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We give a description of invariants and attractors of the critical and subcritical Galton–Watson tree measures under
the operation of Horton pruning (cutting tree leaves with subsequent series reduction). Under a regularity condi-
tion, the class of invariant measures consists of the critical binary Galton–Watson tree and a one-parameter family
of critical Galton–Watson trees with offspring distribution {qk} that has a power tail qk ∼ Ck−(1+1/q0), where
q0 ∈ (1/2,1). Each invariant measure has a non-empty domain of attraction under consecutive Horton pruning,
specified by the tail behavior of the initial Galton–Watson offspring distribution. The invariant measures satisfy
the Toeplitz property for the Tokunaga coefficients and obey the Horton law with exponent R = (1 − q0)−1/q0 .
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1. Introduction and motivation

The study of random trees invariant with respect to combinatorial pruning (erasure) from leaves down
to the root emerges in attempts to understand symmetries of natural trees observed in fields as di-
verse as hydrology, phylogenetics, or computer science. In addition, it provides a unifying framework
for analysis of coalescence and annihilation dynamical models, including the celebrated Kingman’s
coalescent, and self-similar stochastic processes on the real line; see a recent survey [13] for details.
A special place in the invariance studies is occupied by the family of Galton–Watson trees, whose
transparent generation mechanism makes it a convenient testbed for general theories and approaches.
A Galton–Watson tree describes the trajectory of the Galton–Watson branching process [1] with a
single progenitor and offspring distribution {qk}, k = 0,1, . . . . We write GW(qk) for the probability
measure that corresponds to this random tree. A tree is called critical if the expected progeny of a single
member equals unity:

∑∞
k=1 kqk = 1. Similarly, a tree is subcritical if

∑∞
k=1 kqk < 1. In this paper, we

analyze the invariance and attraction properties of critical and subcritical Galton–Watson trees under
the operation of combinatorial Horton pruning – cutting tree leaves and their parental edges followed
by series reduction (removing vertices of degree 2). The Horton pruning (formally introduced in Sec-
tion 2.2 and illustrated in Figure 3) is a discrete, combinatorial analog of the continuous erasure or
trimming studied by Neveu [16], Neveu and Pitman [17,18], Le Jan [14], Evans [6], and Evans, Pitman
and Winter [7].

1.1. Invariance

Combinatorial prune invariance of critical and subcritical Galton–Watson trees was first examined
by Burd et al. [2], under the assumption of a finite second moment for the offspring distribution,∑∞

k=1 k2qk < ∞. These authors have shown that the only invariant measure in this class corresponds
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to the critical binary Galton–Watson tree, q0 = q2 = 1
2 [2], Theorem 3.9. Here we substantially relax the

regularity constraint on the offspring distribution; see Assumption 1 and Lemma 5 in Section 3.2. This
reveals an abundance of prune-invariant measures with infinite second moment. Theorem 2 describes
all such measures among the critical and subcritical Galton–Watson trees that satisfy Assumption 1.
This infinite family of Invariant Galton–Watson (IGW) measures can be characterized by a single
parameter – the probability q0 ∈ [1/2,1) of having no offsprings. An individual distribution from this
family is denoted by IGW(q0); it is a critical distribution with the offspring generating function

Q(z) =
∞∑

k=0

qkz
k = z + q0(1 − z)1/q0 .

The case q0 = 1/2 with Q(z) = (1 + z2)/2 corresponds to the critical binary Galton–Watson tree
IGW(1/2) = GW(q0 = q2 = 1/2). Every invariant Galton–Watson measure IGW(q0) with q0 ∈
( 1

2 ,1) corresponds to an unbounded offspring distribution of Zipf type with infinite second moment:

qk ∼ Ck−(1+1/q0) as k → ∞.

1.2. Attraction

Burd et al. [2], Theorem 3.11, have shown that any critical Galton–Watson tree with a bounded off-
spring number (there exists b such that qk = 0 for all k ≥ b) converges to the critical binary Galton–
Watson tree under iterative Horton pruning, conditioned on surviving under the pruning. Theorem 3
shows that the collection of IGW(q0) measures for q0 ∈ [1/2,1) and a point measure GW(q0 = 1)

are the only possible attractors of critical and subcritical Galton–Watson measures that satisfy As-
sumption 1, with respect to the iterative Horton pruning. Specifically, all subcritical measures con-
verge to GW(q0 = 1), and critical measures converge to IGW(q0). The domain of attraction of
IGW(q0) for any q0 ∈ [1/2,1) is characterized by the tail behavior of the offspring distribution {qk}
of the initial Galton–Watson measure. In particular, Corollary 2 implies that every critical measure
with Zipf tail qk ∼ Ck−(1+1/q) for q ∈ [1/2,1) and C > 0 converges to IGW(q). The subcritical
attractor GW(q0 = 1) is the limiting point of the IGW family for q0 = 1 with generating function
Q(z) = z + (1 − z) = 1. This distribution, however, is not prune-invariant.

Our results expand the attraction domain of the critical binary Galton–Watson tree IGW(1/2) ini-
tially described by Burd et al. [2]. Specifically, Lemma 2 shows that any critical offspring distribution
that has an infinite second moment, satisfies Assumption 1, and has a finite 2 − ε moment for all ε > 0
belongs to the attraction domain of IGW(1/2). We give an example of such a measure with qk ∼ 4

3k−3.

1.3. Toeplitz property

The results of Burd et al. [2] revealed an interesting characterization of the critical binary Galton–
Watson distribution in terms of its Tokunaga sequence. Recall that the Horton pruning removes the
leaf vertices and their parental edges from a finite tree T , with subsequent series reduction (removing
degree-2 vertices). The Horton order of a tree T is the minimal number of Horton prunings sufficient
to eliminate T . Informally, a branch of Horton order k is a contiguous part of a tree (a collection of
vertices and their parental edges in the initial tree) eliminated at k-th iteration of Horton pruning (see
Figures 3, 4, 5, 6 for example, and Section 2.2 for a formal definition). Each leaf (i.e., a leaf vertex
with its parental edge) is a branch of order 1. Branches of higher orders may consist of lineages of
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vertices and their parental edges. The vertex farthest from the root is called the terminal vertex of a
branch. Applied literature often examines the statistics of mergers of branches of distinct orders within
a tree. Burd et al. [2] formalize this by considering the Tokunaga coefficients Ti,j [T ], for i < j , equal
to the number of instances when a branch of order i joins a non-terminal vertex of the leftmost branch
of order j closest to the root within T , given that the tree order is greater than j . This definition is
suitable for describing a generic branch structure within a Galton–Watson tree, given its symmetric
iterative generation mechanism. It has been shown [2], Theorem 3.16, that the critical binary Galton–
Watson distribution GW(q0 = q2 = 1/2) is characterized, among the bounded offspring distributions,
by the Toeplitz property:

E
[
Ti,j [T ]]= Tj−i for a positive Tokunaga sequence {Tk}k=1,2,.... (1)

Specifically, the critical binary Galton–Watson distribution corresponds to Tk = 2k−1. In Lemma 10,
we show that all the invariant measures IGW(q0) satisfy the Toeplitz property. In this analysis, we
adopt an alternative, more general, definition of the Tokunaga coefficient Ti,j , which (i) accounts for
branching at the terminal vertices, and (ii) can be applied to general (non Galton–Watson) trees. In our
definition, the invariant measure IGW(q0) corresponds to the Tokunaga sequence (Lemma 10)

T1 = cc/(c−1) − c − 1, Tk = ack−1, k = 2,3, . . .

with (Figure 1)

c = (1 − q0)
−1 and a = (c − 1)

(
c1/(c−1) − 1

)
.

The critical binary Galton–Watson case with q0 = 1/2 corresponds to c = 2 and a = 1, which recon-
structs the Burd et al. [2] result Tk = 2k−1. Moreover, using the Tokunaga sequence definition from
Burd et al. [2], we obtain a particularly simple Tokunaga sequence Tk = ck−1 for k = 1,2, . . . .

Figure 1. Tokunaga parameters a (blue), c (red) and Horton exponent R (black) in invariant Galton–Watson trees
IGW(q0) for q0 ∈ [0.5,0.99].
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1.4. Horton law

A ubiquitous empirical observation in the analysis of dendritic structures is the Horton law [9,13,20].
Informally, the law states that the numbers Nk[T ] of branches of order k in a large tree T decays
geometrically:

Nk[T ]
Nk+1[T ] ≈ R

for some Horton exponent R ≥ 2. A formal definition of the Horton law for tree measures is given in
Section 2.5.

It has been shown by McConnell and Gupta [15] for a particular case of Tk = ack−1 with a ≥ 0,
c > 0, and generalized by the authors of this paper [11] to an arbitrary Tokunaga sequence {Tk}, that the
Toeplitz property implies the Horton law. Lemma 10 shows that the invariant Galton–Watson measure
IGW(q0) for any q0 ∈ [1/2,1) obeys the Horton law with the Horton exponent R = (1 − q0)

−1/q0

(Figure 1).

2. Preliminaries

2.1. Galton–Watson tree measures

Consider the space T of finite unlabeled rooted reduced trees. A tree is called rooted if one of its
vertices, denoted by ρ, is selected as the tree root. The existence of root imposes a parent-offspring
relation between each pair of adjacent vertices: the one closest to the root is called the parent, and the
other the offspring. The space T includes the empty tree φ comprised of a root vertex and no edges. The
tree root is the only vertex that does not have a parent. Let T | denote a subspace of planted trees in T ;
it contains φ and all the trees in T with the root vertex having exactly one offspring (see Figures 2, 3).
The degree of the root equals the number of its offsprings. The degree of a non-root vertex is the
number of its offsprings plus one (to account for the parent). The number of the offsprings at a vertex
is called the vertex branching number. A tree from T | is called reduced is it has no vertices of degree 2.

