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Linear inverse problems for count data arise in a myriad of settings. The latent counts lie on a fibre that is too large
to enumerate in most practical problems, but inference can proceed by sampling the fibre. We examine the mixing
properties of hit-and-run samplers in this context. In general convergence can be arbitrarily slow. However, there
is a class of linear inverse problems for which rapid mixing for uniform fibre sampling is possible, using Markov
sub-bases that are of minimum size but yet provide a sufficiently rich range of sampling directions to avoid the
need for zig-zagging walks to ensure connectivity. Focussing on such problems, we study a particular class of
bases that enjoy these properties under certain easily checkable conditions on the configuration matrix. We also
examine the mixing properties of these bases when employing commonly used Poisson models. Our theoretical
results provide practical guidance on optimizing these Markov sub-bases.
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1. Introduction

Suppose that we are interested in a random process generating counts x ∈ Zr
≥0, but can observe only

y ∈ Zn
≥0 defined by the linear system

y = Ax (1)

where A is the n×r configuration matrix. Conducting inference for x, and potentially for the parameters
underlying its distribution, is a statistical linear inverse problem. Problems of this type arise frequently
in science and engineering, and are known to be challenging (e.g. Hazelton, McVeagh and van Brunt,
2021, Kaipio and Somersalo, 2006).

We consider the common situation in which the entries of A are binary, and r > n. The resulting class
of models covers a plethora of applications in which the ideal data x are observed only in summarized
or otherwise corrupted form. For example, they arise when analysing mark-recapture data in ecology,
where counts y of recorded histories of animal sightings are subject to identification errors and hence
may differ from the true counts x (e.g. Link et al., 2010, Schofield and Bonner, 2015).

Example 1. Consider a mark-recapture experiment conducted over two observational windows, in
which the identity of each animal spotted is compared to an existing catalogue. Let xω denote the
count of animals with history ω = (ω1,ω2), where ωi = 0 if the animal is not seen in window i; ωi = 1
if the animal is seen in window i and correctly identified; and ωi = 2 if the animal is seen in window i
but misidentified as a new animal. The observed counts are collected as the vector y = (y01, y10, y11)

T,
where the ith index is a binary indicator of animal sighting in the ith window. Following Schofield and
Bonner (2015), these are related to the true counts x = (x01, x10, x11, x02, x12, x20, x21, x22)

T according
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Figure 1. A simple example for network tomography.

to (1) with configuration matrix

A =
⎡⎢⎢⎢⎢⎣
1 0 0 1 0 1 1
0 1 0 0 1 1 1
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎦ .
One very important application of linear inverse models is network volume tomography, in which the

aim is to make inferences about traffic volumes on routes through a network based on aggregate traffic
counts collected at various sites. This is a standard practice in engineering, both for road systems and
electronic communication networks. See for example Airoldi and Blocker (2013), Castro et al. (2004),
Hazelton (2015), Tebaldi and West (1998), Vardi (1996) for some statistical contributions to the area.

Example 2. To illustrate, consider the simple network depicted in Figure 1. Let x = (x(1,2), x(1,3), x(1,4),
x(2,5), x(3,4), x(2,3), x(1,5), x(2,4))T denote the origin-destination traffic volumes, where x(i, j) is the count
of traffic journeying between nodes i and j. (What may appear an idiosyncratic ordering of the origin-
destination pairs is helpful in later examples.) Our information comes from observed traffic counts y
on the network links, related to x through (1) where A is the link-path incidence matrix given by

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

Let f (x | θ) denote the distribution of x, where θ is a vector of parameters. Then the likelihood is

f (y | θ) =
∑

x∈Zr
≥0

f (y | x,θ) f (x | θ)

=
∑

x∈FA,y

f (x | θ) (2)

where FA,y = {x ∈ Zr
≥0 : y = Ax} is the y-fibre of count vectors x consistent with the observed data.

In practice this set will be far too large to enumerate in even modestly sized examples, so the likelihood
cannot be computed directly. We must therefore resort to sampling-based methods of inference. In
particular, Bayesian inference for θ can be conducted by iterating between sampling from f (x | y,θ)
and f (θ | x) (see Hazelton, McVeagh and van Brunt, 2021, for example).

This provides a strong practical motivation to investigate the problem of sampling from the condi-
tional distribution f (x | y) = fFA,y

(x), where fF denotes a distribution truncated (and renormalized)
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to the set F and the dependence on θ is suppressed for notational convenience. This is a challenging
problem because we generally lack any convenient representation for the y-fibre. It has been heavily
studied in the context of contingency table resampling, where x is the vector of cell entries and y a
vector of marginal totals corresponding to sufficient statistics for some log-linear model of interest.
The most common approach is to conduct a random walk on FA,y , but the difficulty is ensuring that a
sufficiently rich array of sampling directions is available to ensure connectivity.

A breakthrough arrived when Diaconis and Sturmfels (1998) demonstrated the use of techniques
from computational algebra to find a Markov basis corresponding to a given configuration matrix; that
is, a set of sampling directions sufficient to guarantee connectivity of a random walk on FA,y for any
y ≥ 0 (where such inequalities are assumed to apply componentwise henceforth). That article inspired
a raft of follow-up articles, most of which focussed on the theory and computation of Markov bases
for various log-linear models for contingency table data (e.g. Dobra, 2003, Rapallo, 2003, Takemura
and Aoki, 2004). The monograph by Aoki, Hara and Takemura (2012) provides an overview. Computa-
tional algebra methods for finding Markov bases are conveniently implemented in the software 4ti2
(4ti2team, 2015).

Sampling can proceed using a simple random walk, in which the sampler at each iteration either
takes a step defined by a randomly selected and randomly signed vector in the Markov basis, or holds
fast. Such a sampler is adequate for the study of connectedness, but will mix increasingly slowly as the
fibre size increases (Stanley and Windisch, 2018, Windisch, 2016). From a practical perspective a far
more attractive proposition (and consequently a far more common choice by practitioners) is a hit-and-
run sampler, which selects a new state from the lattice points on a ray through the fibre the direction of
which is determined by a randomly selected vector from the Markov basis. See Section 2.

The mixing properties of hit-and-run samplers for fibres have received limited attention, despite the
critical importance of this topic in determining the practicability of MCMC inference for the kinds of
linear inverse problems described above. Examples of such hit-and-run samplers with very poor mixing
properties in practice are readily available (e.g. Hazelton, McVeagh and van Brunt, 2021), but we lack
theoretical results to properly explain this behaviour.

Stanley and Windisch (2018) recently made some progress in this direction when they examined uni-
form fibre sampling using hit-and-run samplers with Markov sub-bases; i.e. sufficient sets of sampling
directions for pre-specified y (Chen, Dinwoodie and Sullivant, 2006). Using techniques develop by Sin-
clair (1992), they sought to find bounds on mixing times based on longest path length between points
on a fibre. To obtain rapid mixing, the Markov sub-basis must contain a sufficiently rich selection of
sampling directions so that zig-zagging sample paths are not required to ensure connectivity. Stanley
and Windisch (2018) described such a basis as augmenting. It is also necessary to limit the size of the
Markov sub-basis to avoid overly long paths even without zig-zags. Combining these ideas, Stanley and
Windisch (2018) showed that rapid mixing is possible if we can find a sufficiently small augmenting
Markov sub-basis: specifically, with cardinality not greater than dim(kerZ(A)). See Section 3.

While the existence of such small Markov sub-bases is by no means guaranteed for all linear inverse
problems, nevertheless the class of problems for which they do exist warrants attention for two reasons.
First, there are many important practical problems within this class including almost every reasonable
model for mark-recapture data, and also network tomography problems for highways and transit sys-
tems. Second, the work of Stanley and Windisch (2018) provides reason to hope that we can design
highly efficient samplers for application to problems in this class. We focus on such problems in this
article.

