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For the multivariate linear regression model with unknown covariance, the corrected Akaike information criterion
is the minimum variance unbiased estimator of the expected Kullback–Leibler discrepancy. In this study, based on
the loss estimation framework, we show its inadmissibility as an estimator of the Kullback–Leibler discrepancy
itself, instead of the expected Kullback–Leibler discrepancy. We provide improved estimators of the Kullback–
Leibler discrepancy that work well in reduced-rank situations and examine their performance numerically.
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1. Introduction

We consider the multivariate linear regression model with p explanatory variables and q response
variables:

yi = B�xi + εi, εi ∼ Nq(0,Σ), (1)

for i = 1, . . . ,n, where n ≥ p, B ∈ Rp×q is an unknown regression coefficient matrix, Σ ∈ Rq×q is an
unknown covariance matrix (positive definite) and ε1, . . . ,εn are independent. In the following, the
probability density function of Y = (y1, y2, . . . , yn)

� ∈ Rn×q is denoted by p(Y | B,Σ) and the expectation
of f (Y ) under p(Y | B,Σ) is written as EB,Σ[ f (Y )].

The maximum likelihood estimate for the model (1) is given by

B̂ = (X�X)−1X�Y, Σ̂ =
1
n
(Y − XB̂)�(Y − XB̂).

The Akaike Information Criterion (AIC; Akaike, 1973) is an approximately unbiased estimator of the
expected Kullback–Leibler discrepancy:

EB,Σ[AIC] = EB,Σ[d((B,Σ),(B̂, Σ̂))] + o(1)

as n →∞, where

d((B,Σ),(B̂, Σ̂)) = −2
∫

p(Ỹ | B,Σ) log p(Ỹ | B̂, Σ̂)dỸ (2)

= nq log(2π) + n log det Σ̂ + ntr(Σ̂−1Σ) + tr(Σ̂−1(B̂ − B)�X�X(B̂ − B))

is called the Kullback–Leibler discrepancy from p(Ỹ | B,Σ) to p(Ỹ | B̂, Σ̂). The AIC is widely used
for evaluation and selection of linear regression models (Burnham and Anderson, 2002, Konishi and
Kitagawa, 2008).
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The bias of the AIC is non-negligible when the sample size n is not sufficiently large. Thus, a
corrected AIC (AICc) has been derived (Bedrick and Tsai, 1994, Hurvich and Tsai, 1989, Sugiura,
1978), which is exactly unbiased:

EB,Σ[AICc] = EB,Σ[d((B,Σ),(B̂, Σ̂))].

Cavanaugh (1997) provided a unified derivation of AIC and AICc and Davies, Neath and Cavanaugh
(2006) showed that AICc is the minimum variance unbiased estimator of the expected Kullback–
Leibler discrepancy.

Both AIC and AICc were developed to unbiasedly estimate the expected Kullback–Leibler discrep-
ancy. This idea dates back to Stein’s unbiased risk estimate (SURE; Stein, 1974), which unbiasedly es-
timates the quadratic risk of estimators of a normal mean (Fourdrinier, Strawderman and Wells, 2018,
Lehmann and Casella, 2006). In this context, Johnstone (1988) considered estimation of the quadratic
loss itself, instead of its average (quadratic risk). Although SURE is still unbiased for this problem,
Johnstone (1988) showed that it can be improved in terms of the mean squared error. In other words,
SURE is inadmissible as an estimator of the quadratic loss. See Section 2 for details. This finding led
to the development of a field called loss estimation (Fourdrinier and Wells, 2012).

In this study, we examine AIC and AICc from the loss estimation viewpoint and investigate their
admissibility as estimators of the Kullback–Leibler discrepancy d((B,Σ),(B̂, Σ̂)), instead of its average
EB,Σ[d((B,Σ),(B̂, Σ̂))] (expected Kullback–Leibler discrepancy). The former estimand is random (de-
pends on Y as well as (B,Σ)) whereas the latter one is non-random (depends only on (B,Σ)). In this
sense, it may be more correct to refer to the current problem as prediction rather than estimation1.
The current setting to estimate (or predict) d((B,Σ),(B̂, Σ̂)) is considered to reflect the practical usage
of AIC (and AICc) as a model evaluation criterion more faithfully as follows. Given data at hand, we
estimate (B,Σ) by (B̂, Σ̂) and construct the plug-in predictive distribution p(Ỹ | B̂, Σ̂) for a future ob-
servation. The disparity between this predictive distribution and the true data-generating distribution
p(Ỹ | B,Σ) is given by the Kullback–Leibler discrepancy d((B,Σ),(B̂, Σ̂)). Whereas the usual argument
on AIC (and AICc) considers estimation of the average of d((B,Σ),(B̂, Σ̂)) over the possible realiza-
tions of Y (expected Kullback–Leibler discrepancy), here we focus on estimation (or prediction) of
d((B,Σ),(B̂, Σ̂)) itself for the specific realization of Y at hand. Thus, the current setting provides direct
(conditional) assessment of the performance of the predictive distribution obtained from the data at
hand. Note that Matsuda and Strawderman (2016) studied the Pitman closeness property of predictive
distributions in a similar spirit. We develop improved estimators of d((B,Σ),(B̂, Σ̂)) and show that they
attain better variable selection result than AIC and AICc in simulation. It demonstrates a practical ad-
vantage of introducing the current setting. See Fourdrinier and Wells (2012) for further discussion on
motivation for considering loss estimation.

This paper is organized as follows. In Section 2, we briefly review the loss estimation framework
and existing results for normal mean vector and matrix. We also derive an improved loss estimator
for a normal mean matrix, which will be the basis of the main results of this paper. In Section 3, we
introduce the general setting of loss estimation for a predictive distribution and study the properties of
AIC and AICc as loss estimators in multivariate linear regression. For the multivariate linear regression
model (1) with known covariance, AIC is shown to be inadmissible and an improved loss estimator is
given. For the multivariate linear regression model (1) with unknown covariance, AIC is shown to be
inadmissible and dominated by AICc. Then, in Section 4, we prove that AICc is still inadmissible and
provide improved loss estimators that work well in reduced-rank situations. In Section 5, we present

1Similarly, Lehmann and Casella (2006) states that it is common to speak of prediction, rather than estimation, of random effects
(Example 3.5.5). See also Sandved (1968)
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numerical results to examine the performance of the improved estimators. The results demonstrate that
the improved estimators often outperform the corrected AIC in variable selection. Finally, we provide
concluding remarks in Section 6. Technical lemmas are given with proofs in the Appendix.

2. Loss estimation framework

2.1. General setting

Here, we briefly introduce the loss estimation framework. See Fourdrinier, Strawderman and Wells
(2018), Fourdrinier and Wells (2012) for a comprehensive review of loss estimation. Recently, the idea
of loss estimation has been applied to high-dimensional inference (Bellec and Zhang, 2021).

