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We derive sharp lower bounds for Lp-functions on the n-dimensional unit hypercube in terms of their p-ths
marginal moments. Such bounds are the unique solutions of a system of constrained nonlinear integral equations
depending on the marginals. For square-integrable functions, the bounds have an explicit expression in terms of
the second marginals moments.
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1. Introduction

This paper obtains lower bounds of Lp-functions on the n-dimensional unit hypercube in terms of
moments of their marginals (i.e., one-dimensional projections). The lower bound is identified as the
solution of a system of constrained nonlinear integral equations, where the marginals appear as in-
homogeneous data. In the Hilbertian case p = 2 (and only in such a case), the integral equations be-
come linear and admit an explicit solution (Section 2.3), implying that any square-integrable function
g : Rn � ξ �→ g(ξ) ∈ R such that

∫
g(ξ) dξ = 1, satisfies the bound

∫
g2(ξ) dξ ≥

(
n∑

i=1

∫
gi(ξi)

2 dξi

)
− (n − 1), (1.1)

where ξ = (ξi)1≤i≤n and the marginal gi is the integral of g with respect to all but the i-ths argument ξi ,
1 ≤ i ≤ n. Henceforth, all integrals are understood on the unit (hyper)cube of the respective integration
variable, unless explicitly stated otherwise.

This bound is reminiscent of the lower Fréchet–Hoeffding bound [7], Theorem 2.2.3, for a cop-
ula C = C(ξ) (i.e., the joint cumulative distribution function of n-dimensional random variable with
uniform marginals),

C(ξ) ≥ max

{
n∑

i=1

ξi − (n − 1),0

}
. (1.2)

However, a closer inspection shows that such a bound is rather different from the ones considered
in this paper. First, (1.2) is a point-wise bound (which reduces to state mere positivity on the set
{∑n

i=1 ξi < n − 1}), while (1.1) is a norm bound. Second, while copula bounds are – by construction –
independent of marginal distributions, the norm bound established in this paper depends critically on
the marginals densities considered.

The results of this paper are originally motivated by questions arising in the optimisation of options
portfolios [4], which are equivalent, by convex duality, to the minimisation of the second moment of
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the stochastic discount factor, subject to constraints on its marginals. This paper investigates the more
challenging setting of an arbitrary moment (as opposed to the second moment), which leads to two re-
lated issues. First, the problem cannot be tackled with Hilbert space techniques, but requires arguments
from Banach space theory. Second, while the second moment leads to linear first-order conditions and
a minimal density that is additive across different variables, the general case considered here entails as
first-order conditions nonlinear integral equations and a resulting more complex nonlinear decomposi-
tion of the minimal density.

The rest of the paper is organised as follows. Section 2 sets up the general Lp-problem and offers
a heuristic derivation of the equations governing the lower estimate. The rigorous proof of the sharp
lower bound follows in Theorem 2.5. This general statement is then applied to the case p = 2 in
Section 2.3, and results in Theorem 2.7. Section 2.4 reinterprets Theorem 2.5 as a regularity result
for nonlinear integral equations. Section 3 provides a numerical study of the minimal solutions to the
integral equations in dimension two, discussing how the optimisers depart from the linear case p = 2.
Finally, Section 4 explains the probabilistic implications for portfolio selection.

2. Lp-bounds

Let 1 < p < ∞ and n ≥ 2. Denote by Lp([0,1]n) the space of equivalence classes of Lebesgue-

measurable functions f on the unit hypercube [0,1]n, for which ‖f ‖p := (
∫ |f (ξ)|p dξ)

1
p < ∞. Lp-

spaces are strictly convex1 in that for any 0 < t < 1 and f,g ∈ Lp([0,1]n) such that ‖f ‖p = ‖g‖p = 1
and f 
= g, it holds that ‖tf + (1 − t)g‖p < 1. As Lp-spaces are also reflexive, the following Banach-
space analog [5], Corollary 5.1.19, of a familiar Hilbert space result [8], Theorem 4.10, holds:

Theorem 2.1. If a normed space is rotund and reflexive, then each of its nonempty, convex, closed
subsets has a unique minimal element of smallest norm.