We face a number of challenges. It can be difficult to ascertain whether a sufficiently small Markov
sub-basis is available for any given problem. Moreover, even if we know that such bases exist, we may
not be able to find them. Techniques from algebraic statistics will not necessarily help in this regard,
since they are focussed on full Markov bases which may be (much) larger than a serviceable Markov



Rapidly mixing samplers for linear inverse problems 2679

sub-basis. Finally, it is unclear as to how well hit-and-run samplers based on these small bases will work
for non-uniform target distributions. This is crucial, since for most practical linear inverse problems we
will be focussed on non-uniform models: Possion models are the most common choice.

In response, we describe a type of lattice basis that will also be a minimally sized augmenting
Markov sub-basis under certain, easily checkable, conditions on the configuration matrix. See Section
4. As a consequence, we can find hit-and-run samplers that mix rapidly for uniform fibre sampling in
problems with such configuration matrices. We also analyze the mixing properties of these samplers
when the components of x follow independent Poisson distributions. These depend critically on the
relative magnitudes of the components of E[x]. Moves will necessarily be short in sampling directions
necessitating changes in components of x with small mean, which can lead to bottlenecks in sample
paths and arbitrarily poor mixing behaviour in extreme examples. See Section 5. Our theoretical anal-
ysis provides a highly useful guide to practical choice of basis, as we illustrate through a real data
network tomography example in Section 6.

We assume throughout that the configuration matrix is of full rank. If this is not the case then we can
delete redundant rows of A and corresponding entries of y without any loss of information. We also
assume that each column of A contains at least one non-zero entry.

We will at times want to refer to the dimension of the y-fibre. To that end, we make the following
definition.

Definition 1.1 (Dimension of a y-fibre). The dimension d of fibre FA,y is given by

d = dim(span{x − x ′ : x, x ′ ∈ FA,y}).

We observe that if all entries of y are sufficiently large, then dim(FA,y) = dim(kerZ(A)) = r − n.
However, if some of the entries of y are sufficiently small then dim(FA,y) may differ from the dimension
of the solution space of (1) for continuous variables.

Example 3. Consider a linear inverse problem with configuration matrix

A =
⎡⎢⎢⎢⎢⎣
1 1 0 1 0
1 0 1 0 1
0 1 1 0 0

⎤⎥⎥⎥⎥⎦
and observed data y = (1,1,1)T. In the continuum the solution set can be written as {x ∈ R5

≥0 : x1 ≥

0, x2 ≥ x1, x1 + x2 ≤ 1, x3 = 1 − x2, x4 = 1 − x1 − x2, x5 = x2 − x1}, which is a 2-dimensional poly-
tope. However, for integer valued vectors the y-fibre is FA,y = {(0,0,1,1,0)T,(0,1,0,0,1)T } which is
1-dimensional. For y = (2,1,1)T the fibre is FA,y = {(1,1,0,0,0)T,(0,0,1,2,0)T,(0,1,0,1,1)T } which is
2-dimensional.

2. Hit-and-run samplers for latent counts

We consider the problem of sampling latent counts x from a distribution f (x | y) supported on the
fibre FA,y . Much of the theoretical study of Markov bases has focussed on random walk samplers in
which candidates are drawn from the Markov basis with random allocation of sign. However, while that
is sufficient for the analysis of connectedness, in practice we want the sampler to be able to take long
steps when possible to facilitate fast mixing. We therefore focus on discrete versions of the hit-and-run
sampler (Baumert et al., 2009, Smith, 1984).
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Given a current vector x ∈ FA,y , the hit-and-run sampler works by randomly selecting a sam-
pling direction u† from a set of basic moves M = {u1, . . . ,uN }. For each i = 1, . . . ,N , ui is a vec-
tor with coprime entries, and ui ∈ kerZ(A). Then a candidate x† = x + bu† is sampled from the ray
R ≡ RFA,y ,u† (x) = {x + bu† : b ∈ Z} ∩ FA,y . For computation, the ray is conveniently expressed as

RFA,y ,u† (x) = {bmin(x,u
†),bmin(x,u

†) + 1, . . . ,bmax(x,u
†)} where

bmin(x,u
†) = −

⌊
min

{i∈[r] : u†
i
>0}

{xi/|u
†
i |}

⌋
(3)

and

bmax(x,u
†) =

⌊
min

{i∈[r] : u†
i
<0}

{xi/|u
†
i
|}

⌋
. (4)

In cases where none of the entries of y are large it is feasible to implement a Gibbs sampling ap-
proach, in which x† is sampled from the conditional posterior distribution f (x | x ∈ R) and accep-
tance is guaranteed. More generally, x† can be generated by sampling from some proposal distribution
qu† (· | x) supported on RFA,y ,u† (x), with the sampler moving to this new state with probability deter-
mined by the Metropolis-Hastings acceptance probability

α =min

{
1,

f (x† | y)qu† (x† | x)

f (x | y)qu† (x | x†)

}

=min

{
1,

f (x†)qu† (x | x†)

f (x)qu† (x† | x)

}
.

The sampler remains at x otherwise. See Algorithm 1.
We denote the hit-and-run sampler implemented using a set of basic moves M by H(M). The

Markov chain generated by this sampler is reversible and aperiodic. Convergence to f (x | y) is there-
fore guaranteed if and only if the random walk is connected over FA,y . In other words, irreducibility
of H(M) requires that for any x, x ′ ∈ FA,y there exists a finite sequence i1, . . . ,iK ∈ {1, . . . ,N} and

Algorithm 1 Hit-and-run fibre sampler

Require: Initial state x0 ∈ FA,y ; set of basic moves M = {u1, . . . ,uN }; sample size Nsim.
1: for t = 1 : Nsim do
2: Sample uniformly u† from M

3: Sample x† from distribution qu† with support RFA,y ,u† (xt−1)

4: Sample w uniformly on [0,1]
5: if w ≤ α then
6: xt = x†

7: else
8: xt = xt−1

9: end if
10: end for
11: return x0, . . . , xNsim
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integers b1, . . . ,bK such that

x ′ = x +
K∑
j=1

bjui j , and x +
L∑
j=1

bjui j ∈ FA,y

for all 1 ≤ L ≤ K . If M has this property then it is a Markov sub-basis for the fibre FA,y (cf. Chen,
Dinwoodie and Sullivant, 2006). The set M is a (full) Markov basis for A if it is a Markov sub-basis
for FA,y for any y ∈ Zn

≥0.
We will study the mixing properties of H(M). Our theoretical results on the rapidity of mixing hold

for any set of proposal distributions so long as for all u ∈M the support of qu is the ray RFA,y ,u† (x).
As a consequence, we will not dwell on the form of the proposal distribution. Our focus will be on the
effect of the choice of basis (set of basic moves) M on mixing times.

The cardinality of the move set M is of importance in this analysis. It is standard to say that M is a
minimal Markov basis if no proper subset of M is a Markov basis. However, for Markov sub-bases we
will be interested in minimality in the stronger sense of minimum cardinality, motivating the following
definition.

Definition 2.1 (c-minimal Markov sub-basis). A Markov sub-basis M for a fibre F is c-minimal
(cardinality-minimal) if there is no Markov sub-basis for F of smaller cardinality.

Example 4. Consider a linear inverse problem with

A=
[
1 1 0 0
0 0 1 1

]
.

Then for y = (3,1)T the fibre is FA,y = {(x1,3 − x1, x3,1 − x3)
T : x1 = 0,1,2,3, x3 = 0,1}. The move set

M = {(1,−1,0,0)T,(0,0,1,−1)T} is evidently a Markov sub-basis, and is c-minimal since any Markov
sub-basis must be of size at least dim(FA,y) = 2. The move set M = {(1,−1,1,−1)T,(1,−1,−1,1)T ,
(2,−2,1,−1)T} is also an inclusion-minimal Markov sub-basis, but it is not c-minimal. We note
that c-minimal Markov sub-bases are not unique. For instance, it is easily checked that M =

{(1,−1,0,0)T,(1,−1,1,−1)T} is also a c-minimal Markov sub-basis for the fibre at hand.