Suppose that we have an observation Y ∼ p(y | θ), where θ is an unknown parameter. In usual setting
of point estimation (Lehmann and Casella, 2006), we consider estimation of θ using an estimator
θ̂ = θ̂(y). The discrepancy of an estimate θ̂ from the true value θ is quantified by a loss function L(θ, θ̂).
Then, estimators are compared by using the risk function R(θ, θ̂) = Eθ [L(θ, θ̂(y))], which is the average
of the loss. An estimator θ̂1 is said to dominate another estimator θ̂2 if R(θ, θ̂1) ≤ R(θ, θ̂2) holds for
every θ, with strict inequality for at least one value of θ. An estimator θ̂ is said to be admissible if no
estimator dominates θ̂. An estimator θ̂ is said to be inadmissible if it is not admissible (i.e. there exists
an estimator that dominates θ̂).

In the setting above, loss estimation concerns estimation of the loss L(θ, θ̂(y)), which depends not
only on θ but also on y. The performance of a loss estimator λ(y) is evaluated by squared error (λ(y) −
L(θ, θ̂(y)))2. Thus, a loss estimator λ1(y) is said to dominate another loss estimator λ2(y) if

Eθ [(λ1(y) − L(θ, θ̂(y)))2] ≤ Eθ [(λ2(y) − L(θ, θ̂(y)))2]

holds for every θ, with strict inequality for at least one value of θ. A loss estimator λ(y) is said to be
admissible if no loss estimator dominates λ(y). A loss estimator λ(y) is said to be inadmissible if it is
not admissible (i.e. there exists a loss estimator that dominates λ(y)).

2.2. Loss estimation for a normal mean vector

Now, we focus on loss estimation for a normal mean vector (Johnstone, 1988). Suppose that we estimate
θ ∈ Rp from an observation Y ∼ Np(θ, Ip) by an estimator θ̂(y) = y + g(y) under the quadratic loss

L(θ, θ̂) = ‖θ̂ − θ‖2.

Stein (1974) showed that the quadratic risk R(θ, θ̂) = Eθ [L(θ, θ̂(y))] satisfies

R(θ, θ̂) = Eθ [λ
U(y)],

where

λU(y) = p + 2∇ · g(y) + ‖g(y)‖2

is called Stein’s unbiased risk estimate (SURE). SURE plays a central role in the theory of shrinkage
estimation (Fourdrinier, Strawderman and Wells, 2018) and also closely related to model selection
criteria such as Mallows’ Cp and AIC (Boisbunon et al., 2014). However, Johnstone (1988) showed that
SURE is inadmissible for the maximum likelihood estimator when p ≥ 5 as follows.



Inadmissibility of the corrected Akaike information criterion 1419

Figure 1. Percentage improvements in mean squared error of the loss estimator (3) over SURE for p = 8.

Proposition 2.1 (Johnstone, 1988). In estimation of θ from Y ∼ Np(θ, Ip) under the quadratic loss,
consider the maximum likelihood estimator θ̂(y) = y. If p ≥ 5, then SURE λU(y) = p is inadmissible
and dominated by the loss estimator

λ(y) = p − 2(p − 4)‖y‖−2. (3)

Figure 1 plots the percentage improvements in mean sqaured error of the loss estimator (3) over
SURE defined by

100
Eθ [(λ

U(y) − ‖θ̂(y) − θ‖2)2] − Eθ [(λ(y) − ‖θ̂(y) − θ‖2)2]

Eθ [(λU(y) − ‖θ̂(y) − θ‖2)2]
.

The improvement is large when the true value of θ is close to the origin, which is qualitatively similar
to the risk behavior of the James–Stein estimator. In addition to the maximum likelihood estimator,
Johnstone (1988) also proved the inadmissibility of SURE for the James–Stein estimator and provided
improved loss estimators. Based on these findings by Johnstone (1988), many studies have investigated
loss estimation for a normal mean vector and single-response linear regression, such as (Boisbunon
et al., 2014, Fourdrinier and Strawderman, 2003, Fourdrinier and Wells, 2012, Lu and Berger, 1989,
Narayanan and Wells, 2015, Wan and Zou, 2004).

2.3. Loss estimation for a normal mean matrix

Recently, Matsuda and Strawderman (2019) generalized the results of Johnstone (1988) to matrices and
developed loss estimators that dominate SURE. This is motivated from the Efron–Morris estimator,
which is a matrix generalization of the James–Stein estimator that shrinks singular values towards
zero (Efron and Morris, 1972). Specifically, suppose that we estimate M ∈ Rp×q from an observation
Y ∼ Np,q(M, Ip, Iq) by an estimator M̂(Y ) under the Frobenius loss

L(M, M̂) = ‖M̂ − M ‖2
F =

∑
i, j

(M̂i j − Mi j )
2.

We write the singular values of a matrix Z ∈ Rp×q with p ≥ q by σ1(Z) ≥ · · · ≥ σq(Z) ≥ 0.
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Proposition 2.2 (Matsuda and Strawderman, 2019). In estimation of M from Y ∼ Np,q(M, Ip, Iq)
under the Frobenius loss, consider the maximum likelihood estimator M̂(Y ) = Y. If p ≥ 3q + 2 and
q ≥ 2, then SURE λU(Y ) = pq is inadmissible and dominated by the loss estimator

λ(Y ) = pq −

q∑
i=1

ciσi(Y )−2, ci =
4(p − q − 2i − 1)

q
. (4)

Whereas Proposition 2.2 shows the inadmissibility of SURE, it excludes2 the case q = 1. Here, we
provide another loss estimator dominating SURE, which reduces to (3) in Proposition 2.1 when q = 1
and will be the basis of the main results of this paper.

Theorem 2.3. In estimation of M from Y ∼ Np,q(M, Ip, Iq) under the Frobenius loss, consider the
maximum likelihood estimator M̂(Y ) = Y. If p ≥ 2q + 3, then SURE λU(Y ) = pq is inadmissible and
dominated by the loss estimator

λ(Y ) = pq −
2(p − 2q − 2)

q
tr((Y�Y )−1). (5)

Proof. Let h(Y ) = −ctr((Y�Y )−1) with c = 2(p − 2q − 2)/q so that λ(Y ) = λU(Y ) + h(Y ). Then, from
Lemma 5 of Matsuda and Strawderman (2019),

EM [(λ(Y ) − ‖M̂(Y ) − M ‖2)2] − EM [(λU(Y ) − ‖M̂(Y ) − M ‖2)2] = EM [−2Δh(Y ) + h(Y )2],

where

Δh(Y ) =
∑
i, j

∂2h
∂Y2

i j

(Y ).

From Lemma A.2 and Lemma A.3,

Δh(Y ) = −c
∑
i, j

∂2

∂Y2
i j

tr((Y�Y )−1)

= 2c
∑
i, j

∂

∂Yi j
(Y (Y�Y )−2)i j

= 2c(p − q − 2)tr((Y�Y )−2) − 2c(tr((Y�Y )−1))2.

Thus,

−2Δh(Y ) + h(Y )2 = −4c(p − q − 2)tr((Y�Y )−2) + (c2 + 4c)(tr((Y�Y )−1))2.

