all £ in N, we have

k

(= [I0= iD= =5

i=1

k , (n+k—1)!
(n) & :g(n+lf 1) =T

If S is a set, Hiﬁ denotes the set of all partitions of S into k non-empty subsets of S. We call
these k-partitions, and Ils = J,-, Héf is the set of all partitions of S. If S = [n], we write
H[kn] =T1%, and T1, = |J{_, TT* is the set of all partitions of [n]. Let 3B, = B([n]) be the
family of all subsets of [#] and 35: the family of non-empty subsets of [#]. For simplicity, if
n is fixed and if there is no ambiguity, we denote these families by # and B, respectively.
For T in #,, we simplify the notation (1.2) by writing z” = [[,.; z, instead of z!” where
17 = (ay, az, ..., 0p) witho; =1 ifi € Tanda,=0ifi¢ T. Foramappinga:?!é>|< — R,
we shall use the notation a : B* — R, T +— ar. The set of all mappings & : B* — N is
denoted by K. For z = (z1, ..., z,) € R" fixed, we denote Z, : Bn* R, T+ z”, and we
write Z=Z, for the sake of simplicityy If & is in K, we denote
k| =3 rem ks a* = Tl e ak’ and k! = [I e+ k7! Notice that for z in R" and & in
K we have

28 = @)= [ @0"= [ 27 = 2Zrew bt @.1)
TeBm* TeB* Tem*
For o in Nj, we denote
Ke=])keK:> krlr=al=)keK: > krlz()=a,Vie[n]|. (22
TeR* TeB*

For T ={Ty, ..., T} in Ilg, we denote
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k
GT’ZZIItlﬂ.
i=1

We conclude this section with the following simple proposition.

Proposition 2. Let P(z) = Y y+arz’

(1 - P@) "=

acNg

and

log I—P(z) =) dyz",

aeNg
it follows that
ak
cald) =) Ol
keK,
and
ak
du= 3" (K= 115
keK,

Proof. From (2.4) we can write

N=0

(1 - P(z)) "= iiu +1). N(l LN-1) <

Using the multinomial identity, we obtain

(1 - Py = fjw(x I (f)"’)

Similarly,

. For the coefficients in the Taylor expansions

Z A

TeR*

Z)

881

(2.3)

(2.4)

2.5)

(2.6)

2.7
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. N £ A (aTZT)kT
dat =3 % (z) IR D |

aeNg\{0} =N\ N=1 k=N rem* T
— a* S e kol a* Zrew krl
— _ | _ *Krlr — _ KL
= ;(N D> i => (k[ -1)!— i
= |k|=N kekK

acNG\{0} \ ke K.

3 <Z<|k|1> k,) -~

3. The polynomials by
We introduce in this section the important polynomials 57 mentioned in the Introduction.

Proposition 3. Let S be in 38;': If @ = 1g, denote by bs the number dy, defined by (2.5). Then

5|
bs = Z(zf D> ar. (3.1)
Tell}
Proof. According to (2.2),
Kig=SkeK: > krlp=1sp =3 ke K: Y krlz(i) = 15(), Vi € [n]
Tem* Tem*

Thus kr is equal to 1 or 0 If there are a number / of k7 which are equal to 1 then |k| = |,

K'=1 and o = = [lrem al’ Hre% 1 @72 Now D0 g krl7(i) = 15(i) for all 7 in [n]
implies that the 7' such that k7 is equal to 1 are disjoint, otherwise ), g+ kr17(i) # 1s5(i).
Thus

ak = H ar = ar,
TeB* k=1

where 7 is the [-partition of S formed by the 7' of " such that k7 = 1. Thus for o = 1g,

ok B
do = Z(|k|—1) => (=D ar =bs,
k€K, I=1 Telly
which is therefore the coefficient of z¥ in the Taylor expansion of log(1 — P(Z))_l. ]

The following result is fundamental.
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Theorem 1. For n in N, let P,(z) = ZTGW arz”. Then the coefficient d}, of z* in the Taylor
expansion of log(l — P,,(z))_ is a polynomial in the 2" — 1 varlables br, T € 3@ with
non-negative coefficients.

If there is no ambiguity we omit the index » in d,.
Proof. We proceed by 1nduct10n on n. Since d, is the coefficient of z* in the Taylor

expansion of log(1 — P (z)) , we have seen in Proposition 3 that df = bz, for T in %t
Moreover,

10 1
d"=——1o , 0).
«= giop €T 0
For n=1, = a; and
N aél} '
log(l—a{l}zl)7 :Zi-zjl'
=
As byy = ayqyy, we have
J J
I V)
T J

which is a polynomial in the variable b, with non-negative coefficients.

