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We consider the problem of designing robust numerical integration scheme of the solution of a one-dimensional
SDE with non-globally Lipschitz drift and diffusion coefficients behaving as xα , with α > 1. We propose an
(semi-explicit) exponential-Euler scheme for which we obtain a theoretical convergence rate for the weak error.
To this aim, we analyze the C1,4 regularity of the solution of the associated backward Kolmogorov PDE using its
Feynman–Kac representation and the flow derivative of the involved processes. Under some suitable hypotheses
on the parameters of the model, we prove a rate of weak convergence of order one for the proposed exponential
Euler scheme, and illustrate it with some numerical experiments.
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1. Introduction

Within the extensive literature on the numerical analysis of time-integration schemes for Brownian-
driven stochastic differential equations with non-Lipschitz coefficients, existing convergence results
mainly deal separately with the non-Lipschitz hypothesis on the drift coefficient or on the diffusion
coefficient. More rarely, the Lipschitz property is dropped for both coefficients. Even more rarely, the
results deal with the weak error convergence, that requires some information on the SDE associated
semi-group regularity.

In this paper, we propose a numerical scheme for one-dimensional stochastic differential equations
(SDEs for short) having non-globally Lipschitz, polynomial drift and diffusion coefficients, and we
analyze its convergence for the weak error. In this context, we present the first direct proof of the weak
convergence with rate one, accompanied by an expandable methodology to analyze the C1,4 regularity
of the Feynman–Kac representation involving the exact process.

More precisely, we are interested in the numerical approximation of the solution to the following
class of SDEs

dXt = b(Xt ) dt + σXα
t dWt , X0 = x > 0, (1.1)

where (Wt ;0 ≤ t ≤ T ) is a standard Brownian motion on the probability space (�,F,P) equipped
with its natural filtration (Ft ;0 ≤ t ≤ T ), and the exponent α, characterizing the diffusion, is assumed
strictly greater than one. The drift b : [0,+∞) →R is a locally Lipschitz continuous function allowing
polynomial dependence in the Lipschitz constant (see Definition 1.1 below for a precise statement), and
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with a polynomial growth bound of the form:

b(x) ≤ B1x − B2x
2α−1 + b(0)+, ∀x ∈R+, (1.2)

for some constants B1,B2 ≥ 0, and where b+(0) stands for b(0) ∨ 0. Since exponent α can be non-
integer, some particular hypotheses under which (1.1) has a unique positive solution have to be made
(see Proposition 2.1).

Convergence results in this particular setting of non-Lipschitz coefficients rarely deal directly on the
weak error analysis. In this particular setting, Gyöngy [13] obtained pathwise almost surely conver-
gence, with a convergence rate’s order of at most 1

4 , for the classical Euler–Maruyama scheme applied
to SDEs with locally Lipschitz continuous drift and diffusion coefficients satisfying some Lyapunov
condition. Such result immediately implies weak convergence for continuous bounded test functions
but not Lp-strong convergence. Similarly, Higham, Mao and Stuart [14] established L2-strong con-
vergence of the classical Euler–Maruyama scheme for locally Lipschitz coefficients but assuming a
priori the control of some pth-moments (p > 2) of the continuous solution of the SDE and of its
approximation. A rate of strong convergence of order 1

2 was also established for the time-implicit
split-step backward Euler–Maruyama scheme, when the diffusion is globally Lipschitz, and the drift
satisfies a one-sided Lipschitz condition and locally Lipschitz condition. Staying in the framework of
the Euler–Maruyama scheme, Yan [27] obtained the weak convergence with diffusion and drift coeffi-
cients continuous only almost everywhere and having at most linear growth.

With superlinear growth coefficients, classical Euler–Maruyama scheme may present some degen-
erated behavior. Hutzenthaler, Jentzen and Kloeden [17] established the Lp-strong divergence, for
p ∈ [1,+∞), related to the Euler–Maruyama scheme for SDEs with both drift and diffusion satisfying
some superlinear growth condition. In particular, the authors obtained the divergence of the moments
of the Euler approximation. Later in [18], the authors proposed a time-explicit tamed-Euler scheme to
overcome this divergence problem of the Euler approximation, based on renormalized-increments to
the scheme. Recently Hutzenthaler and Jentzen [16] proved the 1

2 rate of the Lp-strong convergence
for the tamed-Euler scheme for a family of SDE that includes some locally Lipschitz cases for both
continuous drift and diffusion coefficients.

In the same vein of explicit in time alternative scheme to the Lp-strongly divergent Euler–Maruyama
scheme, Sabanis [25] obtained the Lp-strong convergence for a scheme with renormalized coefficients
under some superlinear growth condition, and recovered the 1

2 -Lp-strong convergence rate under Lisp-
chitz diffusion and one-sided global Lispchitz drift.

Other time-explicit numerical schemes have been proposed over the years to solve the approximation
problem of SDEs with locally Lipschitz continuous coefficients. For instance, Lamba, Mattingly and
Stuart [20] proposed an adaptive Euler algorithm based on the control of the drift coefficient, and
proved the L2-strong convergence assuming the control of some moments of the solution and of its
approximation. Chassagneux, Jacquier and Mihaylov [8] considered the case of globally Lipschitz
diffusion and locally-Lipschitz drift function satisfying a one-sided Lipschitz condition and proposed
a modified explicit Euler numerical scheme, for which, under suitable assumptions on the control of
some moments of the solution, an L2-strong convergence with explicit rate is proven.

Fewer results dealing with weak convergence are available. Milstein and Tretyakov [22] established
a weak convergence result for a class of SDEs with non-globally Lipschitz coefficients, based on ex-
isting schemes with known rate of weak convergence for Lipschitz and smooth coefficients, and on the
rejection of the approximated trajectories that go out a sphere of given radius. But the relation between
the level of error, the radius of the rejection sphere and the time step threshold to be used in order to
observe the convergence is not explicit, making the algorithm difficult to use in practice.

In this paper, we propose a new scheme for SDEs (1.1) with coefficients under some superlinear
growth condition. The scheme is designed to ease the upper bound control of some moments of the
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approximated process and we prove the optimal convergence rate of order one for the weak error.
The convergence analysis extends the methodology introduced in Bossy and Diop [4] to establish the
regularity of the associated backward Kolmogorov PDE.

Our motivating problem

Our interest for the numerical approximation of (1.1) was initially motivated by the simula-
tion/calibration problem for the instantaneous turbulent kinetic energy model issued from the La-
grangian description of a non inertial particle dynamics within a turbulent fluid flow (see [21], Chap-
ter 1). Such model can be described by a SDE having the prototype form:

dXt = −BX2α−1
t dt + σXα

t dWt , X0 = x > 0, (1.3)

where α > 1. To your knowledge, no weak convergence rate for this model are available. Only strong
convergence results are proposed. Equation (1.3) is a particular case of (1.1) and can be seen as a
generalized Constant Elasticity of Variance (CEV) model (see, e.g., Delbaen and Sirakawa [10]). In

particular, the transformation rt = X
2(1−α)
t

4σ 2(α−1)2 applied to the solution of (1.3) produces the so-called CIR
process (Cox, Ingersoll and Ross [9]), classically used for the modeling of short interest rate dynamics,
and for which various schemes have been considered over the years. For the Lp-strong convergence of
some proposed explicit schemes for CEV models, we refer to Bossy and Olivero [6] and the reference
therein; for implicit proposed schemes, we refer to Dereich, Neuenkirch and Szpruch [11], Alfonsi [2]
and the references therein.

Alternatively, the transformation Yt = X
(1−α)
t

σ (α−1)
produces a Bessel process for which we can use an

Explicit Projected Euler scheme proposed in [8], obtaining a strong rate of convergence of order 1
6

provided that we control up to the 4(α − 1)th moments of the process (Xt ;0 ≤ t ≤ T ) (or higher rate
of convergence by controlling higher moments).

Exponential scheme

The keyword exponential scheme refers to generic semi-linear integration methods and is of main im-
portance in numerical analysis. Methods for ODEs proposing integration schemes based on the semi-
linear integration of equations are classics (see, e.g., Pope [23], Hochbruck and Ostermann [15] and
the references therein). Extend this methodology for SDEs is straightforward (particularly in dimension
one where affine diffusions allow exact scheme), but establishing the weak rate of convergence results
in the context of non-globally Lipschitz coefficients is much more demanding. With the same appella-
tion, semi-linear integration methods are proposed for PDEs or SPDEs and concern schemes based on
a mild formulation of the underlying equations (see, e.g., Beccari et al. [3] for SPDE problems with
superlinear coefficients).

We would like to stress out that we were looking for a scheme that, potentially applied to prototype
model (1.3), allows weak convergence rate of order one to set up an efficient calibration method for
the model. Motivated by this problem for the model (1.3), the requirement of stability condition on
the moments brings us to the variant scheme (1.4) below, as a remedy for the divergence problem
of the Euler–Maruyama scheme, and an alternative to the tamed-Euler scheme (for which the weak
convergence rate of order one is not established).

The proposed numerical approximation, which will be referred, from now on, to as the exponential-
Euler scheme (exp-ES, for short), originates from rewriting the SDE (1.1) into

dXt = Xt

(
b(Xt )

Xt

dt + σXα−1
t dWt

)
, X0 = x > 0,



Exponential Euler scheme for SDEs with superlinear growth coefficients 315

and semi-linear integration produces, for an homogeneous N -partition of the time interval [0, T ] with
time-step �t = tn+1 − tn, the approximation algorithm:

Xtn+1 = Xtn exp

{
σX

α−1
tn

(Wtn+1 − Wtn) +
(

b(Xtn) − b+(0)

Xtn

− σ 2

2
X

2(α−1)

tn

)
�t

}
+ b+(0)�t, (1.4)

that preserves the positiveness of the solution. We refer the reader to Section 3 for a detailed construc-
tion of (1.4).

The exponential Euler scheme (1.4) can be applied to large family of SDEs with non-globally Lips-
chitz coefficients, having strictly positive solution. The range of possible applications of our results in-
cludes some meaningful financial models such as the generalized CEV model, the non-linear mean re-
version model (see, e.g., Ait-Sahalia [1], Higham et al. [26]) and the Chan–Karolyi–Longstaff–Sanders
model [7] among others.

As it will be established later on, a main advantage of the exp-ES scheme is that it preserves the
control of the moments of the continuous model, assuming a superlinear growth condition on the drift
coefficient (see Proposition 3.3 and Lemma 3.2).

Weak convergence and C1,4-regularity of the Kolmogorov PDE associated to (1.1)

Our main result, stated in Proposition 3.3, exhibits an optimal theoretical rate of convergence of order
one under hypotheses that are introduced in Section 3, and for bounded C4 test functions.

Although some space of improvement are identified, the hypotheses in Section 3 are stated in or-
der to balance the control moments of the exact and approximated processes with the moments and
exponential moments required for the flow-derivative process used to establish the regularity of the
Feynman–Kac formula. Indeed, the key point of the convergence rate analysis is to estimate the regu-
larity of the solution to the backward Kolmogorov PDE associated with the representation E[f (Xx

T )],
where (Xx

t ;0 ≤ t ≤ T ) denotes the flow of diffeomorphisms with initial condition x > 0.
The technique presented in this paper for the analysis of the Kolmogorov PDE can be derived for a

larger family of SDEs. Adapted from [4] which was dealing with the particular situation where 1
2 < α <

1, this methodology allows to control the successive derivatives of the Feynman–Kac representation up
to the order four, by bypassing the difficulty of deriving the flow process more than one time, through
a change of measure technique (see Sections 5.1 and 5.3 for dedicated results and details on this main
point).

The paper is organized as follows. Conditions for the well-posedness of the generic SDE (1.1) as
well as for the finiteness of the positive, negative and exponential moments of its solution are stated
in Section 2. In Section 3, we construct the exponential-Euler scheme (1.4) and we present our main
Proposition 3.3 on the weak rate of convergence. Section 4 presents some numerical experiments in
order to show the effectiveness of the theoretical rate of convergence. Some first comparisons with
other schemes are also shown. Section 5 is devoted to the analysis of the regularity of the backward
Kolmogorov PDE (Proposition 5.1) and Section 6 presents the proof of the weak error estimate.

For additional comments on the presented results and proofs, as well as extended numerical experi-
ments related to this work, we refer to [21], Chapters 1 and 2.

1.1. Notation

Throughout this paper, T > 0 will refer to an arbitrary finite time horizon, C will denote a positive
constant, possibly depending on the parameter of the considered dynamic, which may change from
line to line. Any process (Zt , t ∈ [0, T ]) will be simply denoted Z.
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For any a, b ∈ R, a ∨ b and a ∧ b denote respectively the maximum and minimum between a and b.
Given the non-negative discrete time-step parameter �t , we set η(t) = �t
 t

�t
�, and δ(t) = t − η(t).

In order to shorten the writing of some expressions, we will use f (k) for the kth derivative (whenever
k > 1) of a function f : R→R.

We introduce the notion of locally Lipschitz continuity property used in this paper from the formal-
ism previously used in [14] and [8]. The following definition specifies power-dependencies involved in
the local Lipschitz factor.

Definition 1.1. Let f be a real-valued function and dom(f ) denotes its definition domain. We say that
f is (γ , γ )-locally Lipschitz if there exist non-negative constants C, γ and γ such that

∣∣f (x) − f (y)
∣∣ ≤ C

(
1 + |x|γ + |y|γ + |x|−γ + |y|−γ

)|x − y|, ∀x, y ∈ dom(f ) − {0}. (1.5)

When γ = 0, f is said to be γ -locally Lipschitz continuous and

∣∣f (x) − f (y)
∣∣ ≤ C

(
1 + |x|γ + |y|γ )|x − y|, ∀x, y ∈ dom(f ). (1.6)

With this definition, a Lipschitz function is 0-locally Lipschitz, and it is included in the set of all
γ -locally Lipschitz functions, γ ≥ 0.