For a given offspring distribution {qk}k=0,1,2,..., we let GW({qk}) denote the corresponding Galton–
Watson tree measure. We assume that each tree begins with a single root vertex which produces a

Figure 2. Series reduction: Example. Tree T before (a) and after (b) series reduction.
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Figure 3. The Horton–Strahler orders: Example. Consecutive prunings Rk(T ), k = 0,1, . . . ,4, of tree T . The
order of tree is ord(T ) = 4 since R4(T ) = φ. Different colors depict branches of different orders: ord = 1 (black),
ord = 2 (green), ord = 3 (blue), and ord = 4 (red).

single offspring, so the resulting trees are in T |. In this renowned Markov chain construction, each
non-root vertex produces k offsprings with probability qk , independently of other vertices. We assume∑∞

k=0 kqk ≤ 1 and q1 = 0 as we need GW({qk}) to be a probability measure on T | (the trees in T | are
required to be finite and reduced). The assumption of subcriticality or criticality implies q0 ≥ 1

2 , since

1 ≥
∞∑

k=2

kqk ≥ 2
∞∑

k=2

qk = 2(1 − q0).

2.2. Horton pruning, orders

Recall that series reduction on a tree T removes each vertex of degree 2 and merges its two adjacent
edges into one (Figure 2).

Definition 1 (Horton pruning). Horton pruning R : T → T is an onto function whose value R(T )

for a tree T 	= φ is obtained by removing the leaves and their parental edges from T , followed by series
reduction. We also set R(φ) = φ.

The trajectory of each tree T under R(·) is uniquely determined and finite:

T ≡R0(T ) →R1(T ) → ·· · →Rk(T ) = φ, (2)

with the empty tree φ as the (only) fixed point. The pre-image R−1(T ) of any non-empty tree T

consists of an infinite collection of trees.
It is natural to think of the distance to φ under the Horton pruning map and introduce the respective

notion of tree order [9,13,20,21].

Definition 2 (Horton–Strahler order). The Horton–Strahler order ord(T ) ∈ Z+ of a tree T ∈ T | is
defined as the minimal number of Horton prunings necessary to eliminate the tree:

ord(T ) = min
{
k ≥ 0 : Rk(T ) = φ

}
.
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In particular, the order of the empty tree is ord(φ) = 0, because R0(φ) = φ. This definition is il-
lustrated in Figure 3 for a tree T with ord(T ) = 4. In this paper, we consider probability measures
GW({qk}) on T | that satisfy

∑∞
k=0 kqk ≤ 1 and q1 = 0 and assign probability zero to the empty tree φ.

Definition 3 (Horton–Strahler terminology). We introduce the following definitions related to the
Horton–Strahler order of a tree (see Figure 4):

1. (Descendant subtree at a vertex) For any non-root vertex v in T 	= φ, a descendant subtree Tv ⊂ T

is the only planted subtree in T rooted at the parental vertex parent(v) of v, and comprised by v

and all its descendant vertices together with their parental edges. Figure 4 shows in black color
the descendant subtree Ta at vertex a.

2. (Vertex order) For any vertex v ∈ T \ {ρ} we set ord(v) = ord(Tv). We also set ord(ρ) = ord(T ).
3. (Edge order) The parental edge of a non-root vertex has the same order as the vertex.
4. (Branch) A maximal connected component consisting of vertices and edges of the same order is

called a branch. Figure 4 shows a branch b of order 2 (blue) that consists of three vertices and
their parental edges. Note that a tree T always has a single branch of the maximal order ord(T ).
In a stemless tree, the maximal order branch may consist of a single root vertex.

5. (Initial and terminal vertex of a branch) The branch vertex closest to the root is called the initial
vertex of the branch. The branch vertex farthest from the root is called the terminal vertex of a
branch. Figure 4 shows the terminal vertex of branch b (blue) as a green circle.

The Horton–Strahler orders can be equivalently defined via hierarchical counting [3,9,19–21]. The
first such definition beyond the binary case appeared in [2]. In this approach, each leaf is assigned or-

Figure 4. Illustration of the Horton–Strahler terminology (Def. 3). A branch b of oder 2 is shown in blue in the
left part of the figure. The branch consists of three vertices of order 2 and their parental edges. The terminal vertex
of branch b is shown by green circle. The descendant subtree Ta at vertex a is shown in black in the right part of
the figure. The Horton–Strahler orders are shown next to the vertices.
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der 1. If an internal vertex p has m ≥ 1 offspring with orders i1, i2, . . . , im and r = max{i1, i2, . . . , im},
then

ord(p) =
{

r if #{s : is = r} = 1,

r + 1 otherwise.
(3)

The parental edge of a non-root vertex has the same order as the vertex. The Horton–Strahler order
of a tree T 	= φ is ord(T ) = maxv∈T ord(v), where the maximum is taken over all vertices in T . This
definition is most convenient for practical calculations, which explains its popularity in the literature.

Figures 5, 6 illustrate Horton–Strahler orders in trees with a constant branching number b (q0 +qb =
1) and with a bounded offspring distribution (qk = 0 for k > b), repsectively.

Figure 5. Examples of Horton–Strahler ordering in trees with constant branching number b (q0 + qb = 1). (a)
b = 2, (b) b = 3, (c) b = 5, (d) b = 10. Each panel shows a tree of order ord = 4. Edges of different orders are
shown in different colors, as indicated in the legend.
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Figure 6. Examples of Horton–Strahler ordering in trees with bounded offspring distribution: qk = 0 for k > b.
(a) b = 5, (b) b = 6. Each panel shows a tree of order ord = 4. Edges of different orders are shown in different
colors, as indicated in the legend.

2.3. Horton self-similarity

Here we define self-similarity of a Galton–Watson measure with respect to the Horton pruning R,
which is the main operation on trees discussed in this work.

Definition 4 (Horton self-similarity). Consider a Galton–Watson measure μ on T (or T |) such that
μ(φ) = 0. Let ν be the pushforward measure, ν =R∗(μ), that is,

ν(T ) = μ ◦R−1(T ) = μ
(
R−1(T )

)
.

Measure μ is called invariant with respect to the Horton pruning (Horton prune-invariant), or Horton
self-similar, if for any tree T ∈ T (or T |) we have

ν(T |T 	= φ) = μ(T ). (4)

Definition 4 does not distinguish between prune-invariance and self-similarity. Such equivalence is a
particular property of Galton–Watson measures connected to their Markov structure. In a general case,
prune-invariance happens to be a weak property that allows a multitude of obscure measures. A general
prune-invariant measure on T has to satisfy an additional property, called coordination, to be called
self-similar. The Galton–Watson measures always satisfy the coordination property; see (10). We refer
to [13] for a comprehensive discussion and examples.
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2.4. Tokunaga coefficients and Toeplitz property

This section introduces Tokunaga coefficients that describe mergers of branches of different orders in
a random tree. Empirically, a Tokunaga coefficient Ti,j is the average number of branches of order i

that merge a branch of order j within a tree T . The Markovian generation process ensures that all
branches of a given order j in a Galton–Watson tree have the same probabilistic structure. Hence, one
can follow Burd et al. [2] and define Ti,j as the mean number of order i branches within a particular
branch of order j , for instance – the leftmost branch closest to the root. We introduce below a more
general definition, which is equivalent to that of Burd et al. [2] for Galton–Watson trees, and can extend
to non Markovian branching processes. This set up will also be needed to formulate the Horton law in
Section 2.5.

Consider a measure μ on T (or T |) such that μ(φ) = 0. The Horton pruning partitions the underly-
ing tree space into exhaustive and mutually exclusive collection of subspaces Hk of trees of Horton–
Strahler order k ≥ 0 such that R(Hk+1) = Hk . Here H0 = {φ}, H1 consists of a single tree comprised
of a root and a leaf connected to the root by its parental edge, and all other subspaces Hk , k ≥ 2, consist
of an infinite number of trees. Naturally, Hk

⋂
Hk′ =∅ if k 	= k′, and

⋃
k≥1 Hk = T (or T |). Consider

a set of conditional probability measures {μk}k≥0 each of which is defined on Hk . Specifically, we set
μk(·) ≡ 0 for any k such that μ(Hk) = 0 and

μk(T ) = μ(T |T ∈ Hk) (5)

otherwise. Letting πk = μ(Hk), the measure μ can be represented as a mixture of the conditional
measures:

μ =
∞∑

k=1

πkμk. (6)

Let Nk = Nk[T ] be the number of branches of order k in a tree T . For given integers 1 ≤ i < j , let
ni,j = ni,j [T ] denote the total number of vertices of order i that have parent of order j in a tree T ∈ T
(or T |). We write EK [·] for the expectation with respect to μK of Eq. (5).

We define the average Horton numbers for subspace HK as

Nk[K] = EK [Nk], 1 ≤ k ≤ K,K ≥ 1.

For subspace HK , let

ti,j [K] = EK [ni,j ]
EK [Nj ] = EK [ni,j ]

Nj [K] , 1 ≤ i < j ≤ K, (7)

be the total Tokunaga merger statistics that is used to define the Tokunaga coefficients

Ti,j [K] = ti,j [K] − 2δi,j−1 (1 ≤ i < j). (8)

Remark 1. Recall that a branch of order j is formed by a merger of two or more branches of order j −
1. We designate two arbitrarily selected branches of order j − 1 that descend from the terminal vertex
of a branch of order j as principle branches. The existence of such two branches follows from the
definition of the Horton order (Definition 2). The other branches (if any) of order i ≤ j −1 that descend
from any vertex, including the terminal vertex, in a branch of order j are said to be side branches of
Tokunaga index {i, j}. The Tokunaga coefficients Ti,j [K] are intended to count the number of side
branches of Tokunaga index {i, j}, which explains the need to subtract 2δi,j−1 in (8).
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Finally, let no
i,j denote the total number of vertices of order i whose parent vertices are non-terminal

vertices of order j . Then,

T o
i,j [K] = EK [no

i,j ]
EK [Nj ] = EK [no

i,j ]
Nj [K] (1 ≤ i < j) (9)

are called the regular Tokunaga coefficients.

Remark 2. The quantities Nk[K], ti,j [K], Ti,j [K], and T o
i,j [K] depend on the measure μ. We skip

this dependence in our notations.

