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Inference of mean structure is an important problem in time series analysis. Various tests have been developed to
test for different mean structures, for example, the presence of structural breaks, and parametric mean structures.
However, many of them are designed for handling specific mean structures, and may lose power upon violation
of such structural assumptions. In this paper, we propose a new mean stationarity test built around the signal
variance. The proposed test is based on a super-efficient estimator which could achieve a convergence rate faster
than

√
n. It can detect non-constancy of the mean function under serial dependence. It is shown to have promising

power, especially in detecting hardly noticeable oscillating structures. The proposal is further generalized to test
for smooth trend structures and relative signal variability.
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1. Introduction

Inference of mean stationarity has been widely studied in the literature. It can be divided into various
categories according to the structure of alternative hypothesis H1. The single change point alternative
hypothesis has been vastly studied. Popular tests include the Kolmogorov–Smirnov (KS) change point
test and its variants (Crainiceanu and Vogelsang, 2007, Csörgő and Horváth, 1997, Górecki, Horváth
and Kokoszka, 2018, Horváth, Kokoszka and Steinebach, 1999, Juhl and Xiao, 2009), and the self-
normalized (SN) KS test (Shao and Zhang, 2010). A natural extension is the multiple-change-point
alternative hypothesis. When the number of change points J is specified, existing tests include Bai and
Perron (1998), and Antoch and Jarušková (2013). When J is not specified, one can use the unsuper-
vised SN change point test (Chen, Wang and Wu, 2022, Cheng and Chan, 2023, Jiang, Zhao and Shao,
2022, Zhang and Lavitas, 2018) and wild binary segmentation (Fryzlewicz, 2014). On the other hand,
some literatures are interested in the stability of the smooth time-varying mean; see, e.g., the mass ex-
cess test of relevant change in mean (Dette and Wu, 2019). The inference of mean stationarity with the
incorporation of both change point structure and time-varying mean structure has been studied as well;
see, e.g., mean constancy test (Dalla, Giraitis and Phillips, 2015, Wu, 2004). Other mean stationarity-
related literatures include tests for monotonic trend (Wu, Woodroofe and Mentz, 2001), construction of
simultaneous confidence bands for trend (Wu and Zhao, 2007), Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) stationarity test and its generalizations (Hobijn, Franses and Ooms, 2004, Kwiatkowski et al.,
1992), Priestley–Subba Rao (PSR) test (Priestley and Subba Rao, 1969) and test for parametric assump-
tions of trends (Chen and Wu, 2019, Zhang and Wu, 2011).

This paper proposes a measure of mean stationarity, namely the signal variance (SV) formally de-
fined in (3), and a difference-based method to conduct statistical inference on the mean stationarity of
time series. The proposed method incorporates both change points structure and time-varying mean
structure while requiring mild assumptions on the observed time series. The remaining parts of the
paper are organized as follows. In Section 2, we shall discuss the mathematical setup of the problem
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and the underlying framework for the asymptotic theories. In Section 3, we define aggregated vari-
ability and SV, and discuss the proposed estimator and the underlying motivation. In Section 4, a new
test for mean stationarity and its extensions are given. The proposed mean-invariance test (MIT), trend
stationary test, relative variability test, marginal relative variability test, are defined in (9), (15), (19),
and (25), respectively. In Section 5, we discuss the implementation issues. In Section 6, finite sample
performances are demonstrated.

2. Problem formulation

2.1. Notation

Throughout the paper, the following notation is adopted. Let N = {1,2, . . .},N0 = N ∪ {0}, and
R
+ = (0,∞). For any statement A, 1(A) denotes the indicator function of A, i.e., 1(A) = 1 if A is true,

and 1(A) = 0 otherwise. For any {an ∈ R+}n∈N and {bn ∈ R+}n∈N, an � bn means there exists C > 0
such that 1/C ≤ an/bn ≤ C; an � bn or an = o (bn) means an/bn → 0; an � bn or an =O (bn) means
there exists C > 0 such that an/bn ≤ C for all large n. Convergence in probability and in distribu-

tion are denoted by “
pr
→” and “

d→”, respectively. For a random variable X , denote ‖X ‖p = E (|X |p)1/p ,
where p ≥ 1. By convention, ‖X ‖ = ‖X ‖2. Denote X ∈ Lp if ‖X ‖p < ∞. Independent and identi-
cally distributed (i.i.d.) random variables X1, . . . ,Xn following a distribution F are denoted by Xi

IID∼ F.
For any sequence of variables A1, . . . ,An, denote Ān =

∑n
i=1 Ai/n. For any estimator θ̂ of θ, denote

Bias(θ̂; θ) = Bias(θ̂) = E(θ̂) − θ and MSE(θ̂; θ) =MSE(θ̂) = E(θ̂ − θ)2. A function f : [0,1] → R is said
to be of bounded variation if

V( f ) := sup
P∈P

{
nP∑
i=1

| f (xi) − f (xi−1)|
}
<∞,

where the supremum is taken over P which is the set of all partitions of [0,1].

2.2. Model

Let the observed time series {Xi}ni=1 be generated from the signal-plus-noise model:

Xi = μi + Zi, i = 1, . . . ,n, (1)

where the deterministic signals {μi}ni=1 and the noises {Zi}i∈Z are not directly observable. Denote
μi = μ(i/n) for i = 1, . . . ,n, where μ : [0,1] → R is a mean function that admits the following form.

Assumption 2.1. The mean function μ(·) is the sum of a Lipschitz continuous function c(·) and a step
discontinuous function s(·), i.e.,

μ(t) = c(t) + s(t), s(t) =
J∑
j=0

ξj1

(
Tj

n
≤ t <

Tj+1

n

)
, (2)

where J is the number of discontinuities, 1 ≡ T0 < T1 < · · · < TJ < TJ+1 ≡ n + 1 are the times of
discontinuities, and ξ0, . . . , ξJ are the step sizes such that ξj − ξj−1 � 0 for all 1 ≤ j ≤ J.
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Assumption 2.2. The discontinuities of the mean function μ(·) are not closely packed in the sense that
min0≤ j≤J

		Tj+1 −Tj

		� �, where � ∈ N is a parameter to be specified.

Assumption 2.1 is a general setting asserting that the mean function μ(·) is a piecewise Lipschitz
continuous function with J pieces. Similar settings have been used in other related work; see, e.g.,
Wu and Zhao (2007) and Dalla, Giraitis and Phillips (2015). Assumption 2.2 controls the frequency
of jumps such that μ(·) does not fluctuate too frequently. The parameter � may vary in different cases,
thus, � is specified when Assumption 2.2 is needed.

In view of (2), we assess μ(·) through two measures, C and S, which denote the smoothness of c(·)
and the maximum step magnitude of s(·), respectively. Mathematically,

C = sup
0≤t′<t≤1

				c(t) − c(t ′)
t − t ′

				 and S = sup
j=1,...,J

|ξj − ξj−1 |.

Note that C = 0 indicates the absence of continuous trend effect, and S = 0 or J = 0 indicates the
absence of step discontinuities. The mean function μ(·) is constant if C =S = 0.

2.3. Serial dependence structure

We follow the dependence measure framework developed by Wu (2005). It is noted that classical for-
mulations of dependence measures, including strong mixing conditions of various types (Dedecker
and Prieur, 2005, Rosenblatt, 1956) and near-epoch dependence conditions (Andrews, 1995, Ibragi-
mov, 1962), are also widely adopted; see Bradley (2005) for a survey. Developing theories based on
these frameworks are also interesting, however, it is beyond the scope of this article and is left for future
research. Suppose that Zi = g(Fi) for some measurable function g where Fi = (. . . ,εi−1,εi) is the shift
process of i.i.d. innovations {εi}i∈Z. Define the projection operator by Pi · := E(· | Fi) − E(· | Fi−1).
For p ≥ 1, define the physical dependence measure and its aggregated value by

ωp,i :=


Zi − Zi, {0}




p

and Ωp :=
∞∑
i=0

ωp,i,

respectively, where Fi, {0} := (F−1,ε
′
0,ε1, . . . ,εi), ε′0 be an i.i.d. copy of εj , and Zi, {0} := g(Fi, {0}). We

impose the following weak dependence condition on the noises {Zi}i∈Z.