The following lemma formalize the straightforward link between the locally Lipschitz property of a
function and its derivative.

Lemma 1.2. Let f be a real-valued function, continuously differentiable, with f ′ being (γ , γ )-locally
Lipschitz continuous in the sense of Definition 1.1. Then, f is (α,α)-locally Lipschitz continuous with
α ≤ γ + 1, and α ≤ γ .

2. Strong wellposedness for the solution to SDE (1.1)

We give some sufficient conditions ensuring the strong well-posedness and control of moments of the
solution to (1.1). Proposition 2.1 exhibits some useful upper-bounds for the analysis. The proofs are
technical and by itself not directly in relation with the convergence analysis of our scheme. They are
detailed in the supplemental article [5], under the following hypotheses on the SDE (1.1):

Hypothesis H1. α > 1, σ > 0, and the (deterministic) initial condition x > 0.

Hypothesis H2. The drift b is 2(α − 1)-locally Lipschitz continuous (in the sense of Definition 1.1)
and b(0) ≥ 0.

Hypothesis H3. There exist some finite constants B1,B2 ≥ 0, such that, for all x ≥ 0,

b(x) ≤ B1x − B2x
2α−1 + b(0).

Proposition 2.1. Assume H1, H2 and H3. Then there exists a unique (strictly) positive strong solution
X to the SDE (1.1). In addition, for all exponent p such that 0 ≤ 2p ≤ 1 + 2B2

σ 2 , we have

sup
t∈[0,T ]

E
[
X

2p
t

] ≤ Cp

(
1 + x2p

)
, (2.1)
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and for all q > 0, we have

sup
t∈[0,T ]

E
[
X

−q
t

] ≤ Cq

(
1 + x−q

)
.

When b(0) = 0, for all μ ≤ (σ 2+2B2)
2

8σ 2 ,

sup
t∈[0,T ]

E

[
exp

{
μ

∫ t

0
X2α−2

s ds

}]
≤ C

(
1 + x

1
2 + B2

σ2
)
. (2.2)

Otherwise, when b(0) > 0, if we assume in addition that α > 3
2 , then for all μ < B2σ

2,

sup
t∈[0,T ]

E

[
exp

{
μ

∫ t

0
X2α−2

s ds

}]
≤ C

(
1 + x

2μ

σ2
)(

1 + exp
{
Cμx−1}). (2.3)

In the above upper-bounds, the non-negative constants Cp , Cq and C do not depend on x; Cp , respec-
tively Cq , may depend on p, respectively, q; C can be bounded uniformly in μ.

3. The exponential Euler scheme and its rate of convergence

Given the possible non-integer power value for α in the diffusion term, we seek for an appropriate
numerical approximation preserving the positiveness of the process and exponential form is a good
candidate for this purpose. By rewriting the SDE (1.1) as

dXt = Xt

(
b(Xt )

Xt

dt + σXα−1 dWt,

)
, X0 = x > 0,

and given {t0 = 0, t1, . . . , tN−1, tN = T }, a N -partition of the time interval [0, T ] with time-step �t =
tn+1 − tn, we consider first the approximation (X̂tn , n ≥ 1) given by

X̂tn+1 = X̂tn exp

{(
b(X̂tn)

X̂tn

− σ 2

2
X̂

2(α−1)
tn

)
�t + σX

α−1
tn

(Wtn+1 − Wtn)

}
, X̂0 = x, (3.1)

and its continuous version given by the interpolation in time:

dX̂t = X̂t

(
b(X̂η(t))

X̂η(t)

dt + σX̂α−1
η(t) dWt

)
, X̂0 = x > 0,

where η(t) := sup{ti : ti < t}. Ensuring the strict positivity of the approximation at all times, the scheme
(3.1) enables also to counterbalance the rapid growth of the diffusion X̂α−1

η(t) by the drift contribution
b(X̂η(t))

X̂η(t)
subject to H3 and H2. The scheme (3.1) is also sensitive to the value of b near zero: when

b(0) = 0, H3 yields to

b(x)

x
≤ B1 − B2x

2(α−1), ∀x ≥ 0,

and, combined with H2, enables to prove the existence of some positive moments for (X̂t ;0 ≤ t ≤
T ) (replicating for instance the last proof steps of Proposition 2.1). But when b(0) > 0, numerical
instabilities can be observed when X̂ comes close to zero. More specifically, we haven’t been able to
find a threshold ξ such that P(X̂t ≤ ξ) decays in �t , nor to control some positive moments in that case.



318 M. Bossy, J.-F. Jabir and K. Martínez

To overcome such instabilities, the continuous version of the scheme (3.1) can be modified by adding
and subtracting b(0) as follows:

dX̂t = b(0) dt + X̂t

(
b(X̂η(t)) − b(0)

X̂η(t)

dt + σX̂α−1
η(t) dWt

)
,

or equivalently, defining δ(t) := t − η(t),

X̂t = X̂η(t) exp

{(
b(X̂η(t)) − b(0)

Xη(t)

− σ 2

2
X̂

2(α−1)
η(t)

)
δ(t) +

∫ t

η(t)

b(0)

X̂s

ds + σX̂α−1
η(t) (Wt − Wη(t))

}
,

for which we need to discretize the integral appearing in the right-hand side to turn it in a numerical
algorithm. The approximation

∫ t

η(t)
b(0)

X̂s
ds ≈ b(0)

X̂η(t)
δ(t) makes the corresponding scheme comes back

to (3.1) for which we do not control – a priori – positive moments. In contrast, the approximation∫ t

η(t)
b(0)

X̂s
ds ≈ b(0)

X̂t
δ(t) produces the following implicit numerical scheme:

h(t, X̌t ) = X̌η(t) exp

{(
b(X̌η(t)) − b(0)

X̌η(t)

− σ 2

2
X̌

2(α−1)
η(t)

)
δ(t) + σX̌α−1

η(t) (Wt − Wη(t))

}
, (3.2)

where h(t, x) = x exp{− b(0)δ(t)
x

}, for which control of positive moments for (X̌t ;0 ≤ t ≤ T ) are ob-
tained under H3 (see [21], Chapter 2).

To turn (3.2) in a numerical scheme, we combine it with an approximation for x �→ h−1(x), by
considering it first order Taylor expansion h(t, x) ≈ x − b(0)δ(t). With this, we define the scheme
(Xtn, n ≥ 1), that we now refer to as exp-ES, for Exponential-Euler Scheme, by X0 = x, and

Xtn+1 = b(0)�t + Xtn exp

{(
b(Xtn) − b(0)

Xtn

− σ 2

2
X

2(α−1)

tn

)
�t + σX

α−1
tn

(Wtn+1 − Wtn)

}
(3.3)

admitting the continuous version

Xt = b(0)δ(t) + Xη(t) exp

{(
b(Xη(t)) − b(0)

Xη(t)

− σ 2

2
X

2(α−1)

η(t)

)
δ(t) + σX

α−1
η(t) (Wt − Wη(t))

}
(3.4)

driven by the SDE:

dXt = (
Xt − b(0)δ(t)

)(b(Xη(t)) − b(0)

Xη(t)

dt + σX
α−1
η(t) dWt

)
+ b(0) dt, X0 = x. (3.5)

Remark 3.1. By construction, due to the exponential form in (3.4), Xt − b(0)δ(t) > 0, provided that
x > 0. In particular, for all 0 ≤ t ≤ T , Xt > 0.

For the exp-ES X, we bound the same order of 2pth-moments than for X in Proposition 2.1.

Lemma 3.2. Assume H1, H2 and H3. For all exponent 0 < 2p ≤ 1 + 2B2
σ 2 , there exists a non-negative

constant Cp , depending in p but not on x, such that

sup
t∈[0,T ]

E
[
X

2p

t

] ≤ Cp

(
1 + x2p

)
, x > 0.
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Proof. Applying Itô’s formula to X
2p

t (omitting localization argument for simplification) we get

E
[
X

2p

t

] = x2p + 2pb(0)E

[∫ t

0
X

2p−1
s ds

]

+ pE

[∫ t

0
X

2p−2
s

(
Xs − b(0)δ(s)

){
2Xs

b(Xη(s)) − b(0)

Xη(s)

+ (2p − 1)σ 2(Xs − b(0)δ(s)
)
X

2(α−1)

η(s)

}
ds

]
,

and thus

E
[
X

2p

t

] ≤ x2p + 2pb(0)

∫ t

0
E

[
X

2p−1
s

]
ds + 2pB1E

[∫ t

0
X

2p−1
s

(
Xs − b(0)δ(s)

)
ds

]

≤ C
(
1 + x2p

) + C

∫ t

0
E

[
X

2p

s

]
ds.

The proof ends by applying Gronwall’s inequality. �

3.1. Main results

Under the following hypotheses, we state below the weak rate of convergence of order one for (1.1)
associated with the exponential-Euler scheme (3.3):

Hypothesis H2’ (For the regularity of the Kolmogorov PDE (5.3)). The function b is 2(α − 1)-
locally Lipschitz, and b(0) ≥ 0. In addition, b is of class C4(R+), with derivatives b(i) being (γ (i), γ (i)

)-

locally Lipschitz continuous, for i = 1, . . . ,4.

H2’ implies in particular that∣∣b(i)(x)
∣∣ ≤ C

(
1 + xγ (i)+1 + x

−γ
(i)

)
, i = 1, . . . ,4, (3.6)

where, according to Lemma 1.2, 2α − 3 ≤ γ (1), γ (i) ≤ γ (i+1) + 1, and γ
(i)

≤ γ
(i+1)

, for i = 1,2,3.

Hypothesis H3’ (For the exponential moments of X). There exist a set of constants Bi,B
′
i ≥ 0, with

i = 1,2, such that

b(x) ≤ B1x − B2x
2α−1 + b(0) and b′(x) ≤ B ′

1 − B ′
2x

2(α−1).

Hypothesis H4 (For the weak convergence rate derivation). The powers γ
(i)

in H2’ satisfy:

γ
(i)

≤ i − 1, for i = 1,2,3 and γ
(4)

≤ 4.

Hypothesis H5 (For the regularity of the Kolmogorov PDE in Proposition 5.1). The constants B2,
B ′

2, α and the (γ (i), i = 1, . . . ,4) in H2’ and H3’ satisfy

B2 ≥ 3σ 2α + σ 2

2

[{
(2β) ∨ (β + 2α)

} − 1
]
,
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B ′
2 ≥ σ 2α

(
17

2
α − 3

)
,

where β = 3(γ (2) + 1) ∨ (γ (2) + γ (3) + 2) ∨ (γ (4) + 1).
In addition whenever b(0) > 0, we assume that α > 3

2 and we modify the constraint on B2 as

B2 ≥ 3σ 2α + α2

2
∨ σ 2

2

[{
(2β) ∨ (β + 2α)

} − 1
]
.

Proposition 3.3. Let f be a bounded C4(R+) function with bounded derivatives up to order 4. Con-
sider the process X solution to (1.1) with deterministic initial condition x > 0, together with its approx-
imation X in (3.4). Assume H1, H2’, H3’, H4, and H5. Then, there exists a constant C > 0 depending
on the parameters Bi,B

′
i , α, σ and possibly on T and x, but independent on �t , such that∣∣E[

f (XT )
] −E

[
f (XT )

]∣∣ ≤ C�t. (3.7)

The hypotheses in Proposition 3.3 are all sufficient conditions, considered in order to simplify the
analysis of the regularity associated with the solution of the backward Kolmogorov PDE.

Precisely, Hypotheses H3’ and H2’ are considered in order to obtain polynomial bounds for the
derivatives of the solution to the backward Kolmogorov PDE (Proposition 5.1). Later, in the computa-
tion of the weak error, we use H5 specifically to control the resulting positive moments of the exp-ES
process (see the proof of Proposition 3.3 in Section 6), and by considering H4 we seek to avoid the
need to control the negative moments of the approximation scheme arising also from the estimation of
these derivatives (see for instance the inequality (6.6) below).

We also emphasis that the analysis exposed in this paper can be easily adapted to the case of locally
bounded C4(R+)-function f with locally bounded derivatives.

4. Numerical experiments

This section illustrates with some experiments the theoretical rate of convergence in Proposition 3.3.
In particular, we explore the fact that hypothesis H5 do not correspond to a necessary condition on the
parameters B2,B

′
2, α, σ involved in the model. First, we restrict the set of parameters by considering

the following explicit model for which B ′
1 = 1 and B ′

2 = (2α − 1)B2:

dXt = (
B0 + B1Xt − B2X

2α−1
t

)
dt + σXα

t dWt , X0 = x > 0. (4.1)

Proposition 3.3 can be shapely adapted in this particular situation as follows.

Corollary 4.1. We consider the solution X to (4.1). When B0 = 0, assume α > 1 and

B2 − 3σ 2α − σ 2

2

[
(12α − 19) ∨ (8α − 10) ∨ 5α2

(2α − 1)

]
≥ 0. (4.2)

When B0 > 0, assume α > 3
2 and

B2 − 3σ 2α − α2

2
∨ σ 2

2

[
(12α − 19) ∨ (8α − 10) ∨ 5α2

(2α − 1)

]
≥ 0. (4.3)
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Then, for f ∈ C4
b(R+), there exists a constant C > 0 depending on the parameters Bi,α,σ and possibly

on T and x, but independent on �t , such that

∣∣E[
f (XT )

] −E
[
f (XT )

]∣∣ ≤ C�t. (4.4)

Numerical parameters. For all the presented numerical experiments, we consider a unit terminal
time T = 1, the initial condition x = 1 and the time step �t = 1/2p , for p = 1, . . . ,9. In addition, the
empirical mean of the scheme approximating E[f (XT )] is estimated by a Monte Carlo approximation,
involving n = 105 independent trajectories.