We observe that for a subcritical or critical Galton–Watson measure μ we have the following coor-
dination property [13]:

Ti,j := Ti,j [K] for all K ≥ 2 and 1 ≤ i < j ≤ K. (10)

This is explained as follows. Consider all nodes in generation d ∈ N (which may be an empty set) in
a critical or subcritical Galton–Watson tree T . The descendant subtrees Tv (see Definition 3) for v in
generation d are independently distributed according to μ. Sampling of Tv can be split into two steps,
first selecting its order with probability distribution πj , next sampling the tree of order j according to
the probability measure μj . The branching history Fd up to generation d together with the orders of the
descendant subtrees Tv with v in generation d completely determines (i) the order of the tree T , and (ii)
whether or not v is the initial vertex (Definition 3) of the corresponding branch of order ord(Tv). At the
same time, conditioned on Fd and the orders ord(Tv) for v in generation d , each Tv is independently
distributed according to μj , where ord(Tv) = j .

The respective Tokunaga matrix TK is a K × K matrix

TK =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . .

. . .
...

...
...

. . . 0 TK−1,K

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which coincides with the restriction of any larger-order Tokunaga matrix TM , M > K , to the first
K × K entries.

Definition 5 (Toeplitz property). A Galton–Watson measure μ is said to satisfy the Toeplitz property
if there exists a sequence Tk ≥ 0, k = 1,2, . . . such that

Ti,j = Tj−i . (11)

The elements of the sequences Tk are also referred to as Tokunaga coefficients, which does not create
confusion with Ti,j .
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For a Galton–Watson measure that satisfies the Toeplitz property, the corresponding Tokunaga ma-
trices TK are Toeplitz:1

TK =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 T1 T2 . . . TK−1
0 0 T1 . . . TK−2

0 0
. . .

. . .
...

...
...

. . . 0 T1
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The following statement has been proven in [13] for (not necessarily Galton–Watson) binary trees;
the argument applies verbatim to general Galton–Watson trees.

Proposition 1 (Prune-invariance implies Toeplitz). Suppose a Galton–Watson measure μ is Horton
prune-invariant, then it satisfies the Toeplitz property (Definition 5).

Definition 6 (Tokunaga self-similarity). A Galton–Watson measure μ on T is called Tokunaga self-
similar with parameters (a, c) if it satisfies the Toeplitz property and its Tokunaga sequence {Tj }j=1,2,...

is expressed as

Tj = acj−1, j ≥ 1 (12)

for some constants a ≥ 0 and c > 0.

2.5. Horton law

Consider a measure μ on T (or T |) and its conditional measures μK , each defined on subspace HK ⊂
T of trees of Horton–Strahler order K ≥ 1 as discussed in Section 2.4. We write T

d∼ μK for a random
tree T drawn from a subspace HK (μ(HK) > 0) according to measure μK .

Definition 7 (Strong Horton law for mean branch numbers). We say that a probability measure
μ on T (or T |) satisfies a strong Horton law for mean branch numbers if there exists such a positive
(constant) Horton exponent R ≥ 2 that for any k ≥ 1,

lim
K→∞

Nk[K]
N1[K] = R1−k. (13)

Here, the adjective strong refers to the type of geometric convergence; see [13] for details.
The work [11] establishes the strong Horton law in a binary tree that satisfies the Toeplitz property

(Definition 5). We observe that the results of [11] hold beyond the binary case, as the derivation steps
are identical. Specifically, assume the Toeplitz property with a Tokunaga sequence {Tk} and consider a
sequence t (k) defined by

t (0) = −1, and t (k) = Tk + 2δ1,k for k ≥ 1.

1Note that in [2], the Tokunaga sequence was set to satisfy T o
i,j

= T o
i,j

[K] = Tj−i . That is, the offsprings adjacent to the terminal
vertex of order j branch were not counted.
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Observe that ti,j = ti,j [K] = t (j − i). The generating function of t (k) is

t̂ (z) =
∞∑

k=0

zkt (k) = −1 + 2z +
∞∑

k=1

zkTk.

Theorem 1 (Strong Horton law in a mean self-similar tree, [11]). Suppose μ is a Galton–Watson
measure on T | that satisfies the Toeplitz property with Tokunaga sequence {Tj }j=1,2,... such that

lim sup
j→∞

T
1/j
j < ∞. (14)

Then the strong Horton law for mean branch numbers (Definition 7) holds with the Horton exponent
R = 1/w0, where w0 is the only real zero of the generating function t̂ (z) in the interval (0, 1

2 ]. More-
over,

lim
K→∞

(
N1[K]R−K

)= const. > 0. (15)

Conversely, if lim supj→∞ T
1/j
j = ∞, then the limit limK→∞ Nk[K]

N1[K] does not exist at least for some k.

3. Main results

3.1. Distribution of Horton orders and related functions

Consider a collection of critical or subcritical Galton–Watson measures GW({qk}) with q1 = 0 on

T |. Let Q(z) =∑∞
m=0 zmqm for z ∈ [0,1] be the generating function of {qk}. For T

d∼ GW({qk}) we

denote πj := P(ord(T ) = j). Finally, let σ0 = 0 and σj :=∑j

i=1 πi (j ≥ 1).

Lemma 1 (Order distribution). Consider a Galton–Watson measure GW({qk}) with q1 = 0. Assume
criticality or subcriticality, that is,

∑∞
k=0 kqk ≤ 1. Then,

π1 = q0 and πj = Q(σj−1) − Q(σj−2) − πj−1Q
′(σj−2)

1 − Q′(σj−1)
(j ≥ 2). (16)

Proof. The probability of tree T with a single leaf is π1 = P(ord(T ) = 1) = q0.
Next, we find the Horton–Strahler order of the offspring of the root using the rule (3). The probability

that the offspring of the root is a terminal vertex of a branch of order j , j ≥ 2, is

∞∑
m=2

qm

m∑
	=2

(
m

	

)
π	

j−1σ
m−	
j−2 = Q(σj−1) − Q(σj−2) − πj−1Q

′(σj−2).

Here we take a sum over all possible numbers m ≥ 2 of offsprings, and calculate the probability that
	 ≥ 2 of the offsprings have order j − 1, while the other m − 	 offsprings have orders less than j − 1.

Similarly, the probability of the offspring of the root to be a regular (non-terminal) vertex of order j

equals
∞∑

m=2

qmmπjσ
m−1
j−1 = πjQ

′(σj−1). (17)



Invariance and attraction properties of Galton–Watson trees 1801

Figure 7. Illustration to Corollary 1. Function S(z) is shown in red. Equation (18) implies that the values of σj

are obtained by iterative application of S(t), starting with σ0 = 0. These iterations are illustrated by blue lines with
arrows. Vertical increments correspond to the values of πj .

Therefore,

πj = πjQ
′(σj−1) + (

Q(σj−1) − Q(σj−2) − πj−1Q
′(σj−2)

)
,

which implies (16). �

Corollary 1. Consider a Galton–Watson measure GW({qk}) with q1 = 0. Assume criticality or sub-
criticality, i.e.,

∑∞
k=0 kqk ≤ 1. Then, σj can be expressed via an iterated function (Figure 7)

σj = S ◦ . . . ◦ S︸ ︷︷ ︸
j times

(0) for j ≥ 1, (18)

where

S(z) = Q(z) − zQ′(z)
1 − Q′(z)

. (19)

Proof. Equation (16) implies

πj = [
Q(σj−1) + πjQ

′(σj−1)
]− [

Q(σj−2) + πj−1Q
′(σj−2)

]
for j ≥ 2. (20)

Hence, summing up the terms in (20), and substituting π1 = q0, we obtain

σj =
j∑

i=1

πi = Q(σj−1) + πjQ
′(σj−1) = Q(σj−1) + (σj − σj−1)Q

′(σj−1)

for all j ≥ 1. Thus, σj = Q(σj−1)−σj−1Q
′(σj−1)

1−Q′(σj−1)
= S(σj−1). �
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Set S(1) = limx→1− Q(x)−xQ′(x)
1−Q′(x)

. Then, by L’Hôpital’s rule, S(1) = limx→1− xQ′′(x)
Q′′(x)

= 1. Next, for

the progeny variable X
d∼ {qk}, consider the following important function

g(x) =
∞∑

m=0

E
[
(X − m − 1)+

]
xm =

∞∑
m=0

∞∑
k=m+1

(k − m − 1)qkx
m, (21)

where x+ = max{x,0}.

Proposition 2. For a critical (i.e., Q′(1) = 1) Galton–Watson process GW({qk}) with q1 = 0, we have

Q(x) − x = (1 − x)2g(x)

for g(x) as defined in (21).

Proof. Since
∑∞

k=2 kqk = Q′(1) = 1,

Q(x) − x = q0 +
∞∑

k=2

qkx
k − q0x −

∞∑
k=2

qkx = (1 − x)

[
q0 −

∞∑
k=2

qk

1 − xk−1

1 − x
x

]

= (1 − x)

[ ∞∑
k=2

kqk −
∞∑

k=2

qk −
∞∑

k=2

qk

1 − xk−1

1 − x
x

]
= (1 − x)

∞∑
k=2

qk

(
k − 1 −

k−1∑
j=1

xj

)

= (1 − x)

∞∑
k=2

qk

(
k−1∑
j=1

(
1 − xj

))= (1 − x)2
∞∑

k=2

qk

k−1∑
j=1

j−1∑
m=0

xm

= (1 − x)2
∞∑

k=2

qk

k−2∑
m=0

(k − m − 1)xm = (1 − x)2
∞∑

m=0

∞∑
k=m+2

(k − m − 1)qkx
m

= (1 − x)2g(x). (22)

�

Let L denote the limit limx→1−(
lng(x)

− ln(1−x)
) whenever the limit exists.

Lemma 2. For the progeny variable X
d∼ {qk} and g(x) as defined in (21), if

E
[
X2−ε

]=
∞∑

k=0

k2−εqk < ∞ ∀ε > 0, (23)

then L = limx→1−(
lng(x)

− ln(1−x)
) = 0.