Henceforth, for 1 ≤ i ≤ n denote by ξi the ith coordinate of ξ ∈ R
n and by ξc

i the (n − 1)-vector,
in which the latter is omitted, that is, ξc

i = (ξ1, . . . , ξi−1, ξi+1, . . . , ξn). We shall integrate functions
f = f (ξ) either with respect to ξc

i , in which case we write fi(ξi) := ∫
f (ξ) dξc

i , or with respect to ξi ,
and then we write

∫
f (ξ) dξi .

2.1. Heuristic derivation

To minimise the Lp-norm ‖h‖p subject to the marginal constraints∫
h(ξ) dξc

i = gi(ξi), 1 ≤ i ≤ n,

consider the Lagrangian

L = 1

p

∫ ∣∣h(ξ)
∣∣p dξ − 1

n

n∑
i=1

∫
�(ξi)

(∫
h(ξ) dξc

i − gi(ξi)

)
dξi.

1This property is also called rotund, cf. [5], Example 1.10.2 and Theorem 1.11.10,
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Setting the directional derivatives equal to zero yields the first order conditions

sign
(
h(ξ)

)∣∣h(ξ)
∣∣p−1 = 1

n

n∑
i=1

�i(ξi),

whence

h(ξ) = sign

(
n∑

i=1

�i(ξi)

)∣∣∣∣∣1

n

n∑
i=1

�i(ξi)

∣∣∣∣∣
1

p−1

.

The marginal constraints imply

∫
sign

(
1

n

n∑
j=1

�j(ξj )

)∣∣∣∣∣1

n

n∑
j=1

�j(ξj )

∣∣∣∣∣
1

p−1

dξc
i = gi(ξi), 1 ≤ i ≤ n. (2.1)

To uniquely identify2 the Lagrange multipliers �i – which are otherwise determined up to an additive
constant – it suffices to impose the conditions∫

�i(ξi) dξi = 0, 2 ≤ i ≤ n. (2.2)

Note that these conditions are required only for i ≥ 2.

2.2. Main result

The discussion begins with a characterisation of minimality in Banach spaces [9], Theorem 4.21:

Lemma 2.2. Let 1 < p < ∞, f ∈ Lp , and Y be a closed subspace of Lp . The following are equivalent:

1. ‖f ‖p ≤ ‖f + k‖p for all k ∈ Y .
2.

∫
sign(f (ξ))|f (ξ)|p−1k(ξ) dξ = 0 for all k ∈ Y .

A function f is orthogonal to a subspace Y if it satisfies any of the equivalent statements of
Lemma 2.2.

Lemma 2.3. Let 1 < p < ∞, f ∈ Lq([0,1]n), where q = p/(p − 1), and denote by

N :=
{
φ ∈ Lp

([0,1]n)∣∣∣ ∫ φ(ξ) dξc
i ≡ 0, for 1 ≤ i ≤ n

}
. (2.3)

The following are equivalent:

1.
∫

f (x)φ(x)dx = 0 for all φ ∈ N .
2. f (x) = 1

n

∑n
i=1 �i(xi), where �i lie in Lq([0,1]), 1 ≤ i ≤ n.

2For the uniqueness proof, see the proof of Theorem 2.5.
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Proof. The implication (2) ⇒ (1) is straightforward. To show that (1) ⇒ (2), note that, by Jensen’s
inequality, for any φ ∈ Lp([0,1]n) and any 1 ≤ i ≤ n,

∫
φ(ξ) dξc

i ∈ Lp([0,1]). Hence, for any φ ∈
Lp([0,1]n),

φ̃(ξ) := φ(ξ) −
n∑

i=1

∫
φ(ξ) dξc

i + (n − 1)

∫
φ(η)dη ∈ N ,

and Fubini’s theorem yields∫ (
f (x) −

n∑
i=1

∫
f (ξ) dξc

i + (n − 1)

∫
f (ξ) dξ

)
φ(x)dx = 0.

Thus by duality,

f (ξ) =
n∑

i=1

∫
f (ξ) dξc

i − (n − 1)

∫
f (ξ) dξ ξ -a.e..

The functions �i(ξi) := n
∫

f (ξ) dξc
i − (n − 1)

∫
f (ξ) dξ , 1 ≤ i ≤ n, are in Lq([0,1]n), and they sum

to f , as claimed. �

The previous two lemmas combine to the following.