Test functions. Along this section, we consider four different test functions, not all bounded, f (x) =
x, x2, exp(−x2).

Model cases. By denoting κ as the left-hand side of (4.2) or (4.3), we consider the following cases,
determined by the data (B0,B1,B2, σ,α)

Case 1 (0,0,2, 1
10 , 3

2 ), dXt = −2X2
t dt + X

3/2
t

10 dWt , κ > 1.95.

Case 2 (0,0,3,1, 5
4 ), dXt = −3X

3/2
t dt + X

5/4
t dWt , κ < −3.

Case 3 (0,0,1,1, 3
2 ), dXt = −X2

t dt + σX
3/2
t dWt , κ < −3.

Case 4 (1,1, 2
5 , 1

10 ,3), dXt = (1 + Xt − 2
5X5

t ) dt + X3
t

10 dWt , κ < −4.

Case 5 (0,0,10, 1
2 , 9

8 ), dXt = −10X
5/4
t dt + X

9/8
t

2 dWt , κ > 8.

with two of them, Cases 2 and 3, that are not satisfying H5. Moreover, Case 3 satisfies the assumptions
of Theorem 2.1 in [17] that states that the approximated moments by the Euler–Maruyama scheme and
the strong Lp-error associated to moment-approximations diverges. Also in [17], the authors prove the
divergence in the weak sense for the pth moments of the Euler–Maruyama scheme in that case.

From Proposition 2.1 the triplets (B2, σ,α) in Case 1 to Case 5, guarantee the finiteness of the
expectation Ef (XT ) for each of the considered test function.

Computation of the reference values. For both test functions f (x) = x and f (x) = x2, reference
values of E[XT ] and E[X2

T ] are computed analytically for Case 1 to Case 3, (see details in [21],
Chapter 1). For the others cases, the reference values are computed based on a n0-Monte Carlo method
combined with the scheme (3.1), n0 = 107 and �tref = 2−14: E[f (XT )] ≈ 1

n0

∑n0
i=1 f (XT (ωi,�tref)).

Numerical results are shown in Table 1, where we can observe the rate of convergence of order
one, except for Case 3 with test function f (x) = x2, in all the rows corresponding to the selection of
bounded/unbounded test functions: the error is divided by 2 when going from left to right, even if some
saturation can be observed for the smallest error values (p = 8,9) when Monte Carlo error starts to be
dominant.

This behavior is also illustrated in Figure 1, plotting the obtained error estimates in a log-log
scale. This confirms that our proofs can certainly be extended for a larger class of test functions,
and model parameters. In particular, we highlight Case 3 that converges weakly with order one for
f (x) = x, exp{−x2}, even if H5 is not fulfilled, and even moreover we know that the classical Euler–
Maruyama scheme is strongly diverging (as stated in [17]) in this case.

It is also interesting to examine the behavior of the scheme in Case 5. In that case, the value of B2

dominates the other parameters, which is very favorable to the theoretical convergence of the scheme.



322 M. Bossy, J.-F. Jabir and K. Martínez

Table 1. Observed numerical weak error |E[f (XT )] − 1
n

∑n
i=1 f (XT (ωi,2−p))|

Weak Error with �t = 2−p , for p = 2, . . . ,9

Test function p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

Case 1: (B2, σ,α) = (2, 1
10 , 3

2 ) and H5 is valid
f (x) = x 3.397e-2 1.606e-2 7.756e-3 3.823e-3 1.923e-3 1.033e-3 4.965e-4 3.199e-4
f (x) = x2 2.147e-2 1.043e-2 5.102e-3 2.529e-3 1.277e-3 6.864e-4 3.297e-4 2.131e-4

f (x) = e−x2
1.94e-2 9.378e-3 4.568e-3 2.258e-3 1.135e-3 6.06e-4 2.874e-4 1.829e-4

Case 2: (B2, σ,α) = (3,1, 5
4 ) and H5 is not valid, and exp-ES is converging

f (x) = x 2.179e-2 1.069e-2 5.07e-3 2.529e-3 1.32e-3 8.021e-4 2.598e-4 3.043e-4
f (x) = x2 6.412e-3 3.243e-3 1.582e-3 8.397e-4 3.965e-4 2.148e-4 9.101e-5 5.065e-5

f (x) = e−x2
6.113e-3 3.07e-3 1.5e-3 7.5e-4 3.65e-4 1.868e-4 5.625e-5 5.439e-5

Case 3: (B2, σ,α) = (1,1, 3
2 ) and H5 is not valid, and exp-ES is not always converging

f (x) = x 2.3e-2 1.219e-2 5.864e-3 2.893e-3 1.255e-3 9.507e-4 3.13e-4 3.14e-4
f (x) = x2 9.408e-3 5.302e-5 1.749e-4 2.956e-4 8.41e-3 5.95e-4 2.574e-3 2.52e-4

f (x) = e−x2
1.485e-2 8.108e-3 4.162e-3 2.248e-3 1.31e-3 1.164e-3 3.78e-4 2.762e-4

Case 4: (B0,B1,B2, σ,α) = (1,1, 2
5 , 1

10 ,3) and H5 is not valid, and exp-ES is converging
f (x) = x 3.741e-3 3.292e-3 2.103e-3 1.364e-3 6.915e-4 2.936e-4 1.131e-4 5.497e-5
f (x) = x2 2.687e-2 1.332e-2 7.476e-3 4.584e-3 2.302e-3 1.034e-3 4.423e-4 2.312e-4

f (x) = e−x2
5.027e-3 2.846e-4 2.372e-4 2.666e-4 1.545e-4 5.72e-5 2.363e-5 1.529e-5

Case 5: (B0,B1,B2, σ,α) = (0,0,10, 1
2 , 9

8 ) and H5 is valid
f (x) = x 2.735e-3 1.413e-3 7.122e-4 3.69e-4 1.873e-4 9.082e-5 5.053e-5 1.979e-5
f (x) = x2 2.955e-5 1.718e-5 9.153e-6 4.892e-6 2.511e-6 1.226e-6 6.833e-7 2.82e-7

f (x) = e−x2
2.952e-5 1.715e-5 9.128e-6 4.867e-6 2.486e-6 1.201e-6 6.583e-7 2.571e-7

Some comparisons with other schemes. One of the significant advantages of the proposed exp-ES is
that it easily addresses the control of the moments of the numerical approximation (see Lemma 3.2).
We seek now to (numerically) observe the stability of the exponential-Euler scheme. To this aim, we
compare the exp-ES with the following four others numerical approximations proposed in the literature.

Figure 1. Weak approximation error for the exponential-Euler scheme applied to (4.1), with Case 1 to 4 (in
log-log scale), the weak error is compared with the reference slope of order 1 (◦).
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We focus our comparison on time-explicit schemes, simple to implement and applicable to generic drift
b, but our list below it not exhaustive.

• Symmetrized Euler scheme (SES) (see e.g. [4] and the reference therein), defined by

Xtn+1 = ∣∣Xtn − B2X
2α−1
tn

�t + σX
α

tn
(Wtn+1 − Wtn)

∣∣,
which is the closest form of the classical Euler scheme to be applied to SDE (4.1).

• Symmetrized Milstein scheme (SMS) (see, e.g., [6] and the reference therein), defined by

Xtn+1 = ∣∣Xtn − B2X
2α−1
tn

�t + σX
α

tn
(Wtn+1 − Wtn) + ασ 2X

2α−1
tn

(
(Wtn+1 − Wtn)

2 − �t
)∣∣.

• Tamed Euler scheme (TES, see [18]), defined by

Xtn+1 = Xtn − B2X
2α−1
tn

�t

1 + B2|X2α−1
tn

|�t
+ σX

α

tn
(Wtn+1 − Wtn).

• Stopped tamed Euler scheme (STES, see [16] and the reference therein) defined by

Xtn+1 = Xtn + −B2X
2α−1
tn

�t + σX
α

tn
(Wtn+1 − Wtn)

1 + (B2X
2α−1
tn

�t + σX
α

tn
(Wtn+1 − Wtn))

2
1{|Xtn |<exp{√| ln(�t)|}}.

For this comparison, we consider only the case of the test function f (x) = x which should limit insta-
bility problems for all the schemes.

Results are shown in Figure 2 and Table 2. In particular, Table 2 reports on the good stability of the
exp-ES, in comparison with the other schemes. Even with the test function f (x) = x, we experiment
some instability with the tamed schemes when �t is not small enough (marked in Table 2 as - for the
missing values). We also observe abnormally large level of errors for SES (Case 1) and SMS (Cases 1,
3, 5) when �t is not small enough as well.

In terms of convergence rate, the scheme exp-ES behaves very well, in the average of the other
schemes, and even better in Cases 2, 3, 5. On the contrary, Case 3 (where the explicit Euler scheme
is strongly diverging) is particularly unstable for the SMS and TES, STES. The same behavior with a
smaller impact is observed in Case 5.

More detailed numerical experiments are proposed in [21], that test the convergence through differ-
ent cases.

5. Analysis of the backward Kolmogorov PDE related to (1.1)

This section is devoted to the regularity analysis on the solution of the backward Kolmogorov PDE
related to (1.1). Stochastic analysis is used here to establish key estimates on the solution of the PDE.
We consider the flow process (Xx

t ;0 ≤ t ≤ T ) starting from x > 0:

Xx
t = x +

∫ t

0
b
(
Xx

s

)
ds + σ

∫ t

0

(
Xx

s

)α
dWs, ∀t ∈ (0, T ]. (5.1)

According to the Feynman–Kac representation theorem (see, e.g., [19], Chap. V), provided that x �→
Xx

T −t and a given f are smooth enough, the function

u(t, x) = E
[
f

(
Xx

T −t

)]
(5.2)
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Figure 2. The weak error for the exp-ES (+) is compared with the weak error for the SES (×), the SMS (∗), the
STES (���) and the TES (���) in Cases 1, 2, 3, 5 (in log-log scale).

is a natural candidate to be the classical solution to the backward Kolmogorov PDE:

⎧⎨
⎩

∂u

∂t
(t, x) + b(x)

∂u

∂x
(t, x) + σ 2

2
x2α ∂2u

∂2x
(t, x) = 0, for all (t, x) ∈ [0, T ) ×R+,

u(T , x) = f (x), for all x ∈ [0,+∞).

(5.3)

Proposition 5.1. Let f ∈ C4
b(R+). Then, assuming H1, H2’, H3’ and H5, the function u(t, x) in (5.2)

is a solution to the PDE (5.3) of class C1,4([0, T ] ×R+), and there exists a finite constant C such that

‖u‖L∞((0,T )×R+) +
∥∥∥∥∂u

∂x

∥∥∥∥
L∞((0,T )×R+)

≤ C, and for all x ∈ (0,+∞),

sup
t∈[0,T ]

∣∣∣∣∂u

∂t

∣∣∣∣(t, x) ≤ C
(
1 + x2α

)
,

sup
t∈[0,T ]

∣∣∣∣∂2u

∂x2

∣∣∣∣(t, x) ≤ C
(
1 + xγ (2)+1 + x

−γ
(2)

)
,

sup
t∈[0,T ]

∣∣∣∣∂3u

∂x3

∣∣∣∣(t, x) ≤ C
(
1 + xβ + x−β

)
,

sup
t∈[0,T ]

∣∣∣∣∂4u

∂x4

∣∣∣∣(t, x) ≤ C
(
1 + xβ + x

−β)
, (5.4)
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Table 2. Comparison of the weak approximation error for test function f (x) = x. The comparison consider the
following numerical schemes: exponential Euler, Symmetrized Euler and Milstein schemes, Tamed and Stopped
Tamed Euler schemes

Observed weak Error with �t = 2−p

Cases (B2, σ,α) p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

Case 1 (2, 1
10 , 3

2 )

exp-ES 7.866e-2 3.402e-2 1.6e-2 7.829e-3 3.939e-3 1.918e-3 8.92e-4 4.774e-4
SES 1.557e-4 2.866e-4 2.573e-4 1.328e-4 1.747e-4 4.402e-4 4.66e-4 1.602e-4
SMS 9.462e-2 2.272e-2 3.028e-2 1.065e+17 1.480e-2 5.901e-3 3.103e-3 9.497e-4
STES 6.939e-2 5.43e-2 2.969e-2 1.518e-2 7.906e-3 3.383e-3 2.111e-3 6.74e-4
TES 3.419e-2 2.12e-2 1.14e-2 6.091e-3 3.109e-3 1.759e-3 7.997e-4 3.626e-4

Case 2 (3,1, 5
4 )

exp-ES 4.655e-2 2.237e-2 1.05e-2 5.263e-3 2.872e-3 1.489e-3 2.852e-4 2.458e-4
SES 3.815e-1 5.788e-2 4.519e-2 2.219e-2 1.048e-2 4.736e-3 2.434e-3 1.128e-3
SMS 2.813e-1 7.577e-2 3.312e-2 1.59e-2 7.82e-3 3.798e-3 1.86e-3 9.431e-4
STES – – – – 6.596e-3 3.411e-3 5.594e-4 1.895e-3
TES – – – – 4.292e-3 1.177e-3 8.831e-4 2.887e-4

Case 3 (1,1, 3
2 )

exp-ES 1.195e-2 6.353e-3 2.94e-3 1.523e-3 8.059e-4 5.286e-4 3.573e-6 2.319e-5
SES 6.306e-3 6.306e-3 6.384e-3 6.571e-3 6.308e-3 6.416e-3 6.008e-3 5.995e-3
SMS 5.396e-2 1.567e-1 1.841e+6 1.411e-1 1.243e-1 1.178e-1 1.134e-1 1.116e-1
STES – – – – – 5.979e-3 8.053e-3 1.758e-3
TES – – – – – – – 2.715e-3

Case 5 (10, 1
2 , 9

8 )

exp-ES 4.980e-3 2.739e-3 1.416e-3 7.226e-4 3.707e-4 1.837e-4 8.583e-5 4.565e-5
SES 24.287 17.878 4.936e-3 3.262e-3 1.746e-3 9.092e-4 4.598e-4 2.655e-4
SMS 25.272 20.77 4.968e-3 3.556e-3 2.156e-3 1.45e-3 1.336e-3 1.654e-3
STES 5.49e-1 – – 2.849e-3 1.652e-3 8.828e-4 4.905e-4 2.324e-4
TES – – – 2.252e-3 1.21e-3 6.29e-4 3.17e-4 1.938e-4

where γ (i) and γ
(i)

are as in H2’, β is as in H5, and β , β and β are given by

β = 2(γ (2) + 1) ∨ (1 + γ (3)), β = 2γ
(2)

∨ γ
(3)

∨ (γ
(2)

+ 3 − 2α),

β = {(
γ

(2)
∨ (3 − 2α)

) + β
} ∨ {

γ
(2)

+ (
γ

(3)
∨ (4 − 2α)

)} ∨ γ
(4)

.