3. Mixing properties

Let f t
x0 denote the sampling distribution of H(M) at iteration t when initialized at x0. We are then

interested in the rate at which f t
x0 approaches the target f = f (x | y). The discrepancy between these

distributions can be measured by the total variation distance | | f t
x0 − f | |TV , which motivates defining

the ε-mixing time as τx0 (ε) =min{t : | | f s
x0 − f | |TV ≤ ε for all s ≥ t}. Bounds for this mixing time are

well known. In particular, for all ε > 0,

log
(

1
2ε

) (
λ

1 − λ

)
≤ τx0 (ε) ≤ log

(
1

ε f (x0 | y)

)
1

1 − λ
(5)

where λ is the second largest eigenvalue modulus of the transition matrix of H(M). See for example
Levin, Peres and Wilmer (2009). It follows that the spectral gap 1 − λ is a critical measure of conver-
gence. The further that λ is from one, the more rapid the mixing.
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We shall be interested in the asymptotic behaviour of the spectral gap as the problem size becomes
large, or whether λ can be bounded away from 1 for a class of target posterior distributions. In either
case, standard arguments imply that there is little loss in focussing on the modulus of the second largest
eigenvalue. Specifically, if this is smaller in modulus than the smallest eigenvalue, we may consider
instead a sampler with a holding probability of 1/2 added to each state. The second largest eigenvalue
modulus of this slowed sampler will be (λ + 1)/2 and so the spectral gap is reduced by a factor of 2
only.

Intuitively, the rate of mixing depends on the number of transitions required for the sampler to move
between any two vectors in the fibre. The work of Sinclair (1992) makes this idea more concrete.
Consider the underlying graph describing possible transitions of a sampler for some set F . Let γx,x′
denote a path through this graph connecting x and x ′, and let Γ = {γx,x′ : x, x ′ ∈ F } denote a set of
canonical paths containing a single transitional path for each pair x, x ′ ∈ F . Let Q denote the transition
matrix for the sampler. Then the second largest eigenvalue λ is bounded above by

λ ≤ 1 −
1
ρ	

(6)

where 	 is the maximum canonical path length, and

ρ ≡ ρ(Γ) =max
e∈E

1
Q(e)

∑
γx ,x′�e

f (x | y) f (x ′ | y), (7)

in which E indexes all pairs of vectors e = (v,w) ∈ F 2 for which Q(e) =Q(v,w) > 0. The term ρ cap-
tures a sense of the ease with which each transition can be made relative to the need for that transition
during sampling. Sinclair (1992) used the notion of flows of probability over the graph, when the term
ρ is a measure of the maximum probability loading of any edge e in the graph relative to capacity.

Consider the sampler H(M) applied to a sequence of fibres for fixed A, but with strictly increasing
fibre size. In such circumstances it is quite possible that the number of transitions required for a walk
between some pair of points on the fibre (i.e. the path length) may grow without limit. We then know
from (6) that the mixing time for H(M) will become arbitrarily large. This kind of behaviour will
certainly occur for a sampler with bounded step size b. Moreover, even though hit-and-run samplers
provide the facility for arbitrarily long moves, a poor choice of sampling directions can nevertheless
lead to long mixing times in even low-dimension problems.

Example 5. Consider the network tomography problem from Example 2. Suppose that the observed
counts are y = (1,M,M,1)T for some non-negative integer M . It is straightforward to show that

M = {u1,u2,u3,u4} = {(0,1,−1,0,1,0,0,0)T,(1,−1,0,0,0,1,0,0)T,

(−1,0,0,−1,0,0,1,0)T,(1,0,−1,0,0,0,0,1)T}

is a Markov sub-basis. The observed counts imply the constraints 0 ≤ xi ≤ 1 for i = 1,2,3,4,7. Each
of u1, . . . ,u4 has non-zero entries of differing signs in these coordinates, so no move using the basis
M can have length greater than one. Observe that −u2 − u1 + u4 = (0,0,0,0,−1,−1,0,1)T, and that
the moves in that implied sequence can be applied to any x ≥ (1,0,0,0,1,1,0,0)T without leaving the
corresponding fibre. The shortest walk from x = (1,0,0,0,M,M,0,0)T to x ′ = (1,0,0,0,0,0,0,M)T uses
that sequence of moves M times, and so is of length 3M . It follows that the spectral gap for the sampler
H(M) can be arbitrarily small for sufficiently large M , and hence the mixing time can be arbitrarily
large.
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Evidently the difficulties experienced in this example stem from the zig-zagging nature of the path.
Such problems can be avoided if we can find a Markov sub-basis with a more advantageous set of
sampling directions, such that there is no need for repeated use of any basic move on a path between
any pair of points on the fibre. Stanley and Windisch (2018) referred to such a path as augmenting. They
used the same term to describe a set of moves sufficient to provide an augmenting walk between any
two points on the fibre. We formalize the definition as follows so as to respect the standard distinction
between Markov bases and sub-bases.

Definition 3.1 (Augmenting Markov sub-basis). A Markov sub-basis MFA,y
= {u1, . . . ,uN } for a

fibre FA,y is augmenting if for any x, x ′ ∈ FA,y , there exist integers b1, . . . ,bK and distinct indices
i1, . . . ,iK ∈ {1, . . . ,N} such that x ′ = x +

∑K
j=1 bjui j and x +

∑L
j=1 bjui j ∈ FA,y for all 1 ≤ L ≤ K ≤ N .

The path defined by the sequence of coefficient-index pairs ((bj,ij ))j=1,...,K is an augmenting path.

In theory, augmenting Markov sub-bases are readily available. For instance, the set of all pairwise
differences M = {x − x ′ : x, x ′ ∈ FA,y} is an augmenting Markov sub-basis for the fibre FA,y . A less
trivial example is provided by the Graver basis for A, which generates an augmenting Markov sub-basis
for the fibre FA,y for any observed counts y ≥ 0 (De Loera, Hemmecke and Lee, 2015). However, we
will want to employ small augmenting Markov sub-bases; if possible, a c-minimal augmenting Markov
sub-basis (i.e., the smallest possible augmenting Markov sub-basis for the fibre at hand). From a the-
oretical perspective this is advantageous since we can use the cardinality of an augmenting Markov
sub-basis as a bound on the maximum canonical path length, 	. In addition, there is no point in includ-
ing moves in M that are impossible for the fibre at hand. For example, if some entries of y are zero
then this will constrain various coordinates of x to be zero, and hence render infeasible vectors in the
Graver basis which are non-zero in those coordinates.

The work of Stanley and Windisch (2018) illustrates the advantage in using a small augmenting
Markov sub-basis. For uniform sampling on FA,y , they showed that if we can find an augmenting
Markov sub-basis with no more than dim(ker AZ) elements, then it is possible to uniformly bound the
second largest eigenvalue of H(M) away from one when sampling from the infinite sequence of in-
creasing fibres {FA,y : y = iy0, y0 ∈ Z

n
0 ,i ∈ N} (Stanley and Windisch, 2018, Corollary 5.11). A hit-and-

run sampler using such a basis therefore mixes rapidly for uniform sampling. Indeed, the underlying
sequence of transition graphs is an expander.

While results for uniform sampling on FA,y have their value, we will almost always be focussed on
non-uniform distributions when working with linear inverse models in practice. We will therefore be
interested in the mixing properties of H(M) over classes of probability model applied to fibres of fixed
sizes. To that end, we characterize the notion of rapid mixing for families of distributions on a fixed
fibre through the following definition.

Definition 3.2 (Uniformly rapid mixing for a family of stationary distributions). Let DΘ = { f (x |

θ) : θ ∈ Θ} be a family of stationary distributions, each supported on some given and fixed set F . A
sampler mixes uniformly rapidly for DΘ if there exists ε > 0 such that λ(θ) < 1− ε for all θ ∈ Θ, where
λ(θ) denotes the second largest eigenvalue modulus when the sampler is applied to f (x | θ).