Assumption 2.3. The noise sequence {Zi}i∈Z is a mean-zero strictly stationary time series such that
Z1 ∈L4+ι for some ι > 0, and Ω4 <∞.

The finiteness of Ω4 provides a mild and easily verifiable condition for asymptotic theory; see Wu
(2007, 2011). Moreover, Assumption 2.3 implies the absolute summability of the autocovariances of
{Zi}i∈Z, i.e.,

∑
k∈Z |γk | <∞, where γk = E (Z0Zk), which further implies the existence of the asymp-

totic variance v = limn→∞ nVar(Z̄n) =
∑

k∈Z γk and assuring some nice properties.

3. Measure of variability of mean function

3.1. Signal variance and aggregated variability

The asymptotic variance v measures the stochastic variability of the noises {Zi}ni=1, but not the intrinsic
variability of the signals {μi}ni=1 because nVar(X̄n) → v is invariant to the sequence {μi}ni=1. As a result,
v fails to measure the overall observed variability. Therefore, we need a new variability measure.
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A natural measure of variability of μ(·) is the signal variance (SV) defined as

θ =

∫ 1

0
{μ(t) − μ̄}2 dt, (3)

where μ̄ =
∫ 1

0 μ(t)dt. It is clear that μ(·) is constant if and only if θ = 0. Being a one number summary
of the functional characteristic, θ is useful for assessing the variability of μ(·).

The SV θ can be represented in terms of variance. We introduce randomly permuted signals Mi =

μ(Ui) for i = 1, . . . ,n, where U1, . . . ,Un
IID∼ Unif(0,1) are independent of {Zi}i∈Z, and Unif(0,1) stands

for the uniform distribution on (0,1). Then limn→∞ nVar(M̄n) = θ. In other words, SV can be interpreted
as the asymptotic variance of the randomly permuted signals, i.e., the randomness is generated by
permutation. So the mean-permuted time series becomes X∗

i = μ(Ui) + Zi . It allows us to define the
aggregated variability as

V = lim
n→∞

nVar
(
X̄∗
n

)
= v + θ, (4)

which captures both the stochastic variability from the noises and intrinsic variability from the signals.
Besides θ, there are other measures of variability, e.g., θq =

∫ 1
0 |μ(t) − μ̄|q dt, where q ≥ 1. However,

θ = θ2 as defined in (3) has a more direct connection to the asymptotic variance than the other measures
in the class

{
θq : q ≥ 1

}
, and is chosen to measure the variability of mean in the literature; see, e.g.,

Dalla, Giraitis and Phillips (2015). The aggregated variability V serves as a unified measure for the
variability of the time series, and our goal is to separate the SV from the aggregated variability. It will
be seen shortly in Section 3.2 that our parameter of interest, θ, can be readily estimated through the use
of differencing.

3.2. Difference-based estimator of θ

3.2.1. Motivation

Our target is to find a good estimator for θ. As θ is a measure of the second-order variability of the
mean function, it is natural to use second-order moments of the data to estimate θ. One possible choice
is the sample autocovariance at lag k ∈ Z∩(−n,n), i.e., γ̂k =

∑n
i= |k |+1(Xi − X̄n)(Xi−|k | − X̄n)/n. If μ(·) is

a constant function, then γ̂k
pr
→ γk under standard regularity conditions; see, e.g., Brockwell and Davis

(1991). However, μ(·) is a non-constant function. The estimator γ̂k is biased upward by an amount θ,
i.e., γ̂k

pr
→ γk + θ; see Proposition 3.1. This typically unwanted bias turns out to be a useful feature in

our context because θ is our target estimand. It remains to find a consistent estimator γ̂(m)
k

(say) for

the nuisance parameter γk , so that γ̂k − γ̂(m)
k

is consistent for θ. We propose to construct γ̂(m)
k

by using
the differencing technique introduced below. Define, for m ≥ 1, a sequence {dj ∈ R}mj=0 is said to be
an mth order difference sequence if

∑m
j=0 dj = 0. For m = 0, denote d0 = 1 as the 0th order difference

sequence. Define

Δm =
∑
|k | ≤m

δ2
k, where δk =

m−|k |∑
j=0

djdj+ |k | .

For any lag h ∈ N, the mth order difference statistics {Di}ni=mh+1 are defined as

Di =

m∑
j=0

dj
(
Xi−jh − X̄n

)
=

{
Xi − X̄n, if m = 0;∑m

j=0 djXi−jh, if m > 0. (5)
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If δ0 = 1, then {dj }mj=0 and {Di}ni=mh+1 are said to be normalized. We assume δ0 = 1 throughout the
paper. Define a potential estimator of γk as

γ̂
(m)
k
=

1
n

n∑
i=mh+ |k |+1

DiDi−|k |, m ≥ 0. (6)

When m = 0, γ̂(0)
k
= γ̂k reduces to the usual sample autocovariance at lag k. When m > 0, the difference

statistics {Di}ni=mh+1 are approximately centered, i.e., E(Di) ≈ 0. Thus, γ̂(m)
k

is expected to be consistent

for γk . The asymptotic properties of γ̂(m)
k
,m ≥ 0 are provided in Proposition 3.1.

Proposition 3.1. Let m ≥ 0 be fixed, |k | � � and h � �, where � satisfies 1/� + �/n = o(1). Let Assump-
tions 2.2 and 2.3 hold. Then, as n →∞,

E
(
γ̂
(m)
k

)
= γk + θ1(m = 0) + R1,1, Var

(
γ̂
(m)
k

)
= R1,2,

where

R1,1 = −
|k | +mh

n
γk +

(
1 − |k | +mh

n

) m∑
s=1

δs (γk+sh + γk−sh)

+O
[
�

n

{
(C +SJ)21(m = 0) + C2�

n
+S2J

}]
,

R1,2 =

{
O{(C +SJ + 1)2/n}, if m = 0;
O{(C�/n +S + 1)2/n}, if m > 0.

From Proposition 3.1, the mean squared error (MSE) of γ̂(m)
k

is given by

E
[
γ̂
(m)
k

− {γk + θ1(m = 0)}
] 2
= R2

1,1 + R1,2,

which implies that γ̂(m)
k

pr
→ γk + θ1(m = 0) if C +SJ = o(

√
n/�). Based on Proposition 3.1, we can

construct a preliminary estimator for θ as

θ̂
(m)
k
= γ̂

(0)
k

− γ̂(m)
k
, m ≥ 1. (7)

Under the conditions in Proposition 3.1, and C +SJ = o(
√

n/�), we have θ̂(m)
k

pr
→ θ.

3.2.2. Proposed estimator of θ

In Section 3.2.1, we can construct many preliminary estimators of θ, e.g., θ̂(m)
0 , θ̂

(m)
1 , . . . , θ̂

(m)
�

for some

m ≥ 1. However, using any single θ̂(m)
k

is inefficient. It motivates us to aggregate them to obtain a better
estimator for θ. We propose a kernel average estimator for θ, which is defined as

θ̂(m) =

∑
|k | ≤� K(k/�)θ̂(m)

k∑
|k | ≤� K(k/�) , (8)
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where � ∈ N ∩ [1,n), and K : R→ R is a kernel function such that K(1) = 0, K(t) = K(−t) for all t ∈ R
and K(t) = 0 for |t | > 1. Denote κ =

∫ 1
−1 K(t)dt and κ� =

∑
|k | ≤� K(k/�)/�. If the rectangular kernel

K(t) = 1(|t | ≤ 1) is used, then θ̂(m) reduces to the simple average of {θ̂(m)
k

: k = 0,±1, . . . ,±�}.
Now, we derive the asymptotic MSE of θ̂(m) for m ≥ 1. In our asymptotic theories, we require the

following assumption.