Proof. Suppose (23) holds, then by the Dominated Convergence theorem, as m → ∞,

(m + 1)1−εE
[
(X − m − 1)+

]≤ E
[
X1−ε(X − m − 1)+

]≤ E
[
X2−ε1{X≥m+1}

]→ 0. (24)
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Accordingly, the m-th coefficient E[(X − m − 1)+] in the power series representation (21) of g(x) is
o(mε−1). Next, for ε > 0, the m-th coefficient of the power series expansion of (1 − x)−ε is∏m−1

i=0 (ε + i)

m! = 
(ε + m)


(ε)m! ∼ mε−1


(ε)
, m → ∞. (25)

Together, (24) and (25) imply

lim sup
x→1−

lng(x)

ln(1 − x)−ε
≤ 1 ⇔ lim sup

x→1−
lng(x)

− ln(1 − x)
≤ ε ∀ε > 0.

Hence, lim supx→1−
lng(x)

− ln(1−x)
= 0, while obviously lim infx→1− lng(x)

− ln(1−x)
≥ 0. �

3.2. Regularity condition

Many of the results of the paper are proved under the following assumption.

Assumption 1. The following limit exists:

S′(1) = lim
x→1−

1 − S(x)

1 − x
. (26)

Observe that since S(x) − x = Q(x)−x
1−Q′(x)

, Assumption 1 is equivalent to the existence of the limit

lim
x→1−

Q(x) − x

(1 − x)(1 − Q′(x))
= 1 − S′(1). (27)

Lemma 3. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0. If Assumption 1 is
satisfied, then for g(x) defined in (21) the following limit exists

lim
x→1−

(
lng(x)

− ln(1 − x)

)
= L, (28)

and S′(1) = 1−L
2−L

.

Proof. By the L’Hôpital’s rule,

L = lim
x→1−

(
lng(x)

− ln(1 − x)

)
= 2 − lim

x→1−
lng(x) + 2 ln(1 − x)

ln(1 − x)
= 2 − lim

x→1−
ln(Q(x) − x)

ln(1 − x)

= 2 − lim
x→1−

d
dx

ln(Q(x) − x)

d
dx

ln(1 − x)
= 2 − lim

x→1−
(1 − x)(1 − Q′(x))

Q(x) − x
= 2 − lim

x→1−
1 − x

S(x) − x

= 2 − 1

1 − S′(1)
. �

Remark 3. Notice that due to the conditions for the L’Hôpital’s rule, there are cases when the limit in
(28) exists while the limit in (26) does not exists. Indeed, the L’Hôpital’s rule in (28) holds under the

condition that the limit limx→1−
d
dx

ln(Q(x)−x)
d
dx

ln(1−x)
exists, or diverges to infinity. This gap will be apparent

in the context of Lemma 9 and Theorem 2.
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Remark 4. Assumption 1 is satisfied with S′(1) = 0 for a subcritical Galton–Watson process
GW({qk}) with q1 = 0. Indeed, we have

lim
x→1−

Q(x) − x

1 − x
= lim

x→1−

(
q0 −

∞∑
k=2

qk

1 − xk−1

1 − x
x

)
= lim

x→1−

(
q0 −

∞∑
k=2

(k − 1)qk

)

= 1 −
∞∑

k=2

kqk = 1 − Q′(1) > 0

and, therefore,

S′(1) = 1 − lim
x→1−

Q(x) − x

(1 − x)(1 − Q′(x))
= 1 − 1 − Q′(1)

1 − Q′(1)
= 0. (29)

Lemma 4. Consider a critical Galton–Watson measure GW({qk}) with q1 = 0. If the second moment
of the offspring distribution is finite,

E
[
X2]=

∞∑
k=0

k2qk < ∞,

then Assumption 1 is satisfied with S′(1) = 1
2 and L = limx→1−(

lng(x)
− ln(1−x)

) = 0.

Proof. By L’Hôpital’s rule,

lim
x→1−

Q(x) − x

(1 − x)2
= 1

2
lim

x→1−
1 − Q′(x)

1 − x
= Q′′(1)

2
.

Thus,

S′(1) = 1 − lim
x→1−

(
Q(x) − x

(1 − x)2

1 − x

1 − Q′(x)

)
= 1 − Q′′(1)

2Q′′(1)
= 1

2
,

and by Lemma 3, L = 2 − 1
1−S′(1)

= 0. �

The next statement suggests a sufficient condition for Assumption 1.

Lemma 5 (Regularity condition). Consider a critical Galton–Watson process GW({qk}) with q1 = 0

and infinite second moment, that is,
∑∞

k=0 k2qk = ∞. Suppose that for the progeny variable X
d∼ {qk}

the following limit exists:

� = lim
k→∞

k

E[X|X ≥ k] = lim
k→∞

k
∑∞

m=k qm∑∞
m=k mqm

. (30)

Then Assumption 1 is satisfied with S′(1) = �.

Proof. For x ∈ (0,1),

1 − Q′(x)

1 − x
= Q′(1) − Q′(x)

1 − x
=

∞∑
m=0

mqm

1 − xm−1

1 − x
=

∞∑
m=0

m−2∑
k=0

mqmxk =
∞∑

k=0

bkx
k,
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where

bk =
∞∑

m=k+2

mqm. (31)

Recall that (22) shows that g(x) =∑∞
k=0 akx

k , where

ak =
∞∑

m=k+2

(m − k − 1)qm = bk − ck with ck = (k + 1)

∞∑
m=k+2

qm (32)

and bk as defined in (31). Equations (31) and (32) yield

Q(x) − x

(1 − x)(1 − Q′(x))
= (1 − x)g(x)

1 − Q′(x)
=
∑∞

k=0 akx
k∑∞

k=0 bkxk
= 1 −

∑∞
k=0 ckx

k∑∞
k=0 bkxk

. (33)

The infinite second moment condition implies limx→1−
∑∞

k=0 bkx
k = ∞ and limx→1−

∑∞
k=0 ckx

k =
∞. As (30) postulates that limk→∞(ck/bk) = �, for a given small value of ε > 0, there exists K ∈ N

such that |ck/bk − �| < ε, ∀k ≥ K . Thus,

lim inf
x→1−

∑∞
k=0 ckx

k∑∞
k=0 bkxk

= lim inf
x→1−

∑∞
k=K ckx

k∑∞
k=K bkxk

≥ � − ε

and

lim sup
x→1−

∑∞
k=0 ckx

k∑∞
k=0 bkxk

= lim sup
x→1−

∑∞
k=K ckx

k∑∞
k=K bkxk

≤ � + ε.

Consequently,

lim
x→1−

∑∞
k=0 ckx

k∑∞
k=0 bkxk

= �.

Hence, the limit in (27) exists, and (33) implies

S′(1) = 1 − lim
x→1−

Q(x) − x

(1 − x)(1 − Q′(x))
= lim

x→1−

∑∞
k=0 ckx

k∑∞
k=0 bkxk

= �. �

Corollary 2 (Zipf distribution). Consider a critical Galton–Watson process GW({qk}) with q1 = 0
and offspring distribution {qk} of Zipf type:

qk ∼ Ck−(α+1) with α ∈ (1,2] and C > 0. (34)

Then Assumption 1 is satisfied,

S′(1) = α − 1

α
and L = lim

x→1−

(
lng(x)

− ln(1 − x)

)
= 2 − α. (35)

Proof. Suppose qk = Ck−(α+1)(1 + o(1)). Then,

∞∑
m=k

mqm = C
k1−α

α − 1

(
1 + o(1)

)
and

∞∑
m=k

qm = C
k−α

α

(
1 + o(1)

)
.



1806 Y. Kovchegov and I. Zaliapin

Hence, the limit � defined in (30) exists and is equal to

� = lim
k→∞

k
∑∞

m=k qm∑∞
m=k mqm

= α − 1

α

Consequently, Lemma 5 implies Assumption 1 and S′(1) = α−1
α

. Finally, by Lemma 3 we have

L = 2 − 1

1 − S′(1)
= 2 − α. �

Example 1 (Infinite second moment, L = 0). Consider a critical Galton–Watson process GW({qk})
with q0 = 2

3 , q1 = 0, and

qk = 4/3

k(k2 − 1)
(k ≥ 2).

Observe that the offspring distribution qk is of Zipf type (34) with α = 2. This offspring distribution
has infinite second moment. Here,

Q(x) − x = (1 − x)2g(x) with g(x) = −2/3

x
ln(1 − x),

and therefore, the limit in (27) exists and is equal to

lim
x→1−

Q(x) − x

(1 − x)(1 − Q′(x))
= lim

x→1−
ln(1 − x)

2 ln(1 − x) + 1
x

= 1

2
.

Hence, Assumption 1 is satisfied with S′(1) = 1 − 1
2 = 1

2 . On the other hand,

L = lim
x→1−

(
lng(x)

− ln(1 − x)

)
= lim

x→1−

(
ln(− ln(1 − x))

− ln(1 − x)

)
= 0,

which is consistent with Lemma 2. We also see that S′(1) = 1−L
2−L

= α−1
α

, giving an example for state-
ments in Lemma 3 and Corollary 2.

3.3. Tokunaga coefficients in recursive form

Here we derive a recursive expression for the Tokunaga coefficients of a Galton–Watson measure in
the form Ti,j = πif (σj−2,πj−1,πj ). The recursive nature of this representation is connected to the
recursive expression (16) for πi of Lemma 1.

Lemma 6 (Tokunaga coefficients). Consider a Galton–Watson measure GW({qk}) with q1 = 0. As-
sume criticality or subcriticality, that is,

∑∞
k=0 kqk ≤ 1. Then, for all 1 ≤ i < j − 1, we have

Ti,j = πi

Q′(σj−1) − Q′(σj−2) − πj−1Q
′′(σj−2)

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)
+ T o

i,j , (36)

and for 1 ≤ i = j − 1,

Tj−1,j = πj−1Q
′(σj−1) + πj−1Q

′(σj−2) − 2Q(σj−1) + 2Q(σj−2)

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)
+ T o

j−1,j , (37)
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where T o
i,j = πi

Q′′(σj−1)

1−Q′(σj−1)
is the expected number of offsprings of order i descendant to all regular

(non-terminal) vertices of order j .