The hit-and-run sampler with a c-minimal augmenting Markov sub-basis mixes well for uniform
sampling because the set of available sampling directions is propitious for the fibre at hand, and we
can take long steps. For non-uniform target distributions, we may encounter circumstances in which
the probability of taking long steps is arbitrarily small for members of the family DΘ. The maximum
loading ρ may then be unbounded in this family, and so mixing may not be uniformly rapid.
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Example 6. Two-way contingency tables arise in network tomography when data are available on
counts of traffic exiting (row totals) and entering (column totals) each zone of the network. In such cir-
cumstances a Poisson model is typically applied, with any pattern of mean values across the individual
cells of the table.

Consider the 2 × 3 table

y3 y4 y5

y1 x1 x2 x3
y2 x4 x5 x6

.

The configuration matrix matrix is

A=

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
where the redundant fifth row (corresponding to y5) has been omitted so that A is of full rank. Suppose
that y = (1,2,1,1)T, when the y-fibre is

FA,y = {x1 = (0,0,1,1,1,0)T, x2 = (0,1,0,1,0,1)T, x3 = (1,0,0,0,1,1)T}.

It is straightforward to see that

M = {u1 = (−1,0,1,1,0,−1)T,u2 = (−1,1,0,1,−1,0)T}

is an augmenting Markov sub-basis for this fibre. For uniform sampling the transition matrix for H(M)

is

Q =
1
4

⎡⎢⎢⎢⎢⎣
3 0 1
0 3 1
1 1 2

⎤⎥⎥⎥⎥⎦
with second largest eigenvalue modulus λ = 3/4.

Now consider Gibbs sampling using a hit-and-run sampler when x1, . . . , x6 are independent Poisson
random variables with E[x] = (δ,1,1,1,1,1)T. The transition matrix is

Q =
1

2 + δ

⎡⎢⎢⎢⎢⎣
2 + δ 0 δ

0 2 + δ δ
1 1 2δ

⎤⎥⎥⎥⎥⎦
which has second largest eigenvalue modulus λ = (2+ δ)/(2+ 2δ). This is not bounded uniformly away
from one on δ > 0, and so the sampler does not mix uniformly rapidly when DΘ = {p(x | θ) : θ > 0},
where p(x | θ) denotes a product of independent Poisson distributions with mean vector θ.

4. Some simple augmenting Markov sub-bases

In this section we describe a simple class of c-minimal augmenting Markov sub-bases that can be
employed on any fibre when the configuration matrix A has certain helpful properties. Our first re-
quirement is that we can form a lattice basis containing only integer-valued vectors using the Hermite
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normal form of A, (cf. Airoldi and Haas, 2011). To that end, let A = [A1 | A2] be a partition of A such
that A1 is invertible, and define

U =
(
−A−1

1 A2
Ir−n

)
. (8)

Note that AU = 0, so the columns of U form a basis for ker(A). It is particularly convenient when
the choice of partition of A leads to a matrix U with integer-valued entries, motivating the following
definition.

Definition 4.1 (Partition Lattice Basis (PLB)). Let A = [A1 | A2] be a partition with A1 invertible.
Let MU be the set of columns of U defined by (8). Then we call MU a partition lattice basis if all
entries of U are integers.

We can find a PLB for a given configuration matrix if there is some choice of partition for which U
is integer-valued. A sufficient condition for this is that A has at least one unimodular maximal square
submatrix (i.e. submatrix of size n × n). This property is very common in practical linear inverse
problems in which the entries of A are binary. We can then reorder the columns of the configuration
matrix as necessary to create the partition A = [A1 | A2] in which A1 is unimodular, so that U is an
integer matrix and hence MU is a PLB. Nevertheless, that condition is not necessary. As a trivial
example, if A = [A1 | A1] for any invertible matrix A1 then U = [−I | I]T and so MU is a PLB.

Example 7. Consider the one-way circuit network depicted in Figure 2, in which travel is possible on
acyclic paths between any pair of nodes. The link-path incidence matrix (i.e. the configuration matrix
for network tomography) is

A=
⎡⎢⎢⎢⎢⎣
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎤⎥⎥⎥⎥⎦ .
We apply equation (8) to A; to a version of A with columns reordered so that the partition A1 com-

prises columns 1, 2, 4 of the original matrix; and to a version of A with columns reordered so that the
partition A1 comprises columns 4, 5, 6 of the original matrix. The corresponding matrices computed

Figure 2. A one-way circuit network.
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from (8), and with rows reordered to match the original column ordering of A, are given below:

U1 =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1
−1 1 −1

1 −1 −1
2 0 0
0 2 0
0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
−1 0 −1

1 0 0
2 1 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and U3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
−1 0 −1

1 0 0
0 −1 −1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With the original partition det(A1) = 2, and the entries of U1 are not all integer. The columns of U1
do not form a PLB in this case. For both the second and third partitions A1 is unimodular, and so
the columns of both U2 and U3 form PLBs. The latter contains only entries in {0,±1} which is very
common for PLBs derived from configuration matrix partitions encountered in practice.

Geometrically, the form of a y-fibre is a Z-polytope (i.e. the points on the integer lattice within a
polytope). If the entries of x are reordered to match the column reordering implied by the partition
A = [A1 | A2] used to form U, then the fibre may be represented in terms of the values taken by the final
r − n coordinates of x. The corresponding PLB corresponds to unit vector moves with respect to those
coordinates.

In many applications A will have multiple partitions for which U is an integer matrix, and hence
there will be many different PLBs available. For example, Hazelton and Bilton (2017) examined the
configuration matrices arising in a wide range of realistic network tomography examples. In each case
they found that for those partitions where A1 was invertible, it was also unimodular more than 85% of
the time. The abundance of PLBs is helpful because it provides wide scope to find some with beneficial
characteristics.

Consider a random walk conducted by a hit-and-run sampler employing a PLB. If two points are to
be connected by such a walk on the fibre, then we must be able to find a sequence of moves such that
at each step of the walk the state vector x is non-negative in every coordinate. In general there is no
guarantee that we will be able to do so. Moreover, even if we can find such a walk, its path need not be
augmenting.

A straightforward way of forming an augmenting path would be to order application of moves from
MU so that all positive changes in each coordinate of x precede negative changes. We shall refer to such
an augmenting path as ‘up-and-down’. Whether or not an up-and-down augmenting path is available
depends solely on the signs of the entries of basis vectors, and not their magnitudes. (See the proof of
Theorem A.4 for details.) It is therefore convenient to work with the matrix of signs, sgn(U), the i, jth
entry of which is defined to be ui, j/|ui, j | when ui, j � 0 and 0 otherwise. In practice it is rather common
to find that sgn(U) =U.

As we show in Theorem 4.4, the existence of certain types of Eulerian submatrices in sgn(U) is
critical in determining whether a given lattice basis will be capable of generating augmenting paths
of this sort for H(MU ). Recall that a matrix is Eulerian if all its column and row sums are even. We
define some more restrictive types of Eulerian matrix as follows.

Definition 4.2 (c0-Eulerian matrix). A non-null square matrix is c0-Eulerian if it is Eulerian and all
its column sums are zero.

Definition 4.3 (cr0-Eulerian matrix). A matrix is cr0-Eulerian if it is c0-Eulerian and all its row
sums are zero.
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Some examples of c0-Eulerian matrices are

E1 =

[
1 1

−1 −1

]
, E2 =

[
1 −1

−1 1

]
, and E3 =

⎡⎢⎢⎢⎢⎣
0 1 1
1 −1 0

−1 0 −1

⎤⎥⎥⎥⎥⎦ .
Of these, E2 is also cr0-Eulerian. Moreover, both E1 and E3 become cr0-Eulerian if the signs of their
final columns are changed. Viewing either matrix as a submatrix of sgn(U), such a sign change corre-
sponds to an irrelevant switching of sign in a member of the partition lattice basis. The cr0-Eulerian
property is important, because it is impossible to reorder the columns of this type of matrix so that all
the ones precede the minus ones in each row (a result proved in Lemma A.1 in the Appendix). The
presence of a cr0-Eulerian submatrix of sgn(U) means that we cannot always find an up-and-down
augmenting path, and can result in the need for zig-zagging behaviour during a walk using the basis
MU .