Corollary 2.4. Let f ∈ Lq([0,1]n), and N ⊂ Lp([0,1]n) as defined in (2.3). The following are equiv-
alent:

1. sign(f )|f |1/(p−1) is orthogonal to N .
2.

∫
f (x)φ(x)dx = 0 for all φ ∈N .

3. f (x) = 1
n

∑n
i=1 �i(xi), where �i lie in Lq([0,1]n), 1 ≤ i ≤ n.

Theorem 2.5. Let p > 1. Any g ∈ Lp satisfies∫ ∣∣g(ξ)
∣∣p dξ ≥

∫ ∣∣�(ξ)
∣∣ p

p−1 dξ, (2.4)

where

�(ξ) := 1

n

n∑
i=1

�i(ξi)

and �i are the unique solutions of the system of integral equations (2.1)–(2.2).
The estimate (2.4) is sharp, in that equality in (2.4) holds, if and only if

g(ξ) = sign
(
�(ξ)

)∣∣�(ξ)
∣∣ 1

p−1 . (2.5)

Proof. By Jensen’s inequality, gi := ∫
g(ξ) dξc

i ∈ Lp([0,1]) for 1 ≤ i ≤ n, hence the set

M :=
{
h ∈ Lp

([0,1]n)∣∣∣ ∫ h(ξ) dξc
i = gi(ξi),1 ≤ i ≤ n

}
is well-defined, and it is non-empty because g ∈ M. The set is convex, by construction, and it is closed:
Let hn ∈ M and limn→∞ hn = h in Lp([0,1]n). Then the sequence (hn)n≥1 is uniformly integrable,
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hence by Vitali’s convergence theorem, ξi -almost everywhere,∫
h(ξ) dξc

i =
∫

lim
n→∞hn(ξ) dξc

i = lim
n→∞

∫
hn(ξ) dξc = gi(ξi).

Denote by h∗ the unique element in M of smallest norm.3 We claim that h∗ = g, where g is defined
in (2.5). To this end, recall the function space defined in (2.3). By the minimality of h∗, it follows that
for any ε > 0 and any φ ∈N

‖h∗ ± εφ‖p
p − ‖h∗‖p

p ≥ 0, (2.6)

and therefore, by Lemma 2.24∫
sign

(
h∗(ξ)

)∣∣h∗(ξ)
∣∣p−1

φ(ξ) dξ = 0, φ ∈ N .

The implication (1) ⇒ (3) in Corollary 2.4 yields

sign
(
h∗(ξ)

)∣∣h∗(ξ)
∣∣p−1 = �(ξ), where �(ξ) := 1

n

n∑
i=1

�i(ξi),

with measurable functions �i(ξi), 1 ≤ i ≤ n, depending on one variable ξi only. Because sign(h∗) =
sign(�(ξ)), it follows that

h∗(ξ1, . . . , ξn) = sign
(
�(ξ)

)∣∣�(ξ)
∣∣ 1

p−1

and � solves the nonlinear integral equations (2.1) for 1 ≤ i ≤ n. As these equations involve the sum
� only, we can satisfy the extra constraints (2.2), by replacing �i by �i − ∫

�i(ξi) dξi (2 ≤ i ≤ n), if
necessary.

It remains to show the uniqueness. Assume that, besides �, also �(ξ) := 1
n

∑n
i=1 �i(ξi) solves

(2.1)–(2.2). By Corollary 2.4 (3) ⇒ (1), the function h := sign(�)|�| 1
p−1 is orthogonal to N defined

in (2.3). Furthermore, by (2.1), h − h∗ ∈ N , hence by definition of orthogonality, ‖h‖p ≤ ‖h∗‖p .
In view of (2.6), h = h∗, whence also � = �. As �(ξ) = 1

n

∑n
i=1 �i(ξi) = 1

n

∑n
i=1 �i(ξi) =: �(ξ)

almost everywhere, the extra constraints (2.2) yield, upon integration of n� = n� with respect to dξc
1 ,

that �1(ξ1) = �1(ξ1) almost everywhere (the rest of the integrals vanish). Applying the constraint for
i = 2, it follows that∫