Assumption 3.1. The kernel K(·) satisfies that (i) t �→ K(t) is Lipschitz continuous on (−1,1), and (ii)
there exist q ∈ N and B � 0 such that limt↓0{K(t) − K(0)}/|t |q = B.

Theorem 3.2. Let m ≥ 1 be fixed, 1/� + �/n = o(1) and h/� =: λ ∈ [2,∞). Let Assumptions 2.2, 2.3
and 3.1 hold and uq :=

∑
k∈Z |k |q |γk | <∞ for some q ∈ N. Denote A =

∫ 1
0 K2(u)du and M =C�1/2 +

C2J�2/n +SJ�1/2 +S2J3�2/n. Then, as n →∞,

E
(
θ̂(m)

)
− θ = O

{
(C +SJ)2

n
+
�

n

(
C2�

n
+S2J

) }
+ o

(
1

�q+1

)
,

Var
(
θ̂(m)

)
=

4v2 A (Δm − Δ0)
n�κ2

�

+
4vθ

n
+ R2,

where R2 satisfies the following properties: (i) R2 = 0 if θ = 0; (ii) R2 = o{1/(n�)} if M = o(1); and
(iii) R2 = o(1/n) if M/� = o(1).

Implications and remarks of Theorem 3.2 are stated as follows:

1. The convergence rate of Var(θ̂(m)) depends on whether θ = 0. If θ > 0, then Var(θ̂(m)) ∼
4vθκ2/(nκ2

� ) � θ/n provided that C2 = o{min(n1/2,n3/2/�2)}, S2J = o(n1/2/�) and S2J2 =

o(n1/2). On the other hand, if θ = 0, then Var(θ̂(m)) ∼ 4v2 A(Δm − Δ0)/(n�κ2
� ) � 1/(n�) � 1/n.

It suggests that θ̂(m) achieves super-efficiency at θ = 0. This phenomenon is similar to the well-
known Hodge’s estimator. We will show that the super-efficiency achieved by θ̂(m) is not a patho-
logical property but an important attribute for our proposed mean invariance test in Section 4.

2. To achieve super-efficiency at θ = 0 in terms of MSE, the squared bias of θ̂(m) must be negligible
relative to the variance, i.e., Bias(θ̂(m); θ)2 � Var(θ̂(m)). In this case, we need to select � such that
n1/(1+2q) � � � n. Since the order of magnitude of Bias(θ̂(m); θ) increases with � when θ � 0,
we recommend using the minimal order of � so that the squared bias is negligible for the largest
class of mean function. In practice, we suggest choosing � = �ϕn1/(1+2q)� for some ϕ ∈ R for
the construction of T̂ (m)

MIT . According to our simulation experiments, choosing ϕ = 1 yields good
results. By default, we set ϕ = 1.

3. By introducing the parametrizations C � nc,S � ns and J � nj , where c,s ∈ R and j ∈ [0,1],
we illustrate the allowable region for C, S and J when our recommended value � =O(n1/(1+2q))
is used. In particular, consider q = 2. To achieve R2 = o{1/(n�)}, we need to have (i) 2c+j < 3/5,
(ii) c < −1/10, (iii) 2s + 3j < 3/5, and (iv) s + j < −1/10. On the other hand, to achieve
R2 = o(1/n), we need to have (i) 2c + j < 4/5, (ii) c < 1/10, (iii) 2s + 3j < 4/5, and (iv)
s +j < 1/10. In particular, if C +S =O(1), then we allow J = o(n1/10) for R2 = o(1/n).

4. The theorem holds as long as λ ≥ 2. In this case, the bias and variance admit neat and nice forms.
Considering the finite sample performance, we recommend using λ = 2 in practice as it leads to
the best differencing effect. If λ < 2, then Var(θ̂(m)) depends on {dj }mj=0 not only through Δm but
also a more complicated function of {dj }mj=0. Consequently, a case-by-case derivation is needed.



Signal variance mean stationarity test 1237

5. One class of kernels that satisfies Assumption 3.1 is K(t) = (1 − |t |q)1(|t | ≤ 1), where q ∈ N is
the characteristic exponent; see Parzen (1957) and Chan and Yau (2017). In particular, it reduces
to the well-known Bartlett kernel when q = 1. See also Vats and Flegal (2022), Chan and Yau
(2023), and Liu and Chan (2023) for more kernel choices.

6. To implement the proposed estimator, we suggest choosing λ = 2, q = 2, K(t) = (1− |t |2)1(|t | ≤ 1),
ϕ = 1 and � = �n1/5�. The choices of the differencing order m and the optimal difference sequence
{dj }mj=0 can be found in Section 5.1. Section 6.4 presents some sensitivity analyses.

Example 3.1. To illustrate, we compare the preliminary estimator with our proposed kernel average
estimator using different m. We generate the noises {Zi}ni=1 from an autoregressive moving average
(ARMA) model:

Zi = 0.5Zi−1 + 0.5εi−1 + εi,

where εi
IID∼ N(0,1). We consider the mean function μ(t) = Δ cos(5πt) with different Δ so that θ =

0,0.001,0.005,0.01, and generate the time series {Xi}ni=1 as in (1). The left panel of Figure 1 shows

the estimation performances of the preliminary estimator θ̂(1)0 and the proposed estimators θ̂(m) for
m = 1,2,3. We see that the results are in line with Proposition 3.1 and Theorem 3.2. The proposed
estimators can achieve a convergence rate faster than

√
n, the convergence rate of preliminary estimator,

in estimation of θ. This shows that the proposed estimators are super-efficient relative to the preliminary
estimators.

4. A new test for mean invariance

4.1. Test for mean invariance

Suppose we want to test H0 : θ = 0, which is equivalent to H0 : “μ(·) is a constant function”, against
H1 : θ > 0. We propose a test for mean invariance based on the estimator θ̂(m) because it achieves
super-efficiency under H0. Theorem 4.1 concerns the asymptotic null distribution of θ̂(m).

Theorem 4.1. Let m ≥ 1 be fixed, uq <∞ for some q ∈ N, n1/(1+2q) � �� n and h/� = λ ∈ [2,∞). Let
Assumptions 2.2, 2.3 and 3.1 hold. If θ = 0, then, as n →∞,√

n�κ2
�

(
θ̂(m) − 0

) d→ N
(
0,4A (Δm − Δ0) v2

)
.

Based on Theorem 4.1, we can construct a mean invariance test (MIT) statistic T̂ (m)
MIT for testing

H0 : θ = 0 as follows:

T̂ (m)
MIT =

θ̂(m)√{
4
(
v̂(m)) 2 A (Δm − Δ0)

}
/n�κ2

�

, (9)

where v̂(m) =
∑

|k | ≤� K(k/�)γ̂(m)
k

is a consistent estimator of v under both H0 and H1; see Chan (2022a).
Also see Casini and Perron (2021), Casini (2023) and Chan (2022b) for some alternative estimators of
v. Remark 4.2 discusses using θ̂(m) for testing θ ≤ θ0 for some θ0 > 0.

One important observation is that the test statistic T̂ (m)
MIT in (9) does not utilize the always correct

standard error {Var(θ̂(m))}1/2 or its estimator for standardization. Instead, it uses a standardizer that
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Figure 1. (a) Estimation performance (Example 3.1) and (b) testing performance (Example 4.1) are shown in the
first and second columns of plots, respectively, where the preliminary estimator θ̂(1)0 and the proposed estimators

θ̂(m) with m ∈ {1,2,3} are computed. In the first column of plots, the gray dashed lines represent reference lines
of slope −1 designating

√
n-consistent estimators. The lines that are steeper than the reference lines correspond to

super-efficient estimators.
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is only correct under H0. Interestingly, it leads to a valid and more powerful test; see Remark 4.1 for
details. The asymptotic validity and consistency of the proposed test statistic T̂ (m)

MIT are formally stated
in Corollary 4.2.

Corollary 4.2. Let m ≥ 1 be fixed, uq <∞ for some q ∈ N, n1/(1+2q) � �� n and h/� = λ ∈ [2,∞). Let
Assumptions 2.2, 2.3 and 3.1 hold.