Example 8. The Markov sub-basis M =MU presented in Example 5 is the partition lattice basis for
the configuration matrix in Example 2 without any column reordering. In this case,

sgn(U) =U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 1
1 −1 0 0

−1 0 0 −1
0 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which has E3 as a submatrix formed using the first three rows of columns 1, 2 and 4. Recall that the
sequence −u2 − u1 + u4 had to be used repeatedly in the walk described in Example 5. Indeed, the
need to zig-zag with this basis is so bad that H(M) is not connected on thin fibres. For instance,
x = (0,0,0,0,1,1,0,0)T and x ′ = (0,0,0,0,0,0,0,1)T are not connected by any walk on the fibre with
y = (0,1,1,0)T, and so M is not a full Markov basis.

It transpires that absence of c0-Eulerian submatrices in sgn(U) is sufficient to ensure that its columns
form a Markov basis that is also a c-minimal augmenting Markov sub-basis when the fibre FA,y is of
full dimension, r − n.

Theorem 4.4. Let A be a configuration matrix for which MU is a partition lattice basis. If the matrix
of signs sgn(U) contains no c0-Eulerian submatrix, then

(i) MU is a Markov basis for A.
(ii) MU is a c-minimal augmenting Markov sub-basis for any fibre FA,y of dimension r − n.

The general idea of the proof is as follows. Consider walking between x, x ′ ∈ FA,y . Since the
columns of U form a lattice basis for kerZ(A) we can write

x ′ − x =
r−n∑
i=1

εiaiui,
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where εi ∈ {±1} gives the sign and ai ∈ Z≥0 gives the number of copies of ui required. Let Uε be a
version of U in which the ith column is multiplied by εi . Using each of the moves {aiuεi : i = 1, . . . ,n}
once will take us from x to x ′, but we must apply these moves in an appropriate order. The condition
that sgn(U) contains no c0-Eulerian submatrix is sufficient to ensure that we can reorder the columns of
Uε so that no strictly negative entry precedes a strictly positive one in any row. Applying the moves in
that implied order ensures that all positive changes in a coordinate are applied before negative ones. It
follows that at every intermediate vector in the walk all coordinates are guaranteed to be non-negative,
and hence the walk remains on the fibre. This demonstrates that MU is a Markov basis. What is more,
the walk just described utilitizes an augmenting path with no more than r − n steps. Full proofs (of this
result and subsequent ones) are collected together in the Appendix.

Example 9. We return to the network tomography problem presented in Example 2, and select columns
1,5,6,7 to form partition A1. The corresponding PLB MU is then formed from the columns of

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 1
1 0 0 0
0 1 0 0
0 0 0 1
0 −1 −1 0

−1 −1 −1 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where the row ordering matches the column ordering for the original A matrix. The matrix sgn(U) =

U contains no c0-Eulerian submatrices, and so MU is a Markov basis for A. It is also a c-minimal
augmenting Markov sub-basis for any fibre FA,y with y ≥ (1,1,1,1)T.

Theorem 4.4 provides a checkable condition for a PLB MU to be a c-minimal augmenting Markov
sub-basis. Such checking is computationally feasible for the matrices that typically arise in practi-
cal problems of moderate size, in part because of the structure and sparseness of U. For example,
c0-Eulerian submatrices can only exist in the n rows of U corresponding to the columns of A1. Nev-
ertheless, checking the condition in very large problems will typically be impractical. It is therefore
interesting and important to be able to identify types of linear inverse model for which the configura-
tion matrix contains no c0-Eulerian submatrices. The following corollary is an example of the kind of
result that can be helpful in so doing.

Corollary 4.5. Suppose that a configuration matrix can be partitioned as A = [A1 | A2] such that
each column of A2 can be written as a linear combination of columns of A1 with non-negative integer
coefficients. Let MU be the set of columns of U computed from (8). Then

(i) MU is a Markov basis for A.
(ii) MU is a c-minimal augmenting Markov sub-basis for any fibre FA,y of dimension r − n.

The sum condition for Corollary 4.5 is trivially satisfied if A1 is the identity matrix. This will hold
in almost all models for mark-recapture data when A1 is formed from the columns corresponding to no
animal identification errors. The matrix A presented in Example 1 is a case in point.

Similarly, consider a network in which every node is both an origin and destination of travel, and
traffic counts are observed on all links. Then the configuration matrix will contain the identity matrix
as a maximal submatrix, corresponding to trips between neighbouring nodes. We may then order the
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columns of A so that A1 is the identity and Corollary 4.5 holds. This result will hold in more general
network tomography problems in which every path corresponding to the columns of the submatrix A2
of the link-path incidence matrix can be formed by joining end on end the paths corresponding to the
columns in A1. Examples of this type occur frequently when studying highway systems, as illustrated
by the data analysis presented in Section 6.

Theorem 4.4 works because the absence of a c0-Eulerian submatrix in sgn(U) discounts the possi-
bility that a cr0-Eulerian submatrix will arise after some set of sign changes to the columns of sgn(U),
so we can always find an up-and-down augmenting path between any pair of points on a fibre. However,
if we do find a c0-Eulerian submatrix in sgn(U), there is no certainty that it can be turned into a cr0-
Eulerian submatrix through application of sign changes to some of the columns of sgn(U). In addition,
if sgn(U) � U then it is possible that augmenting paths without the up-and-down property may exist
even if sgn(U) contains a cr0-Eulerian submatrix. As a consequence, only a partial reverse implication
to Theorem 4.4 is available.

Theorem 4.6. Let A= [A1 | A2] be a configuration matrix partitioned such that A1 is invertible and U
(from 8) has entries in {0,±1}. Suppose that there is some set of sign changes to the columns of U such
that the resulting matrix contains a cr0-Eulerian submatrix with no column of zeroes. Then there exists
at least one fibre FA,y for which the columns of U do not form an augmenting Markov sub-basis.

Application of Theorem 4.6 in practice requires searching for a cr0-Eulerian submatrix in a com-
prehensive set of matrices generated by column sign changes to U. Checking for the presence of just a
c0-Eulerian submatrix in the original U is sufficient if A is totally unimodular.

Corollary 4.7. Let A = [A1 | A2] be a configuration matrix partitioned such that A1 is invertible, and
compute U from (8). Suppose also that A is totally unimodular and U contains a c0-Eulerian submatrix
with no column of zeroes. Then there exists at least one fibre FA,y for which the columns of U do not
form an augmenting Markov sub-basis.

Example 10. Recall that the PLB MU in Example 8 contains the c0-Eulerian submatrix E3. Changing
the sign of column 4 of sgn(U) =U generates the cr0-Eulerian submatrix

⎡⎢⎢⎢⎢⎣
0 1 −1
1 −1 0

−1 0 1

⎤⎥⎥⎥⎥⎦
when Theorem 4.6 applies to prove that MU is not an augmenting Markov sub-basis for some fibre.
We saw an example of such a fibre in Example 5. Alternatively, note that the underlying configuration
matrix A (from Example 2) is totally unimodular, so that we may cite Corollary 4.7 to draw the same
conclusion.

Corollary 4.7 is of some practical significance for network tomography. In particular, Hazelton and
Bilton (2017) showed that the link-path incidence matrix A is totally unimodular for linear networks
(like sections of highway) and star networks (where we observe entry/exit counts for every origin
and destination of travel). This result in tandem with Theorem 4.4 provide a checkable if and only if
condition for a PLB to guarantee that augmenting paths are available to the sampler.
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5. Practical choice of basis

In practice we will be faced with a particular fibre FA,y from which we wish to sample. We would
like to choose a set of basic moves M so that the sampler H(M) mixes rapidly. Let us suppose that
there are multiple PLBs for which the c0-Eulerian condition of Theorem 4.4 holds. All of these will
be c-minimal augmenting Markov sub-bases for the fibre. It follows that H(MU ) will mix rapidly for
uniform sampling of FA,y . However, f (x | y) will rarely be uniform in the kinds of applications of linear
inverse problems that we have described. Far more commonly, x1, . . . , xn will have independent Poisson
distributions, when this posterior distribution will be the product of Poisson distributions truncated to
the fibre. We denote this distribution by pF(x) for fibre F . It is of considerable interest to develop
methods for deciding which of the available bases will lead to uniformly rapid mixing for this model.

