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Stationary subspace analysis (SSA) searches for linear combinations of the components of nonstationary vector
time series that are stationary. These linear combinations and their number define an associated stationary sub-
space and its dimension. SSA is studied here for zero mean nonstationary covariance processes. We characterize
stationary subspaces and their dimensions in terms of eigenvalues and eigenvectors of certain symmetric matrices.
This characterization is then used to derive formal statistical tests for estimating dimensions of stationary sub-
spaces. Eigenstructure-based techniques are also proposed to estimate stationary subspaces, without relying on
previously used computationally intensive optimization-based methods. Finally, the introduced methodologies are
examined on simulated and real data.
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1. Introduction

The goal of this work is to provide new and basic insights into the so-called stationary subspace analysis
(SSA), a technique for finding linear combinations of components of a multivariate time series that
are stationary. More precisely, consider an ideal setup where the observed p-vector nonstationary time
series Xt is a linear transformation of a d-vector stationary series Us

t and a (p−d)-vector nonstationary
series Un

t through

Xt = MUt = [
Ms Mn

][
Us

t

Un
t

]
, (1.1)

and M is an unknown p × p (invertible) mixing matrix, Ms and Mn are p × d and p × (p − d)

matrices, respectively. It is further assumed that no linear transformation of Un
t is stationary. Given the

data X1,X2, . . . ,XT , SSA seeks to find a demixing matrix B = (M−1)′ so that B ′Xt = Ut is naturally
partitioned into its stationary and nonstationary sources. The space spanned by the first d columns of
B is referred to as a stationary subspace and d as its dimension.

SSA was introduced and studied by von Bünau et al. [24], with applications to analyzing EEG data
from neuroscience experiments. In that work, the observed vector time series is assumed to be inde-
pendent across time and the notion of stationarity is with respect to the first two moments, that is, the
mean and lag-0 covariance are required to be time invariant. The demixing matrix in SSA is found
in the spirit of ANOVA by dividing the observed time series data into N segments and minimizing a
Kullback–Leibler (KL) divergence between Gaussian distributions measuring differences in the means
and covariances across these segments. A sequential likelihood ratio test is used in von Bünau et al.
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[24] and Blythe et al. [1] to determine the dimension of the stationary subspace d under the additional
assumption of normality of the data. The frequency domain or dependent SSA (DSSA) in Sundararajan
and Pourahmadi [22] avoids independence and dividing the data into segments. However, conceptu-
ally DSSA reduces this more general formulation to that of the SSA by relying on the approximate
uncorrelatedness of the discrete Fourier transform (DFT) of a second-order stationary time series at
Fourier frequencies. There, the sum of the Frobenius norms of the estimated covariances of the DFTs
at the first few lags is used as a discrepancy measure and the demixing matrix is obtained by optimiz-
ing this measure. Finally, a sequential test of second-order stationarity is used to determine d and the
consistency of the estimated d is studied using the asymptotic distribution of the test statistic under
the alternative hypothesis of local stationarity of the time series (Dahlhaus [4,5]). Another technique
closely related to SSA is the notion of “costationarity” introduced and studied by Cardinali and Na-
son [3] wherein stationary linear transformations of bivariate locally stationary time series is sought.
The linear transformation is obtained by optimizing over a measure of nonstationarity that involves a
time-varying spectral density.

Overall, the research thus far suggests the need for a better mathematical formulation and under-
standing of the problem, ideally providing a transparent and interpretable solution of the SSA problem.
In this work, we shall tackle these issues for a special but general case of (1.1), namely, that of zero
mean vectors Ut , assuming Ut = C(t)Yt with i.i.d. zero mean vectors Yt . We shall further write this
model formulation as

Xt = A

(
t

T

)
Yt , t = 1,2, . . . , T , (1.2)

where T is the sample size and the time dependence is brought into A( t
T

) = M · C(t). Additional
assumptions on the matrix-valued function A : (0,1) → R and the i.i.d. vectors Yt can be found below
in Section 2. The modification (1.2) of (1.1) takes the heterogeneity out of Ut and places it into the
deterministic matrix-valued function A(·). The nonstationary covariance process (1.2) will be said to
follow a varying covariance (VC) model. The assumption of zero mean in (1.2) is made for several
reasons. For one, all previous works that identify EEG data analysis as the motivating application
involve this assumption. We are currently working in parallel on analogous approaches to the SSA
problem for time-varying means (Düker et al. [9]), and will possibly look at the combined model in
the future. In the latter regard, we should also note that dealing with SSA for varying covariances is
seemingly much more involved than for varying means. Indeed, as seen in this work, the SSA for the
VC model has a surprisingly rich structure.

In contrast to optimization-based approaches to SSA reviewed earlier, a key feature of our approach
for VC models is its direct reliance on eigenanalysis of certain symmetric matrices. This is inline
with the initial heuristic formulation of popular multivariate statistical techniques such as principal
components analysis (PCA), factor analysis and cointegration analysis, and their eventual formula-
tions/solutions involving eigenanalysis of certain covariance matrices. More specifically, our contribu-
tions to the SSA for the VC model (1.2) are as follows. First, by using basic ideas from linear algebra,
we provide an interpretation of a stationary subspace and its dimension d in terms of eigenvalues and
eigenvectors of certain symmetric matrices. This interpretation, in fact, is given at two levels: “local” or
for fixed u ∈ (0,1), and “global” or for (0,1) = {u : u ∈ (0,1)}, where u is thought here as a variable of
A(u) replaced by t/T in (1.2). Second, in the context of the obtained interpretation, we develop a for-
mal statistical test for dimensions of stationary subspaces. Together with the algebraic interpretation,
this test is the key theoretical contributions of this work. The test involves “local” quantities through
an integral and in that sense is “global”. Third, by leveraging the new interpretation of stationary sub-
spaces, we provide more direct and algebraic ways to construct them. These are shown to outperform
the computationally more expensive optimization-based solutions of the previous SSA approaches in
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a number of simulation settings. We should also note that the proposed dimension tests in Section 4
assume the existence of a common stationary subspace across the “local” levels (see Section 3.2 for
more details); testing for the latter remains an open problem. Furthermore, this work concerns the
asymptotics under T → ∞ with a fixed p. Fourth, we revisit an SSA application to EEG data from
a Brain-Computer Interface (BCI) experiment and provide additional insights by using the proposed
methods.

The outline of the paper is as follows. Section 2 reintroduces more formally the VC model and its
stationary subspace and dimension. Section 3 gives an eigenstructure-based characterization of a sta-
tionary subspace and its dimension. Section 4 introduces the “local” quantities of interest and considers
a statistical test for the dimension of a stationary subspace at the “global” level. Section 5 discusses
estimation methods for stationary subspaces that are based on algebraic constructs and do not involve
iterative and computationally heavy optimization methods. Sections 6 and 7 illustrate the proposed
methodologies using simulated and real data. Section 8 concludes.

2. Model of interest and its stationary subspace

We focus throughout this work on the varying covariance (VC) model (1.2), where A : (0,1) → R
p×p

is a smoothly varying matrix-valued function and Yt are i.i.d. random vectors with i.i.d. entries, E(Yt ) =
0 and E(YtY

′
t ) = Ip . Further technical assumptions can be found below.

Definition 2.1. If d is the largest integer in {0,1,2, . . . , p} for which there is a p × d matrix B1 such
that

B ′
1A

2(u)B1 = �, ∀u ∈ (0,1), (2.1)

where A2(u) = A(u)A(u)′, � does not depend on u and B ′
1B1 = Id , then the space B1 spanned by the

columns of B1 will be called a (second-order) stationary subspace of dimension d of the model (1.2).

Note that (2.1) states effectively that the covariance matrix of B ′
1Xt does not depend on t . It can be

reformulated as follows: Let A
2 = ∫ 1

0 A2(u) du and define a p × p symmetric matrix M(u) as

M(u) = A2(u) − A
2
. (2.2)

Then the condition (2.1) is equivalent to

B ′
1M(u)B1 = 0, ∀u ∈ (0,1). (2.3)

Indeed, (2.1) implies (2.3) after integrating (2.1) over u ∈ (0,1), noting that
∫ 1

0 � du = � and sub-

tracting the two sides of the resulting relation B ′
1A

2
B1 = � from those of (2.1). Similarly (2.3) implies

(2.1) with � = B ′
1A

2
B1. The matrix M(u) will play a central role henceforth.

Our approach to finding a matrix B1 and the corresponding stationary subspace B1 and dimension
d is based on the relation (2.3) for a fixed u, that is, B ′

1M(u)B1 = 0 for a fixed u and B1 = B1(u) of
dimension d = d(u). As shown in the next section, for a fixed u, the matrix B1(u) and its dimension
d(u) can be characterized using the eigenstructure of the matrix M(u). When it comes to M(u), we
shall be using the terminology of the following definition.

Definition 2.2. Let B1 = B1(u) be a matrix with d = d(u) columns that satisfies (2.3) for a fixed
u ∈ (0,1). The space B1(u) spanned by the columns of B1(u) will be called a local stationary subspace



384 R.R. Sundararajan, V. Pipiras and M. Pourahmadi

of local dimension d(u). The respective quantities in Definition 2.1 will be referred to as a global
stationary subspace and a global dimension.

Relationships between local and global stationary subspaces and their dimensions are discussed in
Section 3.2. The estimation of the local and global dimensions d(u) and d is discussed in Section 4.

3. Matrix pseudo nullity and pseudo null space

In this section, we characterize a stationary subspace and its dimension from a matrix eigenstructure
perspective. In view of the relation (2.3) and Definition 2.2, we start with the following definition.

Definition 3.1. Let M be a p × p symmetric matrix. A pseudo nullity of M , denoted by d(M), is
defined as the largest non-negative integer d1 such that

C′
1MC1 = 0, (3.1)

for a p × d1 matrix C1 with C′
1C1 = Id1 . A pseudo null space of M , denoted as P(M), is defined as

the linear span of the d1 columns of the matrix C1 in (3.1). A column of C1, that is, a column vector s

such that s′Ms = 0 will be called a pseudo eigenvector.

If M is positive semi-definite, note that its pseudo nullity is its nullity (i.e., the number of zero
eigenvalues of M) and its pseudo null space is its null space; thus, the pseudo- terminology is used
to draw attention to the contrast between these two cases. Otherwise, we should caution the reader
against drawing other parallels between the two contexts. For example, if s1 and s2 are two pseudo
eigenvectors (which can be either orthogonal or non-orthogonal), note that there is a priori no reason
to have s′

1Ms2 = 0 and hence C′
1MC1 = 0 with C1 = (s1 s2). In particular, if for example, d(M) = 2,

and s1 and s2 are orthogonal, the linear space spanned by s1 and s2 is not necessarily a pseudo null
space.

Another word of caution is that P(M) is not unique in general. This, perhaps surprising, fact will be
explained below. By writing P(M), we mean one of the pseudo null spaces.

3.1. Characterization of pseudo nullity and pseudo null space

We characterize first the pseudo nullity d(M) of a symmetric matrix M in terms of its inertia. Let

d0 = d0(M), d+ = d+(M), d− = d−(M) (3.2)

be the number of zero, positive and negative eigenvalues of M , respectively.

Proposition 3.1. Let M be a symmetric matrix. Then, d(M) = d0 + min(d+, d−).

The next result characterizes the pseudo null space P(M) and its pseudo eigenvectors. Let si (s0,i ,
s+,i and s−,i , resp.) be the orthonormal eigenvectors (associated with the zero, positive and negative
eigenvalues, resp.) of M . The corresponding eigenvalues are denoted λi (λ0,i = 0, λ+,i , λ−,i resp.).
We also let N0(M) denote the null space of the matrix M , that is, the linear space spanned by the
eigenvectors s0,i , i = 1, . . . , d0.



Stationary subspace analysis of nonstationary covariance processes 385

Proposition 3.2. Let M be a symmetric matrix let P(M) be a pseudo null space of M . Then,

P(M) =N0(M) ⊕N±(M), (3.3)

where N0(M) is the null space of M and N±(M) is a linear space spanned by orthogonal eigenvectors
wk,±, k = 1,2, . . . ,min(d−, d+), expressed as

wk,± =
d+∑
i=1

αk,+,i s+,i +
d−∑
i=1

αk,−,i s−,i , (3.4)

where αk,+,i , αk,−,i ∈ R are such that for all (possibly the same) k1, k2,

d+∑
i=1

αk1,+,iαk2,+,iλ+,i +
d−∑
i=1

αk1,−,iαk2,−,iλ−,i = 0. (3.5)

Propositions 3.1 and 3.2 are proved in Appendix A. But we would like to provide here the basic idea
behind the results, as the underlying perspectives are important to keep in mind through the rest of the
paper. By using the above notation, note first that

s′
0,i1

Ms0,i2 = 0, i1, i2 = 1,2, . . . , d0.

This immediately implies that d(M) ≥ d0 and that all eigenvectors associated with the zero eigenvalue
are also pseudo eigenvectors. But other, quite different pseudo eigenvectors can also be constructed
by exploiting the following observation. Consider two eigenvectors s+,i and s−,i associated with a
positive eigenvalue λ+,i and negative eigenvalue λ−,i , respectively. Since s′+,iMs+,i = λ+,i , similarly
for the negative eigenvector/value and s′+,iMs−,i = 0, note that a linear combination α+s+,i + α−s−,i

with weights α+, α− ∈R satisfies

(α+s+,i + α−s−,i )
′M(α+s+,i + α−s−,i ) = α2+λ+,i + α2−λ−,i .

