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We consider anchored Gaussian �-simplices in the d-dimensional Euclidean space, that is, simplices with one
fixed vertex y ∈R

d and the remaining vertices X1, . . . ,X� randomly sampled from the d-variate standard normal
distribution. We determine the distribution of the measure of such simplices for any d, any �, and any anchor
point y, which is of interest, e.g., when studying the asymptotic behaviour of U-statistics based on such simplex
measures. We provide two proofs of the results. The first one is short but is not self-contained as it crucially
relies on a technical result for non-central Wishart distributions. The second one is a simple and self-contained
proof, that also provides some geometric insight on the results. Quite nicely, variations on this second argument
reveal intriguing distributional identities on products of central and non-central chi-square distributions with Beta-
distributed non-centrality parameters. We independently establish these distributional identities by making use of
Mellin transforms. Beyond the aforementioned use to study the asymptotic behaviour of some U-statistics, our
results do find natural applications in the context of robust location estimation, as we illustrate by considering a
class of simplex-based multivariate medians that contains the celebrated spatial median and Oja median as special
cases. Throughout, our results are confirmed by numerical experiments.

Keywords: Distributional identities; Mellin transforms; Multivariate medians; Oja median; Random simplices;
Spatial median; Stochastic geometry

1. Introduction

There is an abundant literature studying the measure of random simplices; see, among many others
Miles [27], Ruben [43], Ruben and Miles [44], Anderson [2], Mathai [26], Pivovarov [42], Grote,
Kabluchko and Thäle [14], and the references therein. Throughout the paper, Simpl(x1, . . . , x�+1),
with � ≤ d , will stand for the simplex with vertices x1, . . . , x�+1 ∈ R

d , that is, the convex hull of these
� + 1 locations in R

d , and m�(Simpl(x1, . . . , x�+1)) will denote its �-measure (length for � = 1, area
for � = 2, etc.) Most of the focus in the literature has been on the �-measure

W�+1,d := m�(Simpl(X1, . . . ,X�+1)), � ∈ {1, . . . , d}, (1.1)

of random simplices based on a random sample of size �+ 1 from some given distribution over Rd and
on the �-measure

V�,d := m�(Simpl(X1, . . . ,X�,0)), � ∈ {1, . . . , d}, (1.2)

of simplices “anchored” at the origin of R
d . In the standard normal case, for instance, the distri-

butions of W�+1,d and V�,d are known (see Corollary 2.1 below) and, remarkably, these are such
that W�+1,d =D

√
� + 1V�,d (throughout, =D will denote equality in distribution); see, e.g., Grote,

Kabluchko and Thäle [14]. The corresponding derivations are quite technical and in particular do not
provide geometric insight for this relation between both random �-measures. Such insight could be
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obtained by exploiting the connection (Baryshnikov and Vitale [5]) between random projections of
a regular simplex onto a fixed subspace and random Gaussian samples in that subspace, but this ap-
proach would thus require quite involved results from stochastic geometry (see also Kabluchko and
Zaporozhets [20] and Paouris, Pivovarov and Valettas [40]). In this paper, we will rather obtain such
geometric insight through simple, independent, derivations. This will actually be achieved as a corol-
lary of our interest in the measure of anchored Gaussian simplices. More precisely, we will consider
the �-measure

W�,d(y) := m�(Simpl(X1, . . . ,X�, y)), � ∈ {1, . . . , d}, (1.3)

of random simplices anchored at a given y ∈ R
d , where X1, . . . ,X� are mutually independent standard

normal d-vectors. In particular, we will establish the following result.

Theorem 1.1. For any positive integer d , any � ∈ {1, . . . , d}, and any y ∈ R
d ,

W�,d(y) =D
1

�!Qd(�‖y‖2)

�∏
i=2

Qd+1−i , (1.4)

where Q2
d(�‖y‖2) is non-central chi-square with d degrees of freedom and non-centrality parame-

ter �‖y‖2 (throughout, ‖x‖ = √
x′x is the Euclidean norm of x), Q2

m is chi-square with m degrees of
freedom, and where the factors in (1.4) are mutually independent.

Such anchored random simplices have receive little attention (if any) in the literature, beyond the
very particular case obtained with y = 0 in (1.2). This is quite surprising since the distribution of the
�-measure of such anchored simplices naturally arises, e.g., when studying the asymptotic distribution
of U-statistics based on simplex measures (incidentally, U-statistics were also used in Paouris, Pivo-
varov and Zinn [41] when deriving a central limit theorem for the volume of the projection of a high-
dimensional cube onto a random subspace of fixed dimension). To elaborate on this, let X1, . . . ,Xn be
a random sample from the d-variate standard normal distribution and consider the U-statistic

Un,�,r = 1(
n

�+1

) ∑
1≤i1<···<i�≤n

mr
�(Simpl(Xi1, . . . ,Xi�+1)), (1.5)

where r is a positive real number. This is a U-statistic involving a symmetric kernel with a finite
variance, so that its asymptotic behaviour can in principle be derived using the standard theory of
U-statistics. In particular, the consistency result in page 190 of Serfling [46] entails that Un converges
almost surely to E[Wr

�+1,d ], a value that can be obtained from the known distribution of W�+1,d in (1.1).
More importantly, writing →D for weak convergence, the classical U-statistics theory then also yields
that, as n diverges to infinity,

√
n
(
Un,�,r − E[Wr

�+1,d ]) = � + 1√
n

n∑
i=1

h�,r (Xi) + oP(1) →D N
(
0,E[h2

�,r (X1)]
)
,

with h�,r (y) := E[mr
�(Simpl(X1, . . . ,X�, y))] − E[Wr

�+1,d ]; see, e.g., Theorem 12.3 in van der Vaart
[48]. Clearly, understanding the asymptotic behaviour of Un thus requires the study of anchored ran-
dom simplices we present in this work. In particular, our results will entail that
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Figure 1. (Left:) Kernel density estimates (solid lines), for each � ∈ {1,2,3}, of the values of Un,�,2 in (1.5)
obtained from 5 000 mutually independent random samples of size n = 100 from the (d = 4)-variate standard nor-
mal distribution (kernel density estimates are obtained by using the R command density with default parameter
values). For � = 2, a histogram of raw values is provided. The respective asymptotic densities, obtained from (1.6),
are also plotted (dashed lines). (Right:) The corresponding results in dimension d = 10.

√
n

(
Un,�,2 − (� + 1)

�!
(

d

�

))
= � + 1√

n(� − 1)!d
(

d

�

) n∑
i=1

(‖Xi‖2 − d) + oP(1)

→D N
(

0 ,
2(� + 1)2

((� − 1)!)2d

(
d

�

)2 )
(1.6)

as n diverges to infinity (the asymptotic distribution of Un,�,1 can be obtained explicitly from our re-
sults, too, but formulae are more complicated). To illustrate the asymptotic normality result in (1.6), we
generated, for each d ∈ {4,6}, a collection of 5 000 mutually independent random samples of size n =
100 from the d-variate standard normal distribution. For both values of d and for each � ∈ {1,2,3},
Figure 1 plots kernel density estimates of the resulting 5 000 values of Un,�,2, as well as the theoretical
Gaussian fits resulting from (1.6). Obviously, this numerical exercise fully supports our asymptotic
results.

The previous example shows that anchored simplices naturally arise when considering some
U-statistics. In this paper, we will primarily show the relevance of our results in a much more in-
volved framework associated with robust location estimation. In the univariate case d = 1, the most
robust location functional is the median μP of the probability measure P at hand, that can be charac-
terized as the location μ ∈R minimizing the L1 expected loss EP [|X1 −μ|] = EP [m1(Simpl(X1,μ))],
where X1 has distribution P . This may be naturally extended to an arbitrary dimension d by defining
the �-median of a probability measure P over Rd as

μ�,P := arg min
μ∈Rd

EP [m�(Simpl(X1, . . . ,X�,μ))],

where X1, . . . ,X� form a random sample from P . This defines a collection of multivariate medians
indexed by � ∈ {1, . . . , d}, that is related to the one introduced in Vitale [49] by considering “intrin-
sic volumes” of suitable zonotopes. To the best of the author’s knowledge, the properties of these
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�-medians have not been not investigated outside the particular cases � = 1 and � = d , for which these
medians reduce to the celebrated spatial median (Brown [8], Chaudhuri [9], Möttönen, Nordhausen
and Oja [30], Magyar and Tyler [24]) and Oja median (Oja [35], Hettmansperger, Möttönen and Oja
[16], Ollila, Oja and Hettmansperger [39]), respectively. We will study the asymptotic behaviour of the
sample version of these �-medians, and, as we will show, our results on anchored simplices will be key
to obtain in the Gaussian case explicit expressions of the influence function and asymptotic variance of
these sample multivariate medians.

Above, we mainly focused on the aspects that motivated our study. We now provide the outline of
the paper, which gives us the opportunity to be more specific about our contribution. In Section 2, we
provide a first proof of Theorem 1.1 that relies on a technical result for non-central Wishart matri-
ces. We also show how this theorem allows us to recover results for unanchored simplices available
in the literature. In Section 3, we give an alternative, simple and self-contained, proof, that provides
some geometric insights on the results. We also show that variations on this alternative proof reveal
intriguing distributional identities on products of central and non-central chi-square distributions with
Beta-distributed non-centrality parameters. In Section 4, we use Mellin transforms to establish inde-
pendently these distributional identities. In Section 5, we define the multivariate medians described
above and derive the asymptotic distribution of their sample versions. We then exploit our results on
anchored Gaussian simplices to obtain explicit expressions of the influence function and asymptotic
variance of these sample medians in the Gaussian case. We briefly discuss perspectives for future re-
search in Section 6. While some of our proofs, that are part of our contribution, are to be found in
the main body of the paper, proofs of some auxiliary results as well as the lengthy proofs dedicated to
multivariate medians are given in a technical appendix.

2. A proof based on non-central Wishart matrices

In this section, we first prove Theorem 1.1 by making use of a technical result on non-central Wishart
matrices, and we then explore consequences of this theorem. Before proceeding, we introduce some no-
tation and recall some basic geometric facts. For x1, . . . , x� ∈ R

d , with � ≤ d , consider the parallelotope
Parall(x1, . . . , x�,0) := {∑�

i=1 λixi : λ1, . . . , λ� ∈ [0,1]}. In the full-dimensional case � = d , it is well-
known that md(Parall(x1, . . . , xd,0)) = |det(x1 . . . xd)|. Measures of lower-dimensional simplices are
then obtained as follows. Denoting as x1:� the d × � matrix (x1 . . . x�) and letting {v�+1, . . . , vd} be an
arbitrary orthonormal basis of the orthogonal complement of the vector space spanned by x1, . . . , x�,

m�(Parall(x1, . . . , x�,0)) = md(Parall(x1, . . . , x�, v�+1, . . . , vd,0)) = |det(x1:� v�+1 . . . vd)|

= √
det((x1:� v�+1 . . . vd)′(x1:� v�+1 . . . vd)) =

√
det(x′

1:�x1:�). (2.1)

Alternatively, denoting as π⊥(z; z1, . . . , zk) the orthogonal projection of z onto the orthogonal com-
plement of the vector space spanned by z1, . . . , zk , orthogonalization also provides

m�(Parall(x1, . . . , x�,0)) = md(Parall(x1, . . . , x�, v�+1, . . . , vd,0)) = |det(x1 . . . x� v�+1 . . . vd)|

= |det(x1 π⊥(x2;x1) . . . π⊥(x�;x1, . . . , x�−1) v�+1 . . . vd)| = ‖x1‖
�∏

i=2

‖π⊥(xi;x1, . . . , xi−1)‖. (2.2)

Finally, an obvious combinatorial argument yields that the �-measure of the corresponding simplex sat-
isfies m�(Simpl(x1, . . . , x�,0)) = (�!)−1m�(Parall(x1, . . . , x�,0)), hence can obtained from the above
formulae.
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We can now provide a first proof of Theorem 1.1.