Let n be a fixed positive integer and suppose that, for all e in Nj\{0}, d, is a
polynomial in the variables by, T € 3!5 with non-negative coefficients. We now embark on
the proof of the proposition for » + 1. Let

Puii((% Zas1)) = Y ar(z zasr)

Te;ﬁtﬂ
T T
= E arz” + zZpy E aru{n+1}Z
TeR” TeBy

= P,,(Z) + Zpt1 Qn(z),

where 0,(z) = Q,,(zl, e Zn) is an affine polynomial with respect to each z;, j =1, ..., n.
In particular, P,;((z 0)) = P,(z). We show first that for o' = (@, a,.1)=
(A1 vy Qpy Opyr) 0 N”“\{O} the coefficient d”le of (z, zy41)" “ in the Taylor expansion

of log(l = Puii((2, z,,H)))*l is a polynomial in the variables by, T € %Hl, with non-
negative coefficients.

Step 1. We assume first that a,.; = 0. In this case,
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dnJrl — dn+1

(0.0)

B (“’lo)la(z’azliajl);(a’o) tog 1 - Pn+1(1(l’ Zni1)) (... 0), 0)
;,gil gm((o, )

ég:algl_;()(( 0,...0)) =dg,

and the induction hypothesis implies that d;fl =d, is a polynomial in the variables b7,
T # &, included in [n+ 1]\{n + 1} = [n], with non-negative coefficients. Notice that the
result remains valid if any other a; is null, since then d, is a polynomial in the variables b7,
T # @, included in [n + 1]\{i}, with non-negative coefficients.

Step 2. We now suppose that a,; > 0. Differentiating k times with respect to the last
variable, we obtain

8k

k
! i 0.(2)
3zn+1 log 1L — Pui1((2 Zny1)) =(k—1)! (1 (@ Zn+1))> . (3.2)

Taking z,.; = 0 in (3.2), this result becomes

8k 1 Qn(Z) k
I = (k- D=2~ . 3.3
ozt 81- P,i1((z, 0)) ( ) (1 — P,,(Z)) (3.3)
We also have
8k , " " (0,01 —k) o a,,+, k . ., = k,
——(z, zp)" = (@n )2 Zn1) = (@nr1)k2%2, if a +1. (3.4)
0 “ntl 0 otherwise.

Differentiating £ times with respect to the last variable, we deduce

k
0 log1 5 = Z drt! (2, Zni1)"
A (R ) R (P
_ n+1 o _Op1—k
= Dty (Cnt1), 22,1

oeNg o, 1=k

Taking z,.; = 0, we obtain
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8k
log = drl (an), 2" (3.5)
8zn+1 1= Pui1((Z zut1)) |, —0 aEN{]%;H:k €2 aw)( 2
n+l1 n+l
SRS k!(z d)
oeNy oeNg

Then using (3.3) and (3.5), we have
0u(@ \*
k! E drtlz*) = (k-1 =22 ) . 3.6
(ueN{} (a,k)z ) ( ) (1 - Pn(z)> 3.6

Dividing by k! and letting £ = a,,;, we obtain

it e L Ou(®) \"
Do dita, 2= <1_Pn(z)) : (3.7)

aeN; Apt1

Putting £ =1 in (3.6) gives

Qn(Z) n+1 @
1_Pn(z) Zd+

aeNg
We now substitute this into (3.7):

1
S anl et = (z dz’;f)z‘j
aeNg

Apt1

U.EN" an+1

an+1 BeN?

()

An+l

— Z ! Z (Hd”“) "

| A "
aeNg \ T B B, =opieN

Therefore we have proved that

1 Apyl
) = > <H i ) (3.8)
"H:a:ﬁieN(’]’

a
ntlg 4 B,

For instance, for n =1, a, =2, a = a; = 3, we have

2 3
2 2 2
di30) = Z <H . 1)) ;)dwl,nd(s—ﬁl,l))-
—

,Bl +p2=3

In the same way, a similar result holds for any index j in [n]: if for f; in Nj we denote by
(B:), the kth component of f;, we have
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n+1 _
(O15ees @150 5 g 1ot 1)