Recall from Definition 3.2 that a sampler mixes uniformly rapidly for a class of distributions if its
second largest eigenvalue modulus is bounded away from one uniformly over that class. Let θ = E[x]
for the Poisson model. If θ is bounded away from zero in some class of models then all the non-zero
transition probabilities for the sampler will be uniformly bounded away from zero. Both the maximum
probability loading ρ and path length 	 will be bounded above, and so uniformly rapid mixing is
guaranteed.

As we saw in Example 6, problems arise when some of the Poisson means can be very small. In such
circumstances some of the non-zero transition probabilities will be arbitrarily close to zero. This is not
a cause for concern if the corresponding transitions are only required to reach elements of the fibre with
correspondingly small posterior probability, nor is it a concern if there is an alternative transitional path
with much higher probability. However, mixing will be adversely affected should some move that is an
essential step on multiple transitional pathways have low probability. In the context of PLBs, this will
occur if steps in at least one direction along the ray RF,u(x) have low probability for some u ∈ MU .
In more detail, suppose that θi is small for 1 ≤ i ≤ n, and that ui < 0 (say). Then xi will likely be zero,
when it follows from equations (3) and (4) that a move with positive step size b is not available.

The implications for mixing of H(MU ) when sampling from a truncated Poisson model are formal-
ized in the following theorem.

Theorem 5.1. Consider a sampler H(MU ) and a finite set F connected by a PLB MU .

(i) Given η > 0, let Θ = {θ : θ ≥ η}. Then H(MU ) mixes uniformly rapidly for DΘ = {pF(x |

θ) : θ ∈ Θ}.
(ii) Given η > 0, fix θ0 ≥ η1 and 1 ≤ j ≤ n. DefineΘ = {θm : m = 1,2,3 . . .} such that θmj = θ

0
j /m and

θmi = θ
0
i otherwise. Then H(MU ) may not mix uniformly rapidly for DΘ = {pF(x | θ) : θ ∈ Θ}.

(iii) Given η > 0, fix θ0 ≥ η1. Define Θ = {θm : m = 1,2,3 . . .} such that θmi = θ
0
i /m for i = 1, . . . ,n

and θmi = θ
0
i for i = n + 1, . . . ,r. Assume that there exists x ∈ F such that x1 = · · · = xn = 0. Then

H(MU ) does not mix uniformly rapidly for DΘ = {pF(x | θ) : θ ∈ Θ}.

Example 11. Continuing on with the network tomography problem introduced in Example 2, consider
employing a Gibbs hit-and-run sampler H(MU ) implemented using the augmenting Markov sub-basis
from Example 9. Suppose the observed counts are y = (4,4,2,2)T , producing a fibre FA,y of size 55. We
examine uniform sampling from FA,y , and sampling when the underlying model for x is independent
Poisson with E[x] = θ = (1,1,1,1, θ5,1,1,1)T. The second and third columns of U in (9) both have a −1
entry in position 5, and so the size of θ5 controls the ease with which we may sample in directions −u2
and −u3.

We compute the second largest eigenvalue modulus λ from the transition matrices of the sampler for
a range of values of θ5 between 0 and 1. The corresponding values of the spectral gap 1− λ are plotted
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Figure 3. Plot of the spectral gap as a function of θ5 when sampling from a product of independent Poisson
distributions with means θ = (1,1,1,1, θ5,1,1,1) truncated to the fibre FA,y with y = (4,4,2,2)T . For comparison,
the spectral gap for uniform sampling is 1 − λ = 0.120.

in Figure 3. Despite the fact that we are using an augmenting Markov basis, mixing times become very
large when θ5 is small.

Consider these results in the context of the bound presented in (5). Since we are using an augmenting
Markov basis, the maximum canonical path length 	 is no greater than r − n = 4. The differences in
mixing times are driven instead by the maximum edge loading, ρ. Using augmenting paths, for uniform
sampling ρ = 4.093 with the move u1 being the most overloaded transition. It is the same move that
is most overloaded for Poisson sampling with θ5 = 1, when ρ = 202.3. For θ5 = 0.1 and θ5 = 0.01 we
obtain respectively ρ = 14536 and ρ = 1423382. In both cases the most overloaded transition is −u2.

For sampling for Poisson models, Theorem 5.1 indicates that when faced with a choice of partition
lattice bases satisfying the c0-Eulerian condition of Theorem 4.4, we should if possible select one for
which the columns of the configuration matrix forming A1 correspond to components of x that do
not have small means. Indeed, intuitively we may want to choose a partition for which we select the
components with largest means to form A1, subject to the requirement the columns of the resulting
matrix U form an augmenting Markov basis.

For sampling in mark-recapture models, these comments suggest that we partition A so that the
columns forming A1 correspond to histories without misidentification, since we expect these to be
the most probable members of the fibre. What is more, this will lead to a partition in which A1 is the
identity matrix, as in Example 1. The corresponding PLB will then be a c-minimal augmenting Markov
sub-basis by Corollary 4.5, and will mix uniformly rapidly when employing natural Poisson models.

Such a strategy will not necessarily work well for network tomography problems. Consider for ex-
ample a network in which every node is both an origin and destination of travel, and we have counts on
every link of the network. In such a circumstance we can again partition the configuration matrix such
that A1 is the identity. However, the corresponding entries of x will be flows between neighbouring
nodes. In many applications in road transport engineering these trips will be unusually short, and so
will have small mean traffic flows. An alternative partition of A may lead to much better mixing for the
sampler.
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6. Highway data example

To illustrate we consider volume network tomography for a section of New Zealand’s State High-
way 16 running through the city of Auckland in New Zealand. An abstracted form of the network
is displayed in Figure 4. Drivers may join the highway at any of the first 4 nodes (representing
locations of on-ramps); and may leave the network at any node from 3 to 8 (representing loca-
tions of off-ramps). Traffic counts on the 7 network links are available over a 15 minute period:
y = (2991,3352,3977,4576,3849,2458,978)T. The traffic counts for the 21 feasible origin-destination
pairs are collected in the vector x (ordered lexicographically). We adopt an independent Poisson model
for the components of x with mean E[x] = θ. In this example we will sample from f (x | y,θ) where
θ is based on an existing estimate. Its entries vary in size from 33.0 to 825.0, with the exception of
θ7 = 0.5. This last value corresponds to origin-destination pair (2,3), which in reality is an implausibly
short journey for which to join the highway.

The link path incidence matrix is displayed below:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Columns 1, 7, 13, 18, 19, 20, and 21 correspond to short paths through the network. If the matrix is
partitioned so that those columns form A1, then it is straightforward to check any other column of the
matrix can be expressed as a linear combination of the columns of A1 with non-negative coefficients.
Corollary 4.5 therefore applies, so that the corresponding PLB is a c-minimal augmenting Markov sub-
basis for this problem. This basis is also the Markov basis found by 4ti2. Nevertheless, A has 18 further
partitions generating PLBs that can also be shown to be c-minimal augmenting Markov sub-bases
courtesy of Theorem 4.4.

Recall that θ7 is small. Following Theorem 5.1 and ensuing discussion, we expect a hit-and-run
sampler to mix better if we employ a PLB for which the underlying A1 does not contain the 7th column
of A. This is the case for two of the 18 PLBs just described. In particular, we can form a PLB using a
partition in which A1 comprises columns 1, 8, 13, 19, 20, and 21.