Proof of Theorem 1.1. Let O be an arbitrary d × d orthogonal matrix such that Oy = ‖y‖e1d ,
where e1k is the first vector of the canonical basis of Rk . Since the common distribution of the Xi ’s is
spherically symmetric about the origin in R

d (in the sense that PX1 =D X1 for any d × d orthogonal
matrix P ), we obtain

W�,d(y) = m�(Simpl(X1 − y, . . . ,X� − y,0))

= m�(Simpl(OX1 − ‖y‖e1d, . . . ,OX� − ‖y‖e1d,0))

=D m�(Simpl(X1 − ‖y‖e1d, . . . ,X� − ‖y‖e1d,0)),

so that (2.1) yields

(�!)2W 2
�,d(y) =D det(X′

yXy), with Xy := (X1 − ‖y‖e1d . . . X� − ‖y‖e1d).

Pick then an arbitrary � × � orthogonal matrix U satisfying U ′1� = −√
�e1�; throughout, 1k =

(1, . . . ,1)′ ∈ R
k . We then have that Z := XyU = (X1 . . .X�)U − ‖y‖e1d1′

�U =D (X1 . . .X�) +√
�‖y‖e1de′

1� is (d, �)-variate matrix normal with mean
√

�‖y‖e1de′
1� and covariance matrix Id�. Re-

call that if the random � × d matrix T is normal with mean M and covariance Id ⊗ �, then S = T ′T
is said to follow the non-central d-variate Wishart distribution with � degrees of freedom, covariance
matrix � and non-centrality parameter � = �−1M ′M , which is denoted as S ∼ Wd(�,�,�); see,
e.g., Section 10.3 from Muirhead [32]. By definition, we thus have Z′Z ∼ W�(d, I�, �‖y‖2e1�e

′
1�).

Therefore,

(�!)2W 2
�,d(y) =D det

(
(XyU)′XyU

) = det(Z′Z) =D Q2
d(�‖y‖2)

�∏
i=2

Q2
d+1−i ,

where we used Theorem 10.3.8 from Muirhead [32]. The result is proved. �

For � = 1, it is trivial that W 2
�,d(y) = ‖X1 − y‖2 = ∑d

r=1{(X1 − y)r }2 is non-central chi-square

with d degrees of freedom and non-centrality parameter ‖y‖2, which is compatible with Theorem 1.1.
The result for � = d was obtained in Möttönen et al. [29] through an argument that also exploits results
on non-central Wishart matrices (more precisely, this argument relies on Theorem 4.3 from Dahel and
Giri [10]). To the best of our knowledge, the result is original for the other values of �.

Theorem 1.1 allows us to derive the distribution of the �-measures W�+1,d and V�,d of unanchored
simplices and simplices anchored at the origin; see (1.1)–(1.2). We have the following result.

Corollary 2.1. When based on mutually independent standard normal d-vectors,

(i) W�+1,d =D

√
� + 1

�!
�∏

i=1

Qd+1−i and (ii) V�,d =D
1

�!
�∏

i=1

Qd+1−i

(so that W�+1,d =D
√

� + 1V�,d), where Q2
m is chi-square with m degrees of freedom and the Qm’s

are mutually independent.
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The proof requires the following result (see the appendix for a proof).

Lemma 2.1. Let d be a positive integer and λ be a non-negative real number. Let Q be a random
variable that is chi-square with d degrees of freedom and R be a random variable that, conditional
on Q, is non-central chi-square with d degrees of freedom and non-centrality parameter λQ (i.e.,
Q ∼ χ2

d and R|[Q = q] ∼ χ2
d (λq) for any q > 0). Then R =D

√
λ + 1Q.

Proof of Corollary 2.1. (i) Theorem 1.1 yields that, conditional on X�+1,

W�+1,d |X�+1 =D
1

�!Qd(�‖X�+1‖2)

�∏
i=2

Qd+1−i .

Since ‖X�+1‖2 ∼ χ2
d , the result then follows from Lemma 2.1. (ii) The result is obtained by taking y =

0 in Theorem 1.1. �

Let us consider some particular cases. Of course, we have V1,d = ‖X1‖ ∼ χd , whereas W2,d =
‖X1 − X2‖ ∼ √

2χd (since (X1 − X2)/
√

2 is d-variate standard normal); both results are in line with
Corollary 2.1. It is remarkable that, irrespective of � and d , the distribution of W�+1,d and V�,d only
differ by a scale factor (depending on � only). The proof above, however, fails to provide any insight on
why this holds true and on the value of the proportionality factor. This provides a motivation to derive
the simple proof we give in Section 3 below.

Before providing this alternative proof, we illustrate numerically the results of this section.
For various combinations of d and �, we generated 100 000 mutually independent random sam-
ples X1, . . . ,X�+1 from the d-variate standard normal distribution. The top panels of Figure 2 provide
kernel density estimates of the resulting 100 000 values of W�(e1d) (measures of �-simplices anchored
at the first vector of the canonical basis of Rd ), whereas the bottom panels do the same for W�+1,d

(measures of unanchored �-simplices). In both cases, we also plot kernel density estimates obtained
from random variables generated according to the corresponding distributions in Theorem 1.1 and
Corollary 2.1(i). For both types of simplices and for all combinations of d and �, Figure 2 clearly
confirms our theoretical results.

3. A self-contained proof

We now present a simple proof of Theorem 1.1 that will not require technical results for non-central
Wishart matrices. The following preliminary result is key to this alternative proof.

Lemma 3.1. Let d be a positive integer and � ∈ {1, . . . , d}. Let X1, . . . ,X� be mutually independent
standard normal d-vectors. Let A = (A1 . . . A�) and B = (B1 . . . B�) be d × � deterministic matrices
sharing the same singular values. Then, m�(Parall(X1 + A1, . . . ,X� + A�,0)) =D m�(Parall(X1 +
B1, . . . ,X� + B�,0)).

Proof of Lemma 3.1. Since A and B share the same singular values, there exist d × d orthogonal
matrices OA,OB and � × � orthogonal matrices UA,UB such that A = OADU ′

A and B = OBDU ′
B ,

where the only non-zero entries in the d × � matrix D are the common singular values Drr , r =
1, . . . , �, of A and B (some of these singular values may be zero). Thus, B = OAU ′, where O = OBO ′

A
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Figure 2. (Top left:) Kernel density estimates (solid lines), for each � ∈ {1,2,3,4}, of the values of W�(e1d )

in (1.3) obtained from 100 000 mutually independent random samples X1, . . . ,X� from the (d = 4)-variate stan-
dard normal distribution (kernel density estimates are obtained by using the R command density with default
parameter values). For � = 2, a histogram of raw values is provided. Kernel density estimates obtained, still for
each � ∈ {1,2,3,4}, from a collection of 100 000 mutually independent random variables generated according to
the righthand side of (1.4) are also plotted (dashed lines). (Top right:) The same quantities in dimension d = 10,
where the value � = 5 is also considered. (Bottom left and right:) The corresponding results for the measure W�+1
of unanchored Gaussian simplices, where dashed lines are obtained from the distribution in Corollary 2.1(i).

is d × d orthogonal and U = UBU ′
A is � × � orthogonal. Letting X = (X1 . . . X�), (2.1) then yields

m2
�(Parall(X1 + A1, . . . ,X� + A�,0)) = det((X + A)′(X + A))

= det(U(X + A)′O ′O(X + A)U ′) = det((OXU ′ + B)′(OXU ′ + B))

=D det((X + B)′(X + B)) = m2
�(Parall(X1 + B1, . . . ,X� + B�,0)),

which, since these �-measures are non-negative, establishes the result. �
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We can now provide our simple proof of Theorem 1.1.

Proof of Theorem 1.1. Proceeding as in the proof from Section 2, we first write

W�,d(y) =D m�(Simpl(X1 − ‖y‖e1d, . . . ,X� − ‖y‖e1d,0))

= 1

�!m�(Parall(X1 − ‖y‖e1d, . . . ,X� − ‖y‖e1d,0)).

Let A = −‖y‖e1d1′
� and B = √

�‖y‖e1de′
1�. Note that the only non-zero eigenvalue of A′A =

‖y‖21�1′
� and B ′B = �‖y‖2e1�e

′
1� is �‖y‖2 in both cases. Thus, A and B share the same singular

values, so that Lemma 3.1 yields

W�,d(y) =D
1

�!m�(Parall(X1 + √
�‖y‖e1d,X2, . . . ,X�,0)).

Applying (2.2), we thus have

W�,d(y) =D
1

�! ‖X1 + √
�‖y‖e1d‖

(
�∏

i=2

∥∥π⊥(Xi;X1 + √
�‖y‖e1d,X2, . . . ,Xi−1)

∥∥)
(3.1)

=: 1

�! T1

(
�∏

i=2

Ti

)
,

where T2 is of course associated with the projection onto the orthogonal complement of the vector
space spanned by X1 + √

�‖y‖e1d only. Now, since X1 + √
�‖y‖e1d ∼ Nd(

√
�‖y‖e1d, Id), we have

that T 2
1 ∼ χ2

d (�‖y‖2). Conditional on X1, the distribution of T 2
2 is then χ2

d−1 since it is the squared
norm of the orthogonal projection of X2 onto a vector space that has almost surely dimension d − 1.
Therefore, T2 and X1, or equivalently T2 and T1, are mutually independent. Repeating this reasoning
shows that T 2

1 ∼ χ2
d (�‖y‖2), T 2

i ∼ χ2
d+1−i , i = 2, . . . , �, and that these � random variables are mutually

independent. This establishes the result. �

For unanchored simplices, working conditionally on X�+1 in the argument above shows that

W�+1,d |X�+1 =D
1

�! ‖X1 + √
�‖X�+1‖e1d‖

(
�∏

i=2

∥∥π⊥(Xi;X1 + √
�‖X�+1‖e1d ,X2, . . . ,Xi−1)

∥∥)

=: 1

�! T1

(
�∏

i=2

Ti

)
.