Note further that since λ+,i > 0 and λ−,i < 0, a suitable choice of weights α+, α− can ensure that
(α+s+,i + α−s−,i )

′M(α+s+,i + α−s−,i ) = 0 and hence that α+s+,i + α−s−,i is a pseudo eigenvector.
Since (α+s+,i +α−s−,i )

′Ms0,j = 0 by orthogonality of eigenvectors, observe also that both this pseudo
eigenvector and all eigenvectors associated with the zero eigenvalue can be part of a pseudo null space.
Finally, note that there is considerable flexibility in the described construction, in particular, related
to which positive and negative eigenvectors/values are paired. Consequences of this flexibility are the
stated results of Propositions 3.1 and 3.2.

We next illustrate the above results through an example. The example also shows that a pseudo null
space is not unique in general.

Example 3.1. Let M be a symmetric matrix defined as

M = diag(1,−1,1). (3.6)

The eigenvalues of M are 1 (of multiplicity 2) and −1. Then, λ+,1 = λ+,2 = 1, λ−,1 = −1 and d+ = 2,
d− = 1, d0 = 0. By Proposition 3.1, d(M) = 0 + min(1,2) = 1. The corresponding eigenvectors are
s+,1 = (1 0 0)′, s+,2 = (0 0 1)′ and s−,1 = (0 1 0)′. By Proposition 3.2, a pseudo null space of M can
be expressed as

P(M) = lin{α−,1s−,1 + α+,1s+,1 + α+,2s+,2}
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such that

−α2−,1 + α2+,1 + α2+,2 = 0

and α2−,1 + α2+,1 + α2+,2 = 1 for the norm to be 1, where “lin” indicates a linear span. The latter

two expressions yield α−,1 = (α2+,1 + α2+,2)
1/2 (after choosing a positive sign for the square root)

and α2+,1 + α2+,2 = 1/2. This further yields α := α+,1 ∈ [1/
√

2,−1/
√

2], α+,2 = ±(1/2 − α2)1/2 and

α−,1 = 1/
√

2. Thus, a pseudo null space can also be expressed as

P(M) = lin
{
(1/

√
2)s−,1 + αs+,1 ± (

1/2 − α2)1/2
s+,2

}
= lin

{(
α,1/

√
2,±(

1/2 − α2)1/2)′}
, (3.7)

where α ∈ [1/
√

2,−1/
√

2]. Note that these spaces (vectors) are generally different for different α’s.
For example, for α = 0,

P(M) = lin
{
(0,1/

√
2,1/

√
2)′

} = lin
{(

0 1 1
)′} (3.8)

and for α = 1/
√

2,

P(M) = lin
{
(1/

√
2,1/

√
2,0)′

} = lin
{(

1 1 0
)′}

. (3.9)

3.2. Implications for stationary subspace and its dimension

In view of Definitions 2.1 and 2.2 and their notation, the global stationary subspace B1 and its dimen-
sion d are given by:

d = d(u) = d
(
M(u)

)
, B1 = B1(u) =P

(
M(u)

)
, ∀u ∈ (0,1). (3.10)

In view of Proposition 3.1, the first relation in (3.10) can now be reformulated as

d = d(u) = d
(
M(u)

) = d0(u) + min
(
d+(u), d−(u)

)
, ∀u ∈ (0,1), (3.11)

where

d0(u) = d0
(
M(u)

)
, d+(u) = d+

(
M(u)

)
, d−(u) = d−

(
M(u)

)
(3.12)

are the numbers of zero, positive and negative eigenvalues of M(u), respectively.
On the other hand, if

d
(
M(u)

) = d0(u) + min
(
d+(u), d−(u)

) ≡ d∗, u ∈ (0,1), (3.13)

for some d∗, this does not necessarily mean that the dimension d of the stationary subspace is d∗. The
latter is because (3.13) does not guarantee that

B1(u) =P
(
M(u)

) ≡ B∗
1, u ∈ (0,1), (3.14)

for some B∗
1 , playing the role of a stationary subspace. But if (3.14) holds, then (3.13) does imply

that d∗ is the dimension d of the stationary subspace. The statistical tests developed in the subsequent
sections will, in fact, be for testing (3.13) and hence will lead to the dimension d assuming (3.14).
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Figure 1. Left: Plot of a sample realization of length T = 500 based on the VC model using A2(u) from Example
3.2. Right: Visualization of the diagonal entries of A2(u) from Example 3.2.

How testing can be done for (3.14) remains an open question, though we shall also suggest new ways
to estimate B1, based on developments in Section 3.1.

Finally, we illustrate the observations made above through a simple but instructive example. The
example will use some findings of Example 3.1. See also a subsequent remark.

Example 3.2. Consider a VC model with

A2(u) = diag
(
2 + sin(2πu),3 − sin(2πu),1 + sin(2πu)

)
. (3.15)

Then, A
2 = diag(2,3,1) and

M(u) = A2(u) − A
2 = sin(2πu) · diag(1,−1,1). (3.16)

Figure 1 (left) plots a sample realization of the VC model using A(u) in (3.15) with Yt being i.i.d.
N (0, I3). Figure 1 (right) plots the diagonal entries of A2(u).

For fixed u �= 1/2, the eigenvalues of M(u) are sin(2πu) · 1 (of multiplicity 2) and sin(2πu) · (−1).
For further illustration, suppose u ∈ (0,1/2), so that sin(2πu) > 0. Then, λ+,1 = λ+,2 = sin(2πu) · 1,
λ−,1 = sin(2πu) · (−1) and d+ = 2, d− = 1, d0 = 0, by using the notation in Section 3.1 with M =
M(u). By Proposition 3.1, d(u) = d(M(u)) = 0 + min(1,2) = 1.

The corresponding eigenvectors are s+,1 = (1 0 0)′, s+,2 = (0 0 1)′ and s−,1 = (0 1 0)′. As in
Example 3.1, a local stationary subspace or a pseudo null space of M(u) can be expressed as

B1(u) =P
(
M(u)

) = lin
{(

α,1/
√

2, ±(
1/2 − α2)1/2)′}

, (3.17)

where α ∈ [1/
√

2,−1/
√

2].

Remark 3.1. The fact that a pseudo null space in Example 3.2 is not unique should not be surprising
from the following perspective. Let Xt = (X1,t ,X2,t ,X3,t )

′ be a 3-vector process following the VC



388 R.R. Sundararajan, V. Pipiras and M. Pourahmadi

model with (3.15). The pseudo eigenvectors w1 = (0 1 1)′ in (3.8) and w2 = (1 1 0)′ in (3.9) can be
checked easily to be such that w′

1Xt and w′
2Xt are stationary.

It is also interesting and important to note here that the stationary subspace dimension for this
model is not 2. For example, note that while w′

1Xt and w′
2Xt are indeed stationary, the 2-vector pro-

cess (w′
1Xt,w

′
2Xt)

′ is not stationary. Indeed, this is the case since e.g. E(w′
1Xt)(w

′
2Xt) = E(X2,t +

X3,t )(X1,t + X2,t ) = EX2
2,t = 3 − sin(2πt/T ) depends on t .

4. Inference of stationary subspace dimension

According to (3.11)–(3.12), the dimension of a stationary subspace of the VC model is the local di-
mension d(u) or pseudo nullity d(M(u)) of the matrix M(u) in (2.2), assuming it is the same across u,
which can further be expressed in terms of d0(u), d+(u) and d−(u). We are interested here in the sta-
tistical testing for d0(u), d+(u), d−(u) and hence also for d(u) = d(M(u)). In view of (3.11), we shall
focus on “global” tests, that is, over an interval of u. Our global test, however, will be the aggregate of
local quantities, defined for fixed u. These quantities of interest are introduced and discussed first in
Section 4.1. (A byproduct of this discussion are local dimension tests but these will not be our focus –
see Remarks 4.1 and 4.2). The global dimension testing is treated in Sections 4.2 and 4.3.

4.1. Local quantities of interest

For statistical inference, we obviously need an estimator of the matrix M(u). It is set naturally as

M̂(u) = Â2(u) − Â
2 := 1

T

T∑
t=1

XtX
′
tKh

(
u − t

T

)
− 1

T

T∑
t=1

XtX
′
t , (4.1)

where Kh(u) = h−1K(h−1u), K(·) is a kernel function and h denotes the bandwidth. A kernel is a
symmetric function which integrates to 1, with further regularity assumptions possibly made as well.
In simulations and data applications, we work with the triangle kernel K(u) = 1 − |u| if |u| < 1 and 0,
otherwise.

We shall use the estimator M̂(u) to make inference about the quantities d0(u), d+(u) and d−(u)

characterizing M(u). What makes this more challenging is that we would like this inference to be
across u’s. To achieve this, we shall introduce here relevant quantities for this problem with u fixed,
and then integrate them over u in Section 4.2 to devise a global test. For fixed u, inference about d0(u),
d+(u) and d−(u) could be made by adapting the matrix rank tests found in Donald et al. [7].

The underlying assumption in Donald et al. [7] is an asymptotic normality of the matrix estimator,
which is M̂(u) as considered here. We show in the supplementary technical appendix (Sundararajan
et al. [21]) that under suitable assumptions,

aT F (u)
(
M̂(u) − M(u)

)
F(u)′ d→ Zp, (4.2)

where

aT =
√

T h

‖K‖2μ
1/2
4

, F (u) = A(u)−1, (4.3)

‖K‖2
2 = ∫

R
K(v)2 dv, μ4 = E(Y 2

i,t − 1)2 = EY 4
i,t − 1 and Zp is a symmetric p × p matrix having

independent normal entries with variance 1 on the diagonal and variance 1/μ4 off the diagonal. In
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addition,

F̂ (u)
p→ F(u) (4.4)

with F̂ (u) = Â(u)−1. We assume here for simplicity that μ4 is known. Construction of consistent esti-
mators μ̂4 is discussed in the supplementary technical appendix (Sundararajan et al. [21]), and would
be sufficient for the results below to hold assuming that μ4 is estimated through μ̂4. Furthermore, if
one is willing to assume Gaussianity of Yt , note that μ4 = 2 can also be used.

The matrix F(u) = A(u)−1 plays the role of standardization in obtaining the standardized limit in
(4.2). In this sense, it is natural to focus on F(u)M(u)F (u)′ rather than M(u). Note that d0(u) =
d0(M(u))) = d0(F (u)M(u)F (u)′) and also d±(M(u)) = d±(F (u)M(u)F (u)′). We let

γ1(u) ≤ · · · ≤ γp(u) and γ̂1(u) ≤ · · · ≤ γ̂p(u) (4.5)

be the ordered eigenvalues of F(u)M(u)F (u)′ and F̂ (u)M̂(u)F̂ (u)′, respectively. We have

γ1(u) ≤ · · · ≤ γd−(u)(u) < 0 = γd−(u)+1(u) = · · · = γd−(u)+d0(u)(u)

< γd−(u)+d0(u)+1(u) ≤ · · · ≤ γp(u). (4.6)

Let also

0 ≤ γ2,1(u) ≤ · · · ≤ γ2,p(u) and γ̂2,1(u) ≤ · · · ≤ γ̂2,p(u) (4.7)

be the ordered eigenvalues of (F (u)M(u)F (u)′)2 and (F̂ (u)M̂(u)F̂ (u)′)2, respectively. We have
(γi(u))2 = γ2,j (i)(u) for some j (i), and a similar expression with the hats and also

0 = γ2,1(u) = · · · = γ2,d0(u)(u) < γ2,d0(u)+1(u) ≤ · · · ≤ γ2,p(u). (4.8)

In particular, d0(u) = d0(F (u)M(u)F (u)′) = d0((F (u)M(u)F (u)′)2). By combining these observa-
tions, we have

d±(u) = #
{
i : γi(u) ≷ 0,

(
γi(u)

)2 = γ2,k(u) for some k = d0(u) + 1, . . . , p
}
. (4.9)

In the proofs for Section 4.2, we shall also use eigenspaces associated with the eigenvalues above but
these will not be discussed here.

To make inference about d0(u) and in view of (4.8), one would expect γ̂2,1(u), . . . , γ̂2,d0(u) to be
small, while the rest of the eigenvalues is larger. Following Donald et al. [7], a natural test statistic to
consider in this regard is: for r = 0,1, . . . , p,

ξ̂r (u) = a2
T

r∑
i=1

γ̂2,i (u) = T h

‖K‖2
2μ4

r∑
i=1

γ̂2,i (u). (4.10)

This statistic will be integrated over u in Section 4.2 to devise a global test.

Remark 4.1. Under the assumptions leading to (4.2), it follows from Theorem 4.7 in Donald et al. [7]
that, under H0 : d0(u) = r ,

ξ̂r (u)
d→ χ2(r(r + 1)/2

)
(4.11)

and under H1 : d0(u) < r , ξ̂r (u) →p +∞. This result can be used to test for d0(u) in a standard way
sequentially, namely, testing for H0 : d0(u) = r starting with r = p and subsequently decreasing r by
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1 till the null hypothesis is not rejected. Letting d̂0(u) be the resulting estimator, it can be shown to
be consistent for d0(u) under a suitable choice of critical values in the sequential testing (see, e.g.,
Theorem 4.3 in Fortuna [10]).

Remark 4.2. If d̂(u) is a consistent estimator of d0(u) in the previous remark and in view of (4.9), it
is natural to estimate d±(u) as

d̂±(u) = #
{
i : γ̂i (u) ≷ 0,

(
γ̂i (u)

)2 = γ̂2,k(u), for some k = d̂0(u) + 1, . . . , p
}

(4.12)

and d(u) as

d̂(u) = d̂
(
M(u)

) = d̂0(u) + min
(
d̂+(u), d̂−(u)

)
. (4.13)

The consistency of d̂±(u) and d̂(u) could be proved by using that of d̂0(u) where d̂0(u) is defined in
Remark 4.1.