1. Under H0, T̂ (m)
MIT

d→ N(0,1) as n →∞.

2. Under H1, T̂ (m)
MIT

pr
→∞ as n →∞ for any fixed θ > 0.

Corollary 4.2 provides theoretical justification of our proposed mean invariance test. The most ap-
pealing feature of our proposed test is that under H0, it converges to a standard normal distribution at a
rate of

√
n� shown in Theorem 4.1. The accelerated rate of convergence makes our proposed test stands

out from tests based on
√

n-consistent estimator of θ. Example 4.1 below illustrates this phenomenon.

Example 4.1. We revisit the experiments in Example 3.1. In this example, we compute the power
functions of the tests T̂ (m)

MIT based on the estimators θ̂(m), for m = 1,2,3, We also compare it with the
test based on the preliminary estimator θ̂(1)0 , i.e., we reject H0 if θ̂(1)0 > cn, where the critical value cn
satisfies P(θ̂(1)0 > cn) = 0.05 under H0. The value cn is obtained through simulation. The right panel
of Figure 1 shows the theoretical power functions of the above tests. We see that the proposed tests
perform significantly better than the preliminary test, and the powers of the proposed tests increase
with m.

Remark 4.1. From Theorem 3.2, a naive test statistic is

T̂
(m)
MIT =

θ̂(m) − 0√
Var(θ̂(m))

=
θ̂(m)√

4(̂v(m))2 A(Δm − Δ0)/(n�κ2
�
) + 4v̂(m)θ̂(m)κ2/(nκ2

�
)
,

which always utilizes the true value of {Var(θ̂(m))}1/2 for standardization no matter under H0 or H1.

Note that both T̂ (m)
MIT and T̂

(m)
MIT are asymptotically N(0,1) under H0, and their normalizing constants are

approximately the same since θ̂(m) is close to 0. However, under H1, since θ̂(m) → θ > 0, the normaliz-

ing constant of T̂
(m)
MIT increases with θ̂(m), while that of T̂ (m)

MIT remains the minimal value. So, T̂ (m)
MIT has the

advantage of achieving higher power under H1 over T̂
(m)
MIT. Thus T̂ (m)

MIT is suggested for testing H0 : θ = 0
against H1 : θ > 0.

Remark 4.2. Sometimes, we may allow certain amount of fluctuations of the underlying mean func-
tion, and test whether the mean is practically non-constant:

H ′
0 : θ ≤ θ0 against H ′

1 : θ > θ0, (10)

where θ0 > 0 is a pre-specified null threshold. We call this type of test relevant mean varying test.
However, Theorem 4.1 cannot be applied in this case due to the existence of an additional non-negligible
term involved in the asymptotic variance which has a larger order and is independent of m when μ(·)
is non-constant; see Theorem 3.2. A similar limiting result holds under Assumptions 2.2, 2.3 and 3.1,
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m ≥ 1 is fixed, uq < ∞ for some q ∈ N, n1/(2+2q) � � �
√

n and h/� = λ ∈ [2,∞). Specifically, when
θ0 ∈ R+ is the true SV of μ(·), we have√

nκ2
�

(
θ̂(m) − θ0

) d→ N
(
0,4vθ0κ

2
)
, (11)

as n →∞. However, since specifying θ0 can be practically difficult, we recommend the tests in Sections
4.3.2 and 4.3.3 for testing the relevant structural changes.

4.2. Power under local alternatives

Consider a sequence of local alternatives given by H(c)
1 : θ = t0/�c for some t0,c ∈ R+. Theorem 4.3

shows that the proposed test admits different forms of convergence under different regimes.

Theorem 4.3. Let Assumptions 2.2, 2.3 and 3.1 hold. Let m ≥ 1 be fixed and h/� = λ ∈ [2,∞). Consider
a sequence of local alternatives in the form of H(c)

1 .

1. a) If c > 1, uq <∞ for some q ∈ {2,3,4, . . .} and 1/� + �/n1/3 = o(1), then as n →∞,√
n�κ2

�

(
θ̂(m) − t0

�c

) d→ N
(
0,4A (Δm − Δ0) v2

)
.

b) If 0 < c < 1, uq <∞ for some q ∈ N and 1/� + �/n1/(2+c) = o(1), then as n →∞,√
n�cκ2

�

(
θ̂(m) − t0

�c

) d→ N
(
0,4vt0κ2

)
.

2. Non-trivial local limiting power is achieved when �c =
√

n�, i.e., θ = t0/
√

n�. In particular, if the
nominal size is α ∈ (0,1), then the local power function is given by

πc(t0) := lim
n→∞

Pθ=t0/�c
(
T̂ (m)

MIT > Φ
−1(1 − α)

)
= 1 −Φ

(
Φ−1(1 − α) − t0κ√

4A (Δm − Δ0) v2

)
,

whereΦ(·) is the distribution function of N(0,1), and Pθ=θ1 denotes the probability measure when
θ = θ1.

Theorem 4.3 traces the change in convergence across different local alternatives. The difference in
the requirement of � arises from controlling the convergence rate of the θ. It suggests that our test
achieves

√
n�-convergence not only for H0 : θ = 0, but also for a sequence of local alternatives in the

form of H(c)
1 when c > 1. Moreover, the result is consistent with (11) in the sense that as c ↓ 0, it reduces

back to the case of non-local alternative. On the other hand, the case for c = 1 is more complicated.

We remark that
√

n�κ2
�
(θ̂(m) − t0/�) = Op(1); see Section A.5 in the Supplementary Material (To and

Chan, 2024) for details. Using this property together with Theorem 4.3 (1b), we can show that the local
power function is trivial, i.e., πc(t0) = 1, for any 0 < c ≤ 1. Consequently, only the case c > 1 leads to a
non-trivial local limiting power.
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4.2.1. Detectable regions

Recall that the test statistics for the KPSS test (Kwiatkowski et al., 1992) and KS test (Csörgő and
Horváth, 1997) are

T̃KPSS =
1
vn2

n∑
k=1

{
k∑
i=1

(
Xi − X̄n

) }2

and T̃KS = sup
1≤k≤n

					 1
√
vn

k∑
i=1

(
Xi − X̄n

) 					 ,
respectively. Here we assume v is known for simplicity. Also define the known-v version of our pro-
posed MIT statistic by

T̃ (m)
MIT =

θ̂(m)√{
4v2 A (Δm − Δ0)

}
/n�κ2

�

.

Consider the class of mean function of the form

μ(t) =
N∑
j=1

gj

(
t − τj

Lj

)
Sj, (12)

where N is the number of segments, Sj measures the amplitude of each segment, 1 ≡ τ1 < τ2 < · · · <
τN < τN+1 ≡ n are the endpoints of each segment, Lj = τj+1 − τj , and g1, . . . ,gN , are some template
mean functions that are of bounded variation and satisfy gj (t) = 0 for all t � [0,1],∫ 1

0
gj (t)dt = 0,

∫ s

0
gj (t)dt � 0, and

∫ 1

0
g2
j (t)dt = 1, (13)

for all s ∈ (0,1) and j = 1, . . . ,N . Define S = maxj=1,...,N
		Sj

		 and L = maxj=1,...,N Lj . The class of
mean functions is defined in a way so each segment has zero mean and unit signal variance for stan-
dardization. We allow N,S1, . . . ,SN ,L1, . . . ,LN to be dependent on n, but the functions g1, . . . ,gN are
independent of n. By construction, this class of mean function “oscillates” for N times, and when N
is large, the oscillation effect will be masked by the noises. So, it is challenging. Figure 2 provides an
example of such mean function.