Spherical symmetry entails that

T 2
1 = ‖X1 + √

�‖X�+1‖e1d‖2 =D ‖X1 + √
�X�+1‖2 =D (� + 1)‖X1‖2 ∼ (� + 1)χ2

d ,

whereas the same conditioning argument as above still yields that the remaining factors T 2
i ∼ χ2

d+1−i ,
i = 2, . . . , �, are mutually independent and independent of T1. In this simplified proof, thus, we ob-
tain the result in Corollary 2.1(i) without even needing Lemma 2.1. This argument, that relies on
orthogonalization, with the only conditionally non-central chi-factor being unconditionally distributed
as

√
� + 1χd , also gives the result a geometric interpretation.
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We now discuss some variation on the alternative proof above, that exploits the flexibility in the
choice of the matrix B in that proof. Rather than B = √

�‖y‖e1de′
1�, we take here B = √

�‖y‖e1de′
k�

for some fixed k ∈ {2, . . . , �}, where ek� denotes the kth vector of the canonical basis of R�. Since this
new matrix B still has the same singular values as the matrix A, Lemma 3.1 yields

W�,d(y) =D
1

�!m�(Parall(X1, . . . ,Xk−1,Xk + √
�‖y‖e1d,Xk+1, . . . ,X�,0)).

Using the same notation as in (3.1), this leads to

W�,d(y) =D
1

�! ‖X1‖
(

k−1∏
i=2

∥∥π⊥(Xi;X1, . . . ,Xi−1)
∥∥)∥∥π⊥(Xk + √

�‖y‖e1d;X1, . . . ,Xk−1)
∥∥

×
(

�∏
i=k+1

∥∥π⊥(Xi;X1, . . . ,Xk−1,Xk + √
�‖y‖e1d,Xk+1, . . . ,Xi−1)

∥∥)

=: 1

�! S1

(
k−1∏
i=2

Si

)
Sk

(
�∏

i=k+1

Si

)
,

say. The same argument as above then shows that the S factors are mutually independent and that S2
i ∼

χ2
d+1−i for any i ∈ {1, . . . , �} \ {k}. We may thus focus on the distribution of Sk . To do so, let O be

a d × d orthogonal matrix whose first k − 1 columns almost surely form an orthonormal basis of the
vector space Vk−1 spanned by X1, . . . ,Xk−1 (the term “almost surely” is associated with the fact that
this vector space has dimension k − 1 with probability one). Spherical symmetry of the Xi ’s entails
that O follows the Haar distribution on the collection of d × d orthogonal matrices. Letting � be the
d × d diagonal matrix with the first k − 1 diagonal entries equal to one and the remaining ones equal
to zero, O�O ′ is the matrix of the orthogonal projection onto Vk−1. Denoting as U = (U1, . . . ,Ud)′
the first column of O ′, spherical symmetry of Xk thus yields

S2
k = ‖O(Id − �)O ′(Xk + √

�‖y‖e1d)‖2

= ‖(Id − �)(O ′Xk + √
�‖y‖U)‖2 =D

d∑
r=k

{
(Xk + √

�‖y‖U)r
}2

.

Now, Xk +√
�‖y‖U , conditional on U , is d-variate normal with mean vector

√
�‖y‖U and covariance

matrix Id , so that, still conditional on U , we have that S2
k ∼ χ2

d−k+1(δ), with δ = �‖y‖2 ∑d
r=k U2

r .
Since U is uniformly distributed over the unit sphere Sd−1 = {x ∈ R

d : ‖x‖ = 1} of Rd ,

d∑
r=k

U2
r =D Bk, with Bk ∼ Beta

(
d−k+1

2 , k−1
2

);
see, e.g., Theorem 1.5.7(ii) in Muirhead [32]. Therefore, S2

k ∼ χ2
d−k+1(�‖y‖2Bk), by which we mean

that for any b ∈ (0,1), the random variable S2
k , conditional on Bk = b, is χ2

d−k+1(�‖y‖2b). Summing
up, we proved that

W�,d(y) =D
1

�!QdQd−1 . . .Qd−k+2Qd−k+1(�‖y‖2Bk)Qd−kQd−k−1 . . .Qd−�+1, (3.2)
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where all chi-square factors are mutually independent. Interestingly, this does not seem to agree with
the result in Theorem 1.1, that rather states that

W�,d(y) =D
1

�!Qd(�‖y‖2)Qd−1 . . .Qd−�+1. (3.3)

This discrepancy therefore establishes a collection of unsuspected distributional identities (indexed
by k ∈ {2, . . . , �}) involving products of central and non-central chi-square distributions with Beta-
distributed non-centrality parameters. We state these identities in Theorem 4.1 in the next section and
prove them independently by using the concept of Mellin transform.

4. Some intriguing distributional identities

In this section, we establish the distributional identities that show that the result in (3.2) indeed agrees
with the one in (3.3). In this process, we also state auxiliary results we will need when studying multi-
variate medians in Section 5. The distributional identities are as follows.

Theorem 4.1. Fix an integer d ≥ 2, m ∈ {1, . . . , d − 1} and λ > 0. Let B ∼ Beta
(

m
2 , d−m

2

)
and

let Q2
m(λB) be a random variable that, conditional on B = b, is χ2

m(λb) (for any b ∈ (0,1)).
Let Q2

d ∼ χ2
d be independent of Q2

m(λB). Finally, let Q2
d(λ) ∼ χ2

d (λ) and Q2
m ∼ χ2

m be mutually
independent. Then, Q2

dQ2
m(λB) =D Q2

d(λ)Q2
m.

The Mellin transform of a non-negative random variable Z admitting moments of any order is the
mapping s �→ MZ(s) = E[Zs−1], defined for s ∈ [1,∞). For such random variables, the Mellin trans-
form, parallel to the characteristic function, characterizes the distribution; we refer to Epstein [12] for
what is probably the first application of the Mellin transform in probability and statistics. It should be
noted that this transform was used in Mathai [25] to derive the distribution of some random simplices.
What makes the Mellin transform a suitable tool to prove Theorem 4.1 is that, unlike the Fourier trans-
form leading to characteristic functions, the Mellin transform interacts well with products of random
variables: obviously, the Mellin transform of a product of independent random variables is the product
of their Mellin transforms. To prove Theorem 4.1 by showing that Q2

dQ2
m(λB) and Q2

d(λ)Q2
m have the

same Mellin transform, we will need to compute the Mellin transform of the various factors. This is
the role of the following lemma (see the appendix for a proof).

Lemma 4.1. Let R be a random variable that is almost surely non-negative and has finite moments
of any order. Let Z be a random variable that, conditional on R = r , is non-central chi-square with d

degrees of freedom and non-centrality parameter r . Then, denoting as 
 the Euler Gamma function,
the Mellin transform s �→ MZ(s) of Z, for s ∈ [1,∞), is such that

MZ(s) = 2s−1 
(d
2 + s − 1)


(1 − s)

∞∑
k=0


(1 − s + k)

(−2)kk!
(d
2 + k)

E[Rk]

if s is not an integer and

MZ(s) = 2s−1
(d
2 + s − 1)

s−1∑
k=0

(
s−1
k

)
2k
(d

2 + k)
E[Rk]

if s is an integer.
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Taking for R a random variable that is equal to λ(≥ 0) almost surely, this result shows that the Mellin
transform of the χ2

d (λ) distribution is such that

M(s) =
(

2s−1 
(d
2 + s − 1)


(1 − s)

∞∑
k=0


(1 − s + k)

(−2)kk!
(k + d
2 )

λk

)
I[s /∈N] (4.1)

+
(

2s−1
(d
2 + s − 1)

s−1∑
k=0

(
s−1
k

)
2k
(d

2 + k)
λk

)
I[s ∈N];

throughout, I[A] will denote the indicator function associated with the condition (or event) A. In par-
ticular, taking λ = 0 shows that the Mellin transform of the χ2

d distribution is given by

M(s) = 2s−1 
(d
2 + s − 1)


(d
2 )

,

which is a well-known result; see, e.g., Table 1 in Epstein [12]. We can now prove Theorem 4.1.

Proof of Theorem 4.1. If R/λ ∼ Beta(α,β), then Lemma 4.1 shows that the Mellin transform
of Q2

m(R) is such that

MQ2
d (R)(s) = 2s−1 
(d

2 + s − 1)
(α + β)


(1 − s)
(α)

∞∑
k=0


(1 − s + k)
(k + α)

(−2)kk!
(k + d
2 )
(k + α + β)

λk

if s is not an integer and

MQ2
d (R)(s) = 2s−1 
(d

2 + s − 1)
(α + β)


(α)

s−1∑
k=0

(
s−1
k

)

(k + α)

2k
(d
2 + k)
(k + α + β)

λk

if s is an integer. Therefore, at non-integer values of s, the Mellin transform of QdQm(λB) takes the
value

(
2s−1 
(d

2 + s − 1)


(d
2 )

)(
2s−1 
(m

2 + s − 1)
(d
2 )


(1 − s)
(m
2 )

∞∑
k=0


(1 − s + k)
(k + m
2 )

(−2)kk!
(k + m
2 )
(k + d

2 )
λk

)

= 4s−1 
(d
2 + s − 1)
(m

2 + s − 1)


(1 − s)
(m
2 )

∞∑
k=0


(1 − s + k)

(−2)kk!
(k + d
2 )

λk,

whereas, at the same value of s, the Mellin transform of QmQd(λ) is equal to

(
2s−1 
(m

2 + s − 1)


(m
2 )

)(
2s−1 
(d

2 + s − 1)


(1 − s)

∞∑
k=0


(1 − s + k)

(−2)kk!
(k + d
2 )

λk

)

= 4s−1 
(d
2 + s − 1)
(m

2 + s − 1)


(1 − s)
(m
2 )

∞∑
k=0


(1 − s + k)

(−2)kk!
(k + d
2 )

λk.
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Figure 3. (Left:) Kernel density estimates, for each m ∈ {3,5} and for λ = 1, of the density of Q2
d
Q2

m(λB) (solid
lines) and of the density of Q2

d
(λ)Q2

m (dashed lines) in Theorem 4.1, in each case based on 100 000 mutually
independent realizations of these random variables (kernel density estimates are obtained by using the R command
density with default parameter values). (Right:) The corresponding results for d = 20 and m ∈ {3,5,10,15}.

These two transforms thus take the same value at any s ∈ [1,∞) \N. Proceeding similarly, it is readily
checked that, at any s ∈ [1,∞) ∩N, both Mellin transforms are equal to

4s−1 
(d
2 + s − 1)
(m

2 + s − 1)


(m
2 )

s−1∑
k=0

(
s−1
k

)
2k
(d

2 + k)
λk.

Consequently, both transforms do coincide, which establishes the result. �

We conclude this section with a short numerical exercise illustrating the distributional identities
above. For various values of d and m, we generated 100 000 mutually independent realizations of the
random variables Q2

dQ2
m(λB) and Q2

d(λ)Q2
m from Theorem 4.1 with λ = 1. Figure 3, that plots the

corresponding kernel density estimates, most clearly indicates that these random variables indeed share
the same distribution.