From the Cauchy–Schwarz inequality,

(tr((Y�Y )−1))2 =

(
q∑
i=1

λi((Y�Y )−1)

) 2

≤ q
q∑
i=1

λi((Y�Y )−1)2 = qtr((Y�Y )−2), (6)

2The condition q ≥ 2 in Proposition 2.2 was not explicitly stated in the original paper (Matsuda and Strawderman, 2019).
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Figure 2. Percentage improvements in mean squared error of λ(Y ) in (5) over SURE for p = 8 and q = 2. Left:
σ2(M) = 0. Right: σ1(M) = 10.

where λi(A) denotes the i-th eigenvalue of a matrix A. Therefore, by substituting c = 2(p − 2q − 2)/q,

−2Δh(Y ) + h(Y )2 ≤ c(−4(p − q − 2) + q(c + 4))tr((Y�Y )−2)

= −
4(p − 2q − 2)2

q
tr((Y�Y )−2)

< 0.

Hence,

EM [(λ(Y ) − ‖M̂(Y ) − M ‖2)2] < EM [(λU(Y ) − ‖M̂(Y ) − M ‖2)2]

for every M .

Figure 2 plots the percentage improvements in mean squared error of the loss estimator (5) over
SURE like Figure 1. The improvement is large when some of the singular values of M are small. In
particular, the left panel of Figure 2 indicates that the loss estimator (5) attains constant reduction of
MSE as long as σ2(M) = 0, even when σ1(M) is large. Thus, the loss estimator (5) works well when M
is close to low-rank. Note that the loss estimator (4) has qualitatively the same property (Matsuda and
Strawderman, 2019). These results are understood from the fact that both loss estimators (4) and (5) are
based on the inverse square of the singular values of Y . The Efron–Morris estimator for a normal mean
matrix has a similar risk property (Matsuda and Strawderman, 2022).

In addition to the maximum likelihood estimator, Matsuda and Strawderman (2019) also proved the
inadmissibility of SURE for a general class of orthogonally invariant estimators, including the Efron–
Morris estimator and reduced-rank estimators, and provided improved loss estimators.

3. Information criterion as loss estimator

3.1. Loss estimation for a predictive distribution

Suppose that we have an observation Y ∼ p(y | θ), where θ is an unknown parameter. Then, we con-
sider prediction of a future observation Ỹ ∼ p(ỹ | θ) by using a predictive distribution p̂(ỹ | y). The
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discrepancy of a predictive distribution p̂(ỹ | y) from the true distribution p(ỹ | θ) is evaluated by the
Kullback–Leibler discrepancy

d(p(ỹ | θ), p̂(ỹ | y)) = −2
∫

p(ỹ | θ) log p̂(ỹ | y)dỹ,

which is equivalent to twice the Kullback–Leibler divergence

D(p(ỹ | θ), p̂(ỹ | y)) =
∫

p(ỹ | θ) log
p(ỹ | θ)
p̂(ỹ | y)

dỹ

up to an additive constant. The plug-in predictive distribution is defined by p(ỹ | θ̂(y)), where θ̂(y) is the
maximum likelihood estimate of θ from y. AIC (Akaike, 1973) is an approximately unbiased estimator
of the Kullback–Leibler discrepancy for the plug-in predictive distribution:

Eθ [AIC] ≈ d(p(ỹ | θ),p(ỹ | θ̂(y))).

See Burnham and Anderson (2002), Konishi and Kitagawa (2008) for details.
Similarly to point estimation in Section 2, we can formulate estimation of the Kullback–Leibler

discrepancy as a loss estimation problem. Then, AIC can be viewed as a default loss estimator like
SURE in estimation of a normal mean. From this viewpoint, it is of interest to determine whether AIC
is admissible or not. In the following, we investigate this problem for the multivariate linear regression
model (1).

3.2. Multivariate linear regression with known covariance

First, consider the multivariate linear regression model (1) with known covariance Σ � O. The max-
imum likelihood estimate is B̂ = (X�X)−1X�Y . From (2), the Kullback–Leibler discrepancy for the
plug-in predictive distribution is

d((B,Σ),(B̂,Σ)) = nq log(2πe) + n log detΣ + tr(Σ−1(B̂ − B)�X�X(B̂ − B)).

The AIC is

AIC = −2 log p(Y | B̂,Σ) + 2pq

= nq log(2π) + n log detΣ + tr(Σ−1(Y − XB̂)�(Y − XB̂)) + 2pq.

Then, the inadmissibility of AIC is proved as follows, where MAIC is an abbreviation of “Modified
AIC.”

Theorem 3.1. Consider the multivariate linear regression model (1) with known Σ � O. If p ≥ 2q + 3,
then AIC is inadmissible and dominated by

MAIC =AIC −
2(p − 2q − 2)

q
tr(Σ((XB̂)�(XB̂))−1)

as an estimator of the Kullback–Leibler discrepancy.
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Proof. Let R = (Y − XB̂)�(Y − XB̂) be the residual. Then, from the standard theory of multivariate lin-
ear regression (Anderson, 2003), B̂ and R are independent and distributed as B̂ ∼ Np,q(B,(X�X)−1,Σ)

and R ∼ Wq(n − p,Σ), respectively. Thus, Z = (X�X)1/2B̂Σ−1/2 is independent from R and distributed
as Z ∼ Np,q(Z̄, Ip, Iq) where Z̄ = (X�X)1/2BΣ−1/2.

Let h = −ctr(Σ((XB̂)�(XB̂))−1) = −ctr((Z�Z)−1) with c = 2(p − 2q − 2)/q so that MAIC = AIC +
h(Y ). Then,

EB[(MAIC − d)2] − EB[(AIC − d)2] = EB[h2 + 2h(AIC − d)],

where we write d((B,Σ),(B̂,Σ)) by d for simplicity. Note that

AIC − d = (2p − n)q + tr(Σ−1(Y − XB̂)�(Y − XB̂)) − tr(Σ−1(B̂ − B)�X�X(B̂ − B))

= (2p − n)q + tr(Σ−1R) − tr((Z − Z̄)�(Z − Z̄)).

From E[R] = (n − p)Σ and the independence of Z and R,

EB[tr((Z�Z)−1)tr(Σ−1R)] = (n − p)q · EB[tr((Z�Z)−1)].

Also, from Lemma B.8,

E[tr((Z�Z)−1)tr((Z − Z̄)�(Z − Z̄))]

=pqE[tr((Z�Z)−1)] − 2(p − q − 2)E[tr((Z�Z)−2)] + 2E[(tr((Z�Z)−1))2].

Therefore,

EB[(MAIC − d)2] − EB[(AIC − d)2] = EB[(c2 + 4c)(tr((Z�Z)−1))2 − 4c(p − q − 2)tr((Z�Z)−2)]

≤ qc
(
c −

4(p − 2q − 2)
q

)
EB[tr((Z�Z)−2)]

< 0

for every B, where we used (tr((Z�Z)−1))2 ≤ qtr((Z�Z)−2) from (6) and c = 2(p − 2q − 2)/q.