Note that (36) can be rewritten as

Ti,j = πi

d

dx
ln

(
Q(x + πj−1) − Q(x) − πj−1Q

′(x)

1 − Q′(x + πj−1)

)
|x=σj−2 .

Proof. For i ≤ j − 2, let M term
i,j denote the expected number of descendants of order i of a terminal

vertex of order j , that is, the expected number of side branches of Tokunaga index {i, j}; see Remark
1. For d ∈ N, consider all vertices in generation d . The probability that a vertex is a terminal vertex in
a branch of order j is

∞∑
m=2

qm

m∑
	=2

(
m

	

)
π	

j−1σ
m−	
j−2 = Q(σj−1) − Q(σj−2) − πj−1Q

′(σj−2),

where m ≥ 2 is its branching number (i.e., the number of descendants) and 	 ≥ 2 is the number of
descendants of order j − 1.

Recall that
∑k

m=0 m
(

k
m

)
ambk−m = ka(a + b)k−1. The expected number of offsprings of order i

descendant to a vertex conditioned on having a total of m ≥ 2 offsprings, of which 	 ≥ 2 are of order j −
1 and m − 	 are of order smaller than j − 1, is

1

σm−	
j−2

m−	∑
k=0

k

(
m − 	

k

)
πk

i (σj−2 − πi)
m−	−k = πi

m − 	

σj−2
.

Thus, for i ≤ j − 2,

M term
i,j =

∑∞
m=2 qm

∑m
	=2

(
m

	

)
π	

j−1

∑m−	
k=0 k

(
m − 	

k

)
πk

i (σj−2 − πi)
m−	−k

∑∞
m=2 qm

∑m
	=2

(
m

	

)
π	

j−1σ
m−	
j−2

=
πi

∑∞
m=2 qm

∑m
	=2(m − 	)

(
m

	

)
π	

j−1σ
m−	−1
j−2

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)

= πi

∑∞
m=2 qm(mσm−1

j−1 − m(m − 1)πj−1σ
m−2
j−2 − mσm−1

j−2 )

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)

= πi

Q′(σj−1) − Q′(σj−2) − πj−1Q
′′(σj−2)

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)
. (38)

Next, for i = j − 1, let M term
j−1,j denote the expected number of order j − 1 side-branches adjacent to

a terminal vertex of a branch of order j . The expected number of order j − 1 offsprings of a vertex
conditioned on being the terminal vertex in a branch of order j with a total of m ≥ 2 offsprings is

1

σm−	
j−2

m∑
	=2

	

(
m

	

)
π	

j−1σ
m−	
j−2 ,
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where 	 ≥ 2 counts the offspring of order j − 1, and the rest m − 	 represent the offsprings of order
smaller than j − 1. Following Remark 1, we subtract two principal branches from the number of
order j − 1 offsprings. Consequently, the expected number of order j − 1 side branches adjacent to a
vertex conditioned on being the terminal vertex in a branch of order j with a total of m ≥ 2 offsprings
is equal to

1

σm−	
j−2

m∑
	=2

(	 − 2)

(
m

	

)
π	

j−1σ
m−	
j−2 .

Here, of 	 ≥ 2 offspring of order j − 1, two are principle branches and 	 − 2 are side branches. Hence,
we have

M term
j−1,j =

∑∞
m=2 qm

∑m
	=2(	 − 2)

(
m

	

)
π	

j−1σ
m−	
j−2

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)

=
∑∞

m=2 qm(mπj−1σ
m−1
j−1 + mπj−1σ

m−1
j−2 − 2σm

j−1 + 2σm
j−2)

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)

= πj−1Q
′(σj−1) + πj−1Q

′(σj−2) − 2Q(σj−1) + 2Q(σj−2)

Q(σj−1) − Q(σj−2) − πj−1Q′(σj−2)
. (39)

The expected number V o
j of regular (non-terminal) vertices in a branch of order j is computed as

follows:

V o
j =

∑∞
r=0 r(

∑∞
k=2 qkkσ k−1

j−1 )r∑∞
r=0(

∑∞
k=2 qkkσ k−1

j−1 )r
= Q′(σj−1)

1 − Q′(σj−1)
, (40)

where, following (17), the probability of a vertex being a regular vertex in a branch of order j , condi-
tioned on it being of order j , equals

∞∑
k=2

qkkσ k−1
j−1 .

Finally, the expected number Mo
i,j of order i offsprings (and therefore, side branches of Tokunaga

index {i, j}) in a regular (non-terminal) vertex on a branch of order j is

Mo
i,j = 1∑∞

k=2 qkkσ k−1
j−1

∞∑
k=0

qkk

k−1∑
s=0

s

(
k − 1

s

)
πs

i (σj−1 − πi)
k−1−s

= 1

Q′(σj−1)
πi

∞∑
k=2

qkk(k − 1)σ k−2
j−1 = πi

Q′′(σj−1)

Q′(σj−1)
(41)

for 1 ≤ i < j . Here, k counts the total number of offsprings, of which we have k choices for the
offspring of order j . Of the remaining k −1 ofsprings, we select s offsprings of order i and k −1− s of
order other than i, but less than j . There are

(
k−1
s

)
such choices, with probability of πs

i (σj−1 −πi)
k−1−s

for each such outcome.
The statement of the lemma follows from equations (38), (39), (40), (41) as Ti,j = M term

i,j +T o
i,j with

T o
i,j = V o

j Mo
i,j by Wald’s equation. �
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Example 2 (Critical binary Galton–Watson tree). Consider the critical binary Galton–Watson dis-
tribution GW(q0 = q2 = 1/2). We have

Q(z) = 1 + z2

2
, S(z) = 1 + z

2
, and g(z) = 1/2.

Corollary 1 yields σj = S(σj−1) with σ0 = 0, which implies by induction σj = 1 − 2−j and πj =
2−j for j ≥ 1. Equations (36) and (37) give

Ti,j = T o
i,j = πi

1 − σj−1
= 2j−i−1 for all 1 ≤ i < j,

which implies the Toeplitz property (Definition 5) and Tokunaga self-similarity (Definition 6) with
(a, c) = (1,2) and Tk = 2k−1.

Lemma 7 (Toeplitz implies criticality). Consider a subcritical or critical Galton–Watson measure
GW({qk}) with q1 = 0 that satisfies Assumption 1. If the Toeplitz property (Definition 5) is satisfied,
then the measure is either critical or q0 = 1, the order distribution is geometric with πk = q0(1 −
q0)

k−1, and q0 = 1 − S′(1).

Proof. The Toeplitz property implies the existence of the Tokunaga sequence {Tk}k∈N.
In the trivial case of q0 = 1, we have Tk = 0 for any k ≥ 1, Q(z) = S(z) = 1 so S′(1) = 0 = 1 − q0,

and πk = δ1k . This establishes the statement.
Suppose that q0 < 1. Equation (36) shows that there is a scalar c > 0 such that

Tk+1

Tk

= πi

πi+1
= c ∀k ≥ 2, i ≥ 1.

Thus, as π1 = q0, we have πj = q0c
1−j and since

∑
j πj = 1 then c = (1 − q0)

−1.
Next, observe that since S(x) = S(1) + S′(1)(x − 1) + o(1 − x) and S(1) = 1, we have

1 − q0 = πi+1

πi

= S(σi) − S(σi−1)

πi

= S′(1)(σi − σi−1) + o(1 − σi−1)

πi

→ S′(1) as i → ∞

that leads to

q0 = 1 − S′(1). (42)

The criticality follows from the constraint q0 < 1, since in the subcritical case we have S′(1) = 0 (see
Remark 4). �

The following statement gives an alternative proof to one of the main results of Burd et al. [2] using
the framework of the present study.

Corollary 3. Consider a subcritical or critical offspring distribution {qk} with q1 = 0 and a finite
second moment,

∑∞
k=1 k2qk < ∞. The measure GW({qk}) satisfies the Toeplitz property (Definition 5)

if and only if it is the critical binary Galton–Watson measure, q0 = q2 = 1
2 .

Proof. By Lemma 4, the finite second moment implies Assumption 1 with q0 = 1−S′(1) = 1
2 . Assume

the Toeplitz property holds. Then the criticality follows from Lemma 7. The criticality with q0 = 1
2 and
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q1 = 0 yield q2 = 1
2 as

∞∑
k=2

k

2
qk = 1

2
= 1 − q0 =

∞∑
k=2

qk.

Conversely, the Toeplitz property for the critical binary Galton–Watson tree is established in Exam-
ple 2. �

3.4. Invariant Galton–Watson measures

The following result was originally proved in [2]. We state and prove it here since the expression (45)
will be used in the proof of Theorem 2 below.

Lemma 8 (Pruning Galton–Watson tree, [2]). Consider a critical or subcritical Galton–Watson
measure μ ≡ GW({qk}) with q1 = 0 on T | with generating function Q(z), and the corresponding
pushforward probability measure induced by the Horton pruning operator R,

ν(T ) = μ ◦R−1(T ) = μ
(
R−1(T )

)
.

Then, ν(T |T 	= φ) is a Galton–Watson measure GW({q(1)
k }) on T | with offspring probabilities

q
(1)
0 = Q(q0) − q0

(1 − q0)(1 − Q′(q0))
, (43)

q
(1)
1 = 0, and

q
(1)
k = (1 − q0)

k−1Q(k)(q0)

k!(1 − Q′(q0))
(k ≥ 2), (44)

and generating function

Q1(z) = z + Q(q0 + (1 − q0)z) − q0 − z(1 − q0)

(1 − q0)(1 − Q′(q0))
. (45)

Moreover, if μ(T ) is critical, then so is ν(T |T 	= φ). If μ(T ) is subcritical, then the first moment is
decreasing with pruning, that is,

∑∞
k=2 kq

(1)
k <

∑∞
k=2 kqk < 1.