5. Application to multivariate medians

Let P be a probability measure over Rd and consider the objective function

O�,P (μ) := EP [W�,d(μ)] = EP [m�(Simpl(X1, . . . ,X�,μ))]; (5.1)

all expectations EP [·] in the sequel assume that the random variables involved form a random sample
from P . Provided that P admits finite first moments (in the sense that

∫
Rd |xr |dP (x) exists and is finite

for any r = 1, . . . , d), O�,P (μ) is well-defined for any μ ∈ R
d (Lemma A.4), and we then define an

�-median of P as an arbitrary minimizer of μ �→ O�,P (μ):

μ�,P := arg min
μ∈Rd

O�,P (μ).
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For � = d , which corresponds to the Oja median (see below), existence of such a minimizer was studied
in León and Massé [21]. The following result shows existence for a general value of � (see the appendix
for a proof).

Theorem 5.1. Fix an integer d ≥ 1 and � ∈ {1, . . . , d}. Let P be a probability measure over R
d that

admits finite first-order moments. Then, μ �→ O�,P (μ) admits a minimizer over Rd .

Uniqueness, however, is not guaranteed in general. To identify a unique representative of the
set M�,P of minimizers, we define the �-median of P as the barycenter of M�,P ; since the objective
function μ �→ O�,P (μ) is convex (see again Lemma A.4), the barycenter of M�,P is itself a minimizer,
which justifies the construction (this of course requires that M�,P is bounded, which is the case as soon
as no (� − 1)-dimensional hyperplane of Rd has P -probability one; see Dürre and Paindaveine [11]).
The �-median provides the spatial median for � = 1 (Brown [8], Chaudhuri [9], Möttönen, Nordhausen
and Oja [30]) and the Oja median for � = d (Oja [35], Hettmansperger, Möttönen and Oja [16], Oja
[36], Ollila, Oja and Hettmansperger [39]). For d = 1, both medians reduce to the usual univariate
median, which explains the terminology. To the best of our knowledge, the multivariate �-medians
associated with � ∈ {2, . . . , d − 1} have not been considered in the literature.

Now, if a random sample X1, . . . ,Xn from P is available, then the natural estimator of μ�,P is the
sample �-median, which we define as

μ
(n)
� := arg min

μ∈Rd

O
(n)
� (μ),

where we let

O
(n)
� (μ) := 1(

n
�

) ∑
1≤i1<···<i�≤n

m�(Simpl(Xi1, . . . ,Xi�,μ))

(again, the barycenter of the set of minimizers is used if there are more than one minimizer). Our
first objective in this section is to study the asymptotic behaviour of the sample �-median; see Brown
[8], Arcones [3] or Zhou and Serfling [51] for the spatial median, and Oja and Niinimaa [38],
Hettmansperger, Nyblom and Oja [17] or Shen [47] for the Oja median. We do so under three very
mild assumptions. First, we will assume that there exists a neighbourhood of μ�,P for which P is
(� − 1)-smooth at any μ in the neighbourhood, where we say that P is k-smooth at μ if any k-
dimensional hyperplane containing μ has P -probability zero. Of course, this holds if P admits a
density with respect to the Lebesgue measure but this allows for more general probability measures,
such as, e.g., uniform measures on spheres. Second, we will assume that no �-dimensional hyperplane
containing μ�,P has P -probability one (would there be one, then the problem would not be a genuine
d-dimensional one; note that we indeed impose � ≤ d − 1 in Theorem 5.2 below). Third, denoting
as 
x1,...,x�

the matrix of the orthogonal projection onto the orthogonal complement of the vector space
spanned by x1 − x�, . . . , x�−1 − x�, we will assume that

EP

[
m�−1(Simpl(X1, . . . ,X�))

‖
X1,...,X�
(X� − μ�,P )‖ I[
X1,...,X�

(X� − μ�,P ) �= 0]
]

< ∞ (5.2)

(for � = 1, we define 
x = Id and m0(Simpl(x)) := 1 for any x ∈ R
d ). The second and third assump-

tions, which, for � = 1, are standard when studying the asymptotic behaviour of the sample spatial
median (Arcones [3], Möttönen, Nordhausen and Oja [30]) ensure that the Hessian matrix in the fol-
lowing result is well-defined and invertible (see the appendix for a proof of this result).
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Theorem 5.2. Fix an integer d ≥ 2 and � ∈ {1, . . . , d − 1}. Let P be a probability measure over R
d

that admits finite second-order moments (in the sense that
∫
Rd x2

r dP (x) exists and is finite for any r =
1, . . . , d), that is (� − 1)-smooth at any μ in a neighbourhood of μ�,P , and such that (5.2) holds.
Assume further that no �-dimensional hyperplane containing μ�,P has P -probability one. Then,

√
n(μ

(n)
� − μ�,P ) = H−1

P

1√
n

n∑
i=1

TP (Xi) + oP(1) (5.3)

→D Nd

(
0 ,H−1

P EP [TP (X�)T
′
P (X�)]H−1

P

)
(5.4)

as n diverges to infinity, where

TP (x)

:= EP

[
m�−1(Simpl(X1, . . . ,X�−1, x))


X1,...,X�−1,x(x − μ�,P )

‖
X1,...,X�−1,x(x − μ�,P )‖ I[
X1,...,X�−1,x(x − μ�,P ) �= 0]
]

is such that EP [TP (X�)T
′
P (X�)] is well-defined and where the Hessian matrix HP of μ �→ O�,P (μ)

at μ�,P is well-defined and invertible.

The strategy of the proof we provide for this result requires to show that the objective func-
tion O�,P (μ) is twice differentiable under the expectation sign at μ�,P . It should be noted that the
assumptions of Theorem 5.2 are never satisfied for � = d (the only hyperplane with dimension � = d

containing μ�,P , namely R
d itself, has always probability one). But there is no way to weaken the

assumptions to include the case � = d in this strategy of proof because, for � = d , the objective func-
tion actually is not twice differentiable under the expectation sign at μ�,P : inspection of the proof of
Lemma A.5 below indeed reveals that the Hessian matrix of μ �→ md(Simpl(x1, . . . , xd,μ)) at μd,P

is zero P -almost everywhere, so that twice differentiability under the expectation sign at μd,P would
imply that HP = 0 (which is not the case, e.g, at the d-variate standard normal distribution; see (5.5)
below). This is why Theorem 5.2 excludes the case � = d , which, as mentioned earlier, has already
been treated; see, e.g., Hettmansperger, Nyblom and Oja [17] and Shen [47].

We aim at applying Theorem 5.2, and in particular at computing the asymptotic variance in (5.4),
at the d-variate standard normal probability measure. As we will show, this will provide a natural
application of the results derived in the previous sections. In the rest of this section, thus, P will
denote the d-variate standard normal probability measure. First note that since P is centro-symmetric
with respect to the origin of Rd (in the sense that any Borel set B has the same P -probability as its
reflection with respect to 0 ∈ R

d ), O�,P (−μ) = O�,P (μ) for any μ, which entails that μ�,P = 0. Using
centro-symmetry of P again, Lemma A.8 then yields

TP (x) = EP

[
m�−1(Simpl(X1, . . . ,X�−1,0))

x

‖x‖
]
,

where  denotes the matrix of the orthogonal projection onto the orthogonal complement of the vec-
tor space spanned by X1, . . . ,X�−1. Since P is spherically symmetric about the origin of R

d and
since m�−1(Simpl(X1, . . . ,X�−1,0)) and  are mutually independent, Lemma A.9 provides

TP (x) = 
(d−�+2
2 )
(d

2 )


(d−�+1
2 )
(d+1

2 )
EP

[
m�−1(Simpl(X1, . . . ,X�−1,0))

] x

‖x‖ ,
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where 
 is the Euler Gamma function. Corollary 2.1(ii) then yields (we use the same notation as in
that corollary)

TP (x) = 
(d−�+2
2 )
(d

2 )

(� − 1)!
(d−�+1
2 )
(d+1

2 )
E[Qd ]E[Qd−1] . . .E[Qd−�+2] x

‖x‖ = 2(�−1)/2
(d
2 )

(� − 1)!
(d−�+1
2 )

x

‖x‖ ·

To apply Theorem 5.2 at the d-variate standard normal distribution, it remains to evaluate the Hessian
matrix HP . Using Theorem 1.1 and the Mellin transform in (4.1), we obtain

EP [m�(Simpl(X1, . . . ,X�−1,X�,μ))] = 1

�!E[Qd(�‖μ‖2)]E[Qd−1]E[Qd−2] . . .E[Qd−�+1]

= 2�/2
(d
2 )
(d+1

2 )

�!
(− 1
2 )
(d−�+1

2 )

∞∑
k=0


(k − 1
2 )

(−2)kk!
(k + d
2 )

�k‖μ‖2k,

which, after a direct computation, provides

HP = ∇2
μE[m�(Simpl(X1, . . . ,X�−1,X�,μ))]|μ=0 = 2�/2
(d+1

2 )

(� − 1)!d
(d−�+1
2 )

Id . (5.5)

Applying Theorem 5.2 and using the equivariance of the sample �-median under translations and under
homothetic transformations then establishes the following result.

Corollary 5.1. Fix an integer d ≥ 2 and � ∈ {1, . . . , d − 1}. Let P be the d-variate normal distribution
with mean vector μ and non-singular covariance matrix � = σ 2Id . Then,

√
n(μ

(n)
� − μ) = σ(d 
(d

2 )
(d+2
2 ))1/2

√
n
(d+1

2 )

n∑
i=1

Xi − μ

‖Xi − μ‖ + oP(1) →D Nd

(
0 ,


(d+2
2 )
(d

2 )


2( d+1
2 )

�

)

as n diverges to infinity.

Remarkably, neither the influence function of the �-median (see Hampel et al. [15])

x �→ IF(x;μ�,P ,P ) = lim
ε

>→0

μ�,Px,ε − μ�,P

ε
= σ(d 
(d

2 )
(d+2
2 ))1/2


(d+1
2 )

x − μ

‖x − μ‖
(with Px,ε = (1 − ε)P + εδx , where δx is the Dirac probability measure at x) nor the asymptotic
variance of the sample �-median do depend on �. Note that, while Corollary 5.1 in principle does not
cover the Oja median (since the case � = d was excluded in Theorem 5.2), the influence function of the
Oja median (Ollila, Oja and Hettmansperger [39]) and its asymptotic variance (Oja and Niinimaa [38])
at the d-variate standard normal probability measure imply that the result actually holds for � = d , too.
For � = 1, Corollary 5.1 agrees with the results obtained earlier for the spatial median; we refer, e.g.,
to Arcones [3] and Zhou and Serfling [51].