For the Gaussian linear regression model with known variance (q = 1), Boisbunon et al. (2014)
discussed the equivalence between AIC and SURE. Such a correspondence holds in the current set-
ting as well. Specifically, consider estimation of M from Y ∼ Nn,q(M, In,Σ) under the loss L(M, M̂) =

tr(Σ−1(M̂ − M)�(M̂ − M)). Then, SURE for the estimator M̂ = XB̂ is

λU(Y ) = tr(Σ−1(Y − XB̂)�(Y − XB̂)) + (2p − n)q

=AIC − nq log(2πe) − n log detΣ,

and the loss is related to the Kullback–Leibler discrepancy as

L(M, M̂) = d((B,Σ),(B̂,Σ)) − nq log(2πe) − n log detΣ.

Thus, estimation of the loss L(M, M̂) for the estimator M̂ = XB̂ is equivalent to estimation of the
Kullback–Leibler discrepancy for the plug-in predictive distribution, and both SURE and AIC are
exactly unbiased. Under this correspondence, Proposition 3.1 is rewritten as follows.
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Corollary 3.2. For the multivariate linear regression model (1) with known Σ � O, consider the esti-
mator M̂ = XB̂ of M = XB under the loss L(M, M̂) = tr(Σ−1(M̂ − M)�(M̂ − M)). If p ≥ 2q + 3, then
SURE is inadmissible and dominated by the loss estimator

λ(Y ) = λU(Y ) −
2(p − 2q − 2)

q
tr(Σ((XB̂)�(XB̂))−1).

3.3. Multivariate linear regression with unknown covariance

Next, consider the multivariate linear regression model (1) with unknown covariance Σ � O. The maxi-
mum likelihood estimate is B̂ = (X�X)−1X�Y and Σ̂ = (Y − XB̂)�(Y − XB̂)/n. From (2), the Kullback–
Leibler discrepancy is

d((B,Σ),(B̂, Σ̂)) = nq log(2π) + n log det Σ̂ + ntr(Σ̂−1Σ) + tr(Σ̂−1(B̂ − B)�X�X(B̂ − B)).

The AIC is

AIC = nq log(2π) + n log det Σ̂ + 2
(
pq +

q(q + 1)
2

)
.

The corrected AIC is

AICc = nq log(2π) + n log det Σ̂ +
2n

n − p − q − 1

(
pq +

q(q + 1)
2

)
.

The corrected AIC is exactly unbiased while AIC is biased (Bedrick and Tsai, 1994, Hurvich and Tsai,
1989, Sugiura, 1978). Then, we obtain the following.

Theorem 3.3. For the multivariate linear regression model (1) with unknown Σ � O, AIC is inadmis-
sible and dominated by AICc as an estimator of the Kullback–Leibler discrepancy.

Proof. For two random variables S and T , we have

E[(S −T)2]

=E[(S − E[S] + E[S] − E[T] + E[T] −T)2]

=E[(S − E[S])2] + (E[S] − E[T])2 + E[(T − E[T])2] − 2E[(S − E[S])(T − E[T])]

=Var[S] + (E[S] − E[T])2 +Var[T] − 2Cov[S,T].

Hence, the mean squared error of AIC is given by

E[(AIC − d)2] =Var[AIC] + (E[AIC] − E[d])2 +Var[d] − 2Cov[AIC,d], (7)

where we write d((B,Σ),(B̂, Σ̂)) by d for simplicity. Similarly, the mean squared error of AICc is

E[(AICc − d)2] =Var[AICc] +Var[d] − 2Cov[AICc,d], (8)

where we used E[AICc] = E[d].
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On the other hand, since the difference between AIC and AICc is constant,

Var[AIC] =Var[AICc], Cov[AIC,d] = Cov[AICc,d]. (9)

From (7), (8) and (9),

EB,Σ[(AICc − d)2] ≤ EB,Σ[(AIC − d)2]

for every B and Σ.

In the next section, we show that the corrected AIC is still inadmissible and provide improved loss
estimators. Note that Davies, Neath and Cavanaugh (2006) showed that the corrected AIC is the mini-
mum variance unbiased estimator of the expected Kullback–Leibler discrepancy.

4. Inadmissibility of the corrected AIC

For the multivariate linear regression model (1) with unknown covariance, the corrected AIC is
the minimum variance unbiased estimator of the expected Kullback–Leibler discrepancy from the
Lehmann–Scheffé theorem (Davies, Neath and Cavanaugh, 2006). Also, Theorem 3.3 showed that
the AIC is dominated by the corrected AIC as an estimator of the Kullback–Leibler discrepancy. How-
ever, the corrected AIC is still inadmissible as follows, where MAICc is an abbreviation of “Modified
AICc.”

Theorem 4.1. Consider the multivariate linear regression model (1) with unknown Σ � O. Let

c̄ =
4n2

(n − p)(q(n − p) + 2)

(
p − 2q − 2 −

q2 + q − 2
n − p − q − 1

)
.

If n − p − q − 1 > 0 and c̄ > 0, then for any c ∈ (0, c̄], AICc is inadmissible and dominated by

MAICc =AICc − ctr(Σ̂((XB̂)�(XB̂))−1)

as an estimator of the Kullback–Leibler discrepancy.

Proof. From the standard theory of multivariate linear regression (Anderson, 2003), the maximum
likelihood estimates B̂ = (X�X)−1X�Y and Σ̂ = (Y − XB̂)�(Y − XB̂)/n for (1) are independently dis-
tributed as

B̂ ∼ Np,q(B,(X�X)−1,Σ), Σ̂ ∼Wq

(
n − p,

1
n
Σ

)
.

Thus, Z = (X�X)1/2B̂Σ−1/2 and S = Σ−1/2Σ̂Σ−1/2 are independetly distributed as

Z ∼ Np,q(Z̄, Ip, Iq), S ∼Wq

(
n − p,

1
n

Iq

)
,

where Z̄ = (X�X)1/2BΣ−1/2.
Again, we write d((B,Σ),(B̂, Σ̂)) in (2) as d for simplicity. Let d = d((B,Σ),(B̂, Σ̂)) and

h =MAICc − AICc = −ctr(Σ̂((XB̂)�(XB̂))−1).
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Then,

EB,Σ[(MAICc − d)2] − EB,Σ[(AICc − d)2] = EB,Σ[h2 + 2h(AICc − d)]. (10)

We evaluate each term. Note that h = −ctr(S(Z�Z)−1), since

tr(Σ̂((XB̂)�(XB̂))−1) = tr(SΣ1/2((XB̂)�(XB̂))−1Σ1/2)

= tr(S(Σ−1/2B̂�X�XB̂Σ−1/2)−1)

= tr(S(Z�Z)−1).