Proof. The standard thinning argument (with π1 = q0 being the probability of eliminating an off-

spring) implies that R(T ) is distributed as a Galton–Watson tree, that is, R(T )
d∼ GW({q(1)

m }). Indeed,
think of a random tree obtained as a result of the auxiliary branching process defined in the following
way. We trace the branching process that starts with one generation zero progenitor vertex (the root)
that produces exactly one offspring. From generation one on, the branching process evolves according
to the offspring distribution { qk

1−q0
}k=2,3,.... Next, the process is thinned: once an offspring is produced

(in each generation, including generation zero), it is either instantaneously eliminated with probability
q0 or is left untouched with probability 1 − q0, where these Bernoulli trials are performed indepen-
dently of each other and the branching history. Naturally, this generates a Galton–Watson branching
process with branching probabilities {pm} calculated as follows

pm =
∞∑

k=m∨2

(
k

m

)
qk−m

0 (1 − q0)
m qk

1 − q0
. (46)
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The above defined thinned Galton–Watson process can be equivalently formulated by tracking the orig-
inal branching process with branching probabilities {qk}. Here, for each offspring, it is instantaneously
decided whether the offspring is a leaf or not via a Bernoulli trial with probabilities q0 and 1 − q0 for
‘leaf’ and ‘no leaf’ outcomes, respectively. If the offspring is decided to be a leaf, it is pruned instanta-
neously. If not a leaf, it will branch according to the offspring distribution { qk

1−q0
}k=2,3,.... The thinned

Galton–Watson process differs from the original one by pruning all the leaves. Hence, it implements the
instantaneous Horton pruning, but not yet series reduction. Indeed, the above thinned Galton–Watson
prices with branching probabilities {pm} can have single offspring nodes.

Next, we need to account for the series reduction by generating a Galton–Watson process with the
branching probabilities {q(1)

m } by letting

q
(1)
0 = p0

1 − p1
= (1 − q0)

−1∑∞
k=2 qk

0qk

1 −∑∞
k=2 kqk−1

0 qk

,

q
(1)
1 = 0, and for m ≥ 2,

q(1)
m = pm

1 − p1
= (1 − q0)

m−1∑∞
k=m

(
k
m

)
qk−m

0 qk

1 −∑∞
k=2 kqk−1

0 qk

.

This branding process induces the tree measure ν(T ). Note that there is an alternative derivation of
(43) as by Corollary 1, q

(1)
0 = π2

1−σ1
= S(q0)−q0

1−q0
= Q(q0)−q0

(1−q0)(1−Q′(q0))
.

We notice that the corresponding generating function can be computed as follows

Q1(z) =
∞∑

m=0

zmq(1)
m = (1 − q0)

−1

1 −∑∞
k=2 kqk−1

0 qk

( ∞∑
k=2

qk
0qk +

∞∑
m=2

∞∑
k=m

(
zq−1

0 (1 − q0)
)m(k

m

)
qk

0qk

)

= (1 − q0)
−1

1 − Q′(q0)

( ∞∑
k=2

qk
0qk +

∞∑
k=2

k∑
m=2

(
k

m

)(
zq−1

0 (1 − q0)
)m

qk
0qk

)

= (1 − q0)
−1

1 − Q′(q0)

(
Q
(
z + (1 − z)q0

)− q0 − z(1 − q0)Q
′(q0)

)
by the binomial theorem, implying (45). We proceed by differentiating d

dz
in (45), obtaining

Q′
1(z) = Q′(q0 + z(1 − q0)) − Q′(q0)

1 − Q′(q0)
. (47)

Next, we observe that if μ(T ) is critical, (47) implies
∑∞

k=2 kq
(1)
k = Q′

1(1) = Q′(1)−Q(q0)
1−Q(q0)

= 1. That is,
the critical process stays critical after a Horton pruning. Finally, in the subcritical case, Q′(1) < 1, and
by formula (47), Q′

1(1) = Q′(1)−Q(q0)
1−Q(q0)

< Q′(1). �

Formula (45) matches the evolution of the generator under tree erasure discussed by He and Winkel
[8], Lemma 11; see also Neveu [16] and Kesten [10]. Also, observe that expression (45) is of the same
form as the generating function of a thinned Galton–Watson process in the work of Duquesne and
Winkel [4], eqn. (10) of Section 2.2, where the thinning was done in the context of a Bernoulli leaf
coloring scheme.
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Lemma 9. Consider a critical or subcritical Galton–Watson measure GW({qk}) with q1 = 0. If it is
Horton prune-invariant (self-similar) (Definition 4), then the limit

lim
x→1−

(
lng(x)

− ln(1 − x)

)
= L

exists and is finite. Moreover,

L = 1 − ln(1 − Q′(q0))

ln(1 − q0)
.

Proof. The Horton prune-invariance implies Q1(z) = Q(z) in the recursion (45):

Q(z) = z + Q(q0 + (1 − q0)z) − q0 − z(1 − q0)

(1 − q0)(1 − Q′(q0))
, (48)

which we rewrite as

Q
(
q0 + (1 − q0)z

)− (
q0 + z(1 − q0)

)= M(q0)
(
Q(z) − z

)
,

where M(q0) = (1 − q0)
(
1 − Q′(q0)

)
. (49)

Then, for any k ∈N,

Q
(
1 − (1 − q0)

k + (1 − q0)
kz
)− (

1 − (1 − q0)
k + (1 − q0)

kz
)= (

M(q0)
)k(

Q(z) − z
)

and for z ∈ [0,1),

lim
k→∞

ln (Q(1 − (1 − q0)
k + (1 − q0)

kz) − (1 − (1 − q0)
k + (1 − q0)

kz))

ln(1 − (1 − (1 − q0)k + (1 − q0)kz))

= lim
k→∞

k lnM(q0) + ln (Q(z) − z)

k ln(1 − q0) + ln(1 − z)
= lnM(q0)

ln(1 − q0)
. (50)

Next, notice that for z ∈ I0 = [0, q0),

ln(q0) ≤ ln
(
Q(z) − z

)≤ ln
(
Q(q0) − q0

)
and ln(1 − q0) ≤ ln(1 − z) ≤ 0.

Hence, for any x ∈ Ik = (1 − (1 − q0)
k,1 − (1 − q0)

k+1), there is a z ∈ I0 such that

x = 1 − (1 − q0)
k + (1 − q0)

kz

and

k lnM(q0) + ln (Q(q0) − q0)

k ln(1 − q0) + ln(1 − q0)
≤ ln (Q(x) − x)

ln(1 − x)
= k lnM(q0) + ln (Q(z) − z)

k ln(1 − q0) + ln(1 − z)

≤ k lnM(q0) + ln(q0)

k ln(1 − q0)
.

Hence, the following limit exists

lim
x→1−

ln (Q(x) − x)

ln(1 − x)
= lnM(q0)

ln(1 − q0)
.
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Finally,

lim
x→1−

(
lng(x)

− ln(1 − x)

)
= lim

x→1−
2 ln(1 − x) − ln (Q(x) − x)

ln(1 − x)
= 2 − lnM(q0)

ln(1 − q0)

= 1 − ln(1 − Q′(q0))

ln(1 − q0)
. (51)

�

Next, we define a single parameter family of critical Galton–Watson measures GW({qk}) with q1 = 0
on T |.

Definition 8 (Invariant Galton–Watson measures). For a given q ∈ [1/2,1), a critical Galton–
Watson measure GW({qk}) is said to be the invariant Galton–Watson (IGW) measure with parameter
q and denoted by IGW(q) if its generating function is given by

Q(z) = z + q(1 − z)1/q . (52)

The respective branching probabilities are q0 = q , q1 = 0, q2 = (1 − q)/2q , and

qk = 1 − q

k!q
k−1∏
i=2

(i − 1/q) (k ≥ 3). (53)

Here, if q = 1/2, then the distribution is critical binary, that is, GW(q0 = q2 = 1/2). If q ∈ (1/2,1),
the distribution is of Zipf type with

qk = (1 − q)
(k − 1/q)

q
(2 − 1/q)k! ∼ Ck−(1+q)/q , where C = 1 − q

q
(2 − 1/q)
. (54)

Theorem 2 (Self-similar Galton–Watson measures). Consider a critical or subcritical Galton–
Watson measure GW({qk}) with q1 = 0 that satisfies Assumption 1. The measure is Horton prune-
invariant (self-similar) (Definition 4) if and only if it is the invariant Galton–Watson (IGW) measure
IGW(q0) with q0 ∈ [1/2,1).

Proof. Combining equations (43) and (45), we have

Q1(z) = z + q
(1)
0

Q(q0 + (1 − q0)z) − (q0 + (1 − q0)z)

Q(q0) − q0
. (55)

If the Galton–Watson measure is Horton prune-invariant, then Q1(z) = Q(z), and (55) implies

R(z) = R(q0 + (1 − q0)z)

R(q0)
for R(z) = Q(z) − z

q0

for z ∈ [0,1). Hence, letting 	(z) = lnR(1 − z) for z ∈ (0,1], we have

	(z) + 	(1 − q0) = 	
(
(1 − q0)z

)
.

Finally, for r(y) = 	(e−y) = lnR(1 − e−y) for y ∈ [0,∞) and κ0 = − ln(1 − q0),

r(y + κ0) = r(y) + r(κ0) ∀y ∈ [0,∞).
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Therefore, r ′(y + κ0) = r ′(y) and r(y) = − ∫ y

0 α(w)dw for some κ0-periodic function α(y). Thus,

Q(z) = z + q0R(z) = z + q0e
	(1−z) = z + q0e

r(− ln(1−z))

= z + q0 exp

{
−
∫ − ln(1−z)

0
α(w)dw

}
. (56)

Next, 0 = q1 = Q′(0) = 1 − α(0)q0 implies α(0) = 1
q0

. Also, for z ∈ (0,1), R′(z) = Q′(z)−1
q0

< 0 and
r(y) is a decreasing function. Hence, α(y) > 0 for all y ∈ (0,1).