We end this section with a numerical exercise. For each sample size n ∈ {30,100}, we gener-
ated a collection of 1 000 mutually independent random samples X1, . . . ,Xn of size n from the
(d = 3)-variate standard normal distribution. In each replication, we evaluated the sample mean μ̂M =
1
n

∑n
i=1 Xi and the sample �-medians μ̂

(n)
� , � = 1,2,3. The 1-median (the spatial median) was com-

puted by using the function spatial.median from the R package ICSNP, whereas the 3-median
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Figure 4. (Left:) Boxplots of the squared Euclidean distances ‖μ̂(n) − μ‖2, obtained in 1 000 mutually inde-
pendent random samples X1, . . . ,Xn of size n = 30 from the (d = 3)-variate standard normal distribution, be-
tween four estimators μ̂(n) and the true location μ = 0. The estimators considered are the sample �-medians,
for � ∈ {1,2,3}, and the sample mean. (Right:) The corresponding results for n = 100.

(the Oja median) was evaluated by using the “bounded exact” algorithm in the R package OjaNP;
see Fischer et al. [13]. The 2-median was computed through convex optimization, more precisely by
implementing a gradient descent based on backtracking line search; see Sections 9.2–9.3 from Boyd
and Vandenberghe [7]. For each estimator μ̂(n) and each sample size n ∈ {30,100}, Figure 4 provides
the boxplot of the resulting 1 000 squared Euclidean distances ‖μ̂(n) − μ‖2 between the estimate μ̂(n)

and the true value μ = 0. As expected, the sample mean, which is the efficient estimator of μ under
normality, dominates the considered �-medians. Dominance is quite mild, however, which is in line
with the fact that in dimension d = 3, the common asymptotic covariance matrix of the �-median is
only 1.178 times the one of the sample mean. More importantly, the results clearly support the asymp-
totic equivalence of the three �-medians, that seems to materialize for sample sizes as small as n = 30
already. It should be noted that this equivalence quite much relies on the spherical nature of the setup
considered in this work: if the Gaussian spherical distribution would be made increasingly elliptical,
then the efficiency of the Oja median would remain unchanged (since the Oja median is actually equiv-
ariant under affine transformations) but the efficiency of the spatial median would deteriorate (Niinimaa
and Oja [33]). Under such ellipticity, intermediate �-medians are thus promising objects to achieve a
compromise between the nice computability properties of the spatial median and the good efficiency
properties of the Oja median.

6. Perspectives for future research

We end the paper by discussing perspectives for future research. First, it is natural to try to extend the
results of this paper beyond spherical normal distributions. Getting rid of the normality assumption is
complex, though. In particular, it should be noted that the simple proof of Theorem 1.1 we provide in
Section 3 focuses on the Gaussian case; indeed, the proof uses the fact that the underlying distribution
(i) is spherically symmetric and (ii) has mutually independent marginals, two properties that, according
to the Maxwell–Hershell Theorem (see, e.g., Proposition 4.11 in Bilodeau and Brenner [6] or Theo-
rem 1.5.3 in Muirhead [32]) are met at spherical normal distributions only. It is not excluded, however,
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that our results can be extended to more general spherical distributions by appropriate conditioning
on the corresponding non-Gaussian radii. Getting rid of the sphericity assumption is easy for � = d ,
since the volumes of the corresponding simplices behave well under affine transformations (this is the
reason why the Oja median is equivariant under affine transformations, which in turn explains that its
efficiency is the same under elliptical distributions as under spherical ones; see the end of Section 5).
The situation is much more delicate for � < d . Yet, regarding �-medians, there is some hope that the
elliptical results obtained for the spatial median (� = 1) in Magyar and Tyler [24] can be extended to
an arbitrary � ∈ {2, . . . , d −1}. An alternative approach would be to modify the definition of �-medians
to make them equivariant under affine transformations, as it was done already for the spatial median in
Hettmansperger and Randles [18]; see also Serfling [45].

Second, it would be of interest to study the robustness properties of �-medians. While it is expected
that, as � increases from 1 to d , the breakdown point of the �-medians will decrease from the max-
imal 50% breakdown point of the spatial median (Lopuhaä and Rousseeuw [22]) to the minimal 0%
breakdown point of the Oja median (Niinimaa, Oja and Tableman [34]), knowing the exact dependence
on � would be useful when trying to achieve a balance between robustness and efficiency. In a differ-
ent perspective, a modern trend in robust statistics has been defining accurate estimators under heavy
tails through a “median-of-means” construction, that reduces variability by considering the median
of mutually independent means. Implementing this in a multivariate framework of course requires a
multivariate median concept, and both the spatial median and componentwise median have been used
in this context (Minsker [28], Hsu and Sabato [19]). As hinted in the recent review paper Lugosi and
Mendelson [23], the Oja median could also be used in this framework, and it would be interesting to
see, more generally, what could be the possible advantages of �-medians in this purpose.

Finally, we mainly focused on multivariate medians in this work when applying our results on an-
chored simplices, and it would be natural to consider further applications. A natural venue for this is in
multivariate nonparametric hypothesis testing, when one wants to test the null hypothesis that the un-
known center of the distribution (e.g., the center of symmetry under a centro-symmetric distributional
assumption) coincides with a given location in R

d . For this problem, sign tests that are companion
procedures to the spatial median and Oja median—hence are based on (� = 1)-simplices and (� = d)-
simplices, respectively—were proposed and studied in Möttönen and Oja [31] and Hettmansperger,
Nyblom and Oja [17], respectively (see also Oja [37]). It would be natural to define a class of �-sign
tests (based on �-simplices) that would contain the aforementioned sign tests as particular cases. In
this framework, our results on anchored simplices would allow one to obtain explicit expressions for
the asymptotic powers of these �-sign tests under contiguous spherical normal alternatives. Another
possible inferential application of our results would consist in using the U-statistics considered in the
introduction, after suitable standardization of the data, to test for multinormality of the underlying
distribution.

Appendix A: Auxiliary proofs

In this technical appendix, we first prove Lemma 2.1 and Lemma 4.1, then we turn to the proof of the
results from Section 5.

Proof of Lemma 2.1. Let Z1, . . . ,Z2d be mutually independent standard normal variables. Then Q =∑d
k=1 Z2

d+k ∼ χ2
d and

T :=
d∑

k=1

(Zk + √
λZd+k)

2
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is, conditional on Q, non-central chi-square with d degrees of freedom and non-centrality param-
eter λQ. Therefore, T =D R. The result then follows from the fact that (Zk + √

λZd+k)/
√

λ + 1,
k = 1, . . . , d , are mutually independent standard normal variables. �

The proof of Lemma 4.1 requires the following preliminary result.

Lemma A.1. For any non-negative integer k and any positive real numbers a, b,

k∑
m=0

(−1)m
(

k

m

)

(m + a + b)


(m + a)
= 
(a + b)


(k + a)

(

(k − b)


(−b)
I[b /∈N]+ (−1)kk!

(
b

k

)
I[b ∈ {k, k+1, . . .}]

)
,

where 
 is the Euler Gamma function.

Proof of Lemma A.1. (i) Consider first the case where b is not an integer. Denoting the rising factorial
as z(m) = 
(z + m)/
(z), we then have


(a)


(a + b)

k∑
m=0

(−1)m
(

k

m

)

(m + a + b)


(m + a)
=

k∑
m=0

(−1)m
(

k

m

)
(a + b)(m)

a(m)

=
∞∑

m=0

(−1)mk(k − 1) . . . (k − m + 1)
(a + b)(m)

m!a(m)
=

∞∑
m=0

(−k)(m)(a + b)(m)

m!a(m)
= 2F1(−k, a + b;a;1),

where 2F1(α,β;γ ; z) is the Gauss hypergeometric function. The linear transformation rule

2F1(α,β;γ ; z) = 
(γ )
(γ − α − β)


(γ − α)
(γ − β)
2F1(α,β;α + β + 1 − γ ;1 − z)

+ 
(γ )
(α + β − γ )


(α)
(β)
(1 − z)γ−α−β

2F1(γ − α,γ − β;1 + γ − α − β;1 − z)

(that holds whenever γ − α − β /∈ Z; see (15.3.6) in Abramowitz and Stegun [1]) then entails


(a)


(a + b)

k∑
m=0

(−1)m
(

k

m

)

(m + a + b)


(m + a)
= 
(a + b)
(k − b)


(k + a)
(−b)
,

as was to be showed. (ii) Let us thus turn to the case where b is a positive integer. From continuity, we
have

k∑
m=0

(−1)m
(

k

m

)

(m + a + b)


(m + a)
= lim

z→b


(a + z)
(k − z)


(k + a)
(−z)
= 
(a + b)


(k + a)
lim
z→b


(k − z)


(−z)
·

If b < k, then this limit is zero (since 
(k − z) → 
(k − b) ∈R and |
(−z)| → ∞), whereas if b ≥ k,
then Euler’s reflection formula 
(z)
(1 − z) = π/ sin(πz) (for z /∈ Z) and L’Hôpital’s rule provide

k∑
m=0

(−1)m
(

k

m

)

(m + a + b)


(m + a)
= 
(a + b)


(k + a)
lim
z→b


(z + 1) sin(π(z + 1))


(z − k + 1) sin(π(z − k + 1))
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= (−1)k

(a + b)
(b + 1)


(k + a)
(b − k + 1)
= (−1)k


(a + b)b!

(k + a)(b − k)! = (−1)kk!
(a + b)


(k + a)

(
b

k

)
,

which establishes the result. �

Proof of Lemma 4.1. Working conditionally on R, Equation (7) from Wells, Anderson and Cell [50]
provides

E[Zs−1
L |R] = e−R/2

∞∑
m=0

2s−m−1
(m + d
2 + s − 1)

m!
(m + d
2 )

Rm

= 2s−1
∞∑

m,n=0

(−1)n2−(m+n)
(m + d
2 + s − 1)

m!n!
(m + d
2 )

Rm+n.

Therefore, taking expectations (treating separately odd and even values of n, the monotone convergence
theorem allows us to take expectation termwise in the righthand side) yields

MZ(s) = 2s−1
∞∑

m,n=0

(−1)n2−(m+n)
(m + d
2 + s − 1)

m!n!
(m + d
2 )

E[Rm+n]

= 2s−1
∞∑

m,n=0

(
m + n

m

)
(−1)n2−(m+n)
(m + d

2 + s − 1)

(m + n)!
(m + d
2 )

E[Rm+n]

= 2s−1
∞∑

k=0

k∑
m=0

(
k

m

)
(−1)k+m2−k
(m + d

2 + s − 1)

k!
(m + d
2 )

E[Rk]

= 2s−1
∞∑

k=0

1

(−2)kk!
( k∑

m=0

(−1)m
(

k

m

)

(m + d

2 + s − 1)


(m + d
2 )

)
E[Rk].

The result then follows from Lemma A.1. �

We turn to the proof of the results from Section 5. Let us recall some key notation introduced in
that section. For x1, . . . , x� ∈ R

d , we denote as 
x1,...,x�
the matrix of the orthogonal projection onto

the orthogonal complement of the vector space spanned by x1 − x�, . . . , x�−1 − x�; for � = 1, we
let 
x := Id for any x ∈ R

d . Recall also that we put m0(Simpl(x)) := 1 for any x ∈R
d . The following

result will play an important role in the subsequent proofs.