4.2. Global dimension test

In this section, we consider testing for d0(u), d+(u), d−(u) and d(M(u)) “globally”, that is, for an
interval of u. Since our approach to d(M(u)) goes through d0(u), d+(u) and d−(u), we shall make
inference about these quantities first. To deal with the possibility that these quantities might differ
across u ∈ (0,1), we shall work under the assumption that

d0(u) ≡ d0, d+(u) ≡ d+, d−(u) ≡ d−, ∀u ∈H ⊂ (0,1), (4.14)

and develop a global dimension test about d0, d+ and d− in (4.14) for fixed H. In practice, we shall
apply the developed test over refined dyadic partitions, first for (0,1), then for (0,1/2) and (1/2,1),
then for (0,1/4), (1/4,1/2), (1/2,3/4) and (3/4,1), etc. What to expect under this splitting of the
interval (0,1) is discussed in Section 4.3, and will be illustrated in Sections 6 and 7.

We first focus on inference about d0 in (4.14). Our global test will be based on the quantity∫
H ξ̂r (u) du, where ξ̂r (u) is the test statistic (4.10). Its asymptotics are described in the next result,

which also defines the global statistic ξ̂r . Recall the notation μ4 = E(Yi,t − 1)4 and the discussion
following (4.4). We also let |H| be the length of the interval H and K(u) = ∫

R
K(v)K(u − v)dv be

the so-called convolution kernel.

Proposition 4.1. Suppose that the assumptions stated at the beginning of Appendix A.3 hold. Then,
under H0 : d0(u) ≡ r for all u ∈H,

ξ̂r := ξ̂r,H :=
∫
H ξ̂r (u) du − |H| r(μ4+r−1)

μ4√
h

‖K‖2
2

‖K‖4
2

2(rμ2
4+2r(r−1))

μ2
4

|H|
d→ N (0,1) (4.15)

and under H1 : d0(u) < r for some u ∈H, ξ̂r →p ∞.

The proof of the proposition can be found in Appendix A.3, and follows the approach taken in
Donald et al. [8]. The required assumptions on Yt to establish the above result are that Yt is i.i.d.
with E(Yt ) = 0, E(YtY

′
t ) = Ip and has finite absolute moments of order 4 + ε for some ε > 0. The

entries of A2(u) are assumed to be real analytic (possessing all order derivatives) for u ∈ H, a closed
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subinterval of (0,1). Additionally, the assumption on h is that h → 0, T h3/2 → ∞, T ε/(4+ε)h1/2 →
∞; see Appendix A.3 for details.

As in Remark 4.1, Proposition 4.1 can be used to test for d0 sequentially, namely, testing for H0 :
d0 = r starting with r = p and subsequently decreasing r by 1 till the null hypothesis is not rejected.
Let d̂0 be the resulting estimator obtained using this sequential procedure with significance level αT .

Corollary 4.1. Suppose that the assumptions of Proposition 4.1 hold. If αT → 0 and (− logαT )/T h →
0, then d̂0 →p d0.

Proof. The result can be proved as in for example, Theorem 4.3 in Fortuna [10], by noting that the two
conditions provided in the statement of the theorem are in fact equivalent. �

We now turn to inference about d+ and d− in (4.14). Recall the definition of the eigenvalues γ̂i (u)

in (4.5), whose squares are the eigenvalues γ̂2,j (u) in (4.7) entering the test statistics ξ̂r (u) and ξ̂r .
From the discussions surrounding (4.5)–(4.8), the d̂0 consecutive eigenvalues γ̂i (u) can be thought to
be associated with the d0 zero eigenvalues of F(u)M(u)F (u)′. If we can estimate the starting index
for these consecutive eigenvalues, we could then deduce the numbers d± of positive and negative
eigenvalues of F(u)M(u)F (u)′. In the case d̂0 ≥ 1, the above suggests to consider

ζ̂r =
∣∣∣∣∫H(

γ̂r (u) + · · · + γ̂r+d̂0−1(u)
)
du

∣∣∣∣, r = 1, . . . , p − d̂0 + 1, (4.16)

that is, the quantities involving the sums of the d̂0 consecutive eigenvalues γ̂i (u), and to estimate this
starting index through

r̂ = argmin
r=1,...,p−d̂0+1

ζ̂r . (4.17)

(Whenever r does not match the starting index, a larger value of ζ̂r is expected, since it will be driven
by γ̂i (u) associated with the positive or negative eigenvalues of F(u)M(u)F (u)′.) With the estimated
index r̂ , it is then natural to set further

d̂− = r̂ − 1, d̂+ = p − d̂0 − d̂−. (4.18)

If d̂0 = 0, the preceding argument does not apply and, in fact, the quantity (4.16) is not even defined.
In this case, we suggest to consider

η̂r =
∣∣∣∣∫H(

γ̂1(u) + · · · + γ̂r (u)
)
du

∣∣∣∣ +
∣∣∣∣∫H(

γ̂r+1(u) + · · · + γ̂p(u)
)
du

∣∣∣∣, r = 0, . . . , p, (4.19)

and to set

d̂− = argmax
r=0,...,p

η̂r , d̂+ = p − d̂−. (4.20)

The idea behind this definition and further motivation for using (4.16)–(4.18) can be found in the proof
of the following corollary.

Corollary 4.2. Under the assumptions of Corollary 4.1, we have d̂+ →p d+ and d̂− →p d−.

Proof. The result follows from the following two observations. First, by Corollary 4.1, we may assume
that d̂0 = d0 on an event indexed by T , whose probability converges to 1 as T → ∞. Second, the



392 R.R. Sundararajan, V. Pipiras and M. Pourahmadi

Algorithm 1: Estimating stationary subspace dimension

Output: Estimate d̂ of stationary subspace dimension d in Definition 2.1.
Input: p-variate time series data Xt , t = 1,2, . . . , T , the sub-interval H ⊂ (0,1) given by a
discretization U = {u1 ≤ u2 ≤ · · · ≤ unu} and bandwidth h.

1: Calculate the estimates M̂(u) and F̂ (u) = Â−1(u) in (4.1), the eigenvalues γ̂1(u) ≤ · · · ≤
γ̂p(u) of M̂(u) and γ̂2,1(u) ≤ · · · ≤ γ̂2,p(u) of (F̂ (u)M̂(u)F̂ (u)′)2 for every u ∈ U .

2: Set r = p and compute the test statistic ξ̂r in (4.15) with integral replaced by Riemannian
sum over U and |U | = unu − u1. Sequentially decrease r by 1 until H0 : d0(u) = r for all
u ∈ U is not rejected by using normal critical values.

3: With r from Step 2, set d̂0 = r . If d̂0 ≥ 1, do Step 4(a) else if d̂0 = 0, do Step 4(b).
4(a): Compute ζ̂r for r = 1,2, . . . , p − d̂0 + 1 in (4.16) and the estimates d̂−, d̂+ in (4.17) and

(4.18).
4(b): Compute η̂r for r = 0,1, . . . , p in (4.19) and the estimates d̂−, d̂+ in (4.20).

5: Output the estimate d̂ = d̂0 + min(d̂+, d̂−).

eigenvalues entering (4.16) and (4.19) converge (in probability) to their population counterparts, so
that the relations (4.16) and (4.19) become in the limit, respectively, the relations ζr = | ∫H(γr(u) +
· · · + γr+d0−1(u)) du| and ηr = | ∫H(γ1(u) + · · · + γr(u)) du| + | ∫H(γr+1(u) + · · · + γp(u)) du|. The
conclusion follows by observing that the population quantities satisfy (4.17), (4.18) and (4.20) with all
the hats removed. �

Finally, a natural estimator for d := d0 + min(d+, d−) is

d̂ = d̂0 + min(d̂+, d̂−). (4.21)

Corollaries 4.1–4.2 imply the consistency of this estimator, which is the main result of this section.

Theorem 4.1. Under the assumptions of Corollary 4.1, we have d̂ →p d .

We conclude this section with Algorithm 1 that summarizes the steps leading to d̂ .

4.3. Global dimension tests under interval splitting

The global pseudo dimension test was developed in Section 4.2 under the assumption (4.14) for a
subinterval H ⊂ (0,1). When global testing is to be performed on (0,1), we suggest to carry out
the introduced global test over subintervals of refined partitions. In this section, we describe how the
procedure is carried out and the results can be interpreted.

We shall need the following basic property of the global test statistic ξ̂r,H in (4.15). Suppose H1 and
H2 are two disjoint intervals such that

H =H1 +H2. (4.22)

Then, since
∫
H = ∫

H1
+ ∫

H2
and |H| = |H1| + |H2|, it follows from the definition (4.15) of ξ̂r,H that

ξ̂r,H = ξ̂r,H1

( |H1|
|H|

)1/2

+ ξ̂r,H2

( |H2|
|H|

)1/2

. (4.23)
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In particular, in view of Proposition 4.1, under d0(u) ≡ r , u ∈ Hi ,

ξ̂r,Hi

d→N (0,1) =: Zi, i = 1,2, (4.24)

where Zi ’s can be considered independent because the VC model involves independent variables across
H1 and H2. The relations (4.23) and (4.24) then imply

ξ̂r,H
d→ Z1

( |H1|
|H|

)1/2

+ Z2

( |H2|
|H|

)1/2
d=N (0,1), (4.25)

which is consistent with what is expected under d0(u) ≡ r , u ∈H =H1 +H2 by Proposition 4.1. Such
considerations will allow having some consistency over refined partitions in the sense described below.
We first consider the case of d0(u), and then discuss those of d±(u) and d(u) = d(M(u)).

Thus, let

H(k)
i =

(
i − 1

2k
,

i

2k

]
, i = 1, . . . ,2k, (4.26)

form refined partitions of (0,1] for k ≥ 0. Let d̂
(k)
0,i be the global estimator of d0 over H(k)

i by using the

test statistic ξ̂
r,H(k)

i

. In view of (4.23)–(4.25) and for the sake of consistency, when estimating d0 over

finer partitions, we suggest to adjust the normal critical value for comparing ξ̂
r,H(k)

i

. More precisely, if

c
(0)
α = cα is a normal critical value used at the level k = 0, we use the critical value c

(k)
α = 2−k/2cα at

level k.
As a consequence of the choice of the critical values, there are only the following three possibilities

for estimators d̂
(k)
0,i , d̂

(k+1)
0,2i−1 and d̂

(k+1)
0,2i when refining a partition from k to k + 1:

(P1) d̂
(k)
0,i = r , d̂

(k+1)
0,2i−1 = r , d̂

(k+1)
0,2i = r ;

(P2) d̂
(k)
0,i = r and either d̂

(k+1)
0,2i−1 = r , d̂

(k+1)
0,2i < r or d̂

(k+1)
0,2i−1 < r , d̂

(k+1)
0,2i = r ;

(P3) d̂
(k)
0,i = r and either d̂

(k+1)
0,2i−1 > r , d̂

(k+1)
0,2i−1 > d̂

(k+1)
0,2i or d̂

(k+1)
0,2i > r , d̂

(k+1)
0,2i > d̂

(k+1)
0,2i−1.

Indeed, let us explain the first two of these possibilities, and also indicate a case which is not one of
the possibilities.

The possibility (P1) arises in the following scenario: one has d̂
(k)
0,i = r when ξ̂

j,H(k)
i

> 2−k/2cα

for j = p,p − 1, . . . , r + 1 and ξ̂
r,H(k)

i

≤ 2−k/2cα . Similarly, d̂
(k+1)
0,2i−1 = r and d̂

(k+1)
0,2i = r when

ξ̂
j,H(k+1)

2i−1
, ξ̂

j,H(k+1)
2i

> 2−(k+1)/2cα for j = p,p − 1, . . . , r + 1 and ξ̂
r,H(k+1)

2i−1
, ξ̂

r,H(k+1)
2i

≤ 2−(k+1)/2cα .

This is consistent with the special case of (4.23),

ξ̂
j,H(k)

i

= ξ̂
j,H(k+1)

2i−1
· 21/2 + ξ̂

j,H(k+1)
2i

· 21/2, (4.27)

in the sense that the relationships of the two summands of (4.27) to the respective critical values is the
same as that for their sum.

The possibility (P2), on the other hand, corresponds to the scenario when ξ̂
j,H(k+1)

2i−1
, ξ̂

j,H(k+1)
2i

>

2−(k+1)/2cα for j = p,p − 1, . . . , r + 1, but then either ξ̂
r,H(k+1)

2i−1
≤ 2−(k+1)/2cα and ξ̂

r,H(k+1)
2i

>

2−(k+1)/2cα or ξ̂
r,H(k+1)

2i−1
> 2−(k+1)/2cα and ξ̂

r,H(k+1)
2i

≤ 2−(k+1)/2cα . The case that is excluded from

the possibilities listed above, is d̂
(k+1)
0,2i−1 < r and d̂

(k+1)
0,2i < r (and d̂

(k)
0,i = r) which would happen if
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Figure 2. Example 4.1, Left: Visualization of the estimates of d̂
(k)
0,i

for k = 0,1,2 from one realization of a VC

model. Right: Similar visualization of d̂
(k)
i

.

ξ̂
r,H(k+1)

2i−1
, ξ̂

r,H(k+1)
2i

> 2−(k+1)/2cα but is impossible in view of (4.27). In our experiments with simu-

lated and real data, the possibilities (P1) and (P2) seem to be the most common.
Following (4.16)–(4.20), the estimators d̂

(k)
0,i lead to the corresponding estimates d̂

(k)
±,i and d̂

(k)
i .