1 n+1
. Z (Hd((ﬁi)l ,,,,, B)j-1,L(Bi) jsees ([5:‘)”)>' (3.9

a
J Bito By = (s jm1, 1 oonser ) B ENG

It remains to be observed that if we use (3.8), we obtain a polynomial with non-negative
coefficients in the d(nI#l)’ where B + ...+ Pq,,, =« and P, € Nj. Thus we obtain

terms of the type d"() (B)p)’ with (ﬁ,)‘Sa]- for [ in [@nt1] because

B1), + (B2); +--- + (Ba,..); =a;, the (B;); being non-negative integers. Three cases
can be distinguished:

1. At least one of (B)) j» J € [n], is null. In this case step 1 leads to the result.
2. (Bs); =1 for all j in [#n]. In this case d((ﬁ) Bonl) = a’(11 1.1 = buy1y according to

,,,,,

3.1).
3. There is an non-zero integer k such that k < n, (B;),> 1 and (B;), =1 for j >k,
that is, d{lj} =d{g)
((Bi)y5--~(Bi) 1) ((B)yoeens(Bi) o 1)

Using formula (3.9) for the kth variable for these last terms, we obtain

n+1

d((p,)1 ,,,,, (Bi) goLoeres =
1 n+
(ﬁ)k Z H d ‘Y; """ (V1) (Y1) jores(Y1),)
Rt =B (B gL i ENG \ 71
The relations vy + ...+ v@p), = (@1, ..., az1, 1, ..., 1) and 7y, € N§ prove that

5‘3"(‘\(;) =1 for any m in {k, ..., n}. This implies that for any m in {k, ..., n}, only
one of the (‘yl) for /in [(B:),], is equal to 1, the others being equal to 0. Thus we have a

n+
polynomial with non- negative coefficients with terms of the type d| (m """" VD) bV g (V1))

If one of (y,) , for m in {k, ..., n}, is zero the induction hypothesis apphes otherw1se we
are in the case d(”(;ll) """ SRR Since k —1 < k, it is thus evident that by repeating a

finite number of times this process we shall obtain a polynomial, in by, +1] and by for T € 3@

and with cardinality at most », having non-negative coefficients, that is, a polynomial in the
variables by, T € i!én +1» Wwith non-negative coefficients. This completes the proof of
Theorem 1. 0

As a consequence we can state our main result.

Theorem 2. Let P(z) = ng;@*aﬂ and suppose that (1 — P(z)) ZaeN"CG< )z*. Then
ce(A) = 0 for all positive zfand only if by, given by (3.1), is non negative for all T € ?Ié

Proof. We show that, for all @ € N/\{0}, d, = 0 if and only if, for all 7 € B*, by = 0.
Since dq is a polynomlal in the Varlables br, T € 33 with non-negative coefﬁcients
br =0 forall T in 33 implies d, = 0. Conversely, since dlr = by, dq = 0 for all o implies
di, = br = 0 and the equivalence is proven. UJ
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4. Examples

Let n =2. The conditions are byy = agy =0, by = appy =0 and

2

biiay = Z(l - Z ar = aqoy +apyap, =0,
I=1 TeBy, 5

that is, ag;y = 0, agyy = 0 and agy 5, = —ayyaq, (see Griffiths and Milne 1987, Theorem 4;
Bar-Lev et al. 1994, Proposition 3.1).
Now let n = 3. Here

1— -2 3-—
1=P((x,y,2)=1+ p(x—l—y—i—z)—i—p (xy + yz + zx) + pxyz.
In this case
p—1 2—p p—3
apy = agpy = apy = e a2} = aQ3} = 423} = ) a(123} = Té
p—1 2—p p—1_p—1 1
buy = by = by = 5 buigy = aqzy +apyapy = PR X P

Hence we have by 5y = by13) = bpp3 > 0 and

3
bpipzy = Z(l =D Z ar
=

7
TeBy 3

= aq3y T apyapsy +apyansy +agyangy +2apyapag

_12-— Clp—1p—1 2
3P PypP=P=P= 2 .

p—73
P P P P P P P

Therefore there exist values of A such that the Taylor expansion of

1 — -2 3 -
<1+ pp(x+y+z)+pp (xy + yz 4 zx) + ppxyz>

has negative coefficients (see Askey and Gasper 1977).