Lemma A.2. Fix a positive integer d and � ∈ {1, . . . , d}. Then, for any x1, . . . , x�+1 ∈R
d ,

m�(Simpl(x1, . . . , x�, x�+1)) = 1

�
m�−1(Simpl(x1, . . . , x�))‖
(x�+1 − x�)‖,

where we wrote 
 = 
x1,...,x�
.
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Proof of Lemma A.2. Since the result is trivial for � = 1, we restrict to � > 1. We then have

m�(Simpl(x1, . . . , x�, x�+1))

= 1

�!m�(Parall(x1 − x�, . . . , x�−1 − x�, x�+1 − x�,0))

= 1

�! ‖x1 − x�‖
( �−1∏

i=2

‖π⊥(xi − x�;x1 − x�, . . . , xi−1 − x�)‖
)

‖
(x�+1 − x�)‖,

where π⊥(z; z1, . . . , zk) still denotes the orthogonal projection of z onto the orthogonal complement
of the vector space spanned by z1, . . . , zk . It follows that

m�(Simpl(x1, . . . , x�, x�+1))

= 1

�!m�−1(Parall(x1 − x�, . . . , x�−1 − x�,0))‖
(x�+1 − x�)‖

= 1

�
m�−1(Simpl(x1 − x�, . . . , x�−1 − x�,0))‖
(x�+1 − x�)‖

= 1

�
m�−1(Simpl(x1, . . . , x�))‖
(x�+1 − x�)‖,

as was to be proved. �

The proof of Theorem 5.1 crucially relies on Lemma A.4 below, which itself requires the following
preliminary result.

Lemma A.3. Fix an integer d ≥ 2, � ∈ {2, . . . , d} and u ∈ R
d \ {0}. Let P be a probability measure

over R
d such that no (� − 1)-dimensional hyperplane has P -probability one. Let X1, . . . ,X� form a

random sample from P . Then, the probability that u,X1 − X�, . . . ,X�−1 − X� span a vector space of
dimension � is positive.

Proof of Lemma A.3. Pick z1, . . . , z�+1 ∈ R
d not contained in an (� − 1)-dimensional hyperplane

of Rd and such that P [{zi}ε] > 0 for any ε > 0 and any i = 1, . . . , �+ 1; throughout this proof, for any
subset A of Rd , we write Aε := {y ∈R

d : ‖y − x‖ < ε for some x ∈ A}.
We first prove that such zi ’s exist. Let us start by showing that there exists z1 ∈ R

d such
that P [{z1}ε] > 0 for any ε > 0. Ad absurdum, assume that for any z ∈ R

d , there exists ε(z) > 0
such that P [{z}ε(z)] = 0. Take then R > 0 so that B(0,R) = {x ∈ R

d : ‖x‖ ≤ R} has a positive
P -probability. From compactness, the cover {{x}ε(x) : x ∈ B(0,R)} of B(0,R) admits a finite sub-
cover {{xi}ε(xi ) : i = 1, . . . ,N}, which yields

P [B(0,R)] ≤
N∑

i=1

P [{xi}ε(xi )] = 0, (A.1)

a contradiction. Assume now that, for some r ∈ {1, . . . , �}, we could pick z1, . . . , zr not contained in an
(r − 2)-dimensional hyperplane of Rd and such that P [{zi}ε] > 0 for any ε > 0 and any i = 1, . . . , r .
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Let us show that we can then find zr+1 such that z1, . . . , zr , zr+1 are not contained in an (r − 1)-
dimensional hyperplane of R

d and such that P [{zi}ε] > 0 for any ε > 0 and any i = 1, . . . , r + 1.
Denote as H the (r −1)-dimensional hyperplane containing z1, . . . , zr , and let us assume, ad absurdum,
that for any z ∈ R

d \ H , there exists ε(z) > 0 such that P [{z}ε(z)] = 0. By assumption, P [H ] < 1.
Take then δ > 0 small enough to have P [Hδ] < 1 and R large enough to have P [B(0,R) \ Hδ] >

0. Proceeding as above, we can find a finite cover of this compact set B(0,R) \ Hδ that is of the
form {{xi}ε(xi ) : i = 1, . . . ,N}, which, as in (A.1), implies that P [B(0,R) \ Hδ] = 0, a contradiction.
This argument can be repeated until obtaining d-vectors z1, . . . , z�+1 meeting the properties stated in
the previous paragraph.

Assume now that u belongs to the span of z1 − z�+1, . . . , zk−1 − z�+1, zk+1 − z�+1, . . . , z� − z�+1

for any k = 1, . . . , � (it is obvious what we mean with this for k ∈ {1, �}). This implies that there exists
an � × � matrix A, whose diagonal entries are equal to zero, such that (z1 − z�+1 . . . z� − z�+1)A =
(u . . . u). Since the rank of A is larger than or equal to two and the rank of (u . . . u) is equal to one,
the matrix (z1 − z�+1 . . . z� − z�+1) cannot be of maximal rank �, which implies that z1, . . . , z�+1

belong to an (� − 1)-dimensional hyperplane, a contradiction. Without loss of generality, we may thus
assume that u does not belong to the span of z1 − z�+1, . . . , z�−1 − z�+1. This entails that u, z1 −
z�+1, . . . , z�−1 − z�+1 span a vector space of dimension �, hence that there exists ε > 0 such that,
irrespective of x1 ∈ {z1}ε, . . . , x� ∈ {z�}ε, x�+1 ∈ {z�+1}ε , we have that u,x1 − x�, . . . , x�−1 − x� span
a vector space of dimension �. It follows that

P [u,X1 − X�, . . . ,X�−1 − X� span a vector space of dimension �]
≥ P [X1 ∈ {z1}ε] . . . P [X� ∈ {z�}ε]P [X�+1 ∈ {z�+1}ε] > 0,

as was to be proved. �

Lemma A.4. Fix a positive integer d and � ∈ {1, . . . , d}. Let P be a probability measure over Rd that
admits finite first moments. Then, (i) O�,P (μ) is well-defined for any μ ∈ R

d ; (ii) the mapping μ �→
O�,P (μ) is convex over R

d ; (iii) if no (� − 1)-dimensional hyperplane of Rd has P -probability one,
then μ �→ O�,P (μ) is coercive, in the sense that (O�,P (μk)) → ∞ for any sequence (μk) such
that (‖μk‖) → ∞.

Proof of Lemma A.4. (i) For any μ ∈R
d , one has

EP [m�(Simpl(X1, . . . ,X�,μ))] = 1

�!EP [m�(Parall(X1 − μ, . . . ,X� − μ,0))]

≤ 1

�!
�∏

i=1

EP [‖Xi − μ‖] = 1

�! (EP [‖X1 − μ‖])�,

which is finite since P admits finite first moments. (ii) Lemma A.2 readily entails that, for
any x1, . . . , x� ∈ R

d , the mapping μ �→ m�(Simpl(x1, . . . , x�,μ)) is convex over Rd . It directly follows
that

μ �→ O�,P (μ) =
∫
R�d

m�(Simpl(x1, . . . , x�,μ)) dP (x1) . . . dP (x�)

is convex over R
d . (iii) Ad absurdum, let (μk) be a sequence such that (‖μk‖) → ∞ and for

which (O�,P (μk)) does not diverge to infinity. Since the unit sphere Sd−1 of Rd is compact, we may
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assume, upon extraction of a subsequence, that (μk/‖μk‖) converges to u ∈ Sd−1 (note that ‖μk‖ > 0
for k large enough). Still with 
 = 
x1,...,x�

, Lemma A.2 then provides

O�,P (μk)

‖μk‖ = 1

�

∫
R�d

m�−1(Simpl(x1, . . . , x�))
‖
(μk − x�)‖

‖μk‖ dP (x1) . . . dP (x�),

so that Fatou’s lemma yields

lim inf
k→∞

O�,P (μk)

‖μk‖ ≥ 1

�

∫
R�d

m�−1(Simpl(x1, . . . , x�))

(
lim inf
k→∞

‖
(μk − x�)‖
‖μk‖

)
dP (x1) . . . dP (x�)

= 1

�

∫
R�d

m�−1(Simpl(x1, . . . , x�))‖
u‖dP (x1) . . . dP (x�)

=: I,

say. If � = 1, then I = ‖u‖ > 0, which implies that (O�,P (μk)) diverges to infinity, a contradiction.
Assume then that � ≥ 2. We trivially have

I ≥ 1

�

∫
Bu

m�−1(Simpl(x1 − x�, . . . , x�−1 − x�,0))‖
u‖dP (x1) . . . dP (x�),

where Bu collects the values of x = (x1, x2, . . . , x�) for which u,x1 −x�, x2 −x�, . . . , x�−1 −x� span a
vector space of dimension �. Clearly, the integrand in the last integral is everywhere positive and, from
Lemma A.3, Bu has a positive P -probability. Thus, I > 0, which implies that (O�,P (μk)) diverges to
infinity, a contradiction. This establishes the result. �

We can now prove Theorem 5.1.

Proof of Theorem 5.1. We consider two cases. (i) If there exists an (�−1)-dimensional hyperplane H

such that P [H ] = 1, then any μ ∈ H satisfies O�,P (μ) = EP [m�(Simpl(X1, . . . ,X�,μ))] = 0, hence is
a minimizer of μ �→ O�,P (μ). (ii) If there is no such hyperplane H , then μ �→ O�,P (μ) is continuous
(since it is convex) and coercive; see Lemma A.4. Coercivity implies that there exists R > 0 such
that O�,P (μ) ≥ O�,P (0) for any μ /∈ B(0,R) = {x ∈ R

d : ‖x‖ ≤ R}. Therefore, any minimum of μ �→
O�,P (μ) in B(0,R) (existence follows from continuity of μ �→ O�,P (μ) and compactness of B(0,R))
is a minimum of μ �→ O�,P (μ) over Rd . �

Lemmas A.5 and A.7 below are needed to prove Theorem 5.2.

Lemma A.5. Fix an integer d ≥ 2 and � ∈ {1, . . . , d −1}. Let P be a probability measure over Rd that
admits finite first moments, that is (� − 1)-smooth at any μ in an open neighbourhood of μ0, and such
that

EP

[
m�−1(Simpl(X1, . . . ,X�))

‖
X1,...,X�
(X� − μ0)‖ I[
X1,...,X�

(X� − μ0) �= 0]
]

< ∞.

Then, μ �→ O�,P (μ) is twice differentiable at μ0, with gradient

E[∇μm�(Simpl(X1, . . . ,X�,μ))|μ=μ0I[(X1, . . . ,X�) /∈ Cμ0]] (A.2)



On the measure of anchored Gaussian simplices 987

and Hessian matrix

E[∇2
μm�(Simpl(X1, . . . ,X�,μ))|μ=μ0I[(X1, . . . ,X�) /∈ Cμ0]], (A.3)

with Cμ := {x = (x1, . . . , x�) ∈R
�d : 
x1,...,x�

(x� − μ) = 0}.