Proposition 4.4. Let the conditions in Theorem 4.1 hold, and μ(·) admits the form in (12). Then, as
n →∞,

T̃ (m)
MIT =C

√
n�

N∑
j=1

S2
j Lj

∫ 1

0
g2
j (s)ds +O

( √
�

n3/2
N2S2

)
+Op

(√
�

n
NS + 1

)
,

T̃KPSS = AKPSS +Op

(√
AKPSS + 1

)
,

AKS ≤ T̃2
KS ≤ AKS +Op

(√
AKS + 1

)
,

where C = κ�/
√

4v2 A (Δm − Δ0), and

AKPSS = n
N∑
j=1

S2
j L3

j

∫ 1

0

{∫ t

0
gj(s)ds

}2

dt,
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Figure 2. Illustration of μ(t) satisfying (12) with N = 4 segments. The dashed lines denote the template mean
functions gj and the solid lines denote the mean functions after scaling by their corresponding Sj for j = 1,2,3,4.

AKS = n sup
1≤ j≤N

S2
j L2

j sup
0≤t≤1

{∫ t

0
gj(s)ds

}2

.

To illustrate the results in Proposition 4.4, we consider Example 4.2 below.

Example 4.2. Consider q = 2 and � =O(n1/(1+2q)) =O(n1/5). We study the following three cases.

1. Case 1: Sparse and weak signals. Let
		Sj

		 = S1( j ≤ K) and Lj = 1/
√

n for all j = 1, . . . ,N .
2. Case 2: Sparse and short signals. Let

		Sj

		 = 1( j ≤ K) and Lj = L for all j = 1, . . . ,N .
3. Case 3: Weak and short signals. Let

		Sj

		 = S1( j = 1) and Lj = L for all j = 1, . . . ,N .

If we introduce the parametrizations S = nψ, L = nζ , N = nν and K = nξ , where ψ ∈ R, ζ ∈ (−1,0) and
ν,ξ ∈ (0,1), then we can find out the detectable regions, i.e., regions where the power of the test tends to
1 as n →∞, for non-stationarity by the tests using Proposition 4.4. Figure 3 visualizes the results. We
observe that the proposed test performs especially promisingly when the number of oscillations K is
large; see cases 1–2. It also demonstrates that the proposed test is able to account for hardly noticeable
variation that could possibly tend to 0 when n is large. On the other hand, for case 3, the signal only

Figure 3. The detectable non-stationarity regions of the proposed test, KPSS test and KS test under each case.
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consists of one oscillation. Our proposed test performs worse than the KS and KPSS tests when the
signal is long and weak, i.e., large L and small S. This scenario is similar to the one change point
situation and favors the KS and KPSS tests as they are specifically designed for handling such mean
structure. In a nutshell, the proposed test is more versatile than the KPSS test and KS test in most cases
although none of them uniformly dominates the other two tests.

4.3. Generalizations

4.3.1. Test for smooth mean structure

Let s ∈ N0 be fixed. Suppose we want to test

H(s)
0 : ∃a0, . . . ,as ∈ R such that μ(t) =

s∑
j=0

aj t j, t ∈ [0,1], (14)

against H(s)
1 : there do not exist a0, . . . ,as ∈ R such that (14) holds. Let

θ(s) =

∫ 1

0

{
μ(t) −

(
a	0 + a	1 t + · · · + a	s ts

) }2 dt,

where

(a	0 , . . . ,a
	
s ) = arg min

(a0 ,...,as )∈Rs+1

∫ 1

0
{μ(t) − (a0 + a1t + · · · + asts)}2 dt .

The quantity θ(s) measures the signal variance after removing the best fitted sth order polynomial trend.
Hence, H(s)

0 is true if and only if θ(s) = 0. We can estimate μ(t) by μ̂s(t) =
∑s

j=0 âj t j , where âj is the
least squares estimator of a	j for each j = 0, . . . , s; see (A.24) of the Supplementary Material (To and
Chan, 2024) for a detailed formula. To test whether the true mean function is a sth order polynomial,
we apply our proposed estimator using the residuals

Ẑi = Xi −
s∑
j=0

âj

(
i
n

) j
, i = 1, . . . ,n.

Let D(m,s)
i be defined as in (5) by replacing Xi with Ẑi . Denote

γ̂
(m,s)
k

=
1
n

n∑
i=mh+ |k |+1

D(m,s)
i D(m,s)

i−|k | , m ≥ 0.

For m ≥ 1, we define an estimator of θ(s) by

θ̂(m,s) =

∑
|k | ≤� K(k/�)θ̂(m,s)

k∑
|k | ≤� K(k/�) , where θ̂

(m,s)
k

= γ̂
(0,s)
k

− γ̂(m,s)
k

.

Clearly, when s = 0, it reduces back to the original kernel estimator (8), i.e., θ̂(m,0) = θ̂(m). Theorem 4.5
extends the result in Theorem 4.1 by showing that the proposed test achieves super-efficiency not only
for testing mean stationarity, but also for testing trend stationarity.
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Theorem 4.5. Let m ≥ 1 be fixed, uq < ∞ for some q ∈ N, n1/(1+2q) � � � n and h/� = λ ∈ [2,∞).
Let Assumptions 2.2, 2.3 and 3.1 hold. Denote the least squares estimators of a	0 , . . . ,a

	
s by â0, . . . , âs ,

respectively. Under H(s)
0 with a fixed s ∈ N0, we have, as n →∞, that√

n�κ2
�

(
θ̂(m,s) − 0

) d→ N
(
0,4A (Δm − Δ0) v2

)
.

According to Theorem 4.5, our proposed test statistic for testing H(s)
0 is given by

T̂ (m,s)
MIT =

θ̂(m,s)√
4
(
v̂(m,s)

) 2 A (Δm − Δ0) /(n�κ2
�
)
, (15)

where v̂(m,s) =
∑

|k | ≤� K(k/�)γ̂(m,s)
k

. The test statistic T̂ (m,s)
MIT and T̂ (m)

MIT differ only from the input of data,

i.e., we use the observed data {Xi}ni=1 for T̂ (m)
MIT while we use the residuals {Ẑi}ni=1 for T̂ (m,s)

MIT . Similarly,

when s = 0, T̂ (m,s)
MIT reduces back to T̂ (m)

MIT , i.e., T̂ (m,0)
MIT = T̂ (m)

MIT .
The proposed trend stationarity test can be used as a goodness of fit test for determining whether a

polynomial trend model fits the observed time series dataset. We demonstrate it in a real-data example
in Appendix D of the Supplementary Material (To and Chan, 2024). Besides, the proposed method
can be easily generalized for testing other parametric trend models other than the polynomial null
hypothesis in (14).

4.3.2. Test for relative variability

To explore the extent of relevant mean non-invariance, we consider the amount of variability that the
underlying mean function contributes to the aggregated variability of the observed time series {Xi}ni=1.
Based on the aggregated variability V defined in (4), we define the relative variability φlong as follows:

φlong =
θ

V
=

θ

v + θ
, (16)

where the subscript “long” is used to emphasize the relationship of φlong with the long-run vari-
ance v. Clearly, φlong ∈ [0,1]. When φlong = 0, we have θ = 0, which means that μ(·) is a constant
function. When φlong = 1, μ(·) completely determines the behaviour of the time series. Recall, from
(4), that the aggregated variability V = v + θ can be represented as the permuted long-run variance
V = limn→∞ nVar(X̄∗

n). Hence, one can statistically interpret 1 − φlong as the proportion of the non-
permuted long-run variance v = limn→ nVar(X̄n) to the permuted counterpart V, i.e.,

Var(X̄n)
Var(X̄∗

n)
→ 1 − φlong.

Consequently, φlong = 5% means that permuting the means contributes 5% of the overall variability in
terms of the permuted long-run variance V.

In light of this phenomenon, we construct a test for relative variability to test

H long
0 : φlong ≤ φlong,0 against H long

1 : φlong > φlong,0, (17)

where 0 < φlong,0 < 1 is a prescirbed level of relative variability. In practice, it is typically more mean-
ingful to test small values of φlong,0 when testing (17) so that the influences due to the mean function
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μ(·) and the idiosyncratic noise are difficult to distinguish. So, we focus on 0 < φlong,0 ≤ 0.5. An esti-
mator for φlong can be constructed as follows:

φ̂
(m)
long =

θ̂(m)

v̂(m) + θ̂(m)
, m ≥ 1. (18)

Theorem 4.6 presents the asymptotic distribution of φ̂(m)
long.