Example 4.1. We consider a VC model with p = 3, d0(u) = 2 and d(u) = 2 if u < 0.5 and d0(u) = 1
and d(u) = 2 if u > 0.5 and

A2(u) = 1(0,0.5)(u)diag
(
2 + sin(2πu),2.0901,3

)
+ 1(0,0.5)(u)diag

(
2 + sin(2πu),4 + 3 sin(2πu),3

)
.

Figure 2, left plot, presents global testing results under splitting for one realization of the above
model. In this plot, the estimate d̂

(0)
0,1 for (0,1] is presented at the point 1/2 of the x-axis which is

the midpoint of (0,1]. The estimator d̂
(1)
0,1 and d̂

(1)
0,2 are presented at points 1/4 and 3/4 respectively,

which are the midpoints of the intervals (0,1/2] and (1/2,1]. The presentation is continued in the
same way till the level k = 2 is reached and the estimates d̂

(2)
0,1, d̂

(2)
0,2, d̂

(2)
0,3, d̂

(2)
0,4 are presented at the finest

considered level. The corresponding estimates d̂
(k)
i could be presented similarly as in the described left

plot of Figure 2. This is illustrated in the right plot of Figure 2.
We note from Figure 2, left plot, that the splitting results for k = 0 and k + 1 = 1 correspond to the

possibility (P2) and those for k = 1 and k + 1 = 2 correspond to the possibility (P1). The results reflect
correctly the underlying assumed varying values of d0(u).

5. Estimation of the stationary subspace

We turn here to the estimation of a stationary subspace of the VC model, which is related to pseudo null
spaces, given in Definition 3.1, of matrices M(u) through (3.10). We shall not provide here any formal
statistical tests related to a stationary subspace but rather make a number of related comments, inspired
by the developments in Section 3.1. In Section 5.1, we introduce a particular class of local stationary
subspaces. In Section 5.2, a graph-based method is provided that aims at forming clusters of the many
local stationary subspaces introduced in Section 5.1. Finally, a technique to select one subspace out
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of the clusters is provided and this serves as our estimate of a stationary subspace. Numerical and
performance advantages of this estimator are discussed in Section 6.

5.1. (1,1)-local stationary subspaces

The results of Section 3.1 show that pseudo null spaces have a rich structure and are typically not
unique, for a given matrix. Motivated by the discussion following Proposition 3.2, we shall restrict
our attention to their special cases, given in the following definition. The definition and subsequent
developments use the notation of Section 3, namely that of M , d0, d±, λi , λ0,i , λ±,i , si , s0,i , s±,i .

Definition 5.1. Let M be a symmetric matrix and suppose min(d+, d−) ≥ 1. A (1,1)-pseudo null
space of M is defined as

P(1,1)(M) = lin
{
s0,1, . . . , s0,d0 , αis+,p(i) + βis−,n(i), i = 1, . . . ,min(d+, d−)

}
, (5.1)

for fixed αi , βi , where p(i) ∈ {1, . . . , d+} are different across i, n(i) ∈ {1, . . . , d−} are different across
i and

α2
i λ+,p(i) + β2

i λ−,n(i) = 0, i = 1, . . . ,min(d+, d−). (5.2)

When M = M(u) with M(u) as in (2.2), a (1,1)-pseudo null space P(M(u)) will be called a (1,1)-local
stationary subspace and denoted as B(1,1)(u).

The fact that P(1,1)(M) defines a pseudo null space for M follows from Proposition 3.2.

Remark 5.1. The total number of (1,1)-pseudo null spaces of M is

n(M) =
(

d+
min(d+, d−)

)
·
(

d−
min(d+, d−)

)
· (min(d+, d−)!), (5.3)

where the first two terms account for the selection of eigenvectors associated with the positive and
negative eigenvalues, and the last term for pairing them off. Depending on the values of d±, the total
number (5.3) can be quite large: see, for example, with d+ = 3 and d− = 5, the number is 60.

Remark 5.2. The prefix “(1,1)-” in Definition 5.1 refers to the fact that a pseudo eigenvector of a
pseudo null space is constructed by taking one (1) eigenvector s+,p(i) associated with the positive
eigenvalues and one (1) eigenvector s−,n(i) associated with the negative eigenvalues. More elaborate
constructions are possible as well, for example, by taking two (2) eigenvectors associated with the
positive eigenvalues and one (1) eigenvector with the negative ones, as in Example 3.2, which could be
called a (2,1)-pseudo null space. In this work though, we shall consider only (1,1)-pseudo null spaces.

Example 5.1. Consider again the VC model from Example 3.2 given by

A2(u) = diag
(
2 + sin(2πu),3 − sin(2πu),1 + sin(2πu)

)
,

M(u) = A2(u) − A
2 = sin(2πu) · diag(1,−1,1).

Following Definition 5.1 with M replaced by M(u), a (1,1)-pseudo null space is given by

P(1,1)

(
M(u)

) = lin
{
α1

(
1 0 0

)′ + β1
(
0 1 0

)′
, α1

(
0 0 1

)′ + β1
(
0 1 0

)′}
, (5.4)

where α2
1 − β2

1 = 0 and 0 < u < 1/2.
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If M̂ estimates M with the analogous estimators d̂0, d̂±, λ̂i , λ̂0,i , λ̂±,i , ŝi , ŝ0,i , ŝ±,i of the respective
quantities, we would similarly like to have the sample counterparts of (1,1)-pseudo null spaces in (5.1).
Definition 5.1 may not, however, extend directly to the sample quantities since d̂± may not necessarily
represent the actual number of positive/negative eigenvalues λ̂±,i and hence the condition (5.2) may
not be satisfied. To deal with this possibility, we define the sample counterparts P(1,1)(M̂) in the same
way as in (5.1) by using the quantities with the hats, except that d̂+ and d̂− are replaced by d̃+ and d̃−,
which are defined as

d̃+ = max{r : r ≤ d̂+,0 < λ̂p−r+1 ≤ · · · ≤ λ̂p} (5.5)

and

d̃− = max{r : r ≤ d̂−, λ̂1 ≤ · · · ≤ λ̂r < 0}, (5.6)

where we assumed that the eigenvalues λ̂i appear in the non-decreasing order. That is, we define a
sample (1,1)-pseudo null space as

P(1,1)(M̂) = lin
{̂
s0,1, . . . , ŝ0,d̂0

, αi ŝ+,p(i) + βi ŝ−,n(i), i = 1, . . . ,min(d̃+, d̃−)
}
, (5.7)

where p(i) ∈ {1, . . . , d̃+} are different across i, n(i) ∈ {1, . . . , ñ+} are different across i and

α2
i λ̂+,p(i) + β2

i λ̂−,n(i) = 0, i = 1, . . . ,min(d̃+, d̃−). (5.8)

Replacing M̂ above by M̂(u) from (4.1) for u ∈ (0,1), estimators B̂(1,1)(u) =P(1,1)(M̂(u)) can be de-
fined for (1,1)-local stationary subspaces. Techniques to cluster these (1,1)-local stationary subspaces
are discussed next.

5.2. Clustering (1,1)-local stationary subspaces

According to (3.10), there is a stationary subspace B1 for a VC model if there is at least one identi-
cal stationary subspace for all u ∈ (0,1). In Section 5.1, we defined (1,1)-local stationary subspaces
B(1,1)(u) whose number can already be quite large for a fixed u; see Remark 5.1. A natural possibility
in defining a candidate for a stationary subspace B1 is to consider all (1,1)-local stationary subspaces
across u’s and select a subspace representing their “majority” in some suitable sense. In light of this ob-
servation, using clustering seems natural and this approach is pursued here on the estimated (1,1)-local
stationary subspaces.

More specifically, we discuss a graph-based approach to clustering the many (1,1)-local stationary
subspaces, or equivalently, the many (1,1)-pseudo null spaces using distances that are computed based
on canonical angles between spaces. In addition, a method to select one (1,1)-local stationary subspace
out of the many is discussed and this is considered as our estimate of a stationary subspace.

As in Section 5.1, we let B̂(1,1)(u) = P(1,1)(M̂(u)) denote a sample (1,1)-local stationary subspace
of the matrix M̂(u) from (4.1). Let B̂(1,1) = ⋃

u B̂(1,1)(u) be the union of all (1,1)-local stationary
subspaces over u. In practice, the union

⋃
u is replaced by a set of discrete points {u1, u2, . . . , unu} in

(0,1).
Consider a graph G = (V ,E) where every vertex v ∈ V corresponds to a (1,1)-local stationary

subspace in B̂(1,1). The adjacency matrix E will be defined in terms of a distance between (1,1)-local
stationary subspaces using canonical angles. Let B1 and B2 be two (1,1)-local stationary subspaces in
B̂(1,1) of dimensions d1 and d2, respectively. Letting d = min(d1, d2), the canonical angles computed
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between these two spaces are given by θ1 ≤ θ2 ≤ · · · ≤ θd , where

θ1 = min
x1∈B1,y1∈B2

arccos

(
x1y1

‖x1‖ · ‖y1‖
)

, (5.9)

θj = min
xj ∈B1,yj ∈B2;

xj ⊥x1,x2,...,xj−1,yj ⊥y1,y2,...,yj−1

arccos

(
xjyj

‖xj‖ · ‖yj‖
)

, j = 2,3, . . . , d. (5.10)

The vectors x1, x2, . . . , xd and y1, y2, . . . , yd are called canonical vectors. We measure the distance
between spaces B1 and B2 as max1≤i≤d θi , and define the adjacency matrix E = (ei,j ) for i, j =
1,2, . . . , |V |, as

ei,j = 1, if θ(vi, vj ) < θ∗, (5.11)

where θ(vi, vj ) is the maximum canonical angle between the (1,1)-local stationary subspaces corre-
sponding to vertices vi and vj , and θ∗ is a threshold. The choice of θ∗ dictates the number of clusters
estimated with more being formed for lower values of θ∗. In our numerical work, we set θ∗ = 20°.

Finally, in order to obtain the clusters of vertices in the graph G, we utilize the Walktrap algorithm
of Pons and Latapy [18]. Here, a transition probability matrix P = (pij ) is constructed with pij = Aij

d(i)

where A = (Aij ) denotes the adjacency matrix of G and d(i) denotes the degree of vertex vi . A random
walk process defined on this graph G is based on the powers of the matrix P , that is, the probability
of moving from vertex vi to vj through a random walk of length t is given by P t

ij . The closeness of
vertices in the graph is measured by these probabilities from the observation that if two vertices vi and
vj are in the same cluster, P t

ij must be high.
Let C1,C2, . . . ,CL be the L clusters of vertices produced by the Walktrap algorithm that have a size

of at least 3 vertices. We first obtain the centers {c1, c2, . . . , cL} of these L clusters by computing the
sine of the maximum canonical angle,

cl = argmin
v∈Cl

∑
v′ �=v

sin
(
θ
(
v′, v

))
, l = 1,2, . . . ,L. (5.12)

The (1,1)-local stationary subspaces corresponding to the L cluster centers are considered as the candi-
date stationary subspaces returned by our method. Additionally, in order to select a single (1,1)-local
stationary subspace (our stationary subspace estimator) out of these L representative subspaces, we
assess the “denseness” of each cluster through

T (Cl) =
1

|Cl |
∑

v∈Cl
log(d(v))

1
|Cl |

∑
v∈Cl

( 1
|Cl |−1

∑
v′∈Cl,v

′ �=v sin(θ(v′, v))
, l = 1,2, . . . ,L, (5.13)

where d(v) denotes the degree of vertex v within cluster Cl . We then identify the cluster with maximum
T (·) among the L clusters and select the final (1,1)-local stationary subspace corresponding to the
center of that cluster. That is, we select our stationary subspace estimate as the (1,1)-local stationary
subspace corresponding to the cluster center cs in cluster Cs , where

s = argmax
l

T (Cl). (5.14)

The procedure to select our stationary subspace is summarized in Algorithm 2.
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Algorithm 2: Finding stationary subspace

Output: Estimate B̂1 of the stationary subspace B1 from Definition 2.1.
Input: p-variate time series data Xt , t = 1,2, . . . , T , the sub-interval H ⊂ (0,1) given by a
discretization U = {u1 ≤ u2 ≤ · · · ≤ unu} and bandwidth h.

1: Using H,U,h, find estimates d̂ and d̂−, d̂+ from Algorithm 1. For every u ∈ U , compute the
eigenvalues (̂λ0,i (u), λ̂+,i (u), λ̂−,i (u)), the eigenvectors (̂s0,i (u), ŝ+,i (u), ŝ−,i (u)) of M̂(u),
the estimates d̃+(u), d̃−(u) and P(1,1)(M̂(u)) in (5.5)–(5.8).

2: Define a graph G = (V ,E), where every vertex v ∈ V corresponds to a (1,1)-local stationary
subspace in P̂(1,1) = ⋃

u P(1,1)(M̂(u)) and the adjacency matrix E = (ei,j ) is given by (5.11).
3: Find the optimal number of clusters L and the resulting clusters C1,C2, . . . ,CL using the

Walktrap algorithm in Section 4 of Pons and Latapy [18].
4: Find the L cluster centers {c1, c2, . . . , cL} using (5.12) and also compute the “denseness” of

each cluster T (Cl) using (5.13).
5: Output stationary subspace estimate B̂1 as the (1,1)-local stationary subspace corresponding

to the cluster center cs in cluster Cs , where s = argmaxl T (Cl).