Proof of Lemma A.5. Let V be an open neighbourhood of μ0 such that P is (� − 1)-smooth at
any μ ∈ V . Fix μ1 ∈ V , v ∈ R

d \ {0}, and x = (x1, . . . , x�) /∈ Cμ1 . Writing 
 = 
x1,...,x�
, m�(x,μ) :=

m�(Simpl(x1, . . . , x�,μ)) and m�−1(x) := m�−1(Simpl(x1, . . . , x�)), it follows from Lemma A.2 that

1

t
(m�(x,μ1 + tv) − m�(x,μ1)) = 1

t�
m�−1(x)(‖
(μ1 + tv − x�)‖ − ‖
(μ1 − x�)‖)

= 1

t�
m�−1(x)

t2v′
v + 2tv′
(μ1 − x�)

‖
(μ1 + tv − x�)‖ + ‖
(μ1 − x�)‖

→ 1

�
m�−1(x)

v′
(μ1 − x�)

‖
(μ1 − x�)‖

as t → 0. Thus, for any x /∈ Cμ1 , the mapping μ �→ m�(x,μ) admits a directional derivative in direc-
tion v at μ1, given by

∂m�(x,μ1)

∂v
= 1

�
m�−1(x)

v′
(μ1 − x�)

‖
(μ1 − x�)‖ , (A.4)

which in particular makes the integrand in (A.2) well-defined (for x ∈ Cμ1 , the gradient in (A.2) may
simply be defined as the zero vector, say). Now, note that x = (x1, . . . , x�) ∈ Cμ1 if and only if x�

belongs to the smallest hyperplane, H(x1, . . . , x�−1,μ1) say, containing x1, . . . , x�−1,μ, so that (� −
1)-smoothness of P at μ1 implies that

P [X = (X1, . . . ,X�) ∈ Cμ1] = P [X� ∈ H(X1, . . . ,X�−1,μ1)] (A.5)

=
∫
R(�−1)d

P [X� ∈ H(x1, . . . , x�−1,μ1)]dP (x1) . . . dP (x�−1) = 0.

Therefore, writing dP (x) instead of dP (x1) . . . dP (x�),

∫
R�d

∣∣∣∣1

t
(m�(x,μ1 + tv) − m�(x,μ1)) − ∂m�(x,μ1)

∂v
I[x /∈ Cμ1]

∣∣∣∣dP (x)

= 1

�

∫
R�d\Cμ1

m�−1(x)

∣∣∣∣‖
(μ1 + tv − x�)‖ − ‖
(μ1 − x�)‖
t

− v′
(μ1 − x�)

‖
(μ1 − x�)‖
∣∣∣∣dP (x) → 0,

in view of the Lebesgue’s dominated convergence theorem; indeed, the inequality |‖y‖ − ‖z‖| ≤ ‖y −
z‖ and the Cauchy–Schwarz inequality show that the integrand in the last integral is upper-bounded
by the function x �→ 2m�−1(x)‖v‖ that is P -integrable (see Dürre and Paindaveine [11]) and does not



988 D. Paindaveine

depend on t . Thus,

O�,P (μ1 + tv) − O�,P (μ1)

t
− EP

[
∂m�(X,μ1)

∂v
I[X /∈ Cμ1]

]

=
∫
R�d

{1

t
(m�(x,μ1 + tv) − m�(x,μ1)) − ∂m�(x,μ1)

∂v
I[x /∈ Cμ1]

}
dP (x) → 0.

This proves that the mapping μ �→ O�,P (μ) admits a directional derivative in direction v at μ1, given
by (see (A.4))

EP

[
∂m�(X,μ1)

∂v
I[X /∈ Cμ1]

]

= 1

�
EP

[
m�−1(Simpl(X1, . . . ,X�))

v′
X1,...,X�
(μ1 − X�)

‖
X1,...,X�
(μ1 − X�)‖ I[(X1, . . . ,X�) /∈ Cμ1]

]
.

We turn to second-order differentiability at μ0. Proceeding as above, it is easy to show that, for
any x /∈ Cμ0 ,

∂2m�(x,μ0)

∂w∂v
= lim

t→0

1

t

(
∂m�(x,μ0 + tw)

∂v
− ∂m�(x,μ0)

∂v

)

= 1

�‖
(μ0 − x�)‖m�−1(x)v′

(

Id − (μ0 − x�)(μ0 − x�)
′

‖
(μ0 − x�)‖2

)

w,

so that the integrand in (A.3) is well-defined (parallel to the gradient in (A.2), the Hessian matrix
in (A.3) may be defined as the zero matrix for x ∈ Cμ0 ). Note that for any x /∈ Cμ0 , using the Cauchy–
Schwarz inequality, the inequality ‖(v/‖v‖)− (w/‖w‖)‖ ≤ 2‖v −w‖/‖w‖, and the inequality |‖y‖−
‖z‖| ≤ ‖y − z‖, we have

∣∣∣∣1

t

(
v′
(μ0 + tw − x�)

‖
(μ0 + tw − x�)‖ − v′
(μ0 − x�)

‖
(μ0 − x�)‖
)

− 1

‖
(μ0 − x�)‖v′

(

Id − (μ0 − x�)(μ0 − x�)
′

‖
(μ0 − x�)‖2

)

w

∣∣∣∣
≤ 1

|t | ‖v‖
∥∥∥∥ 
(μ0 + tw − x�)

‖
(μ0 + tw − x�)‖ − 
(μ0 − x�)

‖
(μ0 − x�)‖
∥∥∥∥ + 2‖
v‖‖
w‖

‖
(μ0 − x�)‖

≤ 2

|t | ‖v‖‖
(μ0 + tw − x�) − 
(μ0 − x�)‖
‖
(μ0 − x�)‖ + 2‖v‖‖w‖

‖
(μ0 − x�)‖

= 2‖v‖ ‖
w‖
‖
(μ0 − x�)‖ + 2‖v‖‖w‖

‖
(μ0 − x�)‖

≤ 4‖v‖‖w‖
‖
(μ0 − x�)‖ ,
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where, by assumption, the last expression defines, after multiplication by m�−1(x), a P -integrable
function of x = (x1, . . . , x�) over R

�d \ Cμ0 . Since this function does not depend on t , Lebesgue’s
dominated convergence theorem entails that

∫
R�d

∣∣∣∣1

t

(
∂m�(x,μ0 + tw)

∂v
− ∂m�(x,μ0)

∂v

)
− ∂2m�(x,μ0)

∂v∂w
I[x /∈ Cμ0]

∣∣∣∣dP (x)

= 1

�

∫
R�d\Cμ0

m�−1(x)

∣∣∣∣1

t

(
v′
(μ0 + tw − x�)

‖
(μ0 + tw − x�)‖ − v′
(μ0 − x�)

‖
(μ0 − x�)‖
)

− 1

‖
(μ0 − x�)‖v′

(

Id − (μ0 − x�)(μ0 − x�)
′

‖
(μ0 − x�)‖2

)

w

∣∣∣∣dP (x) → 0,

as t → 0, where we used (� − 1)-smoothness of P at μ0. Therefore,

1

t

(
∂O�,P (μ0 + tw)

∂v
− ∂O�,P (μ0)

∂v

)
− EP

[
∂2m�(X,μ0)

∂v∂w
I[X /∈ Cμ0]

]

=
∫
R�d

{1

t

(
∂m�(x,μ0 + tw)

∂v
− ∂m�(x,μ0)

∂v

)
− ∂2m�(x,μ0)

∂v∂w
I[x /∈ Cμ0]

}
dP (x) → 0.

Thus, the mapping μ �→ O�,P (μ) is twice differentiable at μ0, with Hessian matrix HP = (HP,ij ),
i, j = 1, . . . , d , where

HP,ij = EP

[
∂2m�(X,μ0)

∂eid∂ejd

I[X /∈ Cμ0]
]

(A.6)

= 1

�
EP

[
m�−1(Simpl(X1, . . . ,X�))

‖
X(μ0 − X�)‖

× e′
id
X

(
Id − (μ0 − X�)(μ0 − X�)

′

‖
X(μ0 − X�)‖2

)

XejdI[(X1, . . . ,X�) /∈ Cμ0]

]

involves 
X = 
X1,...,X�
and where eid denotes the ith vector of the canonical basis of Rd . �

The proof of Lemma A.7 requires the following preliminary result (its proof, that can be done strictly
along the same lines as the proof of Lemma A.3, is omitted).

Lemma A.6. Fix an integer d ≥ 2, � ∈ {1, . . . , d − 1} and v ∈ R
d \ {0}. Let P be a probability

measure over R
d such that no �-dimensional hyperplane containing μ(∈ R

d) has P -probability one.
Let X1, . . . ,X� form a random sample from P . Then, the probability that v,X1 − μ, . . . ,X� − μ span
a vector space of dimension � + 1 is positive.

Lemma A.7. Let the assumptions of Theorem 5.2 hold. Then, the Hessian matrix HP = (HP,ij )

(see (A.6)) is positive definite.
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Proof of Lemma A.7. As the Hessian matrix of a convex function, HP is positive semi-definite. Ad
absurdum, assume then that there exists v ∈R

d \ {0} such that

v′HP v = 1

�
EP

[
m�−1(Simpl(X1, . . . ,X�))

‖
X(X� − μ�,P )‖ (A.7)

×v′
X

(
Id − (X� − μ�,P )(X� − μ�,P )′

‖
X(X� − μ�,P )‖2

)

XvI[
X(X� − μ�,P ) �= 0]

]
= 0.

Note that (�−1)-smoothness of P at μ�,P implies that P [m�(Simpl(X1, . . . ,X�,μ�,P )) = 0] = 0 (this
is shown by conditioning with respect to X1, . . . ,X�−1, as in (A.5)), which, in view of Lemma A.2,
implies that P [m�−1(Simpl(X1, . . . ,X�)) = 0] = 0 and P [
X(X� − μ�,P ) = 0] = 0. Consequently,
(A.7) yields that (

Id − (X� − μ�,P )(X� − μ�,P )′

‖
X(X� − μ�,P )‖2

)

XvI[
X(X� − μ�,P ) �= 0] = 0

with P -probability one, which, since 
X is symmetric and idempotent, implies that(
Id − 
X(X� − μ�,P )(
X(X� − μ�,P ))′

‖
X(X� − μ�,P )‖2

)

XvI[
X(X� − μ�,P ) �= 0] = 0

P -almost surely. Since 
X(X� − μ�,P ) �= 0 with P -probability one, 
Xv must be proportional
to 
X(X� − μ�,P ) with P -probability one. Consequently, there must exist λ1, . . . , λ� ∈ R (that may
depend on X1, . . . ,X�) such that v − λ�(X� − μ�,P ) = ∑�−1

i=1 λi(Xi − X�) P -almost surely, that is,
such that

v =
�−1∑
i=1

λi(Xi − μ�,P ) +
(

λ� −
�−1∑
i=1

λi

)
(X� − μ�,P ),

P -almost surely. Thus, with P -probability one, v,X1 − μ�,P , . . . ,X� − μ�,P span a vector space of
dimension strictly less than � + 1, which, in view of Lemma A.6, contradicts the assumption that no
�-dimensional hyperplane containing μ�,P has P -probability one. �

We can now prove Theorem 5.2.