We ran hit-and-run samplers using each of these bases, which we label respectively PLB1 and PLB2.
These methods were implemented in R (R Core Team, 2022); the computing code is supplied as sup-
plementary material (Hazelton et al., 2024). In each case we allowed 106 iterations. Effective sample
sizes for each component of x are displayed using a barplot (with logarithmic y-scale) in Figure 5. For
the first seven and last eight components of x there is relatively little difference between the perfor-
mance using the two bases. However, for components 8–12 of x the effective sample sizes using PLB2

Figure 4. Abstraction of a section of highway network in Auckland, New Zealand. White nodes are origins of
traffic flow (on-ramps); light grey nodes are both origins and destinations of traffic (both on- and off- ramps); and
dark grey nodes are solely destinations of travel (off-ramps). Link lengths are not to scale: in reality, the separation
between nodes 2 and 3 is much smaller than other inter-node distances.
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Figure 5. Results of volume tomography for the Auckland highway network. The barplot displays the effective
sample size for each component of x (origin-destination traffic volumes) for hit-and-run samplers using two PLBs.

is orders of magnitude better than those obtained using PLB1. Updates to these components are slowed
by a transition bottleneck relating to basis vectors with a ±1 entry in position 7.

7. Conclusions

Markov chain Monte Carlo methods are only practical if the sampler employed mixes sufficiently
rapidly. Identification of poor mixing behaviour is usually relatively straightforward using standard
diagnostic tools (e.g. Brooks and Roberts, 1998). However, judging the number of iterations required
before commencement, or modifying an existing sampler to improve the convergence rate, are more
challenging issues. For fibre sampling in linear inverse problems for count data there is little existing
theory in the literature to provide guidance on these matters.

Full Markov bases for fibre sampling can be very large. For example, the minimal Markov basis
found by 4ti2 for network tomography for the Abilene internet network (Fang, Vardi and Zhang,
2007) contains 10,705 vectors, even though the system contains only 12 nodes and the configuration
matrix is of dimension 42 × 144. As a second example, the minimal Markov basis for resampling
a 4 × 4 × 4 contingency table conditional on 2-marginals (for which the configuration matrix is of
dimension 37× 64) contains 148,968 vectors (Hemmecke and Malkin, 2005). In practical MCMC runs
it is chastening to recognize that each sampling direction in such large bases may be used only a few
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times, or perhaps not at all. There are evidently challenges in developing theory that can provide useful
practical guidance in such circumstances.

Nevertheless, there are a variety of important types of linear inverse problem for which small Markov
sub-bases, matching the dimension of the fibre, are available. These include models for accounting for
identification errors in mark-recapture data, and network tomography for highway and transit systems.
If the sampling directions available in such a small basis are sufficient to ensure the existence of aug-
menting sample paths between all pairs of points on a fibre, then rapid mixing is guaranteed under
uniform sampling. In this article we have identified and studied a class of lattice bases with this prop-
erty when the matrix U computed from (8) is integral and contains no c0-Eulerian submatrices. This
condition can be checked fairly quickly for moderately-sized problems in practice.

We have also examined mixing for Poisson models. Our Theorem 5.1 provides clear practical guid-
ance into choice of basis. In particular, when partitioning A so as to form our basis we want to ensure
that the columns forming A1 correspond to coordinates of x that are likely to take relatively large val-
ues. This ties in naturally with an analysis of the limits on step lengths provided by equations (3) and
(4). Specifically step sizes are constrained by the magnitude of those aforementioned coordinates. Ge-
ometrically, this can be thought of in terms of rotating the polytope encapsulating the fibre so that its
longer edges are aligned to the coordinate directions corresponding to the columns of A2.

Appendix: Proofs of theorems

A.1. Proof of Theorem 4.4

Lemma A.1. A matrix W ∈ {0,±1}n×r that contains a cr0-Eulerian submatrix cannot have its columns
reordered so that the 1s all precede the −1s in every row.

Proof. The proof is by contradiction. Let W be a matrix containing a cr0-Eulerian submatrix, V . Sup-
pose that we can reorder the columns of W such that the 1s all precede the −1s in every row.

Under this reordering, let v · j be the first column of V that contains a non-zero entry. The entries of
v · j sum to zero, so it must contain at least one 1 and one −1.

Let i be an index such that vi, j = −1. The entries of the ith row also sum to zero, so the ith row must
also contain a 1.

But v · j is the first column of V that contains non-zero entries, and so the 1 in the ith row must be in
a column that succeeds the jth column.

Therefore, the ith row of V has a −1 that precedes a 1. Since V is a submatrix of W , it also has a row
with a −1 that precedes a 1. This contradicts our hypothesis, and so W cannot be ordered so the the 1s
precede the −1s in every row.

We now prove the converse.

Lemma A.2. A matrix W ∈ {0,±1}n×r that cannot have its columns reordered so that the 1s all precede
the −1s in every row must contain a cr0-Eulerian submatrix.

Proof. Let < over {0,±1}r define a binary relation such that u < v if uk = 1 and vk = −1 for some
k ∈ {1, . . . ,n}. Let ≺ be the transitive closure of <. It is therefore a binary relation over {0,±1}r where
u ≺ v if u < v or if u < · · · < v.

If ≺ is a strict partial order over W, the set of columns of W , then any reordering of W that conforms
to ≺ satisfies the condition that no −1 precedes a 1 in any row. Conversely, if ≺ is not a strict partial
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order over W, then no such reordering of columns is possible. Recall that a strict partial order ≺ is a
binary relation over a set S with the following properties:

1. ∀s ∈ S : ¬(s ≺ s) (irreflexivity)
2. ∀r, s, t ∈ S : (r ≺ s) ∧ (s ≺ t) ⇒ (r ≺ t) (transitivity)

Suppose that ≺ does not define a strict partial ordering over W. Then the irreflexivity property must
have been violated: transitivity cannot have been violated because it is part of how we defined ≺. If
irreflexivity has been violated and some w · j1 ≺ w · j1 , then either w · j1 < w · j1 , or w · j1 < · · · < w · jm <
w · j1 for some m ∈ Z+ and some indices j1, . . . , jm. It cannot be w · j1 < w · j1 , since that would imply
that there is an index k such that wk , j1 = 1 and wk , j1 = −1, which is a contradiction. Therefore the
second condition must be true, and we choose {w · j1, . . . ,w · jm } such that m is the minimum over all
such sequences. In what follows we consider the indices on the jk modulo m, so that jm+1 = j1.

We claim that each of the jk are distinct. If the jk were not distinct and jp = jq for some p < q, then
we would have w · j1 < · · · < w · jp < w · jq+1 < · · · < w · jm < w · j1 and m would not be minimal.

From the definition of <, for every k ∈ {1, . . . ,m} there is ik such that wik , jk = 1 and wik , jk+1 = −1.
We claim that each of the ik are distinct. If the ik were not distinct and ip = iq for some p < q, then
we would have wip , jp−1 = 1 and wip , jp = −1, and wiq , jq−1 = 1, and wiq , jq = −1. Then we would have
w · j1 < · · · < w · jp−1 < w · jq < · · · < w · jm < w · j1 and m would not be minimal.

We construct a submatrix V of W by taking the ik th rows and jk th columns of W for k ∈ {1, . . . ,m}.
We claim that the entries of this matrix not already defined by vik , jk = 1 and vik , jk+1 = −1 are all 0. To
the contrary, if one of these entries viq , jq = 1 where p � q and p + 1 � q, then w · jq < w · jp+1 , which
if q < p produces w · j1 < · · · < w · jq < w · jp+1 < · · · < w ·im < w ·i1 ; or if p < q produces w · jq < · · · <
w · jp+1 < w · jq and m was not minimal. On the other hand, if one of these entries viq , jq = −1 where p � q
and p+1 � q, then w · jp < w · jq , which if p < q produces w · j1 < · · · < w · jp < w · jq < · · · < w · jm < w · j1 ,
and m was not minimal; or if q < p produces w · jq < · · · < w · jp < w · jq , and again m was not minimal.

Then the matrix V contains rows and columns that each contain one 1 and one −1, with all other
entries equal to 0, and so the sum of each row or column of V is 0. This means V is a cr0-Eulerian
matrix. This matrix V is a submatrix of W , so W contains a cr0-Eulerian submatrix.

Lemmata A.1 and A.2 are combined into the following theorem.