In the following, we write EB,Σ as E for simplicity.
First, by using Lemma B.2,

E[h2] = c2E[tr(S(Z�Z)−1)tr(S(Z�Z)−1)]

=
2(n − p)

n2 c2E[tr((Z�Z)−2)] +
(n − p)2

n2 c2E[(tr((Z�Z)−1))2]. (11)

Next, from

AICc = nq log(2π) + n log det Σ̂ +
nq(n + p)

n − p − q − 1
,

d = nq log(2π) + n log det Σ̂ + ntr(Σ̂−1Σ) + tr(X(B̂ − B)Σ̂−1(B̂ − B)�X�)

= nq log(2π) + n log det Σ̂ + ntr(S−1) + tr((Z − Z̄)�(Z − Z̄)S−1),

we have

E[2h(AICc − d)] = −
2n(n + p)q

n − p − q − 1
cE[tr(S(Z�Z)−1)] + 2ncE[tr(S−1)tr(S(Z�Z)−1)]

+ 2cE[tr((Z − Z̄)�(Z − Z̄)S−1)tr(S(Z�Z)−1)]. (12)

Using the independence of S and Z ,

E[tr(S(Z�Z)−1)] = tr(E[S] · E[(Z�Z)−1)])

= tr
( n − p

n
Iq · E[(Z�Z)−1)]

)
=

n − p
n

E[tr((Z�Z)−1)]. (13)

Similarly, using the independence of S and Z and Lemma B.6,

E[tr(S−1)tr(S(Z�Z)−1)] = tr(E[tr(S−1)S] · E[(Z�Z)−1])

= tr
(
(n − p)q − 2
n − p − q − 1

Iq · E[(Z�Z)−1]

)
=

(n − p)q − 2
n − p − q − 1

E[tr((Z�Z)−1)]. (14)
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Also, from Lemma B.9,

E[tr((Z − Z̄)�(Z − Z̄)S−1)tr(S(Z�Z)−1)]

=p
(n − p)q − 2
n − p − q − 1

E[tr((Z�Z)−1)] − 2
(n − p − 1)(p − q − 2) + 2

n − p − q − 1
E[tr((Z�Z)−2)]

+ 2
n − q − 2

n − p − q − 1
E[(tr((Z�Z)−1))2]. (15)

Therefore, by substituting (13), (14) and (15) into (12),

E[2h(AICc − d)]

=
−2(n − p)(n + p)q + 2n((n − p)q − 2) + 2p((n − p)q − 2)

n − p − q − 1
cE[tr((Z�Z)−1)]

− 4c
(n − p − 1)(p − q − 2) + 2

n − p − q − 1
E[tr((Z�Z)−2)] + 4c

n − q − 2
n − p − q − 1

E[(tr((Z�Z)−1))2]

= − 4c
n + p

n − p − q − 1
E[tr((Z�Z)−1)]

− 4c
(n − p − 1)(p − q − 2) + 2

n − p − q − 1
E[tr((Z�Z)−2)] + 4c

n − q − 2
n − p − q − 1

E[(tr((Z�Z)−1))2]. (16)

Hence, by substituting (11) and (16) into (10),

EB,Σ[(MAICc − d)2] − EB,Σ[(AICc − d)2]

= − 4c
n + p

n − p − q − 1
E[tr((Z�Z)−1)]

+

(
2(n − p)

n2 c2 − 4c
(n − p − 1)(p − q − 2) + 2

n − p − q − 1

)
E[tr((Z�Z)−2)]

+

(
(n − p)2

n2 c2 + 4c
n − q − 2

n − p − q − 1

)
E[(tr((Z�Z)−1))2]

≤ − 4c
n + p

n − p − q − 1
E[tr((Z�Z)−1)]

+ c
(
(n − p)(q(n − p) + 2)

n2 c − 4
(n − p − 1)(p − q − 2) − q(n − q − 2) + 2

n − p − q − 1

)
E[tr((Z�Z)−2)]

= − 4c
n + p

n − p − q − 1
E[tr((Z�Z)−1)] +

(n − p)(q(n − p) + 2)
n2 c(c − c̄)E[tr((Z�Z)−2)],

where we used (tr((Z�Z)−1))2 ≤ qtr((Z�Z)−2) from (6) and (n − p − 1)(p − q − 2) − q(n − q − 2) =
(n − p − q − 1)(p − 2q − 2) − q2 − q. Therefore, if 0 < c ≤ c̄, then

EB,Σ[(MAICc − d)2] ≤ EB,Σ[(AICc − d)2]

for every B and Σ.

Note that, when n is sufficiently large, the condition c̄ > 0 in Theorem 4.1 is reduced to p ≥ 2q + 3,
which is the same as in Theorem 2.3 and Theorem 3.1.
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In the case of a single response (q = 1), Theorem 4.1 is reexpressed as follows. Here, we employ the
usual notation for the linear regression with a single response:

y ∼ Nn(Xβ,σ2In), β̂ = (X�X)−1X�y, σ̂2 = ‖y − X β̂‖2/n. (17)

Corollary 4.2. Consider the linear regression model y ∼ Nn(Xβ,σ2In) with unknown σ2. Let

c̄ =
4n2(p − 4)

(n − p)(n − p + 2)
.

If n − p − 2 > 0 and c̄ > 0, then for any c ∈ (0, c̄], AICc is inadmissible and dominated by

MAICc =AICc − cσ̂2‖X β̂‖−2

as an estimator of the Kullback–Leibler discrepancy.

Note that the condition c̄ > 0 in Corollary 4.2 is equivalent to p ≥ 5, as in Proposition 2.1.

5. Numerical results

5.1. Single response

First, we consider the case of single response (17), which corresponds to the model (1) with q = 1 and
Corollary 4.2. We compare the mean squared errors of AICc and MAICc by Monte Carlo experiments
with 106 repetitions. Each entry of X is generated from N(0,1) independently. We plot the percentage
improvement in mean squared error (MSE) of MAICc over AICc:

100
Eβ,σ2[(AICc − d)2] − Eβ,σ2[(MAICc − d)2]

Eβ,σ2[(AICc − d)2]
,

where d = d((β,σ2),(β̂, σ̂2)) is the Kullback–Leibler discrepancy (2).
Figure 3 compares MAICc with different values of c for n = 30, p = 10 and σ2 = 1. The left panel

indicates that MAICc with c = c̄ dominates MAICc with c = 0.5c̄, whereas the right panel shows that

Figure 3. Percentage improvement in mean squared error of MAICc over AICc when n = 30, p = 10 and σ2 = 1.
Left: Plot with respect to ‖β‖ for c = c̄ and c = 0.5c̄. Right: Plot with respect to c/c̄ for β = 0.
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Figure 4. Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when p = 10 and σ2 = 1.
Left: Plot with respect to ‖β‖ for n = 30,50,100. Right: Plot with respect to n for β = 0.

the mean squared error of MAICc at β = 0 attains its minimum around c = 0.8c̄. Overall, setting c = c̄
in MAICc seems to be a reasonable choice. Thus, we adopt this value of c in the following experiments.

Figure 4 compares the performance of MAICc for different values of n when p = 10 and σ2 = 1.
It indicates that the percentage improvement in MSE is larger for smaller n. Figure 5 compares the
performance of MAICc for different values of p when n = 30 and σ2 = 1. It indicates that the percentage
improvement in MSE is maximized around p = 15. Figure 6 compares the performance of MAICc for
different values of σ2 when n = 30 and p = 10. It indicates that the percentage improvement in MSE is
larger for larger σ2 at β � 0. Note that the percentage improvement in MSE at β = 0 does not depend
on σ2.