5.1. Main lines for the proof of Proposition 5.1

The proof of Proposition 5.1 follows the methodology used in [4] that combines some adequate suc-
cessive changes of measure in the Feynman–Kac formula for u and in its derivatives in order to kill

some unsuitable term in the obtained expression for ∂iu
∂xi before to derive it again. More precisely, the

main hypothesis α > 1 allows to derive at most one time the diffusion coefficient x �→ xα , and by
extension x �→ (Xx

t ;0 ≤ t ≤ T ), before to potentially produce some negative power term for higher
order derivative. In contrast, estimates (2.2)–(2.3) embed a local Novikov condition which allows to
control the exponential martingale for the first derivative of the diffusion only (the power 2(α − 1)
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corresponding to the quadratic variation of resulting from this derivative). We present here, briefly and
formally, how we can combine derivatives and change of measure to overcome higher order derivative
of the diffusion before detailing the proof in the rest of this section and in the Appendix B.

Following [4], we introduce the family of processes Xx(λ), with parameter λ > 0, as the solution of
the SDE:

Xx
t (λ) = x +

∫ t

0

{
b
(
Xx

s (λ)
) + λσ 2(Xx

s (λ)
)2α−1}

ds + σ

∫ t

0

(
Xx

s (λ)
)α

dWs, ∀t ∈ (0, T ]. (5.5)

For each λ > 0, Equation (5.5) can be seen as a modification of (5.1) with a drift component x �→ bλ(x)

given by

bλ(x) = b(x) + λσ 2x2α−1 ≤ B1x − Bλ
2 x2α−1 + b(0),

where Bλ
2 := B2 − λσ 2. Due to the locally Lipschitz property of the coefficients (and their derivatives)

in (5.5), the process Xx(λ) is continuously differentiable w.r.t. x (see Protter [24], Theorem V.39)
for P-almost all ω ∈ �. Therefore, we can define the derivative of the flow with respect to the initial
condition x:

J x
t (λ) = dXx

t

dx
(λ), 0 ≤ t ≤ T ,

as the solution to the SDE, for t ∈ (0, T ],⎧⎨
⎩

dJ x
t (λ)

J x
t (λ)

= [
b′(Xx

t (λ)
) + λσ 2(2α − 1)

(
Xx

t (λ)
)2(α−1)]

dt + ασ
(
Xx

t (λ)
)α−1

dWt,

J x
0 (λ) = 1.

(5.6)

Whenever the process (
∫ t

0 (Xx
s (λ))α−1 dWs;0 ≤ t ≤ T ) is a square integrable martingale, J x(λ) admits

the following exponential form (see e.g. [24], Theorem V.52)

J x
t (λ) = exp

{∫ t

0

[
b′(Xx

s (λ)
) + λσ 2(2α − 1)Xx

s (λ)2(α−1) − α2σ 2

2
Xx

s (λ)2(α−1)

]
ds

+ ασ

∫ t

0
Xx

s (λ)α−1 dWs

}
. (5.7)

Now, we may identify the first order derivative of u(t, x) = E[f (Xx
T −t (0))] as:

∂u

∂x
(t, x) = E

[
f ′(Xx

T −t (0)
)
J x

T −t (0)
]
. (5.8)

Before computing the second derivative, we change the measure in the expectation above in order to
eliminate J x

T −t (0) and avoid the problem of the a priori control of d
dx

J x
T −t (0): Consider the Radon–

Nikodym density

dQα

dP

∣∣∣∣
Ft

:= 1

Z(0,α)
t

, with Z(0,α)
t = exp

{
−ασ

∫ t

0

(
Xx

s (0)
)α−1

dBα
s − α2σ 2

2

∫ t

0

(
Xx

s (0)
)2(α−1)

ds

}
,

for (Bα
t ;0 ≤ t ≤ T ) the standard Qα-Brownian motion given by Bα

t = Wt − ασ
∫ t

0 (Xx
s (0))α−1 ds.

Then
∂u

∂x
(t, x) = EQα

[
f ′(Xx

T −t (0)
)
J x

T −t (0)Z(0,α)
T −t

]
.
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From the explicit form of the process J x(0), we recognize

J x
T −t (0) = exp

{∫ T −t

0
b′(Xx

s (0)
)
ds + ασ

∫ T −t

0

(
Xx

s (0)
)α−1

dBα
s + α2σ 2

2

∫ T −t

0

(
Xx

s (0)
)2(α−1)

ds

}
,

and hence, J x
T −t (0)Z(0,α)

T −t = exp{∫ T −t

0 b′(Xx
s (0)) ds}. Moreover, from the identification

LawQα
(Xx(0)) = LawP(Xx(α)), we can rewrite ∂u

∂x
as

∂u

∂x
(t, x) = E

[
f ′(Xx

T −t (α)
)

exp

{∫ T −t

0
b′(Xx

s (α)
)
ds

}]
, (5.9)

which is continuously differentiable in x, with a derivative that depends on the derivative of f ′ and
b′ only. The same procedure can be iterated for other higher order derivative of x �→ u(t, x). But at
each iteration step, the needed assumptions to apply Proposition 2.1 become more constraining to
satisfy according to the increasing value λ introduced after each successive changes of measure, and
corresponding to successive derivatives. Typically, while we add some unbounded term λσ 2x2α−1 to
b, the constant B2 in H3, ensuring the wellposedness for (1.1), must be strengthened to also ensure the
wellposedness and the finiteness of the moments of the solution to (5.5), as well as some moments of
J x(α). This strengthening on B2 is summarized in the following corollary, combining the results of
Proposition 2.1.

Corollary 5.2. Assume H1, H2 and H3. Then, for any λ > 0 such that λ <
B2
σ 2 (and so Bλ

2 = B2 −
λσ 2 > 0), there exists a unique positive strong solution to (5.5). For all q > 0 and p > 0 such that

p ≤ 1
2 + Bλ

2
σ 2 , this solution further satisfies:

sup
t∈[0,T ]

E
[(

Xx
t (λ)

)2p]
< Cp

(
1 + x2p

)
, sup

t∈[0,T ]
E

[(
Xx

t (λ)
)−2q]

< Cq

(
1 + x−2q

)
. (5.10)

The non-negative constants Cp , Cq do not depend on x, but Cp , respectively Cq , may depend on p,
respectively q .

If b(0) = 0, then for all μ ≤ (σ 2+2Bλ
2 )2

8σ 2 ,

sup
t∈[0,T ]

E

[
exp

{
μ

∫ t

0
X2(α−1)

s (λ) ds

}]
< +∞. (5.11)

The estimate (5.11) still holds when b(0) > 0 under the restriction that α > 3
2 , and μ < Bλ

2 σ 2.

In the rest of Section 5, we address rigorously the formal steps described above, validating first the
representation (5.8) in the next section, detailing the change of measure leading to (5.9), before finally
completing the proof of Proposition 5.1.

5.2. Interchanging derivative and expectation

The (sufficient) conditions for the possible interchange between expectation E and derivative with
respect to the initial condition ∂

∂x
are stated in the following.
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Proposition 5.3. Let �,g,h ∈ C([0,+∞)), some continuously differentiable functions satisfying the
following condition: � is bounded and has bounded first derivative in [0,+∞); g is bounded from
above; g′ and h satisfy the following growth conditions: there exist some non-negative constants ρi ,
i = 0, . . . ,5, such that for all x > 0,∣∣h(x)

∣∣ ≤ C
(
1 + xρ4 + x−ρ5

)
,

∣∣h′(x)
∣∣ ≤ C

(
1 + xρ0 + x−ρ1

)
,

∣∣g′(x)
∣∣ ≤ C

(
1 + xρ2 + x−ρ3

)
.

Assume H1, H2’, H3’ and

max

{
1

2
,2(α − 1), ρ0, ρ2 + ρ4, γ (1)

}
≤ 1

2
+ Bλ

2

σ 2
and (2α − 1)λ + α2

2
5 ≤ B ′

2

σ 2
. (�.1)

Then, for any λ ≥ 0, the function defined by

v(t, x) = E

[
�

(
Xx

t (λ)
)

exp

{∫ t

0
g
(
Xx

s (λ)
)
ds

}]
+

∫ t

0
E

[
h
(
Xx

s (λ)
)

exp

{∫ s

0
g
(
Xx

r (λ)
)
dr

}]
ds,

is continuously differentiable in x, with

∂v

∂x
(t, x)

= E

[
exp

{∫ t

0
g
(
Xx

s (λ)
)
ds

}(
�′(Xx

t (λ)
)
J x

t (λ) + �
(
Xx

t (λ)
)∫ t

0
g′(Xx

s (λ)
)
J x

s (λ) ds

)]

+
∫ t

0
E

[
exp

{∫ s

0
g
(
Xx

r (λ)
)
dr

}(
h′(Xx

s (λ)
)
J x

s (λ) + h
(
Xx

s (λ)
)∫ s

0
g′(Xx

r (λ)
)
J x

r (λ) dr

)]
ds.

Since the proof of Proposition 5.3 is rather technical and not in the core of this section, it is postponed
in Appendix A.

5.3. Change of measure

Considering a generic expression coming from the application of Proposition 5.3,

∂v

∂x
(t, x) = E

[
exp

{∫ t

0
g
(
Xx

s (λ)
)
ds

}
�′(Xx

t (λ)
)
J x

t (λ)

]
,

we introduce the change of probability measure that allows to remove the term J x
t (λ) in the expression

above. We consider the process (Bλ+α
t ;0 ≤ t ≤ T ) defined as Bλ+α

t = Wt − ασ
∫ t

0 (Xx
s (λ))α−1 ds.

Then, using Lemma 5.4 below and Girsanov’s theorem, we can construct the probability measure Qλ+α

under which (Bλ+α
t ;0 ≤ t ≤ T ) is a standard Brownian motion, by introducing the Radon–Nikodyn

density

dQλ+α

dP

∣∣∣∣
Ft

= 1

Z(λ,λ+α)
t

, Z(λ,λ+α)
t := e{− α2σ2

2

∫ t
0 (Xx

s (λ))2(α−1) ds−ασ
∫ t

0 Xx
s (λ)α−1 dBλ+α

s }. (5.12)

Lemma 5.4 below gives a sufficient condition for the process Z(λ,λ+α) to be martingale for a given
λ ≥ 0. From the explicit form of the process J x

t (λ) in (5.7), we recognize

J x
t (λ) = exp

{∫ t

0

[
b′(Xx

s (λ)
) + λσ 2(2α − 1)Xx

s (λ)2(α−1)
]
ds

}
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× exp

{∫ t

0

α2σ 2

2
Xx

s (λ)2(α−1) ds + ασ

∫ t

0
Xx

s (λ)α−1 dBλ+α
s

}
.

Hence, by H3’ and (�.1),

J x
t (λ)Z(λ,λ+α)

t = exp

{∫ t

0

[
b′(Xx

s (λ)
) + λσ 2(2α − 1)Xx

s (λ)2(α−1)
]
ds

}
≤ exp

{
B ′

1T
}
.

Moreover, we can easily check the identity LawQλ+α
(Xx(λ)) = LawP(Xx(λ + α)), so that ∂v

∂x
can be

rewrite

∂v

∂x
(t, x) = E

[
e{∫ t

0 [g(Xx
s (λ+α))+b′(Xx

s (λ+α))+λσ 2(2α−1)Xx
s (λ+α)2(α−1)]ds}�′(Xx

t (λ + α)
)]

.

The following lemma is a direct consequence of Novikov’s criterion whose fulfillment is ensured by
applying Corollary 5.2.

Lemma 5.4. Assume H1, H2 and H3’. Assume in addition that B2, α and σ in H3’ satisfy

if b(0) = 0, α ≤ 1

2
+ Bλ

2

σ 2
,

if b(0) > 0,
3

2
< α and α2 ≤ 2Bλ

2 .

(5.13)

Then the process (Mx
t (λ);0 ≤ t ≤ T ) defined by Mx

t (λ) = exp{ασ
∫ t

0 (Xx
s (λ))α−1 dWs − α2σ 2

2 ×∫ t

0 (Xx
s (λ))2(α−1) ds} is a P- martingale.

5.4. Proof of Proposition 5.1

Let us first note that the hypotheses considered in Proposition 5.1, in particular H5, allow to apply
Proposition 5.3 up to λ = 3α.