Letting w = − ln(1 − x) in (56), we have

ln
(
Q(z) − z

)= ln(q0) −
∫ − ln(1−z)

0
α(w)dw = ln(q0) −

∫ z

0

α(− ln(1 − x))

1 − x
dx ∀z ∈ [0,1). (57)

Recall that d
dz

ln(Q(z) − z) = −1
S(z)−z

, and therefore,

ln
(
Q(z) − z

)= ln(q0) −
∫ z

0

dx

S(x) − x
∀z ∈ [0,1). (58)

Equations (57) and (58) yield

S(z) = z + q0(1 − z)ϕ(z), where ϕ(z) = 1

q0α(− ln(1 − z))
. (59)

Here, α(0) = 1
q0

implies ϕ(0) = 1. Since α(z) is κ0-periodic function,

α
(− ln(1 − z)

)= α
(− ln(1 − z) + κ0

)= α(− ln
(
1 − (

q0 + (1 − q0)z
))

and ϕ(z) satisfies

ϕ(z) = ϕ
(
q0 + (1 − q0)z

) ∀z ∈ [0,1). (60)

Equation (59) implies the existence of the limit

ϕ(1) = lim
x→1−ϕ(x) = 1

q0
lim

x→1−
S(x) − x

1 − x
= 1 − S′(1)

q0
.

Next, iterating (60), we have

ϕ(x) = lim
k→∞ϕ

((
1 − (1 − q0)

k
)+ (1 − q0)

kx
)= ϕ(1) ∀x ∈ [0,1).

Hence, ϕ(x) ≡ 1, and by (59),

S(z) = z + q0(1 − z).

Consequently, (58) implies Q(z) = z + q0(1 − z)1/q0 .
Finally, observe that for an invariant Galton–Watson measure IGW(q0) with any q0 ∈ [1/2,1) sat-

isfies (55). In particular, equation (52) implies

S(z) = q0 + (1 − q0)z. (61)

The statement of the theorem follows. �
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Remark 5 (Heuristics for a linear S(z)). Consider a Horton prune-invariant measure (or at least a
Toeplitz measure with q0 < 1) that satisfies Assumption 1. Lemma 7 shows that in this case

πk+1

πk

= σk+1 − σk

πk

= S′(1) = 1 − q0 for all k ≥ 1.

Together with the recursion σk = S(σk−1) of Corollary 1 (see also Figure 7), this implies that the points
(σk, S(σk)) lie on the line

y(z) = q0 + (1 − q0)z.

This observation suggests S(z) = q0 + (1 − q0)z as a possible solution of the equation (45) with
Q1(z) = Q(z), and the corresponding Q(z) = z + q0(1 − z)1/q0 is found by (58). Theorem 2 ensures
that this is the only solution under the regularity Assumption 1.

Remark 6 (Intuition behind the regularity condition). The Horton pruning acts as a rescaling (ver-
tical and horizontal) on the function S(z) − z from the restricted domain [q0,1] to [0,1], according to
(45). After k consecutive prunings, function Sk(z) − z with the domain [0,1] is obtained via scaling
from a restriction of S(z) − z to the interval [1 − (1 − q0)

k,1]. Thus, consecutive pruning rescales and
maps the function S(z) − z in the vicinity of 1− to the interval [0,1]. Assumption 1 requires a smooth
behavior of S(z) at z = 1−. The rescaling translates this smooth behavior to the ultimate linearity of
function S(z) on the entire interval [0,1]. The most general form of prune-invariant Q(z) is given in
(56), which allows a non-linear oscillatory behavior of S(z) between the points (σk, S(σk)) discussed
in Remark 5. The rescaling argument shows that such oscillations necessarily lead to non-smooth be-
havior of S(z) at z = 1− and hence violate Assumption 1.

Remark 7 (General prune-invariant measures). Recall that according to Lemma 9, the gen-
eral Horton prune-invariant distributions adhere to the existence and finiteness of the limit L =
limx→1−(

lng(x)
− ln(1−x)

), which is weaker than S′(1) required in Assumption 1 (see Lemma 3). The gap
between the two conditions allows for the existence of Horton prune-invariant distributions that satisfy
(48) and have a nonlinear function S(z). An example of such a measure and further discussion is given
in Section 4.

3.5. Attractors and basins of attraction

Theorem 3 (Attraction property of critical Galton–Watson trees). Consider a critical Galton–
Watson measure ρ0 ≡ GW({qk}) with q1 = 0 on T |. Starting with k = 0, and for each consecutive
integer, let νk =R∗(ρk) denote the pushforward probability measure induced by the pruning operator,
that is, νk(T ) = ρk ◦R−1(T ) = ρk(R−1(T )), and set ρk+1(T ) = νk(T |T 	= φ). Suppose Assumption
1 is satisfied. Then, for any T ∈ T |,

lim
k→∞ρk(T ) = ρ∗(T ),

where ρ∗ denotes the invariant Galton–Watson measure IGW(q) with q = 1 − S′(1).
Finally, if the Galton–Watson measure ρ0 ≡ GW({qk}) is subcritical, then ρk(T ) converges to a

point mass measure, GW(q0 = 1).
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Proof. Let q
(k)
m denote the offspring distribution corresponding to the critical Galton–Watson tree mea-

sure ρk , where q
(k)
1 = 0 by series reduction. First, we observe that

lim
k→∞q

(k)
0 = lim

k→∞
πk

1 − σk−1
= lim

k→∞
S(σk−1) − σk−1

1 − σk−1

= lim
k→∞

1 + S′(1)(σk−1 − 1) + o(1 − σk−1) − σk−1

1 − σk−1
= 1 − S′(1). (62)

Let Qk(z) := ∑∞
m=0 zmq

(k)
m denote the generating function corresponding to the Galton–Watson

measure ρk and Sk(z) = Qk(z)−zQ′
k(z)

1−Q′
k(z)

. Equation (45) implies

S1(z) = 1

1 − q0
S
(
q0 + (1 − q0)z

)− q0

1 − q0
. (63)

For a given z ∈ [0,1), we iterate (63), obtaining

Sk(z) =
k−1∏
i=0

1

1 − q
(i)
0

S

((
1 −

k−1∏
i=0

(
1 − q

(i)
0

))+ z

k−1∏
i=0

(
1 − q

(i)
0

))+
(

1 −
k−1∏
i=0

1

1 − q
(i)
0

)
, (64)

where
∏k−1

i=0 (1 − q
(i)
0 ) ≤ 2−k → 0 as k → ∞. Next, we substitute

S

((
1 −

k−1∏
i=0

(
1 − q

(i)
0

))+ z

k−1∏
i=0

(
1 − q

(i)
0

))= 1 + (z − 1)S′(1)

k−1∏
i=0

(
1 − q

(i)
0

)+ o

(
k−1∏
i=0

(
1 − q

(i)
0

))

into (64), getting

Sk(z) = 1 + (z − 1)S′(1) + o(1).

Hence, for a given z ∈ [0,1), we have

d

dz
ln
(
Qk(z) − z

)= 1

z − Sk(z)
−→ 1

(1 − S′(1))(z − 1)
as k → ∞.

Also, we notice that Qk(x) − x is a decreasing function (Q′
k(x) < Q′

k(1) = 1) and

q
(k)
0 ≥ Qk(x) − x ≥ Qk(z) − z > 0 ∀x ∈ [0, z].

Therefore, letting k → ∞, we have

ln
(
Qk(z) − z

)= lnq
(k)
0 +

∫ z

0

d

dx
ln
(
Qk(x) − x

)
dx −→ lnq + 1

q
ln(1 − z),

where q = 1 − S′(1), as limk→∞ q
(k)
0 = q by (62). We conclude that

lim
k→∞Qk(z) = z + q(1 − z)1/q

where the right-hand side is the generating function for IGW(q).
Finally, if ρ0 ≡ GW({qk}) is subcritical, (29) and (62) imply limk→∞ q

(k)
0 = 1 − S′(1) = 1. �

Theorem 3 and Corollary 2 immediately imply the following result.
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Corollary 4 (Attraction property of critical Galton–Watson trees of Zipf type). Consider a critical
Galton–Watson process ρ0 ≡ GW({qk}) with q1 = 0, with offspring distribution qk of Zipf type, that
is, qk ∼ Ck−(α+1), with α ∈ (1,2] and C > 0. Starting with k = 0, and for each consecutive integer,
let νk =R∗(ρk) denote the pushforward probability measure induced by the pruning operator, and set
ρk+1(T ) = νk(T |T 	= φ). Then, for any T ∈ T |,

lim
k→∞ρk(T ) = ρ∗(T ),

where ρ∗ is the invariant Galton–Watson measure IGW( 1
α
).

Next, Lemma 2 and 4 imply the following attraction result as a corollary of our Theorem 3. The same
attraction property has been established in [2] under the assumption of a bounded offspring distribution.

Corollary 5 (Attraction property of critical binary Galton–Watson tree, [2]). Consider a criti-
cal Galton–Watson process ρ0 ≡ GW({qk}) with q1 = 0. Assume one of the following two conditions
holds.

(a) The second moment assumption is satisfied:

∞∑
k=2

k2qk < ∞.

(b) Assumption 1 is satisfied, and the “2−” moment assumption is satisfied, that is,

∞∑
k=2

k2−εqk < ∞ ∀ε > 0.

Starting with k = 0, and for each consecutive integer, let νk = R∗(ρk) denote the pushforward prob-
ability measure induced by the pruning operator, and set ρk+1(T ) = νk(T |T 	= φ). Then, for any
T ∈ T |,

lim
k→∞ρk(T ) = ρ∗(T ),

where ρ∗ is the critical binary Galton–Watson measure IGW(1/2).

Figure 8 illustrates convergence of a tree with a large branching number to a binary tree.

3.6. Explicit Tokunaga coefficients and Horton law

In the next lemma, we find the Tokunaga coefficients and the Horton exponent for an invariant Galton–
Watson tree measure IGW(q0).

Lemma 10 (Tokunaga coefficients). Consider an invariant Galton–Watson measure IGW(q0) for
q0 ∈ [1/2,1). Then,

πi = q0c
1−i with c = 1

1 − q0
.
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Figure 8. Binary attractor: Illustration. The tree T (panel a) has maximal branching number b = 6. Its first pruning
(panel b) R(T ) has maximal branching number b = 3. Its second pruning (panel c) R2(T ) has maximal branch-
ing number b = 2. This convergence to binary branching is generic in Galton–Watson trees that have offspring
distribution with a finite 2 − ε moment; see Corollary 5.