5. Application to the Griffiths and Milne case

This section compares our necessary and sufficient condition for infinite divisibility to the
results obtained by Griffiths and Milne (1987) in the case where Q is a n X n real matrix
and, writing Z = diag(zl, ces Zn)s
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_det(I, — Q)

~ det (I, — QZ) 5.1

f(z15 -5 Zn)

is a probability generating function for certain choices of Q. Note that Q is not necessarily
symmetric. Griffiths and Milne find a necessary and sufficient condition for infinite
divisibility on Q that they describe as follows. We assume that g;q; = 0 for i # j. With

{1, ..., n} as vertices, put a green edge between vertices i # j if ¢;; + ¢;; < 0 and a red one
if g;; + ¢;; > 0. A circuit of length k is a sequence (vy, ..., vy) of distinct vertices such that
{vi, Viy1} is an edge (red or green) for all i = 1, ..., k, with the convention vy = v;. It is

said to be elementary if it has no chords, namely if {v;, v;} is not an edge for li—j| > 1.
Their Theorem 2 establishes that f is the generating function of an infinitely divisible
distribution on N if and only if Q satisfies the following remarkable conditions:

The eigenvalues of Q are in the open unit disc {z € C; |z| < 1}.
For all i in [n], ¢g; = 0; and for i # j, g;q; = 0.
Every elementary circuit has an even number of green edges.

W N =

In order to apply our Theorem 2 to the polynomial P(zy, ..., z,) =1—det(I, — QZ),
we have to compute the by. Actually, we shall prove the following result.

Theorem 3. Let T be a non-empty subset of [n] and let Cy be the set of all circular
permutations of T. Then

br = Z quC(’) = k_l Z Qiviy « -+ Giyyiy9iri - (52)

ceCr t€T (i ix}=T

For a proof of Theorem 3 we need several propositions which are interesting in their own
right. Let S be a non-empty set. We denote by I15 = UTe;B*(s) I1; the union of the sets of
the partitions of 7 for all elements T in B*(S). The set of all partitions of 7 is ordered as
follows: we write 7 < § if and only if every block of 7 is contained in a block of S (see
Stanley 1999, p. 116). We denote by ur, the corresponding Mobius function. Let f and g
be two mappings of IIS into C. We say that f and g are connected by the Mobius
inversion formula if and only if, for all 7 in %*(S), we have

g8) =Y f(T) & £(8) = un, (T, 8)g(7). (53)

T<S T<S

A mapping f from IT% into C is called multiplicative if and only if, for all partitions
T ={T),..., T} in IT5, denoted by T} e ... T, we have f(T) =[], f(T}).

Proposition 4. Let f and g be two mappings from I1° into C that are connected by the
Mobius inversion formula. Then f is multiplicative if and only if g is multiplicative.

Proof. Let us suppose that f is multiplicative. Let S = S| o ... o S; be a partition of 7. If 0
denotes the partition formed by the singletons of 7, then Ilg, X ... X I, is isomorphic to
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[6,8} by ¢ : g, X ... XI5, — [6,8], T = (T, ...,’Z;k) — T, e...0 7 Since [ is
multiplicative then, for any element 7 =71 ... 7y in |0, S], we have

For all T in 3*(S) and for all S= S, e...e S; in I17, the Mobius inversion formula
implies

T<Se...05; T=Te..0T <Sje..eS,
k k
= > [[r)=1] S(T))
(T1yeees T‘.)el‘lslx...xnsk i=1 i=1 | T;<{S;}
k k

=T eds}H) =] e(s0)-

i=1 i=1

Conversely, let us suppose that g is multiplicative. For all 7 in B"(S) and for all
S=3S1e...085; in Iy, we know (see Stanley 1999, p. 128) that

/,[ :l[,[/\

s = xim, = [,
1=

11,,]0.5]

Hence we have, by the Mobius inversion formula,

k
(8 = > e Mun,(T;8) = > 11 e(Toun, (75 {s:})
TE[?)\,S] (T1,eees Tk)€H51><N.><HSSk i=1
k
=1I( > e@uny(T: {s}) Hf{S} H (Si).
=1\ T;<{S;}
O

Proposition 5. Let Q = (i) (ijjenp be a real n X n matrix and let Z = diag(z1, ..., z,),
where Z= (zl, <o, zp) €ER". Let P be the polynomial defined by 1— P(z)=

ZTE;B*“TZ —|I — QZ|, where 1, denotes the identity matrix of order n. If
QT (49) i jer and 97 = |Q7|, then

ar = (-UITHQT- (5.4)

Proof. We have
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where $, denotes the set of all permutations of [n] and €(0) the signature of o. Thus the
coefficient of z” in P(z) is