Estimates on u and ∂u
∂t

. The uniform boundedness of u(t, x) = E[f (Xx
T −t (0))] is an immediate con-

sequence of the boundedness of f . Applying Itô’s formula and since Xx(0) has finite 2αth moment,

u(t, x) = f (x) +
∫ T −t

0
E

[
b
(
Xx

s (0)
)
f ′(Xx

s (0)
)]

ds

+ σE

[∫ T −t

0

(
Xx

s (0)
)α

f ′(Xx
s (0)

)
dWs

]
+ σ 2

2

∫ T −t

0
E

[(
Xx

s (0)
)2α

f ′′(Xx
s (0)

)]
ds

= f (x) +
∫ T −t

0
E

[
b
(
Xx

s (0)
)
f ′(Xx

s (0)
)]

ds + σ 2

2

∫ T −t

0
E

[(
Xx

s (0)
)2α

f ′′(Xx
s (0)

)]
ds.

From this expression, we can deduce that ∂u
∂t

is continuous in [0, T ] ×R+ with∣∣∣∣∂u

∂t

∣∣∣∣(t, x) ≤ C
(
E

[∣∣b(
Xx

T −t (0)
)∣∣] +E

[∣∣Xx
T −t (0)

∣∣2α])
,
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where C is a positive constant depending on α,σ, b,‖f (i)‖∞ for i = 0,1,2. The 2(α − 1)-locally
Lipschitz continuity of the drift b gives us

E
[∣∣b(

Xx
T −t (0)

)∣∣] ≤ C
(
1 +E

[∣∣Xx
T −t (0)

∣∣2α−1])
.

Applying Corollary 5.2 for the control of supt∈[0,T ] E|Xx
t |2α] granted by the condition α ≤ 1

2 + B2
σ 2 in

H5, we obtain

sup
t∈[0,T ]

∣∣∣∣∂u

∂t

∣∣∣∣(t, x) ≤ C
(
1 + x2α

)
.

Estimates on ∂u
∂x

and ∂2u

∂x2 . The differentiability up to order 4 of x �→ u(t, x) relies on the iterative use

of Proposition 5.3 and on rewriting the function ∂j u
∂xj (t, x), j = 0,1,2,3, as

∂ju

∂xj
(t, x) = E

[
fj

(
Xx

T −t (jα)
)

exp

{∫ T −t

0
gj

(
Xx

s (jα)
)
ds

}]

+
∫ T −t

0
E

[
hj

(
s,Xx

s (jα)
)

exp

{∫ s

0
gj

(
Xx

r (jα)
)
dr

}]
ds, (5.14)

for some continuous differentiable functions gj and hj with locally bounded spatial derivatives in
[0,+∞), with gj bounded from above, and fj some bounded continuously differentiable functions
with bounded derivative.

In order to prove the identity (5.9) for ∂u
∂x

, we apply Proposition 5.3 for f0 = f and g0 = h0 ≡ 0 and
a first change of measure. So we need Condition (�.1) to be satisfied for ρi = 0 and λ = 0 and we need
also the hypotheses of Lemma 5.4 satisfied for λ = 0. From (5.9), we immediately get that∣∣∣∣∂u

∂x

∣∣∣∣(t, x) = ∣∣E[
f ′(Xx

T −t (0)
)
J x

T −t (0)
]∣∣ ≤ C

∥∥f ′∥∥∞. (5.15)

Next from (5.9), we identify the form (5.14) with f1 = f ′, g1 = b′(x) (bounded from above, and
with |g′

1(x)| ≤ C(1 + |x|γ (2)+1 + |x|−γ
(2) ) and h(x) ≡ 0. Applying Proposition 5.3 again (with (�.1)

to be satisfied for ρ2 = γ (2) + 1 and λ = α) we obtain that ∂u
∂x

is continuously differentiable in x with
derivative given by

∂2u

∂x2
(t, x)

= E

[
exp

{∫ T −t

0
b′(Xx

s (α)
)
ds

}
f (2)

(
Xx

T −t (α)
)
J x

T −t (α)

]

+E

[
exp

{∫ T −t

0
b′(Xx

s (α)
)
ds

}
f ′(Xx

T −t (α)
) ∫ T −t

0
b(2)

(
Xx

s (α)
)
J x

s (α)ds

]
. (5.16)

Notice that by means of the Markov property and time homogeneity of the process (Xx
s (α);0 ≤ s ≤

T − t) we have

E

[
f ′(Xx

T −t (α)
)

exp

{∫ T −t

s

b′(Xx
r (α)

)
dr

}
|Fs

]
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= E

[
f ′(Xy

T −t−s(α)
)

exp

{∫ T −t−s

0
b′(Xy

r (α)
)
dr

}]∣∣∣∣
y=Xx

s (α)

= ∂u

∂x

(
t + s,Xx

s (α)
)
, (5.17)

where the last equality is obtained from (5.9). Then, we get

∫ T −t

0
E

[
exp

{∫ T −t

0
b′(Xx

r (α)
)
dr

}
f ′(Xx

T −t (α)
)
b(2)

(
Xx

s (α)
)
J x

s (α)

]
ds

=
∫ T −t

0
E

[
exp

{∫ s

0
b′(Xx

r (α)
)
dr

}
b(2)

(
Xx

s (α)
)∂u

∂x

(
t + s,Xx

s (α)
)
J x

s (α)

]
ds.

Substituting the last equality in (5.16),

∂2u

∂x2
(t, x) = E

[
f (2)

(
Xx

T −t (α)
)

exp

{∫ T −t

0
b′(Xx

s (α)
)
ds

}
J x

T −t (α)

]
(5.18)

+
∫ T −t

0
E

[
exp

{∫ s

0
b′(Xx

r (α)
)
dr

}
b(2)

(
Xx

s (α)
)∂u

∂x

(
t + s,Xx

s (α)
)
J x

s (α)

]
ds.

Introducing the change of measure dQ2α

dP
|Ft

:= 1
Z(α,2α)

t

with Z(α,2α) defined in (5.12) (under the con-

ditions (5.13) and (�.1) applied for λ = α), we can observe that (assuming 2B ′
2 ≥ α(2α − 1)σ 2 in

(�.1))

exp

{∫ t

0
b′(Xx

s (α)
)
ds

}
J x

t (α)Z(α,2α)
t

= exp

{∫ t

0

(
2b′(Xx

s (α)
) + ασ 2(2α − 1)Xx

s (α)2(α−1)
)
ds

}
≤ C. (5.19)

So changing the measure in (5.18), with the observation that LawQ2α
(Xx(α)) = LawP(Xx(2α)), and

by the boundedness of the functions ∂u
∂x

and f (2), we obtain

∣∣∣∣∂2u

∂x2

∣∣∣∣(t, x) ≤ CE

[
1 +

∫ T −t

0

∣∣b(2)
(
Xx

s (2α)
)∣∣ds

]

≤ C
(

1 + sup
s∈[0,T ]

E
[∣∣Xx

s (2α)
∣∣γ (2)+1] + sup

s∈[0,T ]
E

[∣∣Xx
s (2α)

∣∣−γ
(2)

])
.

We then apply Corollary 5.2 to conclude on the estimate for the second derivative:

∣∣∣∣∂2u

∂x2

∣∣∣∣(t, x) ≤ C
(
1 + xγ (2)+1 + x

−γ
(2)

)
, (5.20)

under the condition that γ (2) + 1 ≤ 1 + 2B2α
2

σ 2 .
The end of the proof iterates the derivative estimations, and is postponed in Appendix B.
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6. Proof of Proposition 3.3

Introducing the notation

b(t, x, y) = (
x − b(0)δ(t)

) (b(y) − b(0))

y
and σ(t, x, y) = σ

(
x − b(0)δ(t)

)
yα−1.

for which we have

b
(
η(θ),Xη(θ),Xη(θ)

) = b(Xη(θ)) − b(0), σ
(
η(θ),Xη(θ),Xη(θ)

) = σX
α

η(θ),

we can rewrite the dynamics (3.5) as

dXt = (
b(0) + b(t,Xt ,Xη(t))

)
dt + σ(t,Xt ,Xη(t)) dWt , X0 = x. (6.1)

We associate to it, the differential operator

L(t,(y,η(t)))f (t, x) =
{

∂f

∂t
+ (

b(0) + b
)∂f

∂x
+ 1

2
σ 2 ∂2f

∂x2

}
(t, x, y).

Then, applying Itô’s formula to the C1,4 function u along X in the time interval [0, T ], we obtain

E
[
f (XT ) − f (XT )

] = u(0, x) −E
[
u(T ,XT )

]
=

N∑
k=1

E
[
u(tk−1,Xtk−1) − u(tk,Xtk )

]

= −
N∑

k=1

E

[∫ tk

tk−1

L(s,(Xη(s),η(s)))u(s,Xs,Xη(s)) ds

]

−
N∑

k=1

E

[∫ tk

tk−1

σ
(
s,Xη(s),Xη(s)

)∂u

∂x
(s,Xs) dWs

]
.

Lemma 3.2 under H5 allows to control the 2pth moments of the exp-ES process Xt up to the order

2p := 6α + 2β ∨ (β + 2α). By Proposition 5.1, we have for each k = 1, . . . ,N

E

[∫ tk

tk−1

(
σ

∂u

∂x

)2

(s,Xs,Xη(s)) ds

]
≤ C sup

t∈[0,T ]
E

[
X

2α

t

]
< +∞.

Moreover, since u is solution to the Cauchy problem (5.3), we decompose the error in two contribu-
tions:

E
[
f (XT ) − f (XT )

] =
N∑

k=1

E

[∫ tk

tk−1

∂u

∂x
(s,Xs)

(
b(Xs) − b(0) − b(s,Xs,Xη(s))

)

+ 1

2

∂2u

∂x2
(s,Xs)

(
σ 2X

2α

s − σ 2(s,Xs,Xη(s))
)
ds

]

=:
N∑

k=1

E

[∫ tk

tk−1

(
I1

(
s, η(s)

) + 1

2
I2

(
s, η(s)

))
ds

]
. (6.2)
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Notice that the functions b and σ are continuously differentiable with respect to x, and piecewise
continuously differentiable with respect to t on each subintervals [tk, tk+1). These linear functions
in x and t produce constant values as derivatives, only parametrized by y: for all t ∈ (0, T ), for all
(θ, x, y) ∈ (η(t), t) × (0,+∞) × (0,+∞),

∂b

∂θ
(θ, x, y) = −b(0)

(b(y) − b(0))

y
,

∂σ

∂θ
(θ, x, y) = −σb(0)yα−1,

∂b

∂x
(θ, x, y) = (b(y) − b(0))

y
,

∂σ

∂x
(θ, x, y) = σyα−1.

Then, observing that Ii(η(s), η(s)) = 0, we apply Itô’s formula a second time in the interval [η(s), s]
and we obtain the two following decompositions for each s ∈ [tk−1, tk] with k = 1, . . . ,N :

E[I1] = E

[∫ s

η(s)

{
∂2u

∂t∂x

(
b − b(0) − b

) + ∂b

∂t

∂u

∂x

}
(θ,Xθ ,Xη(θ)) dθ

]

+E

[∫ s

η(s)

{(
b(0) + b

)(∂2u

∂x2

(
b − b(0) − b

) +
(

b′ − ∂b

∂x

)
∂u

∂x

)}
(θ,Xθ ,Xη(θ)) dθ

]

+E

[∫ s

η(s)

{
σ

(
∂2u

∂x2

(
b − b(0) − b

) +
(

b′ − ∂b

∂x

)
∂u

∂x

)}
(θ,Xθ ,Xη(θ)) dWθ

]

+E

[∫ s

η(s)

{
1

2
σ 2

(
∂3u

∂x3

(
b − b(0) − b

) + 2

(
b′ − ∂b

∂x

)
∂2u

∂x2
+ b(2) ∂u

∂x

)}
(θ,Xθ ,Xη(θ)) dθ

]

=: E[
I 1

1

] +E
[
I 2

1

] +E
[
I 3

1

] +E
[
I 4

1

]
,

E[I2] = E

[∫ s

η(s)

{
∂3u

∂t∂x2

(
σ 2X

2α

θ − σ 2) + 2σb(0)X
α−1
η(θ)σ

∂2u

∂x2

}
(θ,Xθ ,Xη(θ)) dθ

]

+E

[∫ s

η(s)

(
b(0) + b

) ∂

∂x

{
∂2u

∂x2

[
σ 2X

2α

θ − σ 2]}(θ,Xθ ,Xη(θ)) dθ

]

+E

[∫ s

η(s)

{
σ

∂

∂x

{
∂2u

∂x2

[
σ 2X

2α

θ − σ 2]}}
(θ,Xθ ,Xη(θ)) dWθ

]

+ σ 2

2
E

[∫ s

η(s)

(
Xθ − b(0)δ(θ)

)2
X

2α−2
η(θ)

∂2

∂x2

{
∂2u

∂x2

[
σ 2X

2α

θ − σ 2]}(θ,Xθ ,Xη(θ)) dθ

]

=: E[
I 1

2

] +E
[
I 2

2

] +E
[
I 3

2

] + σ 2

2
E

[
I 4

2

]
.

We use again the backward Kolmogorov PDE (5.3) to compute the time derivatives

∂2u

∂t∂x
(t, x) = −b′(x)

∂u

∂x
(t, x) − b(x)

∂2u

∂x2
(t, x) − σ 2αx2α−1 ∂2u

∂x2
(t, x) − σ 2

2
x2α ∂3u

∂x3
(t, x).

∂3u

∂t∂x2
(t, x) =

{
−b(2) ∂u

∂x
−(

b + 2σ 2αx2α−1)∂3u

∂x3

− (
2b′ + σ 2α(2α − 1)x2α−2)∂2u

∂x2
− σ 2

2
x2α ∂4u

∂x4

}
(t, x).