Theorem 4.6. Let m ≥ 1 be fixed. Assume uq <∞ for some q ∈ N, � = �ϕn1/(2q+1)� for some ϕ ∈ R+,
and h/� = λ ∈ [2,∞). Let Assumptions 2.2 and 2.3 hold. Assume C, S and J are fixed. If the true
relative variability of the time series is φlong,0, then, as n →∞,

nq/(1+2q)
(
φ̂
(m)
long − φlong,0

) d→ N
(−Bvqϕ−qθ

(θ + v)2
,4AΔmϕφ2

long,0
(
φlong,0 − 1

) 2
)
,

where vq :=
∑

k∈Z |k |q γk and B is as defined in Assumption 3.1.

Based on Theorem 4.6, we construct a test statistic for testing (17) in the following way:

T̂ (m)
long =

nq/(1+2q) max
(
φ̂
(m)
long − φlong,0,0

)
+
(
Bv̂qϕ−q θ̂(m)

)
/
(
θ̂(m) + v̂(m)

) 2√
4AΔmϕφ2

long,0

(
φlong,0 − 1

) 2
, (19)

where v̂q =
∑

|k | ≤� |k |q γ̂
(m)
k

is a consistent estimator of vq . Notice that the function p �→ p2(p − 1)2
is monotonically increasing on [0,0.5]. Hence in (19), we use φlong,0, the null value of φlong, as the
normalizing constant so that the test can achieve higher power, similar to that in Remark 4.1. In practice,
H long

0 is rejected at size α if T̂ (m)
long > Φ

−1(1 − α). This test is asymptotically valid and consistent as
n →∞.

4.3.3. Test for marginal relative variability

The relative variability defined in Section 4.3.2 concerns the long term contribution of the noise vari-
ability to the observed data. Besides the long term relative variability, we also consider the short term
(marginal) contribution of the noise variability to the observed data. Define the marginal relative vari-
ability as

φshort =
θ

θ + γ0
. (20)

Clearly, φshort ∈ [0,1] as in φlong. Similar to Section 4.3.2, one may statistically interpret 1 − φshort

as the proportion of non-permuted marginal variance γ0 = Var(Xi) to the permuted marginal variance
Var(X∗

i ) → θ + γ0 for any i, i.e.,

Var(Xi)
Var(X∗

i )
→ 1 − φshort.

Figure 4 visually compares the quantities φlong and φshort. It shows that φlong and φshort may not equal
in the time series setting. Intuitively, φlong takes all observations X1, . . . ,Xn into account and tries to
describe the relative variability by the average. On the other hand, φshort concerns the relative variability
at one specific time point only.
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Figure 4. A realization of the time series Xi = μi + ρ (Xi−1 − μi−1) + εi is plotted on the left, middle and right
panels for ρ ∈ {−0.8,0,0.8}, respectively, where n = 200, εi

IID∼ N(0,1) and μi = C sin(5πi/n) for some scaling
constant C > 0 to ensure φlong = 0.05 in each case. When ρ ∈ {−0.8,0,0.8}, we have φlong > φshort, φlong = φshort,
and φlong < φshort, respectively. The red line denotes the mean function in each case.

In view of Proposition 3.1, we know that γ̂(0)0 is a consistent estimator of θ + γ0. So, we propose to
estimate φshort by

φ̂
(m)
short =

θ̂(m)

γ̂
(0)
0

, m ≥ 1. (21)

The asymptotic behavior of φ̂(m)
short is more complicated than φ̂(m)

long because θ̂(m) and γ̂(0)0 are structurally

different, unlike φ̂(m)
long, where θ̂(m) and v̂(m) are structurally similar. To obtain the asymptotic distri-

bution of φ̂(m)
short, we need to first study the joint asymptotic distribution of θ̂(m) and γ̂(0)0 . We begin by

considering the random vector Qi = (Zi,Z2
i −γ0)T for i ∈ Z. Assume that {Qi}i∈Z satisfies the following

regularity condition on the covariance structure:

Assumption 4.1. There exist λ0 > 0 and L0 ∈ N such that for all t ≥ 1 and L ≥ L0,

λmin

(
Var

(
t+L∑
i=t+1

Qi

) )
≥ λ0L,

where λmin(A) denotes the smallest eigenvalue of A.

Assumption 4.1 is indeed the condition (2.B) of Karmakar and Wu (2020), which guarantees a lower
bound on eigenvalues of covariance matrices of increment processes. For i ∈ N0 and p ≥ 1, define the
uniform functional dependence measure

ω̄p,i = sup
j∈Z



Xj − Xj , { j−i }



p
. (22)

We impose the following weak dependence conditions on {Qi}i∈Z.

Assumption 4.2. Ω̄p =
∑∞

i=0 ω̄p,i <∞, where p = (4 + ι)/2 > 2, ι is as defined in Assumption 2.3.
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Assumption 4.3. There exists χ > χ0 =
{
p2 − 4 + (p − 2)

√
p2 + 20p + 4

}
/8p > 0 and β > 0 such that

Ω̄N ,p =

∞∑
i=N

ω̄p,i =O
(
N−χ(log N)−β

)
, (23)

as N →∞, where p is defined as in Assumption 4.2.

Assumption 4.2 implies short range dependence. In Assumption 4.3, Ω̄N ,p is a measure of the tail
cumulative dependence. A larger χ or β implies weaker dependence; see Karmakar and Wu (2020).
Using the above framework for asymptotic theories, we can establish the joint asymptotic distribution
of θ̂(m) and γ̂(0)0 , as shown in Theorem 4.7.

Theorem 4.7. Let m ≥ 1 be fixed, uq <∞ for some q ∈ N, h/� = λ ∈ [2,∞), and �/n1/2 + 1/� = o(1).
Let Assumptions 2.2 and 2.3 hold. Further let Assumptions 4.1, 4.2 and 4.3 hold for {Qi}i∈Z. Assume
C, S and J are fixed. Then, as n →∞,

√
n

( (
θ̂(m)

γ̂
(0)
0

)
−
(

θ
θ + γ0

) )
d→ N

( (
0
0

)
,

(
4vθ 4vθ
4vθ 4vθ + ς2

) )
,

where ς2 = limn→∞ nVar(
∑n

i=1 Z2
i /n).

By the Delta method, we obtain the asymptotic distribution of φ̂(m)
short, as stated in Corollary 4.8,

which can be used to test

Hshort
0 : φshort ≤ φshort,0 against Hshort

1 : φshort > φshort,0, (24)

where 0 < φshort,0 < 1 is a prescribed level of marginal relative variability.

Corollary 4.8. Let the conditions of Theorem 4.7 hold. If the true marginal relative variability of the
time series is φshort,0, then, as n →∞,

√
n
(
φ̂
(m)
short − φshort,0

) d→ N (0,vshort) ,

where

vshort =
4vφshort,0

(
1 − φshort,0

) 2

θ + γ0
+
ς2φ2

short,0

(θ + γ0)2
.

Similar to (19), we can construct a test statistic for testing (24) as follows:

T̂ (m)
short =

√
n max

(
φ̂
(m)
short − φshort,0,0

)
√
v̂short

, (25)

where v̂short is a consistent estimator of vshort. To obtain a consistent estimate for vshort, we note that (i)
γ̂
(0)
0 is a consistent estimator of θ + γ0, and (ii) we can estimate ς2 by

ς̂2 =
∑
|k | ≤�

K
(

k
�

)
η̂k, where η̂k =

1
n

n∑
i=mh+ |k |+1

D2
i D2

i−|k |,
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where Di is the same mth order difference statistic define in (5). Note that ς̂2 is a modified difference-
based variance estimator in Chan (2022a) applied to the squared difference statistics

{
D2
i

}n
i=mh+1. So,

our proposed estimator for vshort is

v̂short =
4v̂(m)φshort,0

(
1 − φshort,0

) 2

γ̂
(0)
0

+
ς̂2φ2

short,0(
γ̂
(0)
0

) 2
.