> e [[(-t00) = (- > e0) [ [ o0, = (D).

oeS, ieT o€eSr ieT
o(j)=jif j¢T

Proposition 6. Let T be in Z@j, T=TieTre...0 T beinIly and 97 = Hle 9r,. Then

br= (D" ST ()T - Dlag (5.5)

Tellr

Proof. Using (3.1) and (5.4), we obtain

7|

br =Y (I- D) 3 H DTy
=1

T=TeT; e...0 Tjll} i=1

7| /
D" 12 > vre=n]]o
i=1

L 7= HOBOMOHEHQ

\T\l j{: |71 1|7—‘ )|q7.
clly

O

Proof of Theorem 3. let 7T =T eTre...061; be a partition of 7. If o=
clocyo...ocp, where ¢; € Cr,, the set of all circular permutations of 73, then we say
that o is of support 7. The set of all permutations of support 7 is denoted &7 and the set of
all permutations of 7 is denoted $7. Let f be the multiplicative mapping on I1"! defined for
all 7 in B by

A0 = DTS g (5.6)

ceCr ieT

Let T =T eTre...0 T;bein IT". We have
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I
f(T) = H <(—1)Tml Z H qicm(i)>

cn€Cry, i€TH

! !
_ (H(_I)Tml> ( )Z H H qi(c10020...0¢)(i)
ClseeesCim

m=1 ) \(cp,.., €CT1><.N><CTm m=1ieT,,

! [Tw|—1
= H(—l) ! Z Hqia(i) = Z S(O)H%a(i)- (5.7)
m=1 ocdrieT oSt ieT

Let g be the mapping defined on IT", connected to f by the Md&bius inversion formula.
Then we have

g(S) = Z Z E(O)Hqio(i)' (58)

T<SoeSr i€l
Taking S = {S} in (5.8), we obtain
g(8) = g{sh) = Y e(0) [[ a0 = 1Qs| = us. (5.9)
geSy ieS

Let S=S) e S5 0...0 5 be a partition of S. By Proposition 4 we have

k k
g(S) =] &) =]]os = s (5.10)
i=1

i=1

The following result is well known (see Rota 1964):
k
w1, 8) = )T -1 for T <,
i=1

where n; is the number of blocks of 7 contained in S;, for all i in [£].
Using (5.2) and (5.10), we obtain

(1) = > wT, {1H)e(T)

T<{r}
=Y 0T - ey
Telly
— (=) p,. (5.11)

Therefore, using (5.6) and (5.11), we conclude that

br= (D" A1) = 3 [ awer:

ceCr ieT
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Griffiths and Milne (1987) give the following result which leads to a necessary and
sufficient condition for [I, — Q||I, — QZ|~! to be the probability generating function of an

infinitely divisible distribution. For j= (ji, ..., j,) in Ng\{0}, the coefficient of
7 =z{'...zJ" in the Taylor expansion of log|I, — QZ| ! is
k- Z Giri -+ QigrigGigin» (5.12)
(il,A..,ik)E[l’l]
where k= +...4+ j, and the number of indices iy, ...,i; equal to [ is jj,
I1=1,2,...,n Now we take j=17. In this case k= +...+ j, = > " 17(i) = |T],
and the number of indices iy, ..., i} equal to / is 17(1), that is, is equal to 1 if / is in 7 and

to 0 otherwise. Thus we obtain once and only once all the elements of 7. This means that the
mapping j +— i; is a bijection o from [|T|] into 7. Let us denote by ;7 the set of all
bijections from [k] = [|T|] into 7. We have

diy =k Y 4oy - alk-o(0oRo ) = k! > [L 4o,

0T c=(0(1),...0(k)):0eS, r i€T

where ¢ is the cycle (o(1), ..., 0(k)) of T. If ¢ = (i1, ..., i) is a cycle of T, there are
exactly k bijections o of £ 7 such that the two cycles (o(1), ..., o(k)) and (iy, ..., ix)
are equal. Indeed let s be the cycle (1, ..., k) of [k]. If o is such a bijection the others are
o os™ for m in [k — 1]. For all bijections o satisfying (0(1), e, a(k)) = ¢, we have
460 2) - 9ok (090 (0o (1) = [ Licr dic(;) and

di, = kK 'k Z qu(z’) = Z H‘Ii,c(z‘) =br

ceCr ieT ceCr ieT

according to the first part of (5.2). O
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