334 M. Bossy, J.-F. Jabir and K. Martínez

From H2’ we have for all x ≥ 0 ∣∣b(x) − b(0)
∣∣ ≤ C

(
1 + x2α−2)x. (6.3)

The key of the proof is to upper bound each I i
j by combining the estimates of the derivatives of u,

the polynomial growth of the drift and diffusion coefficients and its derivatives, with upper-bounds
of moments of the exp-ES process obtained from Lemma 3.2. By considering the following Young
inequality for arbitrary m,n ≥ 0,

|Xθ |m|Xη(θ)|n ≤ C sup
r∈[0,T ]

|Xr |m+n, (6.4)

we get

E
[∣∣I i

j

∣∣] ≤ C
(

1 + sup
0≤θ≤T

E
[
X

βi,j

θ

])(
s − η(s)

)
, (6.5)

for all j = 1,2, i = 1,2,4 and some βi,j ∈ [0,2β]. Then, substituting (6.5) in (6.2) we recover the rate
of order one for the weak approximation error:

∣∣E[
f (XT ) − f (XT )

]∣∣ ≤ C

N∑
k=1

∫ tk

tk−1

(
s − η(s)

)
ds ≤ C�t.

We detail the analysis of the first term |I 1
1 |:

E
[∣∣I 1

1

∣∣] ≤ E

[∫ s

η(s)

{∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣(θ,Xθ )
(∣∣b(Xθ) − b(0)

∣∣ + ∣∣b(θ,Xθ ,Xη(θ))
∣∣)

+ b(0)

∣∣∣∣∂u

∂x

∣∣∣∣(θ,Xθ )
|b(Xη(θ)) − b(0)|

Xη(θ)

}
dθ

]
,

where, from Proposition 5.1, (3.6) and (6.3), we have

∣∣∣∣∂u

∂x

∣∣∣∣(θ,Xθ )
|b(Xη(θ)) − b(0)|

Xη(θ)

≤ C
|b(Xη(θ)) − b(0)|

Xη(θ)

≤ C
(
1 + X

2α−2
η(θ)

)
,

∣∣b(Xθ ) − b(0)
∣∣ + ∣∣b(θ,Xθ ,Xη(θ))

∣∣ ≤ CXθ

(
1 + X

2α−2
θ + X

2α−2
η(θ)

)
,

and∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣(t, x) ≤ ∣∣b′∣∣∣∣∣∣∂u

∂x

∣∣∣∣(t, x) + (∣∣b(x)
∣∣ + σ 2αx2α−1)∣∣∣∣∂2u

∂x2

∣∣∣∣(t, x) + σ 2

2
x2α

∣∣∣∣∂3u

∂x3

∣∣∣∣(t, x)

≤ C
{
1 + xγ (1)+1 + x

−γ
(1) + (

1 + x2α−1)(1 + xγ (2)+1 + x
−γ

(2)
) + (

xβ+2α + x2α−β
)}

.

Remaining with the biggest ± exponent (using from Lemma 1.2 that γ
(i)

≤ γ
(i+1)

, i = 1,2,3),

x

∣∣∣∣ ∂2u

∂t∂x

∣∣∣∣(t, x) ≤ C
{
xβ+2α+1 + x

(1−γ
(2)

)∧(2α+1−β)}
, (6.6)
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where β = 2(γ (2) + 1) ∨ (1 + γ (3)) and β = 2γ
(2)

∨ γ
(3)

∨ (γ
(2)

+ 3 − 2α). Therefore, we get

E
[∣∣I 1

1

∣∣] ≤ CE

[∫ s

η(s)

{
1 + X

2α−2
η(θ) + X

4α−1+β

θ + X
2α−2
η(θ) X

2α+1+β

θ + X
(1−γ

(2)
)∧(2α+1−β)

θ

}
dθ

]
.

Since we do not have a priori control of negative moments of X, we must impose γ
(2)

≤ 1 and γ
(3)

≤
2α + 1. Thus, from (6.4), we obtain as desired

E
[∣∣I 1

1

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α−1+β

r

])(
s − η(s)

)
.

The remaining terms can be bounded similarly. Explicitly, we get the following bounds

E
[∣∣I 3

1

∣∣2] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

6α+2γ (2)

r + X
2−2γ

(1)
r

])(
s − η(s)

)
,

E
[∣∣I 3

2

∣∣2] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

6α+2β

r + X
4−2γ

(2)
r + X

6−2β

r

])(
s − η(s)

)
,

that ensure that the stochastic integrals are martingales, and

E
[∣∣I 2

1

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α−2+γ (2)

r + X
−γ

(1)
r + X

1−γ
(2)

r

])(
s − η(s)

)
,

E
[∣∣I 4

1

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α−1+β

r + X
2−γ

(2)
−γ

(1)
r + X

3−β

r

])(
s − η(s)

)
,

E
[∣∣I 1

2

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α+β

r + X
1−γ

(2)
r + X

2α+2−β

r + X
2−β

r

])(
s − η(s)

)
,

E
[∣∣I 2

2

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α−1+β

r + X
1−γ

(2)
r + X

2−β

r

])(
s − η(s)

)
,

E
[∣∣I 4

2

∣∣] ≤ C
(

1 + sup
r∈[0,T ]

E
[
X

4α+β

r + X
2−γ }(2)

r + X
4−β

r + X
3−β

r

])(
s − η(s)

)
.

In the previous inequalities, we observe that H4 eliminates all possible negative moments in the I i
j : for

|I 2
1 |, H4 imposes γ

(1)
= 0. Similarly, for |I 1

2 | and |I 4
2 | and the definition of β , β in Proposition 5.1,

H4 imposes γ
(2)

≤ 1, γ
(3)

≤ 2 and γ
(4)

≤ 4, respectively. Further, the terms |I 1
2 | and |I 3

2 | contain

the highest moments to be controlled, 4α + β and 6α + 2β , both are less than the moment order

6α + 2β ∨ (β + 2α) imposed by H5.

Appendix A: Proof of Proposition 5.3

The proof of Proposition 5.3 can be summarized as follows: the goal is to show that E[ 1
ε
(�(Xx+ε

t (λ))−
�(Xx

t (λ)))] tends to E[�′(Xx
t (λ))J x

t (λ)] when ε tends to 0. Introducing the process

J
x,ε
t (λ) := Xx+ε

t (λ) − Xx
t (λ)

ε
, (A.1)
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we start with the following decomposition

E

[
1

ε

(
�

(
Xx+ε

t (λ)
) − �

(
Xx

t (λ)
)) − �′(Xx

t (λ)
)
J x

t

]

= E

[
J

x,ε
t (λ)

∫ 1

0
�′(Xx

t (λ) + θεJ
x,ε
t (λ)

)
dθ − �′(Xx

t (λ)
)
J x

t (λ)

]

= E

[(
J

x,ε
t (λ) − J x

t (λ)
) ∫ 1

0
�′(Xx

t (λ) + θεJ
x,ε
t (λ)

)
dθ

]

+E

[
J x

t (λ)

∫ 1

0

(
�′(Xx

t (λ) + θεJ
x,ε
t (λ)

) − �′(Xx
t (λ)

))
dθ

]
. (A.2)

The convergence E[|J x,ε
t (λ) − J x

t (λ)|] → 0, when ε tends to 0, is thus a crucial step of the proof and
we first establish this result, together with some dedicated estimates on processes J x,ε(λ) and J x(λ)

in the next subsection.

A.1. Preliminary estimations

The process J x,ε(λ) in (A.1) satisfies the linear SDE

J
x,ε
t (λ) = 1 +

∫ t

0
J x,ε

s (λ)
(
ξε
s ds + σψε

s dWs + λσ 2φε
s ds

)
, (A.3)

where we have defined

ξε
t :=

∫ 1

0
b′(Xx

t (λ) + θεJ
x,ε
t (λ)

)
dθ, ψε

t :=
∫ 1

0

(
Xx

t (λ) + θεJ
x,ε
t (λ)

)α−1
dθ and

φε
t :=

∫ 1

0

(
Xx

t (λ) + θεJ
x,ε
t (λ)

)2(α−1)
dθ.

As J
x,ε
t (λ) > 0 a.s., these auxiliary processes may also write

ξε
t = b(Xx+ε

t (λ)) − b(Xx
t (λ))

Xx+ε
t (λ) − Xx

t (λ)
, ψε

t = (Xx+ε
t (λ))α − (Xx

t (λ))α

Xx+ε
t (λ) − Xx

t (λ)
,

φε
t = (Xx+ε

t (λ))2α−1 − (Xx
t (λ))2α−1

Xx+ε
t (λ) − Xx

t (λ)
.

The L2-continuity of x �→ J x
t (λ) is stated in the following Lemma A.2. In a separate step, Lemma A.1

asserts the finiteness of the moments of the processes J x,ε(λ) and J x(λ) as well as the Lq -continuity
of x �→ Xx

t (λ).

Lemma A.1. Assume H1, H2, H3’ and

max

{
1

2
,2(α − 1)

}
≤ 1

2
+ Bλ

2

σ 2
. (�.2)
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Then, for all q > 0 such that (2α − 1)λ+ α2

2 (q − 1) ≤ B ′
2

σ 2 , the processes J x,ε(λ) and J x(λ), respective
solutions to (A.3) and (5.6), satisfy

sup
t∈[0,T ]

E
[(

J x
t (λ)

)q] + sup
t∈[0,T ]

E
[(

J
x,ε
t (λ)

)q] ≤ 2 exp
{
qB ′

1T
}
, and (A.4)

lim
ε→0

sup
t∈[0,T ]

E
[∣∣Xx+ε

t (λ) − Xx
t (λ)

∣∣q] = 0. (A.5)

Lemma A.2. Assume H1, H2’, H3’ and

max

{
1

2
,2(α − 1), γ (1)

}
≤ 1

2
+ Bλ

2

σ 2
and (2α − 1)λ + α2

2
5 ≤ B ′

2

σ 2
, (�.3)

for the constants B2,B
′
2, σ,α, γ (1) as in H2’ and H3’. Then, for all t ∈ [0, T ],

lim
ε→0

E
[∣∣J x

t (λ) − J
x,ε
t (λ)

∣∣2] = 0.

To simplify notation, we omit the dependence in λ in the processes Xx,Xx,ε, J x, J x,ε in the lemmas
proof.

Proof of Lemma A.1. We consider first the process J x,ε satisfying the linear SDE (A.3). From Corol-
lary 5.2 with Condition �.2,

E
[∣∣φε

t

∣∣2] ≤ E

[∫ 1

0

(
Xx

t + εθJ
x,ε
t

)4(α−1)
dθ

]
≤ C

{
E

[(
Xx

t

)4(α−1)] +E
[(

Xx+ε
t

)4(α−1)]}
< C,

E
[∣∣ψε

t

∣∣2] ≤ E

[∫ 1

0

(
Xx

t + εθJ
x,ε
t

)2(α−1)
dθ

]
≤ C

{
E

[(
Xx

t

)2(α−1)] +E
[(

Xx+ε
t

)2(α−1)]}
< C.

Similarly, using the 2(α − 1)-locally Lipschitz property of b in H2

E
[∣∣ξε

t

∣∣2] ≤ E

[∣∣∣∣b(Xx+ε
t ) − b(Xx

t )

Xx+ε
t − Xx

t

∣∣∣∣2]
≤ C

(
1 +E

[(
Xx

t

)4(α−1)] +E
[(

Xx+ε
t

)4(α−1)]) ≤ C.

Therefore, (
∫ t

0 ψε
s dWs;0 ≤ t ≤ T ) is a square integrable martingale, Equation (A.3) admits a unique

strong solution given by the following exponential form (see, e.g., [24], Thm V.52)

J
x,ε
t = exp

{∫ t

0
ξε
s ds + (2α − 1)λσ 2

∫ t

0
φε

s ds + ασ

∫ t

0
ψε

s dWs − α2σ 2

2

∫ t

0

(
ψε

s

)2
ds

}
. (A.6)

In turn, J
x,ε
t ≥ 0 yields the increasing property of the flow, Xx+ε

t ≥ Xx
t , and the increasing property of

the map θ �→ (Xx
t + εθJ

x,ε
t ) in [0,1], from which we obtain the following relation

(
Xx

t

)2(α−1) ≤ φε
t ≤ (

Xx+ε
t

)2(α−1)
,(

Xx
t

)α−1 ≤ ψε
t ≤ (

Xx+ε
t

)α−1
.

(A.7)
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From the exponential form (A.6), for all q > 0,

(
J

x,ε
t

)q = exp

{
(2α − 1)qλσ 2

∫ t

0
φε

s ds + q

∫ t

0
ξε
s ds + αqσ

∫ t

0
ψε

s dWs − α2σ 2

2
q

∫ t

0

(
ψε

s

)2
ds

}

≤ exp
{
qtB ′

1

}
exp

{
qσ 2

∫ t

0

(
(2α − 1)λ − B ′

2

σ 2

)
φε

s ds + (q − 1)
qσ 2α2

2

∫ t

0

(
ψε

s

)2
ds

}

× exp

{
αqσ

∫ t

0
ψε

s dWs − α2σ 2

2
q2

∫ t

0

(
ψε

s

)2
ds

}
,

where the last inequality is obtained from H3’: ξε
t ≤ B ′

1 − B ′
2φ

ε
t . Since (ψε

t )2 ≤ φε
t , by choosing q > 0

such that (2α − 1)λ + α2

2 (q − 1) ≤ B ′
2

σ 2 , we get

(
J

x,ε
t

)q ≤ exp
{
qB ′

1t
}

exp

{
αqσ

∫ t

0
ψε

s dWs − α2q2σ 2

2

∫ t

0

(
ψε

s

)2
ds

}
.

Since the process in the right hand-side is a supermartingale, we have for all t ∈ [0, T ],
E

[(
J

x,ε
t

)q] ≤ exp
{
qB ′

1T
}
,

and from this, we deduce that E[|Xx+ε
t − Xx

t |q ] ≤ εq exp{qB ′
1T } tends to 0 with ε.