5.2. Multi-response

Now, consider the multi-response case (1). As in the previous subsection, we compare the mean squared
error of AICc and MAICc by Monte Carlo experiments with 106 repetitions. Each entry of X is gener-
ated from N(0,1) independently. We plot the percentage improvement in mean squared error (MSE) of

Figure 5. Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when n = 30 and σ2 = 1.
Left: Plot with respect to ‖β‖ for p = 5,10,20. Right: Plot with respect to p for β = 0.
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Figure 6. Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when n = 30 and p = 10.

MAICc over AICc:

100
EB,Σ[(AICc − d)2] − EB,Σ[(MAICc − d)2]

EB,Σ[(AICc − d)2]
,

where d = d((B,Σ),(B̂, Σ̂)) is the Kullback–Leibler discrepancy (2).
Figure 7 compares MAICc with different values of c for n = 30, p = 10 and q = 2. The improvement

is large when some of the singular values of M are small. Similarly to Figure 2, MAICc attains constant
reduction of MSE as long as σ2(M) = 0, even when σ1(M) is large. Thus, MAICc works well when B
is close to low-rank, which corresponds to reduced-rank regression (Reinsel and Velu, 1998). We found
that MAICc with c = c̄ is numerically dominated by MAICc with c = 2c̄, which implies that the upper
bound for c in Theorem 4.1 may be improved. We adopt c = c̄ in the following experiments.

Figure 8 compares the performance of MAICc for different values of n when p = 10, q = 2 and Σ = I2.
It indicates that the percentage improvement in MSE is maximized around n = 40. Figure 9 compares
the performance of MAICc for different values of p when n = 30, q = 2 and Σ = I2. It indicates that the
percentage improvement in MSE is smaller for larger p. Figure 10 (left) compares the performance of
MAICc for different values of r = Σ12 when n = 30, p = 10, q = 2 and Σ11 = Σ22 = 1. It indicates that
the percentage improvement in MSE is largest for r = 0 (no correlation).

Finally, Figure 10 (right) compares the performance of MAICc for different values of q when n = 30,
p = 10, Σ = Iq . Compared to the single response case (q = 1) in the previous subsection, the percent-
age improvement in MSE of MAICc over AICc is not large. We expect that MAICc for q ≥ 2 can be
improved in several ways. For example, as shown in Figure 7, MAICc with c = c̄ is numerically dom-
inated by MAICc with larger value of c. Thus, improving the upper bound of c in Theorem 4.1 would
be beneficial. Also, in analogy to the method of Efron and Morris (1976) for improving the Efron–
Morris estimator by adding scalar shrinkage, MAICc is expected to be improved by adding a term of
the form in Propostion 2.1 after vectorization. Another solution may be to use different coefficients for
the singular values as in Proposition 2.2.

5.3. Variable selection

Here, we compare the variable selection performance of AIC, AICc, and MAICc with c = c̄. The
experimental setting is similar to that of Hurvich and Tsai (1989): n = 20, p = 10, q = 1, β =
(0.1,0.2,0.3,0.4,0.5,0,0,0,0,0)� and σ2 = 1. Each entry of X is generated from N(0,1) independently
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Figure 7. Percentage improvement in mean squared error of MAICc over AICc when n = 30, p = 10, q = 2 and
Σ = I2. Upper left: Plot with respect to σ1(B) for c = c̄, c = 2c̄ and c = 4c̄ when σ2(B) = 0. Upper right: Plot
with respect to σ2(B) for c = c̄, c = 2c̄ and c = 4c̄ when σ1(B) = 5. Lower left: Plot with respect to c/c̄ for
σ1(B) = σ2(B) = 0 (B =O). Lower right: Plot with respect to c/c̄ for σ1(B) = 5 and σ2(B) = 0.

and fixed for the whole experiment. Ten submodels were considered as candidate models, where the
k-th model uses the first k columns of X as covariates (k = 1, . . . ,10). Thus, the fifth model is the truth
here. For each realization of y, we selected the model order k by minimizing AIC, AICc, or MAICc
with c = c∗. Table 1 shows the frequency of the selected order in 1000 realizations. MAICc selects

Figure 8. Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when p = 10, q = 2 and
Σ = I2. Left: Plot with respect to σ1(B) for n = 20,50,100 when σ2(B) = 0. Right: Plot with respect to n for B =O.
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Figure 9. Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when n = 30, q = 2 and
Σ = I2. Left: Plot with respect to σ1(B) for p = 10,15,20 when σ2(B) = 0. Right: Plot with respect to p for B =O.

the true order k = 5 more frequently than AIC and AICc. Thus, MAICc attains better performance in
variable selection than AIC and AICc. This result indicates a practical advantage of introducing the
current loss estimation framework to investigate information criterion.

6. Conclusion

In this study, we showed that the corrected AIC is inadmissible as an estimator of the Kullback–Leibler
discrepancy and provided improved loss estimators. To the best of our knowledge, such a loss esti-
mation framework has not been employed in the study of information criteria, and there are several
possible directions for future research. For example, generalizations of the current results to out-of-
sample prediction (Rosset and Tibshirani, 2020), high-dimensional settings (Bellec and Zhang, 2021,
Fujikoshi, Sakurai and Yanagihara, 2014, Yanagihara, Wakaki and Fujikoshi, 2015), and mis-specified
cases (Fujikoshi and Satoh, 1997, Reschenhofer, 1999) may be interesting. Also, whereas we focused
on the Gaussian linear regression model in this study, similar results may be obtained in general models

Figure 10. Left: Percentage improvement in mean squared error of MAICc with c = c̄ over AICc when n = 30,
p = 10, q = 2, Σ11 = Σ22 = 1 and Σ12 = r . Plot with respect to r . Right: Percentage improvement in mean squared
error of MAICc with c = c̄ over AICc when n = 30, p = 10 and Σ = Iq . Plot with respect to σ1(B) for q = 1,2,3
when σ2(B) = · · · = σq(B) = 0.
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Table 1. Frequency of order selected by three criteria in 1000 realizations

1 2 3 4 5 6 7 8 9 10

AIC 89 8 15 29 352 129 76 76 81 145

AICc 277 147 37 16 460 44 15 4 0 0

MAICc 248 137 34 14 492 54 17 4 0 0

for AIC and other information criteria such as TIC and GIC (Konishi and Kitagawa, 2008) by asymp-
totic arguments. Improvement of model averaging criteria such as Mallows criterion (Hansen, 2007,
Wan, Zhang and Zou, 2010) is another future problem. Finally, whereas we focused on the plug-in pre-
dictive distribution in this study, it would be interesting to study extension to the Bayesian predictive
distribution, which minimizes the Bayes risk under the Kullback–Leibler loss (Aitchison, 1975). For
the linear regression model, Kitagawa (1997) derived an information criterion for the Bayesian pre-
dictive distribution and Kobayashi and Komaki (2008) studied the problem of Bayesian out-of-sample
prediction.