The measure satisfies Toeplitz property (Definition 5) with the Tokunaga coefficients

T o
i,j = T o

j−i , where T o
k = ck−1(k = 1,2, . . .), (65)

and

Ti,j = Tj−i , where T1 = cc/(c−1) − c − 1 and Tk = ack−1 (k = 2,3, . . .) (66)

with a = (c − 1)(c1/(c−1) − 1). Finally, the strong Horton law (13) holds with Horton exponent R =
cc/(c−1) = (1 − q0)

−1/q0 .

The functions a(q0), c(q0) and R(q0) are illustrated in Figure 1.

Proof. Equations (18) and (61) imply σi = 1 − (1 − q0)
i + (1 − q0)

iz. Hence, πi = σi − σi−1 =
q0(1 − q0)

i−1. Equations (65) and (66) are obtained via substituting πi and σi into Lemma 6.
Finally, Theorem 1 implies the strong Horton law with the Horton exponent R = 1/w0, where w0 is

the only real zero of the generating function t̂ (z) in the interval (0, 1
2 ]. We have

t̂ (z) = −1 + (T1 + 2)z + acz2

1 − cz
,

which gives w0 = c−c/(c−1) and R = cc/(c−1). �

4. Discussion

In this paper, we described the invariance and attractor properties of combinatorial Galton–Watson trees
with respect to the Horton pruning. The results hold under the regularity Assumption 1 that prohibits
large tail oscillations of the offspring probabilities qm that lead to a non-smooth behavior of S(z) at
1−. A sufficient condition under which the regularity assumption holds is suggested in Lemma 5.
Theorem 2 introduces a one-parameter family of invariant Galton–Watson distributions IGW(q) and
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asserts that this family exhausts the Horton prune-invariant distributions within the examined regularity
class. The invariant family has a power-law tail of the offspring distribution, qk ∼ Ck−α , with exactly
one distribution for every α ∈ (2,3], and also includes the critical binary Galton–Watson tree measure.

A similar approach can be applied to the search of invariant measures in a broader class of gener-
alized dynamical prunings on trees with edge lengths introduced and analyzed in [12,13] and to the
pruning operation studied in Evans [6] and in Duquesne and Winkel [5]. Informally, a generalized
dynamical pruning erases a tree from leaves down to the root at a rate that only depends on the descen-
dant part of the tree. Most of such prunings, with a notable exception of the Horton pruning and the
continuous erasure of Neveu [16], do not satisfy semigroup property. It has been shown in [12] that
the critical binary Galton–Watson tree with i.i.d. exponential edge lengths is invariant with respect to
any admissible generalized dynamical pruning. We conjecture that the Galton–Watson trees that have
i.i.d. exponential edge lengths and combinatorial shapes sampled from the invariant Galton–Watson
measures IGW(q) introduced in this work (Definition 8) are the only Galton–Watson measures invari-
ant with respect to all admissible generalized dynamical prunings, up to rescaling of the edge lengths.
Heuristically, this is supported by the rescaling argument (Remark 6) applied to the function S(z). The
Horton pruning of the present work only requires linearity of the function S(z) on the grid σk , which is
related to its discrete combinatorial action. This allows the existence of prune-invariant measures with
oscillatory behavior, outside of the invariant Galton–Watson family. However, a continuous pruning,
for instance the continuous erasure of Neveu [16], would constrain the function S(z) on the entire in-
terval [0,1], hence leading to the family of invariant Galton–Watson trees. This will be explored in a
follow-up paper.

We are grateful to the anonymous referee for finding a problem with the first version of this
paper, caused by the gap consisting of all critical Galton–Watson measures for which the limit
L = limx→1−(

lng(x)
− ln(1−x)

) exists while the limit S′(1) = limx→1− 1−S(x)
1−x

does not; see Remark 7. In par-
ticular, the referee suggested the following family of Horton prune-invariant critical Galton–Watson
tree distributions different from the invariant distributions of Theorem 2. For a given probability
q0 ∈ (1/2,1), we let q1 = 0, and

qm = 1

m!A
∑
n∈Z

Bnρnme−ρn

m = 2,3, . . . , (67)

where ρ = 1 − q0. Then, the second derivative of the generating function is equal to

Q′′(z) =
∞∑

m=2

m(m − 1)qmzm−2 = 1

A

∑
n∈Z

Bnρ2ne−(1−z)ρn

, |z| < 1.

Observe that

Q′′(q0 + (1 − q0)z
)= B−1ρ−2Q′′(z). (68)

Therefore, if A > 0 and B ∈ ((1−q0)
−1, (1−q0)

−2) are selected so that Q(1) = Q′(1) = 1, then Q(z)

will satisfy the invariance criterion (48). Such B is found by solving∑
n∈Z

Bn
(
1 − ρn+1 − (

1 + ρn − ρn+1)e−ρn)= 0,

and A =∑
n∈Z Bnρn(1 − e−ρn

).
Hence,

Q(z) = q0 + 1

A

∑
n∈Z

Bn
(
e−(1−z)ρn − (

1 + ρnz
)
e−ρn)

, |z| < 1,
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satisfies (49) with

M(q0) = (1 − q0)
(
1 − Q′(q0)

)= B−1.

Next, we show that this example belongs to the gap described in Remark 7. Specifcally, we show that
the limit L exists while the limit S′(1) does not. First, Lemma 9 applies, yielding the existence of limit
L = limx→1−(

lng(x)
− ln(1−x)

). Moreover, equation (51) implies

L = 2 − lnM(q0)

ln(1 − q0)
= 2 + lnB

ln(1 − q0)
.

Now, we show that the limit S′(1) = limx→1− 1−S(x)
1−x

does not exist, whence Assumption 1 is not

satisfied. Since 1
A

∑
n∈Z Bnρn(1 − e−ρn

) = 1, we have for x ∈ [0,1),

1 − Q(x)

1 − x
= 1

A

∑
n∈Z

Bnρn
(
1 − e−ρn)− 1 − Q(x)

1 − x
= 1

A

∑
n∈Z

Bnρn

(
1 − 1 − e−(1−x)ρn

(1 − x)ρn

)
. (69)

Also, for x ∈ [0,1),

1 − Q′(x) = 1

A

∑
n∈Z

Bnρn
(
1 − e−(1−x)ρn)

. (70)

For a given α ∈ [0,1), consider a sequence xm = 1 − ρm+α for m ∈N, then, equation (69) implies

1 − Q(xm)

1 − xm

= 1

A

∑
n∈Z

Bnρn

(
1 − 1 − e−ρn+m+α

ρn+m+α

)
= 1

A
B−(m+α)ρ−(m+α)C(α),

where

C(α) =
∑
n∈Z

Bn+αρn+α

(
1 − 1 − e−ρn+α

ρn+α

)
. (71)

Similarly, (70) implies

1 − Q′(xm) = 1

A

∑
n∈Z

Bnρn
(
1 − e−ρn+m+α )= 1

A
B−(m+α)ρ−(m+α)D(α),

where

D(α) =
∑
n∈Z

Bn+αρn+α
(
1 − e−ρn+α )

. (72)

Hence,

1 − Q(xm)

(1 − xm)(1 − Q′(xm))
= C(α)

D(α)
∀m ∈N

with C(α) and D(α) as defined in (71) and (72). Thus, since C(α)
D(α)

is not constant for α ∈ [0,1), the
limit in (26) does not exist, and the same is true about the limit S′(1). Hence, in this example, Thms. 2
and 3 as currently stated do not apply since Assumption 1 does not hold.
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The invariant measures (67) are in fact closely related to the IGW(q) measures of Definition 8.
Specifically, consider a continuous integral version of (67), by selecting q0 ∈ (1/2,1) and letting q1 = 0
and

qm = 1

m!A
∫ ∞

−∞
Bwρwme−ρw

dw m = 2,3, . . . , (73)

where ρ = 1 − q0. Here too,

Q′′(z) =
∞∑

m=2

m(m − 1)qmxm−2 = 1

A

∫ ∞

−∞
Bwρ2we−(1−x)ρw

dw

and so it satisfies (68), while Q(1) = Q′(1) = 1 causes Q(z) to satisfy (48). Analogously to (67), the
constants A > 0 and B ∈ ((1 − q0)

−1, (1 − q0)
−2) are found by solving

∫ ∞

−∞
Bw

(
1 − ρw+1 − (

1 + ρw − ρw+1)e−ρw)
dw = 0 (74)

for B , and letting

A =
∫ ∞

−∞
Bwρw

(
1 − e−ρw)

dw. (75)

One can show that equation (74) has a unique solution using monotonicity of the integral on the left-
hand side in the equation (74) as a function of B ∈ ((1 − q0)

−1, (1 − q0)
−2). The uniqueness of B

implies the uniqueness of A in (75).
In this situation, one easily shows that the limit S′(1) exists. Remarkably, the unique offspring dis-

tribution qm in (73) is the offspring distribution of IGW(q0). Indeed, in equation (54) we have for
m ≥ 2,

qm = (1 − q0)
(m − 1/q0)

q0
(2 − 1/q0)m! = 1

m!A
∫ ∞

−∞
Bwρwme−ρw

dw (76)

with ρ = 1 − q0, A = q0
(2−1/q0)−(1−q0) ln(1−q0)
, and B = (1 − q0)

−1/q0 .
Figure 9 compares selected invariant measures IGW(q0) of Definition 8, also given in (76), with the

invariant measures of (67) that do not satisfy Assumption 1. Both types of measures decay in general
as the power law m−(1+q0)/q0 , although the measures of (67) fluctuate around this general trend. The
amplitude of the fluctuations (on logarithmic scale) increases with q0. These fluctuations are related to
the periodic function α(y) in the proof of Theorem 2; they are inevitable in the invariant measures that
do not satisfy Assumption 1 (see Remark 6).
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Figure 9. Horton prune-invariant measures: Illustration. Figure compares the offspring probabilities qm, m ≥ 2,
of the invariant measure IGW(q0) of Def. 8, also given in (76) (open circles), with those of the invariant measure
of (67) that does not satisfy Assumption 1 (black circles). (a) q0 = 0.55, (b) q0 = 0.8.
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