�1(ξ1) dξ1 + �2(ξ2) + 0 =
∫

�1(ξ1) dξ1 + �2(ξ2) + 0 =
∫

�1(ξ1) dξ1 + �2(ξ2),

whence �2(ξ2) = �2(ξ2) ξ2-almost everywhere. Continuing similarly for 3 ≤ i ≤ n, it follows that
�i = �i ξi -almost everywhere for 3 ≤ i ≤ n. �

Remark 2.6. Suppose all marginals are densities. If n − 1 marginal data are uniform densities, say
gi(ξi) = 1 for i ∈ T ⊂ {1,2, . . . , n} with |T | ≥ n − 1, then the corresponding solutions �i (i ∈ T ) are
constants. This is easiest to see for T = {2, . . . , n}. Then, it can be verified that the solution of (2.1)–
(2.2) is of the form �i = 0 for 2 ≤ i ≤ n, and �1 := sign(g1)|g1|p−1. If the index set T contains 1,
then �1 will be a constant, but not necessarily equals to 0 (see last row of Figure 1).

3See Theorem 2.1, and the paragraph preceding it concerning its applicability for Lp spaces.
4Note that |h∗|p−1 ∈ Lq , where q = p

p−1 , hence the below pairing is finite, by Hölder’s inequality.
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Figure 1. In each row, we depict the solutions of the nonlinear integral equations (2.1)–(2.2); on the left panels �1
and on the right one �2, respectively. The dotted lines depict the explicit solution in the p = 2 case; the other lines
depart from the Hilbertian case by �p = 20% steps; the dashed lines depict the solutions for p = 1.8,1.6,1.4 and
1.2. Similarly, the solid lines depict the numerical solutions for p = 2.2,2.4, . . . ,3. In the first row, both marginals
are Gaussian densities with equal parameter μ = 1/2 and σ2 = 10%, truncated and re-normalised so to have unit
mass on [0,1]. In the second row, the means are varied to μ = 1/3 on the left, and μ = 2/3 on the right. In the
third row, g1 = 1 (uniform density).
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2.3. The L2-case

For p = 2, the system of integral equations (2.1)–(2.2) becomes linear:(∫ n∑
j=1

�j(ξj )

)
dξc

i = ngi(ξi), 1 ≤ i ≤ n, (2.7)

∫
�i(ξi) dξi = 0, 2 ≤ i ≤ n. (2.8)

For i = 1, Equation (2.7) yields �1(ξ1) = ng1(ξ1), and in conjunction with Equation (2.8), it follows
that

�i(ξi) = n

(
gi(ξi) −

∫
g1(ξ1) dξ1

)
= n

(
gi(ξi) −

∫
g(ξ) dξ

)
, 2 ≤ i ≤ n.

In view of Theorem 2.5, it follows the following theorem.

Theorem 2.7. Any g ∈ L2([0,1]n) satisfies

∫
g2(ξ) dξ ≥

n∑
i=1

∫
gi(ξi)

2 dξi − (n − 1)

(∫
g(x)dx

)2

. (2.9)

The bound is sharp: equality holds if and only if g equals

�(ξ) :=
(

n∑
i=1

gi(ξi)

)
− (n − 1)

∫
g(x)dx.

Remark 2.8. Note that the above includes the case where g has vanishing integral. In this case, the
estimate (2.9) lacks the last term (n − 1)

∫
g(x)dx.

2.4. Regularity of integral equations

One can view Theorem 2.5 as a regularity result for nonlinear integral equations with constraints – the
dual problem.

Corollary 2.9. Let n ≥ 2 and p > 1. For any g ∈ Lp([0,1]n), there exists a unique solution

�(ξ) = (
�1(ξ1),�2(ξ2), . . . ,�n(ξn)

)
of the integral equations (2.1)–(2.2) with data g, satisfying the bound

‖�‖q ≤ ‖g‖p,

where q denotes conjugate exponent (satisfying 1/p + 1/q = 1).
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3. Numerical examples

For illustration, we study dimension n = 2 and consider data g1(ξ1) and g2(ξ2) of unit integral.
To solve the nonlinear integral equations (2.1)–(2.2), we discrete the involved integrals using a mesh-

size of 1/30, and solve the resulting nonlinear equations with the optim solver on R (minimising
residuals), using the exact solution in the p = 2 case as starting value; and then increasing (resp.
decreasing) from the Hilbertian case by �p = 10%, using repeatedly the previous numerical solution
as seed for the solver. Each example involves normal marginal densities, re-normalised so to have unit
mass on [0,1].5