Appendix A: Matrix derivative formulas
Lemma A.1. For Z ∈ Rp×q ,

∂

∂Zi j
((Z�Z)−1)kl = −((Z�Z)−1)k j (Z(Z�Z)−1)il − ((Z�Z)−1Z�)ki((Z�Z)−1)jl .

Proof. Let δab be the Kronecker delta: δab = 1 if a = b and δab = 0 if a � b. From

∂

∂Zi j
(Z�Z)ab =

∑
c

∂

∂Zi j
(ZcaZcb) = δjaZib + δjbZia

and d(A−1) = −A−1(dA)A−1, we obtain

∂

∂Zi j
((Z�Z)−1)kl =

(
−(Z�Z)−1

(
∂

∂Zi j
(Z�Z)

)
(Z�Z)−1

)
kl

= −
∑
a,b

((Z�Z)−1)ka

(
∂

∂Zi j
(Z�Z)ab

)
((Z�Z)−1)bl

= −
∑
a,b

((Z�Z)−1)ka(δjaZib + δjbZia)((Z�Z)−1)bl

= −
∑
b

(Z�Z)−1)k jZib((Z�Z)−1)bl −
∑
a

((Z�Z)−1)kaZia((Z�Z)−1)jl

= −((Z�Z)−1)k j (Z(Z�Z)−1)il − ((Z�Z)−1Z�)ki((Z�Z)−1)jl .

Lemma A.2. For Z ∈ Rp×q and S ∈ Rq×q ,

∂

∂Zi j
tr(S(Z�Z)−1) = −2(Z(Z�Z)−1S(Z�Z)−1)i j .
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Proof. From Lemma A.1,

∂

∂Zi j
tr(S(Z�Z)−1) =

∑
k ,l

Skl
∂

∂Zi j
((Z�Z)−1)kl

=
∑
k ,l

Skl(−((Z�Z)−1)k j (Z(Z�Z)−1)il − ((Z�Z)−1Z�)ki((Z�Z)−1)jl)

= −2(Z(Z�Z)−1S(Z�Z)−1)i j .

Lemma A.3. For Z ∈ Rp×q and A,B ∈ Rq×q ,∑
i j

∂

∂Zi j
(Z(Z�Z)−1 A(Z�Z)−1B)i j

=(p − q − 2)tr((Z�Z)−1 A(Z�Z)−1B) − tr(A(Z�Z)−1)tr((Z�Z)−1B).

Proof. From Lemma A.1,

∂

∂Zi j
(Z(Z�Z)−1 A(Z�Z)−1B)i j

=
∑
k

(
∂

∂Zi j
Zik

)
((Z�Z)−1 A(Z�Z)−1B)k j +

∑
k ,l

Zik

(
∂

∂Zi j
((Z�Z)−1)kl

)
(A(Z�Z)−1B)l j

+
∑
k ,l

(Z(Z�Z)−1 A)ik

(
∂

∂Zi j
((Z�Z)−1)kl

)
Bl j

=
∑
k

δjk((Z�Z)−1 A(Z�Z)−1B)k j

+
∑
k ,l

Zik(−((Z�Z)−1)k j (Z(Z�Z)−1)il − ((Z�Z)−1Z�)ki((Z�Z)−1)jl)(A(Z�Z)−1B)l j

+
∑
k ,l

(Z(Z�Z)−1 A)ik (−((Z�Z)−1)k j (Z(Z�Z)−1)il − ((Z�Z)−1Z�)ki((Z�Z)−1)jl)Bl j

=((Z�Z)−1 A(Z�Z)−1B)j j − (Z(Z�Z)−1)i j (Z(Z�Z)−1 A(Z�Z)−1B)i j

− (Z(Z�Z)−1Z�)ii((Z�Z)−1 A(Z�Z)−1B)j j − (Z(Z�Z)−1 A(Z�Z)−1)i j(Z(Z�Z)−1B)i j

− (Z(Z�Z)−1 A(Z�Z)−1Z�)ii((Z�Z)−1B)j j .

Therefore,∑
i j

∂

∂Zi j
(Z(Z�Z)−1 A(Z�Z)−1B)i j

=ptr((Z�Z)−1 A(Z�Z)−1B) − tr((Z�Z)−1Z� · Z(Z�Z)−1 A(Z�Z)−1B)

− tr(Z(Z�Z)−1Z�)tr((Z�Z)−1 A(Z�Z)−1B) − tr(Z(Z�Z)−1 A(Z�Z)−1 · B�(Z�Z)−1Z�)

− tr(Z(Z�Z)−1 A(Z�Z)−1Z�)tr((Z�Z)−1B)
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=ptr((Z�Z)−1 A(Z�Z)−1B) − tr((Z�Z)−1 A(Z�Z)−1B) − qtr((Z�Z)−1 A(Z�Z)−1B)

− tr(A(Z�Z)−1 · B�(Z�Z)−1) − tr(A(Z�Z)−1)tr((Z�Z)−1B)

=(p − q − 2)tr((Z�Z)−1 A(Z�Z)−1B) − tr(A(Z�Z)−1)tr((Z�Z)−1B).

Appendix B: Expectation formulas

Lemma B.1 (Stein, 1974). If Z ∼ Np,q(O, Ip, Iq) and g : Rp×q → Rp×q is absolutely continuous, then

E[tr(Z�g(Z))] = E
⎡⎢⎢⎢⎢⎣
∑
i, j

∂gi j

∂Zi j
(Z)

⎤⎥⎥⎥⎥⎦ .
Lemma B.2 (Gupta and Nagar, 2000, Theorem 3.3.15 (iv)). If d − q ≥ 0, S ∼ Wq(d,Σ) and A,B ∈

R
q×q , then

E[tr(AS)tr(BS)] = dtr(AΣBΣ) + dtr(A�ΣBΣ) + d2tr(AΣ)tr(BΣ).

Lemma B.3 (Gupta and Nagar, 2000, Theorem 3.3.16 (i)). If d − q − 1 > 0 and S ∼Wq(d,Σ), then

E[S−1] =
1

d − q − 1
Σ−1.

Lemma B.4 (Gupta and Nagar, 2000, Theorem 3.3.16 (iii)). If d − q − 3 > 0, S ∼ Wq(d,Σ) and
A ∈ Rq×q is positive semidefinite, then

E[S−1 AS−1] =
tr(Σ−1 A)

(d − q)(d − q − 1)(d − q − 3)
Σ−1 +

1
(d − q)(d − q − 3)

Σ−1 AΣ−1.

In particular, when Σ = A = Iq ,

E[S−2] =
d − 1

(d − q)(d − q − 1)(d − q − 3)
Iq .

Lemma B.5 (Gupta and Nagar, 2000, Theorem 3.3.17 (ii)). If d − q − 3 > 0 and S ∼Wq(d,Σ), then

E[tr(S−1)S−1] =
d − q − 2

(d − q)(d − q − 1)(d − q − 3)
tr(Σ−1)Σ−1 +

2
(d − q)(d − q − 1)(d − q − 3)

Σ−2.