In practice, Hshort
0 is rejected at size α if T̂ (m)

short > Φ
−1(1 − α). This test is asymptotically valid and

consistent as n →∞.
We remark that both (19) and (25) can be used as test statistics for testing the existence of a relevant

mean stationarity. They can be viewed as alternatives to existing tests, e.g., Dette and Wied (2016) and
Dette and Wu (2019). Although these existing tests are also intended to test for relevant changes, they
define relevant change as λ ({t ∈ [0,1] : |μ(t) − μ(0)| > c}) > Δ, where λ is the Lebesgue measure, c > 0
is a pre-specified level and Δ ∈ (0,1) is a threshold. Hence, their approach is substantially different from
our framework. Since they handle different problems, there is no direct way to compare them.

5. Implementation issues

5.1. Choice of difference sequence

Suppose m ∈ N is fixed. We suggest choosing a difference sequence that minimizes the MSE of θ̂(m).
Based on Theorem 3.2, the squared bias is negligible and Var(θ̂(m)) is asymptotically proportional to
Δm − Δ0 =

∑
|k | ≤m δ

2
k
− 1. Hence, the optimal difference sequence {dj }mj=0 can be chosen as follows:

Minimize
∑
|k | ≤m

δ2
k − 1 ≡

∑
|k | ≤m
k�0

!"#
m−|k |∑
j=0

djdj+ |k |
$%&

2

subject to
m∑
j=0

dj = 0 and
m∑
j=0

d2
j = 1, (26)

where the constraints are needed due to the definition of {dj }mj=0. The optimal solution d	0:m =

(d	0 , . . . ,d
	
m)T can be numerically found and is tabulated in Hall, Kay and Titterington (1990). In partic-

ular, d	0:1 = (1/
√

2,−1/
√

2), d	0:2 = (0.8090,−0.5,−0.3090) and d	0:3 = (0.1942,0.2809,0.3832,−0.8582).
When d	0:m is chosen, we have ∑

|k | ≤m
δ2
k − 1 =

1
2m

. (27)

Theoretically, this suggests that we should choose m as large as possible. However, using a large m
leads to poor empirical performance in finite samples. This phenomenon is similar to Hall, Kay and
Titterington (1990) and Chan (2022a). In practice, we suggest using m = 3 for our proposals; see Section
6 for some simulation evidence.

5.2. Finite-n adjustments

Our proposed tests are asymptotic in nature. So, there is approximation error in finite samples. We
mitigate this problem by doing a simple finite-n adjustment. For fixed m, q and ϕ, we propose the use
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of finite-n adjusted critical values cα(n, ρ,m,q, ϕ) by matching the autocorrelation function (ACF) at
lag one ρ and the sample size n for a specified level of significance α ∈ (0,1). We only outline the
procedure for T̂ (m)

MIT . The procedures for other tests are similar.
Let Z◦

1 , . . . ,Z
◦
n be generated from the autoregressive (AR) model: Z◦

i = ρZ◦
i−1 + ε

◦
i , where ρ ∈

{0,±0.1,±0.2, . . . ,±0.9} and ε◦i
IID∼ N(0,1). Then we compute the value of T̂ (m)

MIT based on Z◦
1 , . . . ,Z

◦
n.

The above procedure is repeated for N times to obtain N simulated values of T̂ (m)
MIT , denoted by

T̂◦(m)
MIT,1, . . . ,T̂

◦(m)
MIT,N , where N is large. Consequently, cα(n, ρ,m,q, ϕ) is estimated by the 100(1 − α)%

sample quantile of T̂◦(m)
MIT,1, . . . ,T̂

◦(m)
MIT,N . In practice, we estimate ρ by a mean-robust estimator ρ̂ defined

as the sample lag-1 ACF of {Xi+ �n1/3 � − Xi}n−�n1/3 �
i=1 ; see Cheng and Chan (2023). We reject H0 at size

α if

T̂ (m)
MIT > cα(n, ρ̂,m,q, ϕ),

where T̂ (m)
MIT is the observed test statistic, and cα(n, ρ̂,m,q, ϕ) is the finite-n adjusted critical value with

linear interpolation if necessary.

6. Monte-Carlo experiment

6.1. Test for mean invariance

In this section, we compare the performances of the proposed test T̂ (m)
MIT with (i) the standard KS change

point (CP) test (Csörgő and Horváth, 1997) using the LRV estimator with Bartlett kernel and bandwidth
�2n1/3�; (ii) a robust KS CP test using the difference-based LRV estimator proposed by Chan (2022a)
with the recommended parameters; (iii) self-normalized KS CP test (Shao and Zhang, 2010); (iv) the
constant-mean test proposed by Wu and Zhao (2007); and (v) KPSS stationarity test (Kwiatkowski
et al., 1992) using the LRV estimator with Bartlett kernel and bandwidth �4(n/100)1/4�, which is also
suggested in Hobijn, Franses and Ooms (2004). We consider a non-linear time series model in this
section. We first generate

{
Z ′
i

}n
i=1 from a non-linear autoregressive (NLAR) model as follows:

Z ′
i = ρ

		Z ′
i−1

		 +√1 − ρ2εi, (28)

where ρ ∈ (−1,1) and εi
IID∼ N(0,1). Denote μ′ = E(Z ′

1). In the simulation, we set ρ ∈ {0.25,0.5,0.75}.
Let {Zi}ni=1 be defined as Zi = (Z ′

i − μ′)/
√
v, where v is the LRV of the time series in (28), so that the

LRV of {Zi}ni=1 is 1. We consider four types of mean functions:

(a) (Single CP) μ(t) = Δ1(t > 0.2);
(b) (Multiple CPs) μ(t) = Δ {2 (1(t > 0.2) − 1(t > 0.4) + 1(t > 0.6) − 1(t > 0.8))};
(c) (Smooth function) μ(t) = Δ cos(5πt); and
(d) (Piecewise smooth functions) μ(t) = Δ {1(t > 0.2) − cos(5πt)},

where Δ ∈ [0,∞). The sample size is n = 800. For our proposed test, q = 2, ϕ = 1 and m ∈ {1,2,3} are
used. In each simulation experiment, 210 replications are used.

From the results shown in Figure 5, we see that the proposed test is less favorable in case (a). It is
expected since the tests (i)–(iii) are specialized in the one CP case. In addition, from Section 4.2.1, we
see that the test statistics of tests (i) and (v) admit similar forms, so test (v) also inherits the strength
in handling one-CP problem. Both test (iv) and our proposed tests are specialized for a general mean



1250 H.K. To and K.W. Chan

Figure 5. The three columns correspond to ρ = 0.25 (weak dependence), ρ = 0.5 (medium dependence) and
ρ = 0.75 (strong dependence), respectively. The four rows correspond to the mean functions (a)–(d), respectively.
The nominal size 5% is indicated by the horizontal grey dashed lines. The power curves of each methods are
denoted as follows: test (i) standard KS CP test (Csörgő and Horváth, 1997) (- -◦- -); test (ii) robust KS CP test
(Chan, 2022a) (- -+×- -); test (iii) self-normalized KS CP test (Shao and Zhang, 2010) (–+–); test (iv) constant-
mean test (Wu and Zhao, 2007) (–�–); test (v) KPSS stationarity test (Kwiatkowski et al., 1992) (- -×- -); and the
proposed tests T̂ (1)

MIT (–1–), T̂ (2)
MIT (–2–) and T̂ (3)

MIT (–3–).

stationarity problem, but our proposed tests are more powerful than test (iv) in this case. On the other
hand, for cases (b)–(d), the proposed test is more powerful than the other tests in general, demonstrating
its robustness against a large class of mean functions. Also, the proposed test controls the null rejection
rate better, even under strong dependence. We can see that the standard KS test loses power in cases
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Dependence =Weak Dependence =Medium Dependence = Strong
Test \Δ 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

T̂ (1)
MIT 0.034 0.085 0.343 0.800 0.047 0.103 0.468 0.909 0.077 0.239 0.842 0.997

T̂ (2)
MIT 0.028 0.101 0.503 0.935 0.038 0.119 0.604 0.975 0.065 0.274 0.921 0.999

T̂ (3)
MIT 0.026 0.098 0.577 0.953 0.035 0.157 0.690 0.985 0.054 0.304 0.956 0.999

KPSS 0.048 0.074 0.228 0.749 0.061 0.098 0.377 0.904 0.122 0.247 0.845 0.999

Table 1. Powers of the proposed test and the KPSS test under ρ = 0.25 (weak dependence), ρ = 0.5 (medium
dependence) and ρ = 0.75 (strong dependence) respectively. The nominal size is chosen at 5%.