Figure 1 below depicts solutions for three different sets of data g1, g2, and for a range of p > 1. The
explicit solution for p = 2 (Theorem 2.7)

�1(ξ1) = 2g1(ξ1),

�2(ξ2) = 2
(
g2(ξ2) − 1

)
.

is plotted by dotted lines. The figure generally shows that as p ↓ 1, the solutions �1, �2 get flatter
(dashed lines), while as p increases from 2, the solutions have more and more pronounced peaks (solid
lines). In the first row of Figure 1, the data is identical, however since

∫
�2(ξ2) dξ2 = 0, �1 and �2

differ by a real constant. Moreover, the second row of the Figure uses inhomogeneous data g1, g2,
centering around different means. Finally, the last row of Figure 1 confirms the theoretical finding of
Remark 2.6: the solution �1 on the left, that corresponds to uniform marginal data g1, is constant also
for p 
= 2.

4. Probabilistic implications

The main result in this paper is originally motivated by the problem of selecting the portfolio of options
with maximal Sharpe ratio, which is equivalent, by convex duality, to the minimisation of the second
moment of the stochastic discount factor, subject to constraints on its marginals (cf. [4], Section 2.2).
In this financial application, the baseline measure is described by a probability density p(ξ), which
identifies the views of an investor on the joint distribution of the prices of n risky assets S1, . . . ,Sn

at some future date T (modelled by random variables S1, . . . , Sn). Each of these is an underlying
asset of European Call and Put options with a continuum of strikes, maturing at T . The density p

thus replaces the Lebesgue measure in the present paper. The corresponding Lp-problem (p > 1)
generalises equations (2.1)–(2.2) to

∫
sign

(
1

n

n∑
j=1

�j(ξj )

)∣∣∣∣∣1

n

n∑
j=1

�j(ξj )

∣∣∣∣∣
1

p−1

p(ξ) dξc
i = gi(ξi), 1 ≤ i ≤ n,

∫
�i(ξi)pi(ξi) dξi = 0, 2 ≤ i ≤ n.

The new weight p in these equations, and its n marginal densities pi constitute only a small modifica-
tion that can be treated similarly as in Section 2.2. The “inhomogeneous data” gi (1 ≤ i ≤ n) represents

5It may appear more natural to pick densities that integrate to one by default, e.g. instances of the beta distribution with pa-
rameters α, β . However, this seemingly more natural choice leads to similar effects as explained below. For intuitive and for
numerical reasons, we found normal data more convenient.
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the risk-neutral marginal distributions of asset Si (1 ≤ i ≤ n) which is, due to [1,3,6] proportional to
the second derivative of European Call options prices, with respect to their strike price.

An important implication of the result is that the solution is necessarily of the functional form g(ξ) =
sign(�(ξ)|�(ξ)|1/(p−1), where �(ξ) = 1

n

∑n
j=1 �j(ξj ). First, this result casts in a cautionary light

the practice of pricing complex derivatives by fitting parametric copulas to risk-neutral marginals. In
general, the price obtained from some copula family is neither replicable nor linked to an optimisation
objective. Second, the result implies that the maximal random payoff � (the primal object) is not an
arbitrary function of the the asset prices S1, . . . , Sn, but it additively separates in each asset, that is, it
is of the form

�(S1, . . . , Sn) = 1

n

n∑
j=1

�j(Sj ),

and thus can be interpreted as an option portfolio, featuring European options on each of the n indi-
vidual underlyings. Indeed, according to the Carr-Madan formula [2], each summand �j , if regular
enough, can be written as

�j(K) = �j(K0) + �′
j (K0)(K − K0) +

∫ K0

0
�′′

j (κ)(κ − K)+ dκ

+
∫ ∞

K0

�′
j (κ)(K − κ)+ dκ, K ≥ 0

and thus decomposes into the payoff of �j(K0) units of a zero-coupon bond maturing at T (first
summand), �′

j (K0) forward contracts with delivery price K0 (second summand) and a continuum of

European puts (with strike κ ≤ K0), and European calls (with strikes κ ≥ K0).6
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