In particular, when Σ = Iq ,

E[tr(S−1)S−1] =
q(d − q − 2) + 2

(d − q)(d − q − 1)(d − q − 3)
Iq .

Lemma B.6 (Gupta and Nagar, 2000, Theorem 3.3.17 (iii)). If d − q − 1 > 0 and S ∼Wq(d,Σ), then

E[tr(S−1)S] =
d

d − q − 1
tr(Σ−1)Σ −

2
d − q − 1

Iq .
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In particular, when Σ = Iq ,

E[tr(S−1)S] =
dq − 2

d − q − 1
Iq .

Lemma B.7 (Styan (1989)). If d − q − 1 > 0, S ∼Wq(d,Σ) and A ∈ Rq×q , then

E[SAS−1] =
1

d − q − 1
(dΣAΣ−1 − A� − tr(A)Iq).

In particular, when Σ = Iq and A� = A,

E[SAS−1] =
1

d − q − 1
((d − 1)A− tr(A)Iq).

Lemma B.8. If n − p − q − 1 > 0 and Z ∼ Np,q(Z̄, Ip, Iq), then

E[tr((Z − Z̄)�(Z − Z̄))tr((Z�Z)−1)]

=pqE[tr((Z�Z)−1)] − 2(p − q − 2)E[tr((Z�Z)−2)] + 2E[(tr((Z�Z)−1))2]. (18)

Proof. From Lemma B.1 and Lemma A.2,

E[tr((Z − Z̄)�(Z − Z̄))tr((Z�Z)−1)]

=E
⎡⎢⎢⎢⎢⎣
∑
i, j

∂

∂Zi j
((Z − Z̄))i j tr((Z�Z)−1))

⎤⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎣
∑
i, j

(tr((Z�Z)−1) − 2((Z − Z̄))i j (Z(Z�Z)−1(Z�Z)−1)i j)

⎤⎥⎥⎥⎥⎦
=pqE[tr((Z�Z)−1)] − 2E[tr((Z − Z̄)�Z(Z�Z)−1(Z�Z)−1)]. (19)

From Lemma B.1 and Lemma A.3,

E[tr((Z − Z̄)�Z(Z�Z)−1(Z�Z)−1)] = E
⎡⎢⎢⎢⎢⎣
∑
i, j

∂

∂Zi j
(Z(Z�Z)−1(Z�Z)−1)i j

⎤⎥⎥⎥⎥⎦
= E[(p − q − 2)tr((Z�Z)−2) − (tr((Z�Z)−1))2]. (20)

Substituting (20) into (19), we obtain (18).

Lemma B.9. If n − p − q − 1 > 0, Z ∼ Np,q(Z̄, Ip, Iq) and S ∼Wq(n − p,(1/n)Iq), then

E[tr((Z − Z̄)�(Z − Z̄)S−1)tr(S(Z�Z)−1)]

=p
(n − p)q − 2
n − p − q − 1

E[tr((Z�Z)−1)] − 2
(n − p − 1)(p − q − 2) + 2

n − p − q − 1
E[tr((Z�Z)−2)]

+ 2
n − q − 2

n − p − q − 1
E[(tr((Z�Z)−1))2]. (21)
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Proof. From Lemma B.1 and Lemma A.2,

E[tr((Z − Z̄)�(Z − Z̄)S−1)tr(S(Z�Z)−1)]

=E
⎡⎢⎢⎢⎢⎣
∑
i, j

∂

∂Zi j
((Z − Z̄)S−1)i j tr(S(Z�Z)−1))

⎤⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎣
∑
i, j

((S−1)j j tr(S(Z�Z)−1) − 2((Z − Z̄)S−1)i j (Z(Z�Z)−1S(Z�Z)−1)i j )

⎤⎥⎥⎥⎥⎦
=pE[tr(S−1)tr(S(Z�Z)−1)] − 2E[tr(S−1(Z − Z̄)�Z(Z�Z)−1S(Z�Z)−1)]. (22)

Then, from the linearity of expectation and Lemma B.6,

E[tr(S−1)tr(S(Z�Z)−1)] = tr(E[tr(S−1)S · (Z�Z)−1])

= tr(E[tr(S−1)S] · E[(Z�Z)−1])

=
(n − p)q − 2
n − p − q − 1

E[tr((Z�Z)−1)]. (23)

Also, from Lemma B.1 and Lemma A.3,

E[tr(S−1(Z − Z̄)�Z(Z�Z)−1S(Z�Z)−1)]

=E[tr((Z − Z̄)�Z(Z�Z)−1S(Z�Z)−1S−1)]

=E
⎡⎢⎢⎢⎢⎣
∑
i, j

∂

∂Zi j
(Z(Z�Z)−1S(Z�Z)−1S−1)i j

⎤⎥⎥⎥⎥⎦
=E[(p − q − 2)tr((Z�Z)−1S(Z�Z)−1S−1) − tr((Z�Z)−1S)tr((Z�Z)−1S−1)]. (24)

Now, from Lemma B.7,

E[tr((Z�Z)−1S(Z�Z)−1S−1)]

=E[tr((Z�Z)−1 · E[S(Z�Z)−1S−1 | Z])]

=E
[
tr

(
(Z�Z)−1 ·

1
n − p − q − 1

((n − p − 1)(Z�Z)−1 − tr((Z�Z)−1)Iq)
) ]

=
n − p − 1

n − p − q − 1
E[tr((Z�Z)−2)] −

1
n − p − q − 1

E[(tr((Z�Z)−1))2]. (25)

Also, by putting S̃ = ((Z�Z)1/2S((Z�Z)1/2 ∼Wq(n − p,Z�Z) and using Lemma B.6,

E[tr((Z�Z)−1S)tr((Z�Z)−1S−1)]

=E[tr((Z�Z)−2S̃)tr(S̃−1)]

=E[tr((Z�Z)−2 · E[tr(S̃−1)S̃ | Z])]
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=E
[
tr((Z�Z)−2

(
n − p

n − p − q − 1
tr((Z�Z)−1)(Z�Z) −

2
n − p − q − 1

Iq

) ]
=

n − p
n − p − q − 1

E[(tr((Z�Z)−1))2] −
2

n − p − q − 1
E[tr((Z�Z)−2)]. (26)

Thus, by substituting (25) and (26) into (24),

E[tr(S−1(Z − Z̄)�Z(Z�Z)−1S(Z�Z)−1)]

=(p − q − 2)
(

n − p − 1
n − p − q − 1

E[tr((Z�Z)−2)] −
1

n − p − q − 1
E[(tr((Z�Z)−1))2]

)
−

(
n − p

n − p − q − 1
E[(tr((Z�Z)−1))2] −

2
n − p − q − 1

E[tr((Z�Z)−2)]

)
=
(n − p − 1)(p − q − 2) + 2

n − p − q − 1
E[tr((Z�Z)−2)] −

n − q − 2
n − p − q − 1

E[(tr((Z�Z)−1))2]. (27)

Substituting (23) and (27) into (22), we obtain (21).
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