(b) and (c), and SN based KS test loses power in cases (b)–(d). Tests (iv) and (v) remain monotonically
powerful. However, test (iv) is less powerful in cases (c) and (d), and test (v) admits the over-sizing
problem under strong dependence. While test (ii) has the advantage of being powerful in all cases with
a price of slight size inaccuracy, it is still less powerful than the proposed test in general. Overall, the
proposed test is robust against a large class of mean functions with better control of the null rejection
rate and higher power in general. On the other hand, we note that the proposed test is increasingly more
powerful when m increases. However, the power gain is diminishing. These observations concur with
our theoretical findings in previous sections.

6.2. Test for smooth mean structure

In this section, we compare the performances of the proposed test with the KPSS trend stationarity test
(Kwiatkowski et al., 1992). We consider the same noise time series model for Z1, . . . ,Zn as described
in Section 6.1. We are interested in testing H(1)

0 defined in (14), i.e., there exist a0,a1 ∈ R such that
μ(t) = a0 + a1t. The mean function under the alternative hypothesis is μ(t) = 0.5t + Δ cos(5πt), where
Δ ≥ 0 is a measure of discrepancy from the null H(1)

0 . The sample size and the choices of parameters
for the proposed test are the same as those in Section 6.1. In Table 1, we see that the proposed test is
more powerful with a better control over the null rejection rate. The over-size problem that the KPSS
admits is similar to its mean stationarity counterpart. Overall, the proposed test T̂ (3)

MIT gives the most
promising performance in terms of size accuracy and power.

6.3. Test for relative variability and marginal relative variability

In this section, we perform a simulation study for testing (17) and (24) with φlong,0 = 0.05 and φshort,0 =

0.05. We consider the same noise time series model for Z1, . . . ,Zn as described in Section 6.1. The
mean function μ(t) =CΔ cos(20πt), where C > 0 is a scaling constant to ensure that φlong,0 = 0.05 and
φshort,0 = 0.05 when Δ = 1 in the respective settings. Note that the null hypotheses in (17) and (24)
are true when Δ = 1. When Δ increases, the null hypotheses are more obviously false. We consider
ρ ∈ {0.25,0.5,0.75} in the simulations. From the results in Figure 6, the power of T̂ (m)

long increases with

m, whereas the power of T̂ (m)
short does not depend on m. These observations are consistent with the results

in Theorem 4.6 and Corollary 4.8.
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Figure 6. The power curves under ρ = 0.25 (weak dependence), ρ = 0.5 (medium dependence) and ρ = 0.75
(strong dependence). The nominal size 5% is indicated by the horizontal grey dashed lines. The top and bottom
rows correspond to the tests for φlong = 0.05 and φshort = 0.05, respectively.

6.4. Sensitivity analysis

6.4.1. Sensitivity of bandwidth coefficient

In this section, we examine the effect of different choices of the bandwidth coefficient ϕ to the per-
formance of our proposed test. The simulation experiments in Section 6.1 are repeated with the same
noise time series models and the mean function described in Case (a) when n = 800, q = 2 and m = 3.
We consider the bandwidth � = �ϕn1/5� for ϕ ∈ {0.5,1,1.5,2,2.5,3}.

Figure 7 shows the power curves of the tests under different values of ϕ. We observe that apart
from the curve corresponding to a very short bandwidth, i.e., ϕ = 0.5, the other curves are close to
each other. This observation is true for different strength of dependence. This suggests that ϕ = 0.5 is
not a good choice, as the asymptotic results (as �→∞) may not kick in under this short bandwidth.

Figure 7. The power curves of the proposed test with ϕ ∈ {0.5,1,1.5,2,2.5,3} under ρ = 0.25 (weak dependence),
ρ = 0.5 (medium dependence) and ρ = 0.75 (strong dependence). The nominal size 5% is indicated by the hori-
zontal grey dashed lines.
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Dependence =Weak Dependence =Medium Dependence = Strong
Summary statistics \θ 0 0.048 0.096 0 0.048 0.096 0 0.048 0.096

Mean 5.020 48.809 99.082 5.879 55.977 99.219 7.168 81.250 99.531
Median 5.273 50.000 99.023 5.664 56.738 99.316 7.129 81.543 99.414

Standard deviation 0.686 4.465 0.177 0.439 1.904 0.229 0.686 1.683 0.262
Interquartile range 0.195 6.348 0.293 0.684 1.270 0.391 0.488 1.758 0.391

Table 2. Summary statistics of the proposed test with ϕ ∈ {1,1.5,2,2.5,3} under ρ = 0.25 (weak dependence),
ρ = 0.5 (medium dependence) and ρ = 0.75 (strong dependence) respectively. The nominal size is chosen at 5%.
All numbers are rounded to 3 decimal places after multiplying by a factor of 100.

On the other hand, from the summary statistics in Table 2, we see that both the standard deviation
and the interquartile range of the power of the test across ϕ ∈ {1,1.5,2,2.5,3} are very small under
different strength of dependence. This observation remains true for both H0 and H1. Therefore, these
experiments suggest that our proposed test is not too sensitive to the choice of ϕ.

6.4.2. Sensitivity of kernel

In this section, we examine the effect of different choices of kernel functions to the performance of our
proposed test. The simulation experiments in Section 6.1 are repeated again with the same noise time
series models and the mean function described in Case (a) when n = 800, q = 2, m = 3, and � = �n1/5�.
We consider three types of kernel function:

(i) second order polynomial kernel (Parzen, 1957): K(t) = (1 − |t |2)1(|t | ≤ 1);
(ii) Tukey–Hanning kernel (Andrews, 1991): K(t) = {1 + cos(πt)}1(|t | ≤ 1)/2; and

(iii) Parzen kernel (Gallant, 1987): K(t) = (1− 6t2 + 6|t |3)1(|t | ≤ 1/2)+ 2(1− |t |)31(1/2 < |t | ≤ 1).

Figure 8 shows that the three curves are close to each other, demonstrating that our proposed test is not
sensitive to the choice of kernel function, with the suggested second order polynomial kernel having a
slight edge over the two other kernels.

Figure 8. The power curves of the proposed test with (i) second order polynomial kernel (Parzen, 1957), (ii) Tukey–
Hanning kernel (Andrews, 1991) and (iii) Parzen kernel (Gallant, 1987) under ρ = 0.25 (weak dependence), ρ = 0.5
(medium dependence) and ρ = 0.75 (strong dependence). The nominal size 5% is indicated by the horizontal grey
dashed lines.
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Supplementary Material

Supplement to “Mean stationarity test in time series: A signal variance-based approach” (DOI:
10.3150/23-BEJ1630SUPP; .pdf). Appendix A: Proofs of main results. The proofs of Propositions 3.1,
4.4, Theorems 3.2, 4.1, 4.3, 4.5, 4.6, 4.7, Corollaries 4.2, 4.8 and (11) are placed in Sections A.1–A.11,
respectively. Appendix B: Auxiliary results. Technical results of independent interest are stated in Sec-
tions B.1–B.10. Appendix C: Additional simulation results. It contains additional simulation results for
Section 6.1. Appendix D: Real-data application. A real-data application on global land surface temper-
ature data is presented.
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