Example 5.2. To illustrate the above technique, we consider the VC model from Example 5.1. The
stationary subspace dimension for this model is d = 1 and (1,1)-local stationary subspaces are given
by ( 1√

2
, 1√

2
,0), (0, 1√

2
, 1√

2
), ( 1√

2
,− 1√

2
,0) and (− 1√

2
, 1√

2
,0) for all u’s. We generated one realization

of the series Xt based on this model and obtained all the estimated (1,1)-local stationary subspaces
across a set of points {0.04,0.08,0.12, . . . ,0.96}. Figure 3 depicts a 3D plot that includes the popu-
lation (1,1)-local stationary subspaces (solid circles), the estimated (1,1)-local stationary subspaces
(crosses), the cluster centers cl for l = 1,2,3,4 of the 4 clusters (open circles) and the selected (1,1)-
local stationary subspace based on (5.14) (solid square, marked as VC Final). Finally, the estimated
stationary subspace from DSSA (Sundararajan and Pourahmadi [22]) is plotted along with the other
spaces (diamond).

In Table 1, we list the cluster centers of the 4 main clusters in Figure 3, the sizes of those 4 clusters
and the proportions of u ∈ {0.04,0.08,0.12, . . . ,0.96} with points in the respective clusters. Observe
that the (1,1)-local stationary subspace selected as the stationary subspace based on (5.14) lies in the
most “dense” cluster and the DSSA stationary subspace also lies in the same cluster. Here, the 4 biggest
clusters formed by the method comprise roughly 84% of the total number of (1,1)-local stationary
subspaces. The (1,1)-local stationary subspace selected as the stationary subspace and identified as
the solid square point in Figure 3 lies in the biggest cluster that contains roughly 24% of the (1,1)-
local stationary subspaces. This subspace also lies in the cluster with the highest proportion of u’s with
points in that cluster.

6. Simulation study

In Section 6.1, we evaluate the empirical performance of the proposed method in estimating the di-
mension of a stationary subspace for several VC models. In Section 6.2, we assess the ability of the
proposed method in estimating a stationary subspace using a few discrepancy measures.
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Figure 3. Local and global stationary subspaces in Example 5.2: 3D plot of the population (1,1)-local stationary
subspaces (solid circles), the estimated (1,1)-local stationary subspaces (crosses), the cluster centers of the 4
clusters (open circles), the stationary subspace based on (5.14) (solid square, marked as VC Final), the estimated
stationary subspace from DSSA (diamond).

6.1. Dimension estimation comparison

We first consider a few VC models (1.2), characterized through A(u), for which the dimensions
d0(u) = d0, min(d+(u), d−(u)) = min(d+, d−) and d(u) ≡ d do not depend on u (and neither do
the local stationary subspaces). The model matrices A(u), the respective matrices in (2.2) and the
dimensions p, d0, min(d+, d−) are:

Model 1: p = 3, d0 = 0, min(d+, d−) = 1, d = 1,

A2(u) = diag
(
2 + 0.5 sin(2πu),3 − sin(2πu),1.5 + sin(2πu)

)
,

M(u) = diag
(
0.5 sin(2πu),− sin(2πu), sin(2πu)

)
.

Model 2: p = 4, d0 = 1, min(d+, d−) = 1, d = 2,

A2(u) =

⎛⎜⎜⎝
e1 1 0 0
1 2 + sin(2πu) 0 0
0 0 3 − 2u 0.5
0 0 0.5 3 − sin(2πu)

⎞⎟⎟⎠ ,

Table 1. The 4 cluster centers, cluster sizes (in percentage), and the proportions of u’s for the 4 biggest clusters
in Figure 3. The selected (1,1)-local stationary subspace identified as the solid square marked as VC Final in
Figure 3 corresponds to (−0.114,0.778,0.618)

Cluster center Cluster size (in %) Proportion of u’s

(0.661,0.750,−0.003) 19.79 79.16
(0.029,−0.641,0.767) 23.95 91.67
(−0.114,0.778,0.618) 23.95 95.83
(0.938,−0.346,−0.018) 17.70 70.85
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Figure 4. Models 1–2: Violin plots of the estimates of d for the indicated sample sizes for the two competing
methods: DSSA and VC (proposed method).

M(u) = diag
(
0, sin(2πu),1 − 2u,− sin(2πu)

)
.

We suppose that the models above are Gaussian with i.i.d. N (0, Ip) vectors Yt . In the simulations, we
take T ∈ {200,500,1000,2000} as the sample sizes. In estimating A2(u) in (4.1), bandwidth choices h

ranging from T −0.1 to T −0.5 were attempted and the best results were obtained for h ∈ (T −0.3, T −0.4).
Here, we also attempted a leave-one-out cross-validation estimation of h and we found that the optimal
bandwidth was close to h = T −0.35. Hence, we take this value for h and present the results for this
choice. We focus on testing for H = (0,1) only and use 100 Monte Carlo replications.

We compare the performance of the proposed dimension estimator d̂ given in (4.21) with the sequen-
tial estimation procedure provided in Section 2.2.5 of Sundararajan and Pourahmadi [22]. The method
found in the latter work will be referred to as DSSA and the proposed method will be denoted as VC.
The estimation results for the two methods and the two considered models are presented through vio-
lin plots in Figure 4. Violin plots are intended as a somewhat qualitative visualization of the results –
perhaps slightly more informative histograms for the results can be found in Sundararajan et al. [21].
The plots show that estimation improves with increasing sample size T since the widths of the violin
plots tend to increase at true values. For Model 1, the VC method performs better than the competing
DSSA method in detecting the true dimension d whereas the same is also true for Model 2 except for
the largest sample size T = 2000.

We now turn to VC models whose dimensions depend on u’s. We consider the following models:
Model 3: p = 3, d0(u) = 2 and d(u) = 2 if u < 0.5 and d0(u) = 1 and d(u) = 1 if u > 0.5,

A2(u) = 1(0,0.5)(u)diag
(
2 + sin(2πu),2.0901,3

) + 1(0.5,1)(u)diag
(
2 + sin(2πu),4 + 3 sin(2πu),3

)
.

Model 4: p = 3, d0(u) = 3 and d(u) = 3 if u < 0.5 and d0(u) = 2 and d(u) = 2 if u > 0.5,

A2(u) = 1(0,0.5)(u)

⎛⎝ 4 0.5 0
0.5 3.125 0
0 0 1

⎞⎠ + 1(0.5,1)(u)

⎛⎝ 4 0.5 0
0.5 3u2 + 2u 0
0 0 1

⎞⎠ .
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Figure 5. Top panel (Model 3): Violin plots of the estimates of d(u) (left) and d0(u) (right) obtained over (0,0.5),
(0,1), (0.5,1) depicted at u = 0.25, u = 0.5 and u = 0.75, respectively. Bottom panel (Model 4): Similar violin
plots for Model 4.

The matrix entries 2.0901 in Model 3 and 3.125 in Model 4 ensure smoothness of A2(u) at u = 0.5.
We report the estimation results for the two models in Figure 5. The structure of the plots is similar

to that of Figure 2. That is, the estimates over H = (0,1) are depicted at u = 0.5, over H = (0,0.5)

at u = 0.25 and those over H = (0.5,1) at u = 0.75. The only difference here is that the results are
reported over 100 realizations in the form of violin plots.

Several observations are in place regarding Figures 5. For Model 3, the estimates of d0(u) and d(u) in
the violin plots closely align with the true dimension values. In comparison, for Model 4, the estimates
are less closely aligned to the true dimension values but are sensitive to the choice of the subinterval,
(0,0.5) or (0.5,1), in the direction of the true dimension values.

Finally, we comment on the running time of the two competing methods, VC and DSSA, in estimat-
ing the dimension d of the stationary subspace. The running time is recorded for 100 replications of
Models 1 and 2, and sample size T = 500. For Model 1, the running time for the VC method (Algo-
rithm 1) in estimating the subspace dimension d had a mean of 0.545 seconds and a standard deviation
of 0.021. Similarly for DSSA and Model 1, the mean was 13.922 seconds with a standard deviation of
0.77. For Model 2, the VC method had a mean running time of 0.412 seconds and a standard deviation
of 0.01. Similarly for DSSA and Model 2, the mean was 66.181 seconds with a standard deviation of
5.29 seconds. It was observed that VC method is faster than DSSA for both models by at least an order
of magnitude on average.

6.2. Subspace estimation comparison

We compare here the performance of the proposed method in estimating a subspace (from Section 5.2)
to DSSA of Sundararajan and Pourahmadi [22], in terms of three discrepancy measures. The first
measure concerns departure from stationarity based on the sizes of the DFT covariances as given in
Eq. (9) of Sundararajan and Pourahmadi [22]. More precisely, for an estimated stationary subspace
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process, we set

D1(B̂1) =
m∑

r=1

∥∥�(�̂r )
∥∥2

F
+ ∥∥�(�̂r )

∥∥2
F
, (6.1)

where ‖A‖F denotes the Frobenius norm of a matrix A ∈ R
d×d , �(·) and �(·) denote the entrywise

real and imaginary parts respectively, and �̂r is the d × d lag-r DFT sample autocovariance matrix
given by

�̂r = 1

T

T∑
k=1

J (ωk)J (ωk+r )
∗, (6.2)

with ωk = 2πk/T referring to a Fourier frequency, J (·) being the discrete Fourier transform (DFT)
of the d-variate stationary subspace process and J (·)∗ denoting the complex conjugate transpose. The
number of DFT covariance lags m in (6.1) is fixed to 3.

The second measure is based on the relation (2.3). For any candidate subspace B̂1, we set

D2(B̂1) =
∑

k

∥∥B̂ ′
1

(
A2(uk) − A

2)
B̂1

∥∥
F

=
∑

k

∥∥B̂ ′
1M(uk)B̂1

∥∥
F
.

The last measure is based on canonical angles computed between the population and estimated
subspaces B1 and B̂1 that are spanned by the columns of the p × d matrices B1 and B̂1, respectively.
As in (5.9), let θ1 ≤ θ2 ≤ · · · ≤ θd be the d canonical angles between the spaces B1 and B̂1. Then, set

D3(B̂1) =
(

d∑
j=1

sin2(θj )

)1/2

. (6.3)

In the simulations here, we consider the same two models, Models 1–2, as in Section 6.1. We first
present estimation results for the measure D3 in Table 2. For our method, labeled as VC in the table,
the stationary subspace estimate is taken as discussed in Section 5.2. At the population level, the corre-
sponding stationary subspace is also selected using the same technique. In the case when such multiple
subspaces are available at the population level, we compute the distance D3 to all of them and then
take the minimum. For the DSSA method, we take the subspace estimate as defined in Sundararajan
and Pourahmadi [22].

As seen from the table, the VC method generally performs better than DSSA in yielding smaller av-
erage distances over 100 replications, though possibly not statistically significant if standard deviations
(in parentheses) are taken into account. As noted below, the VC method is computationally much less
intensive than DSSA.

We now turn to the measures D1 and D2. Here, we shall examine the VC and DSSA methods
through these measures from a different perspective. The relevant plots can be found in Figure 6 for
Model 1, associated with the indicated sample sizes. In the left two plots of Figure 6, the horizontal
solid circles in the plots represent the measure D1(B̂1) for the DSSA estimate B̂1, averaged over
multiple realizations. The other two curves correspond to the measure D1(B̂1(u)) computed for the
estimates of B̂1(u) of (1,1)-local stationary subspaces from Section 5, either averaged over multiple
realizations (triangles) or with the minimum value taken (squares). The interpretation of the right two
plots of Figure 6 is analogous but for the measure D2. The plots show that VC method performs better
than DSSA even “locally” for most values of u under measure D2 whereas DSSA, not surprisingly,
performs better under measure D1.
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Table 2. Models 1–2: The canonical angle based measure D3(B̂1), between the population and estimated sub-
space. The empirical standard errors of the respective measures are provided in parentheses

Model 1 Model 2

T DSSA VC DSSA VC

200 0.3277 0.3489 0.3633 0.3489
(0.1429) (0.1479) (0.1693) (0.1401)

500 0.2976 0.2878 0.3575 0.3301
(0.1399) (0.1288) (0.1657) (0.1329)

1000 0.2757 0.2968 0.3241 0.2649
(0.1306) (0.1301) (0.1453) (0.1228)

2000 0.2678 0.2374 0.2461 0.1931
(0.1323) (0.1311) (0.1347) (0.1202)

Finally, as in Section 6.1, we comment on the running time of the two competing methods, VC
and DSSA, in obtaining the stationary subspace. The running time is recorded for 100 replications
of Models 1 and 2 are reported for sample size T = 500. For Model 1, the running time for the VC
method (Algorithm 2) in estimating the stationary subspace had a mean of 0.718 seconds and a standard
deviation of 0.036. Similarly for DSSA and Model 1, the mean was 5.115 seconds with a standard
deviation of 0.588. For Model 2, the VC method had a mean running time of 0.807 seconds and
standard deviation of 0.033. Similarly for DSSA and Model 2, the mean was 6.285 seconds with a
standard deviation of 0.724. Here again, the VC method is computationally much more efficient than
DSSA for both models.

7. Application to BCI and EEG data

Brain-Computer Interface (BCI) aims at connecting the human brain and the computer in a non-
invasive manner. During the BCI study used here, individuals are asked to imagine movements with
their left and right hands and these are referred to as trials. The trials are interspersed with break pe-
riods. The multivariate EEG brain signal is recorded during the entire course of the experiment and
the objective is to associate the movements imagined by the individuals with the corresponding EEG
signal. Note that the EEG signal is recorded through different channels (locations on the scalp) and
each channel constitutes a component of the multivariate signal.