The exponential form (5.7) allows to replicate the computation above for the process J x , and con-
clude similarly that for all t ∈ [0, T ], E[(J x

t )q ] ≤ exp{qB ′
1T }.

Proof of Lemma A.2. Consider the difference Ex,ε
t := J x

t − J
x,ε
t , which can be rewritten, using the

SDEs (5.6) and (A.3), as

Ex,ε
t = λσ 2(2α − 1)

∫ t

0
J x,ε

s

[(
Xx

s

)2(α−1) − φε
s

]
ds + λσ 2(2α − 1)

∫ t

0

(
Ex,ε

s

)(
Xx

s

)2(α−1)
ds

+
∫ t

0
J x,ε

s

[
b′(Xx

s

) − ξε
s

]
ds +

∫ t

0

(
Ex,ε

t

)
b′(Xx

s

)
ds

+ ασ

∫ t

0

[(
Xx

s

)α−1 − ψε
s

]
J x,ε

s dWs + ασ

∫ t

0

(
Ex,ε

t

)(
Xx

s

)α−1
dWs.

Introducing the stopping time τM := {0 ≤ t ≤ T : J x
t − J

x,ε
t ≥ M}, with M > 0, Itô’s formula yields

E
[∣∣Ex,ε

t∧τM

∣∣2] = 2λσ 2(2α − 1)E

[∫ t∧τM

0
Ex,ε

s J x,ε
s

[(
Xx

s

)2(α−1) − φε
s

] + (
Ex,ε

s

)2(
Xx

s

)2(α−1)
ds

]

+ 2E

[∫ t∧τM

0
Ex,ε

s J x,ε
s

[
b′(Xx

s

) − ξε
s

] + (
Ex,ε

s

)2
b′(Xx

s

)
ds

]

+ α2σ 2E

[∫ t∧τM

0

([(
Xx

s

)α−1 − ψε
s

]
J x,ε

s + Ex,ε
s

(
Xx

s

)α−1)2
ds

]
. (A.8)

Using (A.7), there exists a non-negative constant C independent on ε and M such that

φε
t − (

Xx
t

)2(α−1) ≤ (
Xx+ε

t

)2(α−1) − (
Xx

t

)2(α−1) ≤ εCJ
x,ε
t

(∣∣Xx+ε
t

∣∣2α−3 + ∣∣Xx
t

∣∣2α−3)
,

ψε
t − (

Xx
t

)α−1 ≤ (
Xx+ε

t

)α−1 − (
Xx

t

)α−1 ≤ εCJ
x,ε
t

(∣∣Xx+ε
t

∣∣α−2 + ∣∣Xx
t

∣∣α−2)
,
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and

E
[∣∣(J x,ε

t

)2((
Xx

t

)2(α−1) − φε
t

)∣∣] ≤ εCE
[∣∣(J x,ε

t

)3(∣∣Xx+ε
t

∣∣2α−3 + ∣∣Xx
t

∣∣2α−3)∣∣],
E

[∣∣J x,ε
t J x

t

((
Xx

t

)2(α−1) − φε
t

)∣∣] ≤ εCE
[∣∣(J x,ε

t

)2
J x

t

(∣∣Xx+ε
t

∣∣2α−3 + ∣∣Xx
t

∣∣2α−3)∣∣],
E

[∣∣(J x,ε
t

)2((
Xx

t

)(α−1) − ψε
t

)2∣∣] ≤ εCE
[(

J
x,ε
t

)3(∣∣Xx+ε
t

∣∣2α−3 + ∣∣Xx
t

∣∣2α−3)]
.

(A.9)

Condition (�.3) on B ′
2 allows to bound up to E[(J x,ε

t )6], and on Bλ
2 allows to bound up to

E[|Xx
t |4(α−1)]. Similarly, from the (γ (1), γ (1)

)-locally Lipschitz property of b′, there exists a constant
C ≥ 0 independent on ε and M such that

E
[∣∣(J x,ε

t

)2(
b′(Xx

t

) − ξε
t

)∣∣] = E

∣∣∣∣(J x,ε
t

)2
∫ 1

0

(
b′(Xx

t

) − b′(Xx
t + θεJ

x,ε
t

))
dθ

∣∣∣∣
≤

∫ 1

0

[
E

∣∣(J x,ε
t

)2∣∣b′(Xx
t

) − b′(Xx
t + εθJ

x,ε
t

)||]dθ

≤ εCE
[∣∣(J x,ε

t

)2(1 + (
Xx+ε

t

)γ (1) + (
Xx

t

)−γ
(1)

)∣∣],
E

[∣∣J x,ε
t J x

t

(
b′(Xx

t

) − ξε
t

)∣∣] ≤ εCE
[∣∣J x,ε

t J x
t

(
1 + (

Xx+ε
t

)γ (1) + (
Xx

t

)−γ
(1)

)∣∣],

(A.10)

and E[|Xx
t |2γ (1)] is bounded under (�.3).

In (A.8), summing separately the three terms multiplying (Ex,ε
s )2, using H3’ and next the Condition

�.3 on B ′
2 we get

(
Ex,ε

s

)2[2λσ 2(2α − 1)
(
Xx

t

)2(α−1) + 2b′(Xx
s

) + 2α2σ 2(Xx
s

)2(α−1)]
≤ (

Ex,ε
s

)2[2λσ 2(2α − 1)
(
Xx

t

)2(α−1) + 2B ′
1 − 2B ′

2

(
Xx

s

)2(α−1) + α2σ 2(Xx
s

)2(α−1)]
≤ 2B ′

1

(
Ex,ε

s

)2
.

Coming back to (A.8) using inequalities (A.9) and (A.10), and Ex,ε ≤ J
x,ε
t + J x

t ,

E
[∣∣Ex

t∧τM

∣∣2] ≤ Cε + 2B ′
1

∫ t

0
E

[∣∣Ex
s∧τM

∣∣2]
ds.

Applying Gronwall’s lemma, we obtain E(Ex,ε
t∧τM

)2 ≤ Cε for all t ∈ [0, T ]. We end this proof by taking
limits M → +∞ and ε → 0.

A.2. Proof of Proposition 5.3

To simplify notation we omit the dependence on λ in the processes and prove the result for h ≡ 0. In
order to prove the interchange between expectation and ∂

∂x
we must show the equality

lim
ε→0

1

ε
E

[
�

(
Xx+ε

t

)
e{Yx+ε

t } − �
(
Xx

t

)
e{Yx

t }] = E

[(
�′(Xx

t

)
J x

t + �
(
Xx

t

)dY x
t

dx

)
e{Yx

t }
]
, (A.11)
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introducing the process (Y x
t := ∫ t

0 g(Xx
s ) ds;0 ≤ t ≤ T ), with derivative dY x

t

dx
= ∫ t

0 g′(Xx
s )J x

s ds. Fol-
lowing the decomposition (A.2), we rewrite the difference

E

[∣∣∣∣1

ε

(
�

(
Xx+ε

t

)
exp

{
Yx+ε

t

} − �
(
Xx

t

)
exp

{
Yx

t

}) −
(

�′(Xx
t

)
J x

t + �
(
Xx

t

)dY x
t

dx

)
exp

{
Yx

t

}∣∣∣∣
]

≤ E

[∣∣∣∣(J x,ε
t exp

{
Yx+ε

t

} − J x
t exp

{
Yx

t

})∫ 1

0
�′(Xx

t + θεJ
x,ε
t

)
dθ

∣∣∣∣
]

+E

[∣∣∣∣J x
t exp

{
Yx

t

}∫ 1

0

(
�′(Xx

t + θεJ
x,ε
t

) − �′(Xx
t

))
dθ

∣∣∣∣
]

+E

[∣∣∣∣�(
Xx

t

)(Yx+ε
t − Yx

t

ε
− dY x

t

dx

)∫ 1

0
exp

{
Yx

t + θ
(
Yx+ε

t − Yx
t

)}
dθ

∣∣∣∣
]

+E

[∣∣∣∣�(
Xx

t

)dY x
t

dx

∫ 1

0

(
exp

{
Yx

t + θ
(
Yx+ε

t − Yx
t

)} − exp
{
Yx

t

})
dθ

∣∣∣∣
]

:= E
[∣∣Aε

t

∣∣] +E
[∣∣Bε

t

∣∣] +E
[∣∣Cε

t

∣∣] +E
[∣∣Dε

t

∣∣], (A.12)

and we analyze separately the limit, when ε tends to 0, of each term in the right-hand side of (A.12).
Notice that g being bounded from above, all the exponential terms above are bounded.

Since |�′| and E[|J x
t exp{Yx

t }|] are bounded, the second term E[|Bε
t |] is uniformly integrable. More-

over, �′ is continuous, and, under the hypotheses (�.1), according to Lemma A.1, Xx+ε
t converges in

L4 and then in probability to Xx
t when ε tends to 0. Therefore, we can apply the Lebesgue dominated

convergence theorem, obtaining (up to a subsequence still denoted by ε) that limε→0 E[|Bε
t |] = 0.

Similarly, since |�| and E[| dY x
t

dx
|] ≤ E[∫ t

0 |g′(Xx
s )J x

s |ds] are bounded according to E[|(J x
s )2|] and

E[|(Xx
s )2ρ2 |], the sequence Dε

t is uniformly integrable. Then, by the convergence in probability of
Yx+ε

t towards Yx
t obtained from the following bound,

E
[∣∣Yx+ε

t − Yx
t

∣∣] = εE

[∣∣∣∣
∫ t

0
J x,ε

s

∫ 1

0
g′(Xx

s + εθJ x,ε
s

)
dθds

∣∣∣∣
]

≤ Cε

∫ t

0
E1/2[∣∣J x,ε

s

∣∣2]
E1/2[1 + ∣∣Xx+ε

s

∣∣2ρ2 + ∣∣Xx
s

∣∣−2ρ3
]
ds,

we obtain (again up to a subsequence) that limε→0 E[|Dε
t |] = 0.

For E[|Aε
t |], we use Cauchy–Schwarz inequality, from which we get

E
[∣∣Aε

t

∣∣] ≤ E

[∣∣J x,ε
t − J x

t

∣∣ exp
{
Yx+ε

t

}∫ 1

0

∣∣�′(Xx
t + θεJ

x,ε
t

)∣∣dθ

]

+E

[
J x

t

∣∣exp
{
Yx+ε

t

} − exp
{
Yx

t

}∣∣ ∫ 1

0

∣∣�′(Xx
t + θεJ

x,ε
t

)∣∣dθ

]

≤ C

(
E

[∫ 1

0

∣∣�′(Xx
t + θεJ

x,ε
t

)∣∣2
dθ

])1/2(
E

[∣∣J x,ε
t − J x

t

∣∣2])1/2

+
(
E

[∫ 1

0

∣∣�′(Xx
t + θεJ

x,ε
t

)∣∣2
dθ

])1/2(
E

[(
J x

t exp
{
Yx+ε

t

} − J x
t exp

{
Yx

t

})2])1/2

≤ CE1/2[∣∣J x,ε
t − J x

t

∣∣2] + CE1/2[(J x
t exp

{
Yx+ε

t

} − J x
t exp

{
Yx

t

})2]
.
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Therefore, by Lemma A.2 and Lebesgue’s theorem, E[|Aε
t |] converges to 0 when ε tends to 0.

Finally, for E[|Cε
t |],

E
[∣∣Cε

t

∣∣] ≤ CE

[∣∣∣∣Yx+ε
t − Yx

t

ε
− dY x

t

dx

∣∣∣∣
]

≤ C

∫ t

0
E

[∣∣∣∣g(Xx+ε
s ) − g(Xx

s )

ε
− g′(Xx

s

)
J x

s

∣∣∣∣
]

ds

≤ C

∫ t

0

{
E

[∣∣∣∣(J x,ε
s − J x

s

)∫ 1

0
g′(Xx

s + εθJ x,ε
s

)
dθ

∣∣∣∣
]

+E

[∣∣∣∣J x
s

∫ 1

0

(
g′(Xx

s + εθJ x,ε
s

) − g′(Xx
s

))
dθ

∣∣∣∣
]}

ds,

and we conclude that limε→0 E[|Cε
t |] = 0 with similar arguments to those used for Aε

t .
Coming back to (A.12), we obtain the convergence to zero, up to a subsequence {εk}k≥1, of its

right-hand side. Therefore, by uniqueness of the limit, we deduce the convergence in (A.11).
The condition (�.1) makes the intersection of Conditions (�.2) and (�.3) with the highest p-

moment order needed to obtain the convergence in (A.11). When h is not reduced to zero, it
is sufficient for the proof to control sup0≤s,t≤T E[|g′(Xx

t )h(Xx
s )|2 + |h′(Xx

t )|2] by the moments

sup0≤t≤T E[|Xx
t |2(ρ2+ρ4) + |Xx

t |2ρ0 ] which are finite when max{ρ0, ρ2 + ρ4} ≤ 1
2 + Bλ

2
σ 2 .