Proof of Theorem 5.2. All convergences in this proof are as n → ∞. Let Gn(μ) := nO
(n)
� (μ),

ηn =
√

n(
n
�

) ∑
1≤i1<···<i�≤n

∇μm�(Simpl(Xi1, . . . ,Xi�,μ))|μ=μ�,P
I[(Xi1, . . . ,Xi�) /∈ C] (A.8)

and

Vn = 1

2
(
n
�

) ∑
1≤i1<···<i�≤n

∇2
μm�(Simpl(Xi1, . . . ,Xi�,μ))|μ=μ�,P

I[(Xi1 , . . . ,Xi�) /∈ C], (A.9)

with C := Cμ�,P
(see Lemma A.5 for the definition of Cμ). To make the notation lighter, we write I

in the rest of the proof for a multivariate index (i1 < · · · < i�) as in (A.8)–(A.9) and In for the cor-
responding collection of I ’s. For any I , we then denote as XI the collection of observations indexed
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by I , that is, (Xi1, . . . ,Xi� ). Finally, X will stand for (X1, . . . ,X�). With this notation, write, for any
d-vector h,

Rn := Gn(μ�,P + n−1/2h) − Gn(μ�,P ) − h′ηn − h′Vnh = Rn1 + Rn2,

with

Rn1 = n(
n
�

) ∑
I∈In

{
m�(Simpl(XI ,μ�,P + n1/2h)) − m�(Simpl(XI ,μ�,P ))

− 1√
n
h′∇μm�(Simpl(XI ,μ))|μ=μ�,P

− 1

2n
h′∇2

μm�(Simpl(XI ,μ))|μ=μ�,P
h
}
I[XI /∈ C]

and

Rn2 = n(
n
�

) ∑
I∈In

{
m�(Simpl(XI ,μ�,P + n1/2h)) − m�(Simpl(XI ,μ�,P ))

}
I[XI ∈ C].

Since (� − 1)-smoothness of P at μ�,P implies that P [X ∈ C] = 0 (see (A.5)), we have that, for
any ε > 0,

P [|Rn2| > ε] ≤ P [Rn2 �= 0] ≤ P [∪I∈In
[XI ∈ C]] ≤

∑
I∈In

P [XI ∈ C] = 0,

so that Rn2 = oP(1). Let us thus focus on Rn1, which we write as

Rn1 = 1(
n
�

) ∑
I∈In

(Jn(XI ) − J (XI )),

with

Jn(x) := n
{
m�(Simpl(x,μ�,P + n−1/2h)) − m�(Simpl(x,μ�,P ))

− 1√
n
h′∇μm�(Simpl(x,μ))|μ=μ�,P

}
I[x /∈ C]

and

J (x) := 1

2
h′∇2

μm�(Simpl(x,μ))|μ=μ�,P
h I[x /∈ C].

Lemma A.5 entails that Jn(x) → J (x) for any x and that

EP [Jn(X)] − EP [J (X)] = n
{
O�,P (μ�,P + n−1/2h) − O�,P (μ�,P ) − 1√

n
h′∇μO�,P (μ))|μ=μ�,P

− 1

2n
h′∇2

μO�,P (μ))|μ=μ�,P
h
}

→ 0.

Convexity implies that Jn(x) and J (x) are non-negative for any x, so that Scheffé’s lemma entails
that EP [|Jn(X)−J (X)|] = o(1). It follows that EP [|Rn1|] ≤ EP [|Jn(X)−J (X)|] = o(1), so that Rn1,
hence also Rn, are oP(1).
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The consistency result for U-statistics on page 190 from Serfling [46] and Lemma A.5 then yield

Vn = 1

2
(
n
�

) ∑
I∈In

∇2
μm�(Simpl(XI ,μ))|μ=μ�,P

I[XI /∈ C]

= 1

2
E[∇2

μm�(Simpl(X1, . . . ,X�,μ))|μ=μ�,P
I[(X1, . . . ,X�) /∈ C]] + oP(1)

= 1

2
∇2

μE[m�(Simpl(X1, . . . ,X�,μ))]|μ=μ�,P
+ oP(1)

= 1

2
HP + oP(1), (A.10)

where, in view of Lemma A.7, HP is invertible. Now, since μ�,P is a minimizer of μ �→ O�,P (μ),
Lemma A.5 provides

E[∇μm�(Simpl(X1, . . . ,X�,μ))|μ=μ�,P
I[(X1, . . . ,X�) /∈ C]] = ∇μO�,P (μ)|μ=μ�,P

= 0.

The usual Hoeffding’s representation result for U-statistics (see, e.g., Theorem 12.3 from van der Vaart
[48]) then entails that

ηn − �√
n

n∑
i=1

SP (Xi) = oP(1), (A.11)

where we let

SP (x�) := EP [∇μm�(Simpl(X1, . . . ,X�−1, x�,μ))|μ=μ�,P
I[(X1, . . . ,X�−1, x�) /∈ C]].

Writing 
 = 
X1,...,X�−1,x�
, working as in Lemma A.5 then yields

SP (x�) = 1

�
EP

[
m�−1(Simpl(X1, . . . ,X�−1, x�))


(μ�,P − x�)

‖
(μ�,P − x�)‖ I[(X1, . . . ,X�−1, x�) /∈ C]
]

= 1

�
EP

[
m�−1(Simpl(X1, . . . ,X�−1, x�))


(μ�,P − x�)

‖
(μ�,P − x�)‖ I[
(μ�,P − x�) �= 0]
]
. (A.12)

Since the SP (Xi)’s are independent and identically distributed with a common distribution that, by
proceeding strictly as in the proof of Lemma A.4(i), is shown to admit finite second-order moments,
we have that ηn = OP(1). Therefore, Theorem 3 from Arcones [4] applies and yields

√
n(μ

(n)
� − μ�,P ) = −1

2
V −1

n ηn + oP(1),

which, using (A.10)–(A.12), establishes the Bahadur representation result in (5.3). Of course, (5.4)
then readily follows from the multivariate central limit theorem. �

We conclude by establishing two results we used to derive Corollary 5.1 from Theorem 5.2.

Lemma A.8. Fix a positive integer d and � ∈ {1, . . . , d}. Fix x1, . . . , x� ∈R
d such that H(x1, . . . , x�),

the smallest hyperplane containing x1, . . . , x�, has dimension � − 1 and fix μ ∈ R
d \ H(x1, . . . , x�).
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Let C = (x1 − x� . . . x�−1 − x�) and D = (x1 − μ . . . x�−1 − μ). Then,

m�−1(Simpl(x1, . . . , x�))

(x� − μ)

‖
(x� − μ)‖

= m�−1(Simpl(x1, . . . , x�−1,μ))
(x� − μ)

‖(x� − μ)‖ + �m�(Simpl(x1, . . . , x�,μ))�D(D′�D)−11�−1,

where 
 = Id −C(C′C)−1C′ (resp.,  = Id −D(D′D)−1D′) is the matrix of the orthogonal projection
onto the orthogonal complement of the vector space spanned by the columns of C (resp., by the columns
of D) and where � = Id − (x� − μ)(x� − μ)′/‖x� − μ‖2 is the matrix of the orthogonal projection
onto the orthogonal complement of the vector space spanned by x� − μ.

Proof of Lemma A.8. Define

v := 
(x� − μ)

‖
(x� − μ)‖2
and w := (x� − μ)

‖(x� − μ)‖2
+ �D(D′�D)−11�−1.

Since

D′
(x� − μ) − 1�−1(x� − μ)′
(x� − μ) = (D − (x� − μ)1′
�−1)

′
(x� − μ) = C′
(x� − μ) = 0,

we have D′
(x� − μ)/‖
(x� − μ)‖2 = 1�−1, which shows that (xi − μ)′v = (xi − μ)′w for any i =
1, . . . , � − 1. Since a direct computation yields (x� − μ)′v = (x� − μ)′w, we have that y′v = y′w for
any y in the span V of x1 − μ, . . . , x�−1 − μ,x� − μ. Now, for any y in the orthogonal complement
of V ,

y′v = y′(x� − μ)

‖
(x� − μ)‖2
= 0 = y′(x� − μ)

‖(x� − μ)‖2
+ y′D(D′�D)−11�−1 = y′w,

so that v = w. This implies that

�m�(Simpl(x1, . . . , x�,μ))

(x� − μ)

‖
(x� − μ)‖2

= �m�(Simpl(x1, . . . , x�−1,μ, x�))
(x� − μ)

‖(x� − μ)‖2
+ �m�(Simpl(x1, . . . , x�,μ))�D(D′�D)−11�−1.

The result then follows from Lemma A.2. �

Lemma A.9. Fix an integer d ≥ 2 and k ∈ {1, . . . , d − 1}. Let P be a probability measure over R
d

that is spherically symmetric about the origin of Rd and satisfies P [{0}] = 0. Let X1, . . . ,Xk form a
random sample from P and let V be the vector space spanned by X1, . . . ,Xk . Denote as  the matrix
of the orthogonal projection onto the orthogonal complement of V . Then,

E

[
x

‖x‖
]

= 
(d−k+1
2 )
(d

2 )


(d−k
2 )
(d+1

2 )

x

‖x‖

for any non-zero d-vector x, where 
 is the Euler Gamma function.
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Proof of Lemma A.9. Fix an arbitrary non-zero d-vector x. By assumption,  = O�O ′ almost surely,
where � is idempotent with trace d − k and O follows the Haar distribution on the collection of d × d

orthogonal matrices. In particular, PP ′ =D P for any d × d orthogonal matrix P . For any such P ,
the quantity g(x) := E[x/‖x‖] satisfies

g(Px) = P E

[
P ′Px

‖P ′Px‖
]

= P E

[
x

‖x‖
]

= Pg(x).

Fix then v ∈R
d with v′x = 0. Picking P so that Px = x and Pv = −v, we obtain

v′g(x) = v′g(Px) = v′Pg(x) = −v′g(x),

so that v′g(x) = 0. Therefore, g(x) = λx/‖x‖ for some λ ∈ R. To determine λ, note that, since  is
symmetric and idempotent, we have, with u := x/‖x‖,

λ = 1

‖x‖x′g(x) = E

[
x′x

‖x‖‖x‖
]

= E

[‖x‖
‖x‖

]
= E[‖O�O ′u‖] = E[‖�U‖],

where U = (U1, . . . ,Ud)′ is uniformly distributed over the unit sphere of Rd . Since Theorem 1.5.7(ii)
in Muirhead [32] entails that ‖�U‖2 = ∑d−k

r=1 U2
r is Beta( d−k

2 , k
2 ), the result then follows. �
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