EEG signals measuring brain activity have been treated as a multivariate nonstationary time series.
In Ombao et al. [17], EEG recorded during an epileptic seizure is considered and the nonstationary

Figure 6. Model 1 – Left 2 plots: Plot of D1(B̂1(u)) against u for the competing methods DSSA and VC and
indicated sample sizes. VC (avg.) in triangles, VC (min.) in squares and DSSA in solid circles. Right 2 plots:
Analogous plot but with measure D2(B̂1(u)).
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features of this signal are used to identify changes in electrical activity due to seizure. In von Bünau
et al. [24,25] and Sundararajan et al. [20], the nonstationarity is regarded as the noise or background
activity in the brain signal (Kaplan et al. [12]) and removing this nonstationarity was seen to improve
classification accuracy in brain related experiments. The key observation made in the latter references
was that nonstationary sources in the brain signal were associated with variations in the mental state
that are unrelated to the motor imagery task. For instance, alpha oscillations in the brain lead to non-
stationarity in the EEG signal. These oscillations are due to physical movement, blinking or fatigue in
individuals and deemed unrelated to the experimental task. Hence, the aim of SSA is to eliminate the
nonstationary sources in the signal and work with only the stationary sources.

We study the classification performance of the proposed VC method using the BCI Competition
IV1 dataset II in Naeem et al. [16]. It consists of EEG signals from 9 subjects performing 4 different
motor imagery tasks: 1-left hand, 2-right hand, 3-feet and 4-tongue. We analyze the EEG signals only
from classes 1 and 2 and treat the problem as a two-group classification. The continuous signal was
sampled at discrete time steps at the sampling rate of 250 Hz where 1 second corresponds to 250
observations on the digital signal scale. The signal was recorded through 22 electrodes over the course
of the experiment and the signal was band-pass filtered as in Lotte and Guan [14]. The experiment
involved 144 trials for each subject wherein 72 trials belonged to Class 1 (left-hand side) and the other
72 to Class 2 (right-hand side). Every trial is followed by an adequate resting period for the subject
before the start of the next one. In each trial, we use the observations between 0.5 seconds to 2.5
seconds after the cue instructing the subject to perform the motor imagery task. More precisely, for
trial j where j = 1,2, . . . ,144, this interval comprises of 500 observations on the digital signal scale,
denoted by X

(j)
t , t = 1,2, . . . ,500.

We first restrict attention to 5 EEG electrodes and treat the input signal to have dimension p =
5. These are 5 locations that can be viewed as representatives of the different regions on the brain,
namely, Frontal (Fz), Pre-Frontal (Pz) and Cortical (C3, C4, Cz).2 We use the VC method to obtain a
d dimensional stationary process where d < p. For every trial j = 1,2, . . . ,144, we have {X(j)

t } ∈ R
p

as the observed multivariate signal and {Y (j)
t } ∈R

d as the stationary transformation.
We first report on the estimated pseudo dimension d for the observed signals for the 9 subjects in

this study labeled S1, S2, . . ., S9. For subjects S3, S5 and S8, the percentage of times the candidate
dimensions (d = 0,1,2,3,4) were estimated by the 2 competing methods, DSSA or VC, out of the
144 trials is provided in the left panel of Figure 7. This plot also includes the estimates of d over
the first and second halves of the data denoted as VC (First) and VC (Second). It is noted that DSSA
always provides a lower estimate of d than the VC method. Similar plots for all 9 subjects can be found
Sundararajan et al. [21].

Given the d-variate stationary processes Y
(j)
t , we aim to find differences between the two classes (1

and 2) based on the covariance structure. For a given subject, this is achieved by computing the average
spectral density matrices for the two classes over the Fourier frequencies:

gi(ωk) = 1

ni

∑
j∈Class i

gj (ωk), i = 1,2, (7.1)

where gj (ωk) is the estimated d × d spectral matrix for trial j using observations {Y (j)
t }, ni = 72, for

i = 1,2 and ωk = 2πk
500 , k = 1,2, . . . ,500, are the Fourier frequencies.

1See http://www.bbci.de/competition/iv/.
2See http://www.bbci.de/competition/iv/desc_2a.pdf for additional details on the dataset.

http://www.bbci.de/competition/iv/
http://www.bbci.de/competition/iv/desc_2a.pdf
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Figure 7. Left: (p = 5) Histogram of the dimension estimates d by the two competing methods based on the 144
trials. Right: (p = 22) Histogram of the stationary subspace dimension estimates for the VC method based on the
144 trials.

Table 3. Left: Out-of-sample classification accuracy (in %) for the 3 subjects S3, S5 and S8 for the two indicated
methods with p = 5. Right: Out-of-sample classification accuracy (in %) for 3 subjects S3, S5 and S8 correspond-
ing to d = 7, 9, 11, and 13 for the VC method with p = 22

d S3 S5 S8

1 DSSA 56.25 49.03 51.11
VC 50.69 52.08 46.15

2 DSSA 54.86 54.16 56.45
VC 48.61 55.56 45.05

3 DSSA 59.02 59.33 64.39
VC 47.22 57.63 54.54

4 DSSA 56.25 62.50 66.28
VC 65.97 64.58 59.44

d S3 S5 S8

7 DSSA 70 60.48 68.30
VC 70.83 73.61 68.53

9 DSSA 77.90 65.50 70.38
VC 72.22 81.25 71.32

11 DSSA 72.92 69.58 71.33
VC 74.30 88.19 81.25

13 DSSA 85.10 70.83 78.38
VC 85.41 89.58 84.72

In order to train a classifier, for every trial j = 1,2, . . . ,144, a distance vector pj,AB = (p0,j,AB,

p1,j,AB) is computed, where

pi,j,AB = 1

250

250∑
k=1

‖gj (ωk) − gi(ωk)‖2
F , i = 1,2, (7.2)

and ‖ · ‖F is the Frobenius norm of a matrix. It measures the distance to the center of each of the two
classes. This distance measure serves as our two-dimensional feature vector to be used in constructing
a logistic regression classifier and assessing its out-of-sample classification accuracy.

Table 3 (left) shows the out-of-sample classification accuracies for three subjects corresponding to
d = 1,2,3,4. A similar table containing results for all 9 subjects can be found in Sundararajan et al.
[21]. The accuracy rates reflect a comparable average performance in the two competing methods.
Finally, the accuracy rate increases as the pseudo dimension d increases from 1 to 4, a phenomenon
witnessed and discussed in von Bünau et al. [24] and Sundararajan and Pourahmadi [22]. In dealing
with brain signals from healthy individuals in this experiment, the nonstationarity is believed to be
caused by artifacts such as as fatigue, physical movement, blinking. Hence, more stationary sources
means greater elimination of nonstationary sources in the signal that are unrelated to the experimental
task at hand.
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The results in Figure 7 (right) and Table 3 (right) are analogous to those on their respective left panels
but taking the input signal to have dimension p = 22, that is, without restricting attention to 5 EEG
electrodes. For the out-of-sample classification accuracies, the values d = 7,9,11,13 are considered.
The results in Table 3 (right) indicate a better performance of VC in comparison to results on the same
dataset (with p = 22) in Sundararajan and Pourahmadi [22].

It must be noted that the results in Table 3 are based on an estimated stationary subspace for a pre-
fixed dimension d . The estimates of the dimensions of the stationary subspaces from (4.21), namely
d̂0, d̂+ and d̂−, could potentially be different across different trials. For each trial, we obtained these
estimates and compared them with the fixed d and investigated results for several different combina-
tions of d̂0, d̂+ and d̂− that results in d = d̂0 + min(d̂+, d̂−). Having witnessed very similar results for
the various combinations, we only present, in Table 3, the case wherein d = d̂0.

8. Concluding remarks

Our goal in this work is to (i) study existence of linear combinations of components of a multivariate
nonstationary process which are stationary, and (ii) find the number of such stationary linear com-
binations. The true nature of the problem and richness of its solution present themselves naturally
when the general dependence setup in Sundararajan and Pourahmadi [22] is abandoned in favor of
heterogenous independent observations. In this simplified setup (von Bünau et al. [24]), solution of the
problem reduces to the study of inertia or signs of the eigenvalues and the corresponding eigenvectors
of certain symmetric time-varying matrices constructed from varying covariance or heterogeneity of
the vector observations. This enables us to provide a direct linear-algebraic method to construct sta-
tionary subspaces which outperforms the earlier computationally more expensive optimization-based
SSA solutions.

Several directions related to this work could be explored in the future. The developed framework
involving pseudo spaces and dimensions is general enough to apply to zero mean locally stationary
processes, when working with their time-frequency spectra. More specifically, let Xt,T be a p-vector
locally stationary time series (Dahlhaus [4]) represented in a standard integral form as

Xt,T =
∫ π

−π

At,T (ω)eitω dZ(ω), t = 1, . . . , T ,

where At,T (ω) is a p × p complex-valued matrix and dZ(ω) is a suitable complex-valued random
measure. With the common assumption that At,T (ω) equals approximately A(t/T ,ω) for a suit-
able matrix-valued function A(u,ω), the time-varying spectral matrix of the series can be written
as f (u,ω) = A(u,ω)A(u,ω)∗. The dimension d of a stationary subspace can then be defined as the
largest integer in {0,1, . . . , p} for which there is a d × p matrix B1 such that

B1f (u,ω)B ′
1 = G(ω), ∀u ∈ (0,1),ω ∈ (−π,π), (8.1)

where G(ω) does not depend on u. The column space of B1 being the stationary subspace. The formu-
lation in (8.1) is the same as in (2.1) but with the additional requirement for it hold for ω ∈ (−π,π).
Similarly, the condition (8.1) is equivalent to

B1F(u,ω)B ′
1 = 0, ∀u ∈ (0,1),ω ∈ (−π,π), (8.2)

where F(u,ω) = f (u,ω) − f (ω) and f (ω) = ∫ 1
0 f (u,ω)du. An estimator F̂ (u,ω) of F(u,ω) could

then be defined naturally from the time-varying periodogram. To proceed as in this work, one re-
quires an asymptotic result of the type (4.2) but for F̂ (u,ω), which would suggest a local test statistic
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ξ̂r (u,ω) to use, and then also an asymptotic result for
∫
H1×H2

ξ̂r (u,ω)dudω, analogous to that in
Proposition 4.1.

Another future possibility is to try to combine the models of this work and Düker et al. [9], so
that both mean and the covariance are allowed to vary in time. Yet another direction is to explore
connections to multivariate stochastic volatility models that are concerned with modeling the changing
covariance across time.

Appendix A: Proofs

The appendix concerns the technical aspects of this work, including various assumptions and proofs of
some of the stated results.

A.1. Proof of Proposition 3.1

Proof. By the Poincare Separation theorem (see, e.g., Magnus and Neudecker [15]),

λi ≤ μi ≤ λn−d1+i , i = 1, . . . , d1,

where λ1 ≤ λ2 ≤ · · · ≤ λp are the ordered eigenvalues of M and μ1 ≤ · · · ≤ μd1 are the ordered
eigenvalues of C′

1MC1 for any p × d1 matrix C1 such that C′
1C1 = Id1 . Taking C1 as in (3.1) with

d1 = d(M), we have C′
1MC1 = 0, and hence

λi ≤ 0 ≤ λn−d1+i , i = 1, . . . , d1.

This shows that d(M) ≤ d0 + min(d+, d−).
To prove the reverse inequality d0 +min(d+, d−) ≤ d(M), let d∗ = d0 +min(d+, d−). The rest of the

proof constructs a p × d∗ matrix C1 such that C′
1MC1 = 0 and C′

1C1 = Id∗ , which yields the desired
inequality. By the Schur decomposition (see, e.g., Magnus and Neudecker [15]),

S′MS = diag(λ1, λ2, . . . , λp), (A.1)

where the columns s1, . . . , sp of S are orthonormal and represent the eigenvectors associated with the
negative, positive and zero eigenvalues of M . We now need to separate the eigenvectors into those
associated with the eigenvalues λ1, . . . , λp of M . Let s0,i be the eigenvectors associated with the
zero eigenvalues λ0,i , i = 1, . . . , d0, s+,i be the eigenvectors associated with the positive eigenval-
ues λ+,i , i = 1, . . . , d+, and s−,i be the eigenvectors associated with the negative eigenvalues λ−,i ,
i = 1, . . . , d−. Note by (A.1) that

s′
i sj = δij , s′

iMsj = δij λi, (A.2)

where δij = 1 if i = j and 0 otherwise.
For the zero eigenvalues and the corresponding eigenvectors, we have Ms0,i = 0 · s0,i and hence

s′
0,iMs0,i = 0, i = 1, . . . , d0. (A.3)

Similarly, for the positive and negative eigenvalues, we have

s′+,iMs+,i = λ+,i > 0, i = 1, . . . , d+,

s′−,iMs−,i = λ−,i < 0, i = 1, . . . , d−.
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Let d± = min(d+, d−). Then, for some αi ∈ (0,1) and βi = 1 − αi , we have(
α

1/2
i s+,i + β

1/2
i s−,i

)′
M

(
α

1/2
i s+,i + β

1/2
i s−,i

) = αi

(
s′+,iMs+,i

) + βi

(
s′−,iMs−,i

) = 0, (A.4)

for i = 1, . . . , d±. Set

s±,i = α
1/2
i s+,i + β

1/2
i s−,i

‖α1/2
i s+,i + β

1/2
i s−,i‖2

, i = 1, . . . , d±, (A.5)

and define a (d0 + d±) × p = d∗ × p matrix C1 as

C1 = (
s0,1 · · · s0,d0 s±,1 · · · s±,d±

)
.