Theorem A.3. A matrix with {0,±1} entries cannot have its columns reordered so that the 1s all
precede the −1s in every row if and only if it contains a cr0-Eulerian submatrix.

Having established this result, we now establish which column PLB-defining matrices it is applicable
to.

Theorem A.4. Let W ∈ {0,±1}n×r be a matrix that contains no c0-Eulerian submatrix. For all σ =
(σ1, . . . ,σr ) ∈ {−1,1}r , define Wσ to be the matrix obtained by multiplying the ith column of W by σi
for i = 1, . . . ,r. Then Wσ contains no cr0-Eulerian submatrix.

Proof. Suppose that the theorem is false, and we have a matrix Wσ that contains a cr0-Eulerian sub-
matrix Vσ . All entries of Vσ are in {0,±1}, so in each row the count of 1s must equal the count of −1s.
Therefore, each row of Vσ has an even number of non-zero entries.

Since Wσ was constructed by multiplying columns of W by ±1, the original W can be found by
performing the same multiplications on Wσ , and W contains a submatrix V corresponding to Vσ .

The sum of each column of Vσ is 0. Multiplying any particular column of Vσ by ±1 does not change
this, so each column of V sums to 0.
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Each row of Vσ contains an even number of non-zero entries, so each row of V contains an even
number of non-zero entries. The count of 1s and the count of −1s in any row of WM must be either
both even, or both odd. Therefore the sum of the entries of each row of V must be a multiple of 2.

The matrix W must therefore contain a non-zero submatrix V whose columns sum to 0 and whose
rows sum to a multiple of 2. This submatrix is therefore c0-Eulerian, and we have a contradiction.

We are now in a position to prove Theorem 4.4. To that end, let x, x ′ ∈ FA,y . Since the columns of
U form a lattice basis for kerZ(A) we can write

x ′ − x =
r−n∑
i=1

εiaiui,

where εi ∈ {±1} gives the sign and ai ∈ Z≥0 gives the number of copies of ui required.
We can construct a new matrix Uε by multiplying the ith column of U by the corresponding sign εi .

Then we can write

x ′ − x =
r−n∑
i=1

aiuεi (11)

without a sign. From Theorem A.4, this matrix sgn(Uε ) contains no cr0-Eulerian submatrix. By The-
orem A.3, we can reorder the columns of sgn(Uε ) such that no −1 precedes a 1 in any row. This same
reordering ensures that no negative entry in Uε precedes a positive entry in any row.

This ordering of the columns of U gives the order in which the moves should be applied when
conducting the walk from x to x ′. The final r − n rows of Uε each contain just a single non-zero entry,
and so the corresponding coordinates of x +

∑s
i=1 aiuεi can never be negative for any 1 ≤ s ≤ r − n.

Moreover, a decrease in any of the first n coordinates comes after all increases in that coordinate, and
so these coordinates cannot become negative since x ′ ∈ FA,y . Since each basis vector appears only
once in (11), that equation describes an augmenting path from x to x ′.

This holds for all pairs x, x ′ ∈ FA,y for all y, therefore the columns of U form a Markov basis for A,
proving (i). Since we can find an augmenting path to connect any pair of points, the columns of U form
an augmenting Markov sub-basis for any fibre. Finally, this Markov sub-basis is evidently c-minimal
for any fibre of dimension r − n, proving (ii).

A.2. Proof of the remaining results

Proof of Corollary 4.5. The columns of A1 span the column space of A. As a consequence, A1 is
invertible. Now, A1C = A2 where C = A−1

1 A2 is a non-negative integer matrix. Moreover, since A1 and
A2 are binary matrices, C much also be a binary matrix. It follows that the columns of U form a PLB,
and also that top n rows of sgn(U) are 0 or −1. There can be no Eulerian submatrices involving any of
the bottom r − n rows of U (because this is the identity matrix). Moreover, there can be no c0-Eulerian
submatrices of the top n rows on sgn(U), since there can be no cancellations to give zero column sums.
The result therefore follows from Theorem 4.4.

Proof of Theorem 4.6. Let I and J respectively index the rows and columns of U forming the cr0-
Eulerian submatrix. Define w =

∑
j∈J ui . Also, define w+ and w− such that w+i = max{wi,0} and

w−
i = −min{wi,0} for all i = 1, . . . ,r . Then both w+ and w− are on the fibre FA,y where y = Aw+, since

w ∈ kerZ(A). Consider the walk from w− to w+. Because the row sums of the submatrix are zero, w− is
zero in all components indexed by I. However, the zero column sum property means that each vector
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in the set {u j : j ∈ J} has a negative entry in at least one of the rows indexed by I. As a consequence
none of those vectors can form the first step on the walk. Any walk on the fibre FA,y must then involve
a diversion, and any column of u j with j � J must appear with both positive and negative signs so as
to cancel out by the end of the walk. Such a walk is not augmenting, completing the proof.

Proof of Corollary 4.7. If A = [A1 | A2] is totally unimodular then A−1
1 A2 is evidently also totally

unimodular, and therefore U has the same property.
Let U∗ denote the c0-Eulerian submatrix. This is totally unimodular. Following Ghouila-Houri

(1962), each column of U∗ can be assigned a multiplier ε = ±1 such that the sum of the signed columns∑
i(εiu

∗
i ) = v is a vector with all components in {0,±1}. Since U∗ is Eulerian, all entries of v are even.

Therefore v can only be the zero vector. The multipliers {εi} introduced previously give the required
change of column signs to turn U∗ from a c0-Eulerian matrix into a cr0-Eulerian matrix. The result
then follows from Theorem 4.6.

Proof of Theorem 5.1. Throughout this proof we focus on the second largest eigenvalue of the transi-
tion matrix, λ2, courtesy of the standard arguments described in Section 3.

(i) Recall from (6),

λ2(θ) ≤ 1 −
1
ρ	
.

Since F is finite, the maximum canonical path length 	 is bounded above. Also, infe∈E Q(e) is
bounded away from zero for all θ ∈ Θ since pF is bounded away from zero on DΘ. Hence ρ is
bounded above, and so λ2(θ) ≤ 1 − ε for some ε > 0.

(ii) By Theorem 2 of Sinclair (1992) the second largest eigenvalue is bounded below by 1 − 2Φ ≤

λ2(θ), where Φ is the bottleneck ratio (or conductance of the graphical representation) of the
sampler. Consider Example 2 where the configuration matrix is reordered as

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 1 1 1 0 0
0 0 1 0 1 1 0 1
1 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

The corresponding PLB is given by the columns of

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 −1
−1 −1 1 0
−1 −1 0 −1
0 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider x = (0,0,0,0,0,2,0,0)T which lies on the fibre Fy = {x ∈ Zr
≥0 : y = Ax} for y =

(2,2,2,0)T. The sampler is connected over this fibre, since U has no c0-Eulerian sub-matrices
and its columns therefore form a Markov basis. Take θ0 = η1. Then pF(x | θm) is bounded away
from 0 and 1 for all m. Define Z = inf{P(y | θm) : m = 1,2, . . .}, and observe that Z > 0. Any
transition away from x requires an increase in x1, the probability of which is bounded above by
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P(x1 = 1 | θm, y) ≤ P(x1 | θm)/Z ≤ Z−1η/m. It follows that Φ ≤ Z−1η/m whence λ2(θ
m) ≥ 1 − ε

for sufficiently large m for any ε > 0. This provides an instance (with j = 1) where the sampler
does not mix uniformly rapidly on DΘ.

(iii) Take x ∈ F with x1 = · · · = xn = 0. Then pF(x | θm) > 0 for all m. Define Z = inf{P(y |

θm) : m = 1,2, . . .}, and observe that Z > 0. However, any transition away from x must involve
at least one of the first n coordinates of x increasing, the probability of which is bounded above
by Z−1/m. It follows that the bottleneck ratio satisfies Φ ≤ Z−1/m, whence λθm ≥ 1− ε for suffi-
ciently large m for any ε > 0. The sampler therefore does not mix uniformly rapidly on DΘ.
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