Appendix B: Final step for the proof of Proposition 5.1

We define for some non-negative integers n,m, the function b̃n,m as

b̃n,m(x) = nb′(x) + mασ 2(2α − 1)x2(α−1), ∀x ≥ 0,

with, for j = 0,1,2,3, and using the fact that 2α − 1 ≤ γ (j+1) + j (see H2’),

∣∣̃b(j)
n,m

∣∣(x) ≤ Cn,m

(
1 + x

−(γ
(j+1)

∨(j−2(α−1)) + xγ (j+1)+1),∣∣̃b(j)

n,0

∣∣(x) ≤ Cn

(
1 + x

−γ
(j+1) + xγ (j+1)+1), (B.1)

with the help of Lemma 1.2, From (5.18) and (5.19), we get

∂2u

∂x2
(t, x)

= E

[
f (2)

(
Xx

T −t (2α)
)

exp

{∫ T −t

0
b̃2,1

(
Xx

s (2α)
)
ds

}]

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃2,1

(
Xx

s (2α)
)
ds

}
b̃′

1,0

(
Xx

s (2α)
)∂u

∂x

(
t + s,Xx

s (2α)
)]

ds. (B.2)

We identify (B.2) with the form (5.14) with

f2 = f (2) bounded,
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g2 = b̃2,1 bounded from above (assuming 2B ′
2 ≥ α(2α − 1)σ 2 ) with∣∣g′

2

∣∣(x) ≤ C
(
1 + x

−(γ
(2)

∨3−2α) + xγ (2)+1),
h2 = b̃′

1,0
∂u

∂x
with, using (5.15), |h2|(x) ≤ (

1 + x(γ (2)+1) + x
−γ

(2)
)
.

Using (B.1) on b̃, and the control of ∂2u

∂x2 in (5.20), we determine the powers involved in the upper

bound of |h′
2| (that will coincide with the moments to bound for the control of ∂3u

∂x3 ) by evaluating

b̃′
3,1(x)

∂2u

∂x2
(·, x) + b̃

(2)
1,0(x)

� (
1 + x

−(γ
(2)

∨(3−2α)) + xγ (2)+1)(1 + xγ (2)+1 + x
−γ

(2)
) + x

−γ
(3) + xγ (3)+1 � 1 + xβ + xβ,

(using the Hardy symbol � as asymptotic notation) and hence |h′
2|(x) ≤ (1 + xβ + x−β), with

β := 2(γ (2) + 1) ∨ (γ (3) + 1) and β := 2γ
(2)

∨ (γ
(2)

+ 3 − 2α) ∨ γ
(3)

.

Therefore, we apply Proposition 5.3 with ρ0 = β , ρ2 = ρ4 = γ (2) + 1, that must satisfy Condition �.1
for λ = 2α:

∂3u

∂x3
(t, x)

= E

[
exp

{∫ T −t

0
b̃2,1

(
Xx

s

)
ds

}(
f (3)

(
Xx

T −t

)
J x

T −t + f (2)
(
Xx

T −t

)∫ T −t

0
b̃′

2,1

(
Xx

s

)
J x

s ds

)]

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃2,1

(
Xx

s

)
ds

}
b̃′

1,0

(
Xx

s

)∂u

∂x

(
t + s,Xx

s

)∫ s

0
b̃′

2,1

(
Xx

r

)
J x

r dr

]
ds

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃2,1

(
Xx

s

)
ds

}
b̃′

1,0

(
Xx

s

)∂2u

∂x2

(
t + s,Xx

s

)
J x

s

]
ds

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃2,1

(
Xx

s

)
ds

}
b̃

(2)
1,0

(
Xx

s

)∂u

∂x

(
t + s,Xx

s

)
J x

s

]
ds, (B.3)

where we write Xx and J x for Xx(2α) and J x(2α).

Estimates on ∂3u

∂x3 and ∂4u

∂x4 . We apply the same technique as for the second derivative, namely, we
rewrite the second and fourth terms of the sum in (B.3), using the Markov property and time homo-
geneity of the process (Xx

s (2α);0 ≤ s ≤ T − t) for the second term in f (2) in (B.3):

E

[
f (2)

(
Xx

T −t

)
exp

{∫ T −t

s

b̃2,1
(
Xx

s

)
ds

}
|Fs

]

= E

[
f (2)

(
X

y
T −t−s

)
exp

{∫ T −t−s

0
b̃2,1

(
X

y
r

)
dr

}]∣∣∣∣
y=Xx

s

= ∂2u

∂x2

(
t + s,Xx

s

) −
∫ T −t−s

0
E

[
exp

{∫ r

0
b̃2,1

(
X

y
u

)
du

}
b̃′

1,0

(
X

y
r

)∂u

∂x

(
t + s + r,X

y
r

)]∣∣∣∣
y=Xx

s

dr
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= ∂2u

∂x2

(
t + s,Xx

s

) −
∫ T −t

s

E

[
exp

{∫ r

s

b̃2,1
(
Xx

u

)
du

}
b̃′

1,0

(
Xx

r

)
)
∂u

∂x

(
t + r,Xx

r

)|Fs

]
dr.

We also use an integration by part in the second line of (B.3):

E

[∫ T −t

0

(
exp

{∫ s

0
b̃2,1

(
Xx

r

)
dr

}
b̃′

1,0

(
Xx

s

)∂u

∂x

(
t + s,Xx

s

))∫ s

0
b̃′

2,1

(
Xx

r

)
J x

r drds

]

= E

[∫ T −t

0

(∫ T −t

s

exp

{∫ r

0
b̃2,1

(
Xx

u

)
du

}
b̃′

1,0

(
Xx

r

)∂u

∂x

(
t + r,Xx

r

)
dr

)
b̃′

2,1

(
Xx

s

)
J x

s ds

]
,

where again we write Xx and J x for Xx(2α) and J x(2α). Then, substituting in (B.3) we get

∂3u

∂x3
(t, x) = E

[
exp

{∫ T −t

0
b̃2,1

(
Xx

s (2α)
)
ds

}
f (3)

(
Xx

T −t (2α)
)
J x

T −t (α)

]

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃2,1

(
Xx

r (2α)
)
dr

}(
b̃′

3,1

(
Xx

s (2α)
)∂2u

∂x2

(
t + s,Xx

s (2α)
)

+ b̃
(2)
1,0

(
Xx

s (2α)
)∂u

∂x

(
t + s,Xx

s (2α)
))

J x
s (2α)

]
ds.

We consider the change of measure Q3α through the density Z(2α,3α)
t (assuming (5.13) with λ = 2α),

for which we observe that

exp

{∫ t

0
b̃2,1

(
Xx

s (2α)
)
ds

}
J x

t (2α)Z(2α,3α)
t = exp

{∫ t

0
b̃3,3

(
Xx

s (2α)
)
ds

}
.

Therefore, using again that LawQ3α
(Xx(2α)) = LawP(Xx(3α)), we obtain

∂3u

∂x3
(t, x) = E

[
exp

{∫ T −t

0
b̃3,3

(
Xx

s (3α)
)
ds

}
f (3)

(
Xx

T −t (3α)
)]

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃3,3

(
Xx

r (3α)
)
dr

}(
b̃′

3,1

(
Xx

s (3α)
)∂2u

∂x2

(
t + s,Xx

s (3α)
)

+ b̃
(2)
1,0

(
Xx

s (3α)
)∂u

∂x

(
t + s,Xx

s (3α)
))]

ds. (B.4)

Notice that b̃3,3 is bounded from above assuming B ′
2 ≥ ασ 2(2α − 1). By means of the boundedness of

∂u
∂x

and f (i), we stay with

∣∣∣∣∂3u

∂x3

∣∣∣∣(t, x) ≤ C

(
1 +

∫ T −t

0
E

[∣∣∣∣̃b′
3,1

(
Xx

s (3α)
)∂2u

∂x2

(
t + s,Xx

s (3α)
) + b̃

(2)
1,0

(
Xx

s (3α)
)∣∣∣∣

]
ds

)
.

Now using Corollary 5.2, with β ≤ 1 + 2B3α
2

σ 2 , we get

sup
t∈[0,T ]

∣∣∣∣∂3u

∂x3

∣∣∣∣(t, x) ≤ C
(
1 + x−β + xβ

)
. (B.5)
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In order to apply Proposition 5.3 a last time, we identify in (B.4) the form (5.14) with

f3(x) = f (3)(x), bounded,

g3(x) = b̃3,3(x),bounded from above when B ′
2 ≥ ασ 2(2α − 1), with∣∣g′

3

∣∣(x) ≤ C
(
1 + xγ (2)+1 + x

−(γ
(2)

∨(3−2α)))
,

h3(·;x) = b̃′
3,1(x)

∂2u

∂x2
(·, x) + b̃

(2)
1,0(x)

∂u

∂x
(·, x), with |h3|(·;x) ≤ C

(
1 + xβ + x−β

)
.

Again, using (5.15), (5.20) and (B.5), we estimate the exponents involved in the expression on |h′
3|

(that will coincide with the moments to bound for the control of ∂4u

∂x4 ) by evaluating

b̃′
3,1(x)

∂3u

∂x3
(·, x) + b̃

(3)
1,0(x) + b̃

(2)
3,1(x)

∂2u

∂x2
(·, x)

� (
1 + x

−(γ
(2)

∨(3−2α)) + xγ (2)+1)(1 + xβ + x−β
) + x

−γ
(4) + xγ (4)+1

+ (
1 + xγ (2)+1 + x

−γ
(2)

)(
1 + x

−(γ
(3)

∨(4−2α)) + xγ (3)+1) � (
1 + xβ + x

−β)
,

β := {
β + (γ (2) + 1)

} ∨ {γ (2) + γ (3) + 2} ∨ (γ (4) + 1)

= 3(γ (2) + 1) ∨ (γ (2) + γ (3) + 2) ∨ (γ (4) + 1),

β := {(
γ

(2)
∨ (3 − 2α)

) + β
} ∨ γ

(4)
∨ {

γ
(2)

+ (
γ

(3)
∨ (4 − 2α)

)}
= {(

γ
(2)

∨ (3 − 2α)
) + (

2γ
(2)

∨ (γ
(2)

+ 3 − 2α) ∨ γ
(3)

)} ∨ {
γ

(2)
+ (

γ
(3)

∨ (4 − 2α)
)} ∨ γ

(4)
.

Then, assuming β ≤ 1
2 + B3α

2
σ 2 , we apply Proposition 5.3, obtaining u ∈ C1,4([0, T ] × R+). Using the

Markov property and the time homogeneity of the process (Xx
s (3α);0 ≤ s ≤ T − t), we deduce the

following form (with Xx
s understood as Xx

s (3α))

∂4u

∂x4
(t, x) = E

[
exp

{∫ T −t

0
b̃3,3

(
Xx

s

)
ds

}
f (4)

(
Xx

T −t

)
J x

T −t

]

+
∫ T −t

0
E

[
exp

{∫ s

0
b̃3,3

(
Xx

s

)
ds

}(
b̃

(2)
4,1

(
Xx

s

)∂2u

∂x2

(
t + s,Xx

s

)

+ b̃
(3)
1,0

(
Xx

s

)∂u

∂x

(
t + s,Xx

s

) + b̃′
6,4

(
Xx

s

)∂3u

∂x3

(
t + s,Xx

s

))
J x

s

]
ds. (B.6)

Considering the change of measure Q4α with density Z(3α,4α)
t , we have

exp

{∫ T −t

0
b̃3,3

(
Xx

s

)
ds

}
J x

T −t (3α)Z(3α,4α)
T −t = exp

{∫ T −t

0
b̃4,6

(
Xx

s (3α)
)
ds

}
≤ C,

with b̃4,6(x) = 4b′(x) + 6ασ 2(2α − 1)x2(α−1) bounded from above according to

b̃4,6(x) ≤ 4B ′
1 − 4B ′

2x
2(α−1) + 6ασ 2(2α − 1)x2(α−1),
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and the assumption that B ′
2 > 6

4ασ 2(2α − 1). Therefore, we start to bound | ∂4u

∂x4 | with

∣∣∣∣∂4u

∂x4

∣∣∣∣(t, x) ≤ C

(
1 + sup

s∈[0,T ]
E

∣∣∣∣
{
b̃

(2)
4,1

∂2u

∂x2
(t + s) + b̃

(3)
1,0

∂u

∂x
(t + s) + b̃′

6,4
∂3u

∂x3
(t + s)

}(
Xx

s (4α)
)∣∣∣∣

)
.

Combining this with the previous polynomial bounds for the derivatives and the control of moments
for the process Xx(4α) in Corollary 5.2, under H5, we get∣∣∣∣∂4u

∂x4

∣∣∣∣(t, x) ≤ C
(
1 + xβ + x

−β)
.

We have obtained that u ∈ C1,4([0, T ] × [0,+∞)) with partial derivatives satisfying (5.4). In view

of the polynomial growth property of the maps x �→ ∂u
∂x

(t, x), ∂2u

∂x2 (t, x), b(x), xα and the appropriate

control of the βth moment of the flow, one can easily adapt the proof in Friedman [12], Ch. 5, Th 6.1,
to show that u(t, x) solves the Kolmogorov PDE (5.3).

We end this proof by reporting the conditions required on B2,B
′
2, σ , α, γ (i), γ

(i)
in order to get all

the controls to be applied in the previous steps, the combination of which forming H5:

• At most, we used the upper-bound on the moment supt∈[0,T ](E|(Xt (4α))β | + E|(Xt (3α))2β |), by

applying Corollary 5.2 with the double constrain that σ 2

2 (β +8α −1) ≤ B2 and σ 2

2 (2β +6α −1) ≤ B2,

knowing that β := 3(γ (2) + 1) ∨ (γ (2) + γ (3) + 2) ∨ (γ (4) + 1).
• We justified the Girsanov transform, by applying Lemma 5.4 under the sufficient condition that, if

b(0) = 0 then σ 2

2 (7α − 1) ≤ B2, and if b(0) > 0, 3
2 < α and σ 2

2 (6α + α2

σ 2 ) ≤ B2.
• We have bounded the terms involving Jt coming after the Girsanov transform, and at most the

term exp{∫ T −t

0 b̃3,3(X
x
s ) ds}J x

T −t (3α)Z(3α,4α)
T −t , by assuming B ′

2 > σ 2α(3α − 3
2 ).–

• Finally, we considered the necessary condition on B ′
2 in order to apply Proposition 5.3 up to

λ = 3α: B ′
2 ≥ σ 2α( 17

2 α − 3).
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