By using (A.2), (A.3) and (A.4), we have C′
1MC1 = 0. Since si are orthonormal and in view of

(A.5), we also have C′
1C1 = Id∗ . This shows that d0 + d± ≤ d(M) and concludes the proof. �

A.2. Proof of Proposition 3.2

Proof. Any vector w can be expressed as a linear combination of the basis vectors s0,i , s+,i , s−,i as

w = w0 + wk,±

where w0 ∈ N0(M), wk,± ∈ N±(M), and k = 1,2, . . . ,min(d−, d+). The relation (3.5) follows since
for any i1, i2 = 1,2, . . . , d0,

0 = w′Mw =
d0∑

i=1

α0,i1α0,i2s
′
0,iMs0,i +

d+∑
i=1

αk1,+,iαk2,+,i s
′+,iMs+,i +

d−∑
i=1

αk1,−,iαk2,−,i s
′−,iMs−,i

=
d+∑
i=1

αk1,+,iαk2,+,iλ+,i +
d−∑
i=1

αk1,−,iαk2,−,iλ−,i

for all k1, k2. The converse statement follows similarly. �

A.3. Assumptions and proof of Proposition 4.1

We use the following assumptions for Proposition 4.1, labeled according to the quantities they con-
cern.

(Y1) Yt , t = 1, . . . , T , are i.i.d. random vectors with i.i.d. entries, E(Yt ) = 0 and E(YtY
′
t ) = Ip .

(Y2) The entries of Yt have finite absolute moments of order 4 + ε for some ε > 0.
(K) The kernel function K is even (i.e. K(u) = K(−u), u ∈ R), has bounded support (−S,S),

where it is positive, and is continuously differentiable on (0, S). Furthermore,
∫
R

K(u)du =
1.

(A1) The matrix A2(u) is positive definite for u ∈ (0,1).
(A2g) The entries of the matrix A2(u) are real analytic for u ∈ H.
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The assumptions on h = h(T ) as T → ∞ can be found in Lemma A.2.
We assume implicitly as stated in Section 4.2 that H is a closed subinterval of (0,1). Concerning

Assumption (A2g), according to one possible definition, a function f is real analytic if its Taylor series
converges to the function f in a neighborhood of each point. As noted for similar assumptions G4, G5
in Donald et al. [8], analyticity is assumed to have smoothness of the eigenvectors of analytic matrices
involving A2(u). It is well known that smoothness of a matrix is not sufficient to have smooth eigenvec-
tors (see, e.g., Kato [13], Bunse-Gerstner et al. [2]). Alternatively, the smoothness of the eigenvectors
of interest can be assumed. We note that (A1) and (A2g) imply the continuous differentiability of A(u),
A(u)−1 and A(u)−2 for u ∈ (0,1).

The proof of Proposition 4.1 follows the path taken by Donald et al. [8]; see, in particular, its techni-
cal appendix online. We shall try to minimize repetitions by indicating only the key needed assertions.
Some of the developments will be somewhat simpler since many of the considered matrices are sym-
metric. But we shall also need several new auxiliary results to account for the key difference from
Donald et al. [8] in that smoothing through a kernel is carried out here in time t while this was over the
values of a random variable in Donald et al. [8]. Some of the auxiliary results for the proof of Propo-
sition 4.1 can be found in Appendix C of Sundararajan et al. [21] and the reader interested in proofs
might want to look at them first, before going through the arguments in this section.

A number of comments concerning the notation are also in place. To simplify the notation, we shall
drop the dependence on u, and write Â, A, M̂ , M , ξ̂r , γ̂2,i , etc. instead of Â(u), A(u), M̂(u), M(u),
ξ̂r (u), γ̂2,i (u), etc. Similarly, sup will denote supu∈H and ξ = Op,sup(bT ) will stand for sup |ξ | =
Op(bT ). As throughout this work, Gh(u) will stand for a scaled kernel function h−1G(h−1u). The
kernel function G will be normalized to integrated to 1 when it is important. We shall use both K in
Assumption (K) and other functions related to K , which will be denoted as

K(u) =
∫
R

K(u − v)K(v)dv, K
(q)
p (u) = C|u|qKp(u),

where C is such that ‖K(q)
p ‖1 = 1. Note that K

(0)
1 (u) = K(u). When q = 0, we shall simply write

Kp(u).

Proof of Proposition 4.1. We shall first prove (4.15). The first step consists of showing that the ordered
eigenvalues 0 ≤ γ̂2,1 ≤ · · · ≤ γ̂2,r entering ξ̂r can be replaced in the asymptotic limit by the ordered
eigenvalues 0 ≤ λ̂2,1 ≤ · · · ≤ λ̂2,r of the r × r matrix

D′(M̂ − M)D2(M̂ − M)D = D′M̂D2M̂D, (A.6)

where D is a p × r matrix described below. The key here is that the matrix (A.6) is r × r so that the
sum of its r eigenvalues is just its trace, which is amenable to easier manipulations. The matrix D will
also play an important role of standardization.

The p × r matrix D and another p × (p − r) matrix D̃ enter into a p × p matrix D0 = (D̃,D)

characterized as follows: D0 consists of the “eigenvectors” associated with the eigenvalues γ2,i through
the characteristic equation∣∣(FMF)2 − γ2,iIp

∣∣ = ∣∣FMF 2MF − γ2,iIp

∣∣ = ∣∣MF 2M − γ2,iF
−2

∣∣ = 0 (A.7)

that satisfy

D′
0F

−2D0 = F−1D2
0F−1 = Ip. (A.8)
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Said differently, F−1D0 consists of the eigenvectors of (FMF)2, that is,

FMF 2MD0 = F−1D0 diag(γ2,p, . . . , γ2,1). (A.9)

Since we deal with squared symmetric matrices, F−1D0 also consists of the eigenvectors of FMF ,
whose squared eigenvalues are γ2,i , so that

FMD0 = F−1D0 diag(γp′ , . . . , γ1′), (A.10)

where (γi′)2 = γ2,i and the prime indicates that the order is not necessarily that of the increasing order
in γ1 ≤ · · · ≤ γp . This fact will be used below. Note also that γ2,r = · · · = γ2,1 = 0 by assumption and
hence that D′M = 0.

The next result will justify the replacement of the eigenvalues γ̂2,i .

Lemma A.1. With the above notation and under Assumptions (A.1), (A.2g), we have for i = 1, . . . , r ,

sup
∣∣a2

T γ̂2,i − a2
T λ̂i

∣∣ = Op

(
(T h/ lnT )1/2). (A.11)

Proof. Let |B| denote the determinant of a matrix B . As on p. 173 of Robin and Smith [19], we have

0 = ∣∣M̂F̂ 2M̂ − γ̂2,i F̂
−2

∣∣ = ∣∣(D̃, aT D)′
(
M̂F̂ 2M̂ − γ̂2,i F̂

−2)(D̃, aT D)
∣∣

=
∣∣∣∣( D̃′(M̂F̂ 2M̂ − γ̂2,i F̂

−2)D̃ aT D̃′(M̂F̂ 2M̂ − γ̂2,i F̂
−2)D

aT D′(M̂F̂ 2M̂ − γ̂2,i F̂
−2)D̃ a2

T D′(M̂F̂ 2M̂ − γ̂2,i F̂
−2)D

)∣∣∣∣ .
By using the relation |(B11 B12;B21 B22)| = |B11| · |B22 − B21B

−1
11 B12|, we have further that

0 = |Ŝ| · ∣∣Ŵ − a2
T γ̂2,i V̂

−1
∣∣, (A.12)

where

Ŝ = D̃′(M̂F̂ 2M̂ − γ̂2,i F̂
−2)D̃,

Ŵ = a2
T D′M̂F̂ 2M̂D − a2

T D′M̂F̂ 2M̂D̃Ŝ−1D̃′M̂F̂ 2M̂D,

V̂ −1 = D′F̂−2D + γ̂2,iD
′F̂−2D̃Ŝ−1D̃′F̂−2D

− D′M̂F̂ 2M̂D̃Ŝ−1D̃′F̂−2D − D′F̂−2D̃Ŝ−1D̃′M̂F̂ 2M̂D.

By Proposition A.1 and the smoothness of D̃ by Proposition C.2 in Sundararajan et al. [21], note
that

Ŝ = D̃′MF 2MD̃ + Op,sup
(
(T h/ lnT )−1/2) = diag(γ2,p, . . . , γ2,r+1) + Op,sup

(
(T h/ lnT )−1/2),

where the second equality follows from (A.9) and (A.8). This shows that, asymptotically, |Ŝ| > 0.
Hence, in view of (A.12), we may suppose without loss of generality that a2

T γ̂2,i are the eigenvalues
of the matrix Ŵ V̂ . The matrix V̂ is symmetric and its eigenvalues are positive asymptotically since
V̂ →p D′F−2D. Then, V̂ may be assumed to be positive definite, and a2

T γ̂2,i be taken as eigenvalues
of V̂ 1/2Ŵ V̂ 1/2. Since the matrix is symmetric, by applying the Wielandt–Hoffman theorem (see, e.g.,
Golub and Van Loan [11]), we get that

sup
∣∣a2

T γ̂2,i − a2
T λ̂i

∣∣ ≤ sup
∣∣V̂ 1/2Ŵ V̂ 1/2 − a2

T D′(M̂ − M)D2(M̂ − M)D
∣∣.
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By using Proposition C.1 in Sundararajan et al. [21] and the fact that the square root is a continu-
ous operation on positive definite matrices, V̂ 1/2 = (D′F−2D)1/2 + Op,sup((T h/ lnT )−1/2) = Ir +
Op,sup((T h/ lnT )−1/2). Similarly, for Ŵ , we have Ŵ = a2

T D′M̂D2M̂D + Op,sup((T h/ lnT )−1/2) =
a2
T D′(M̂ − M)D2(M̂ − M)D + Op,sup((T h/ lnT )−1/2), where the first equality follows from the re-

lation

F 2 − F 2MD̃ diag(γ2,p, . . . , γ2,r+1)
−1D̃′MF 2 = D2.

The latter relation holds by the following argument. Note that it is equivalent to

I = FMD̃ diag(γ2,p, . . . , γ2,r+1)
−1D̃′MF + F−1D2F−1

and in view of (A.9), follows from FMD̃ diag(γ2,p, . . . , γ2,r+1)
−1D̃′MF = F−1D̃2F−1 or

F 2MD̃ diag(γ2,p, . . . , γ2,r+1)
−1D̃′MF 2 = D̃2,

which is a consequence of (A.10). �

By Lemma A.1, instead of working with
∫

ξ̂r du, we can focus instead on

L̂r = a2
T

r∑
i=1

λ̂i = a2
T tr

{
D′M̂D2M̂D

} = a2
T tr

{
D′(M̂ − M)D2(M̂ − M)D

}
(A.13)

and
∫

L̂r du. Write M̂ − M = S1 + S2 − S3 − S4, where

S1 = 1

T

T∑
t=1

(
XtX

′
t − A2

(
t

T

))
Kh

(
u − t

T

)
,

S2 = 1

T

T∑
t=1

A2
(

t

T

)
Kh

(
u − t

T

)
− A2(u),

(A.14)

S3 = 1

T

T∑
t=1

(
XtX

′
t − A2

(
t

T

))
,

S4 = 1

T

T∑
t=1

A2
(

t

T

)
−

∫ 1

0
A2(u) du.

Then, ∫
L̂r du =

4∑
j,k=1

(±1)

∫
L̂r,jk du =:

4∑
j,k=1

Ĝr,jk, (A.15)

where

L̂r,jk = a2
T tr

{
D′SjD

2SkD
}

(A.16)

and (±1) in (A.15) accounts for the signs of Sj , Sk . The next two lemmas concern the asymptotics of
Ĝr,jk .
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Lemma A.2. Under Assumptions (Y1), (Y2), (K), (A1), (A2g), and

T → ∞, h → 0, T h3/2 → ∞, T ε/(4+ε)h1/2 → ∞,

we have

Ĝr,11 − |H| r(μ4+r−1)
μ4√

h
‖K‖2

2
‖K‖4

2

2(rμ2
4+2r(r−1))

μ2
4

|H|
d→N (0,1). (A.17)

As noted following Assumption (A2g), this assumption is needed to apply Proposition C.2 in Sun-
dararajan et al. [21] to have the smoothness of D = D(u).

Proof. In view of the definition of S1 in (A.14), we can write

Ĝr,11 =
∫
H

a2
T tr

{
D′S1D

2S1D
}
du = I1 + I2

:= a2
T

T 2

T∑
t=1

∫
H

tr

{
D′

(
XtX

′
t − A2

(
t

T

))
D2

(
XtX

′
t − A2

(
t

T

))
D

}
K2

h

(
u − t

T

)
du

+ 2a2
T

T 2

∑
t1<t2

∫
H

tr

{
D′

(
Xt1X

′
t1

− A2
(

t1

T

))
D2

(
Xt2X

′
t2

− A2
(

t2

T

))
D

}

× Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du.

We shall argue first that D = D(u) in I1 and I2 above can be replaced by D(t/T ), and shall denote the
respective terms by Ĩ1 and Ĩ2. The relation (A.8) will then be used to simplify Ĩ1 and Ĩ2. Finally, we
will show that Ĩ1 produces the centering in (A.17) and Ĩ2 yields the asymptotic normality in (A.17).

To see why I1 can be replaced by Ĩ1, that is, D = D(u) be replaced by D(t/T ), consider one of the
terms in the difference between I1 and Ĩ1, namely,

R1 = a2
T

T 2

T∑
t=1

∫
H

tr

{(
D − D

(
t

T

))′(
XtX

′
t − A2

(
t

T

))
D2

(
XtX

′
t − A2

(
t

T

))
D

}
K2

h

(
u − t

T

)
du.

(The other terms in the difference can be dealt with similarly.) Then, by using the smoothness of
D(u) by Proposition C.2 in Sundararajan et al. [21], the expression (4.3) for aT and Lemma C.1 in
Sundararajan et al. [21], (ii), we have

|R1| ≤ C

T

T∑
t=1

∥∥∥∥XtX
′
t − A2

(
t

T

)∥∥∥∥2

2

∫
H

∥∥∥∥D(u) − D

(
t

T

)∥∥∥∥K2,h

(
u − t

T

)
du

≤ C′h
T

T∑
t=1

∥∥∥∥XtX
′
t − A2

(
t

T

)∥∥∥∥2

2

∫
H

K
(1)
2,h

(
u − t

T

)
du

≤ C′′h
T

T∑
t=1

∥∥∥∥XtX
′
t − A2

(
t

T

)∥∥∥∥2

2
≤ C(w)h,
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for a random constant C(w). The term R1 would then not affect the asymptotics (A.17) since h/
√

h →
0.

For I2 and Ĩ2, consider similarly a term from their difference given by

R2 =
∑
t1<t2

bT,t1,t2

(
Xt1X

′
t1
,Xt2X

′
t2

)
:=

∑
t1<t2

2a2
T

T 2

∫
H

tr

{(
D − D

(
t

T

))′(
Xt1X

′
t1

− A2
(

t1

T

))
D2

(
Xt2X

′
t2

− A2
(

t2

T

))
D

}

× Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du.

We shall use Proposition C.3 in Sundararajan et al. [21] to obtain a convergence rate for R2. To ap-
ply the proposition, a number of (conditional) expectations involving bT,t1,t2(Xt1X

′
t1
,Xt2X

′
t2
) need to

be evaluated. Note that EbT,t1,t2(Xt1X
′
t1
,Xt2X

′
t2
) = 0 and E(bT ,t1,t2(Xt1X

′
t1
,Xt2X

′
t2
)|Xt1X

′
t1
) = 0 and

similarly when conditioning on Xt2X
′
t2

. We thus only need to consider E(bT ,t1,t2(Xt1X
′
t1
,Xt2X

′
t2
))2.

By using the generalized Minkowski’s inequality and the smoothness of D(u) by Proposition C.2 in
Sundararajan et al. [21], note that(

E
(
bT,t1,t2

(
Xt1X

′
t1
,Xt2X

′
t2

))2)1/2

≤
∫
H

(
E

(
2a2

T

T 2
tr

{(
D − D

(
t

T

))′(
Xt1X

′
t1

− A2
(

t1

T

))
D2

(
Xt2X

′
t2

− A2
(

t2

T

))
D

}

× Kh

(
u − t1

T

)
Kh

(
u − t2

T

))2)1/2

du

≤ Ca2
T

T 2

∫
H

∥∥∥∥D(u) − D

(
t1

T

)∥∥∥∥
2
Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du

≤ C′h2

T

∫
H

K
(1)
h

(
u − t1

T

)
Kh

(
u − t2

T

)
du,

where we used the definition of aT . It follows from Lemma C.2 in Sundararajan et al. [21] that

∑
t1<t2

E
(
bT,t1,t2

(
Xt1X

′
t1
,Xt2X

′
t2

))2 ≤ Ch4

T 2

∑
t1<t2

(∫
H

K
(1)
h

(
u − t1

T

)
Kh

(
u − t2

T

)
du

)2

≤ C′h3.

Hence, by Proposition C.3 in Sundararajan et al. [21], R2 is of the order Op(h3/2) and hence does not
affect the asymptotics (A.17) since h3/2/

√
h → 0.

We can thus replace I1 and I2 by Ĩ1 and Ĩ2, respectively, which in view of (A.8) can be expressed as

Ĩ1 = a2
T

T 2

T∑
t=1

tr
{(

Ỹt Ỹ
′
t − Ir

)(
Ỹt Ỹ

′
t − Ir

)}∫
H

K2
h

(
u − t

T

)
du,

Ĩ2 = 2a2
T

T 2

∑
t1<t2

tr
{(

Ỹt1 Ỹ
′
t1

− Ir

)(
Ỹt2 Ỹ

′
t2

− Ir

)}∫
H

Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du,
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where Ỹt = D′(t/T )Xt .
For Ĩ1, write it as

Ĩ1 = 1

μ4T

T∑
t=1

r∑
i,j=1

(
Ỹt Ỹ

′
t − Ir

)2
ij

∫
H

K2,h

(
u − t

T

)
du

= 1

μ4T

T∑
t=1

r∑
i,j=1

((
Ỹt Ỹ

′
t − Ir

)2
ij

−E
(
Ỹt Ỹ

′
t − Ir

)2
ij

)∫
H

K2,h

(
u − t

T

)
du

+
r∑

i,j=1

E
(
Ỹ1Ỹ

′
1 − Ir

)2
ij

1

μ4T

T∑
t=1

∫
H

K2,h

(
u − t

T

)
du = Ĩ1,1 + Ĩ1,2.

It can be checked that
r∑

i,j=1

E
(
Ỹ1Ỹ

′
1 − Ir

)2
ij

= rμ4 + r(r − 1).

Hence, by Lemma C.1 in Sundararajan et al. [21], (ii),

Ĩ1,2 = |H| rμ4 + r(r − 1)

μ4
+ O

(
1

T h

)
.

For Ĩ1,1, setting ξt = ∑r
i,j=1((Ỹt Ỹ

′
t − Ir )

2
ij − E(Ỹt Ỹ

′
t − Ir )

2
ij ), p = 1 + ε/4 and using the von Bahr–

Esseen inequality (von Bahr and Esseen [23]), we obtain that

E|Ĩ1,1|p = CE

∣∣∣∣∣ 1

T

T∑
t=1

ξt

∫
H

K2,h

(
u − t

T

)
du

∣∣∣∣∣
p

≤ C′
E|ξ1|p
T p

T∑
t=1

∣∣∣∣∫H K2,h

(
u − t

T

)
du

∣∣∣∣p ≤ C′′

T p−1

and hence Ĩ1,1 = Op(T 1/p−1). By assumption, T h3/2 → ∞ and T 1−1/ph1/2 = T ε/(4+ε)h1/2 → ∞.
This shows that the error term in Ĩ1,1 and Ĩ1,2 do not affect the asymptotics (A.17), and that Ĩ1,2
produces the desired asymptotic mean.

For Ĩ2, consider

Ĩ2√
h

=
∑
t1<t2

bT,t1,t2,

where

bT,t1,t2 = 2h1/2

‖K‖2
2μ4T

tr
{(

Ỹt1 Ỹ
′
t1

− Ir

)(
Ỹt2 Ỹ

′
t2

− Ir

)}∫
H

Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du.

We will argue that Ĩ2/
√

h is asymptotically normal with the desired limiting variance. By Proposition
3.2 in de Jong [6], it is enough to show that

1. Var( Ĩ2√
h
) → ‖K‖2

2
‖K‖4

2

2(rμ2
4+2r(r−1))

μ2
4

|H|;
2. GT,i = o(1), i = 1,2,4, where

GT,1 =
∑
t1<t2

Eb4
T ,t1,t2

,
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GT,2 =
∑

t1<t2<t3

Eb2
T ,t1,t2

b2
T ,t1,t3

+Eb2
T ,t1,t2

b2
T ,t2,t3

+Eb2
T ,t1,t3

b2
T ,t2,t3

,

GT,4 =
∑

t1<t2<t3<t4

EbT,t1,t2bT,t1,t3bT,t2,t4bT,t3,t4 +EbT,t1,t2bT,t1,t4bT,t2,t3bT,t3,t4

+EbT,t1,t3bT,t1,t4bT,t2,t4bT,t2,t4 .

The first point above follows from

Var

(
Ĩ2√
h

)
= 4h

‖K‖4
2μ

2
4T

2

∑
t1<t2

E tr2{(Ỹt1 Ỹ
′
t1

− Ir

)(
Ỹt2 Ỹ

′
t2

− Ir

)}2
(∫

H
Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du

)
,

the observation that

E tr2{(Ỹt1 Ỹ
′
t1

− Ir

)(
Ỹt2 Ỹ

′
t2

− Ir

)} = rμ2
4 + 2r(r − 1)

and Lemma C.2 in Sundararajan et al. [21]. For the second point above, GT,1 can be bounded up to a
constant by

h2

T 4

∑
t1<t2

(∫
H

Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du

)4

.

For example, the first term in the sum of GT,2 can be bounded up to a constant by

h2

T 4

∑
t1<t2<t3

(∫
H

Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du

)2(∫
H

Kh

(
u − t1

T

)
Kh

(
u − t3

T

)
du

)2

.

For example, the first term in the sum of GT,4 can be bounded up to a constant by

h2

T 4

∑
t1<t2<t3<t4

(∫
H

Kh

(
u − t1

T

)
Kh

(
u − t2

T

)
du

)(∫
H

Kh

(
u − t1

T

)
Kh

(
u − t3

T

)
du

)

×
(∫

H
Kh

(
u − t2

T

)
Kh

(
u − t4

T

)
du

)(∫
H

Kh

(
u − t3

T

)
Kh

(
u − t4

T

)
du

)
.

The rate o(1) for each of these bounds follows from Lemma C.2 in Sundararajan et al. [21]. This
completes the proof of the lemma. �

Lemma A.3. Under Assumptions (Y1), (Y2), (K), (A1), (A2g), and

T → ∞, h → 0, T h5/2 → ∞, T h3 → 0,

we have, for (j, k) �= (1,1),

Ĝr,jk =
∫

L̂r,jk du = op

(
h1/2). (A.18)

In fact, the proof of lemma establishes sharper rates of convergence of Ĝr,jk to 0. The rate given
in the lemma is what is needed to conclude the convergence (4.15). Indeed, the latter now follows
immediately from the arguments above and, in particular, Lemmas A.2 and A.3.
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Proof. We consider only the cases (j, k) = (2,2), (3,3), (4,4), (1,2), (1,3) and (1,4). The other
mixed cases can be dealt with similarly.

For (j, k) = (2,2), we have
∫

L̂r,22 du = a2
T

∫
tr{D′S2D

2S2D}du where S2 is defined in (A.14). As
in the proof of result in (4.2), S2 = O(h + (T h)−1) uniformly in u, where the latter follows by using
Lemma C.1 in Sundararajan et al. [21], (ii). Then, by using the smoothness of D = D(u) by Proposition
C.2 in Sundararajan et al. [21], we have

∫
L̂r,22 du = O(T h(h + (T h)−1)2) = O(T h3 + (T h)−1 + h).

This is of the order o(h1/2) since, in particular, T h5/2 → 0 by assumption. For (j, k) = (3,3), we
have similarly

∫
L̂r,33 du = a2

T

∫
tr{D′S3D

2S3D}du where S3 is defined in (A.14). The term S3 does
not depend on u and its rate is Op(T −1/2) as shown in the proof of result in (4.2). This leads to∫

L̂r,33 du = Op(T h(T −1/2)2) = Op(h), which is again of the order op(h1/2) as desired. For (j, k) =
(4,4), S4 does not depend on u either and its rate is O(T −1) as shown in the proof of result in (4.2).
This leads to

∫
L̂r,44 du = O(T h(T −1)2) = O(h/T ) = o(h1/2).

For (j, k) = (1,2), we need to consider
∫

L̂r,12 du = a2
T

∫
tr{D′S1D

2S2D}du. After matrix multi-
plication and taking the trace, a general term in

∫
L̂r,12 du has the form

R1,2 = a2
T

∫
D′∗(S1)∗

(
D2)

∗(S2)∗D∗ du,

where ∗ refers to an index pair that can change from matrix to matrix. Furthermore, in view of S4

defined in (A.14),

R1,2 = a2
T

T

T∑
t=1

((
XtX

′
t

)
∗ − A2

(
t

T

)
∗

)∫
D∗D2∗D′∗(S2)∗Kh

(
u − t

T

)
du.

By using the facts that S2 = O(h + (T h)−1) uniformly in u as above and
∫
R

Kh(u − t/T ) du = 1, it
follows that ER2

1,2 = O(a4
T T −1(h+ (T h)−1)2) = O(T h4 +h2 +1/T ) and hence that R1,2 = op(h1/2)

since, in particular, T h3 → 0. For (j, k) = (1,3), a general term of interest is similarly,

R1,3 = a2
T

∫
D′∗(S1)∗

(
D2)

∗(S3)∗D′∗ du

= a2
T (S3)∗

T

T∑
t=1

((
XtX

′
t

)
∗ − A2

(
t

T

)
∗

)∫
D∗D2∗D′∗Kh

(
u − t

T

)
du

and hence ER2
1,3 = a4

T T −2 = h4. This leads to R1,3 = op(h1/2). The case (j, k) = (1,4) can be dealt

with similarly by using the fact that S4 = O(T −1). �

Finally, we prove the last statement of Proposition 4.1 concerning the behavior of the test
statistic under the alternative. For this, note that by Proposition C.1 in Sundararajan et al. [21],
supu∈H |a−2

T ξr (u) − ∑r
i=1 γ2,i (u)| →p 0. Furthermore, under the considered alternative H1, and by

using smoothness of γ2,i (u), we have supu∈H
∑r

i=1 γ2,i (u) > 0. It follows that ξ̂r = (a2
T

∫
H a−2

T ×
ξr (u) du − C1)/(C2h

1/2) with constants C1, C2 behaves asymptotically as Ca2
T /h1/2 = C′T h1/2 →

∞ (for example, since Lemma A.2 assumes T h3/2 → ∞). This concludes the proof of Proposi-
tion 4.1. �
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Supplementary Material

Supplement to “Stationary subspace analysis of nonstationary covariance processes: Eigenstruc-
ture description and testing” (DOI: 10.3150/20-BEJ1243SUPP; .pdf). Section A contains the proof
of the result in (4.2), Section B contains a consistent estimator for the fourth moment and Section C
includes the key technical results for the proof of Proposition 4.1. In Section D, we provide supporting
plots for the models discussed in Section 6. Finally, in Section E, we include additional figures and
tables from the real data application in Section 7.
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