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We provide the asymptotic minimax detection boundary for a bump, i.e. an abrupt change, in the mean
function of a stationary Gaussian process. This will be characterized in terms of the asymptotic behavior
of the bump length and height as well as the dependency structure of the process. A major finding is that
the asymptotic minimax detection boundary is generically determined by the value of its spectral density at
zero. Finally, our asymptotic analysis is complemented by non-asymptotic results for AR(p) processes and
confirmed to serve as a good proxy for finite sample scenarios in a simulation study. Our proofs are based
on laws of large numbers for non-independent and non-identically distributed arrays of random variables
and the asymptotically sharp analysis of the precision matrix of the process.
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1. Introduction

1.1. Model and problem statement

In this paper we consider observations of a triangular array of Gaussian vectors, Y = μn + ξn,
n ∈ N with the coordinates

Yi,n = μi,n + ξi,n, ξn = (ξ1,n, . . . , ξn,n)
T ∼Nn(0,�n), (1.1)

with a known positive definite covariance matrix �n ∈ R
n×n, but an unknown mean vector μn =

(μ1,n, . . . ,μn,n)
T ∈ R

n. We will furthermore assume that the noise ξn in (1.1) consists of n

consecutive samples of a stationary process (Zt )t∈Z.
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For a proper asymptotic treatment, we will assume that μn is obtained from equidis-
tantly sampling a function mn : [0,1] → R at sampling points i

n
, i = 1, . . . , n, i.e. μn =

(mn(
1
n
), . . . ,mn(

n
n
))T . Our goal is to analyze how difficult it is to detect abrupt changes of the

function mn based on the observations Y = (Y1,n, . . . , Yn,n)
T coming from (1.1). Therefore, we

focus on functions mn of the form

mn(x) =
{

δn if x ∈ In,

0 else,
(1.2)

i.e. mn has a bump located at the interval In ⊂ [0,1] of height δn ∈ R, see also Figure 1 for an
illustration. We assume throughout the paper that the matrix �n in (1.1) as well as the length
of the bump λn ∈ (0,1) are known, but that its amplitude δn and the exact position of the bump
itself are unknown.

To formalize the detection problem, let us introduce some notation. For an interval I ⊂ [0,1]
we use 1I ∈Rn as abbreviation for the vector with entries

1I (i) =
⎧⎨
⎩1 if

i

n
∈ I,

0 else,
1 ≤ i ≤ n.

Consequently, μn = δn1In whenever mn is of the form (1.2). Furthermore let

I := {[a, b) | 0 ≤ a < b ≤ 1
}

be the set of all right-open intervals in [0,1], and for a given length λ ∈ (0,1) we introduce by

I(λ) := {[a, b) | 0 ≤ a < b ≤ 1, b − a = λ
}

the set of all right-open intervals in [0,1] of length λ.
Now the problem to detect a bump of length λn in the signal μn from (1.1) can be understood

as the hypothesis testing problem

Hn
0 : Y ∼Nn(0,�n)

against (1.3)

Hn
1 : ∃I ∈ I(λn),∃δ ∈R : |δ| ≥ �n such that Y ∼Nn(δ1I ,�n)

with a minimal amplitude value �n > 0 to ensure distinguishability of Hn
0 and Hn

1 . Note that I

and δ in (1.3) are allowed to depend on n (as the length λn and the minimal amplitude value �n

do), but we suppress this dependency in the following. Similarly we write H0 instead of Hn
0 as

�n is assumed to be known. Note that we will consider the situation λn → 0 as n → ∞ below,
corresponding to a vanishing bump, which avoids trivial cases such as EHn

1
[Yi] = δ > 0 for all

1 ≤ i ≤ n in (1.3).
The aim of this paper is to provide insight on how the dependency structure in (1.1) encoded

in terms of �n influences the detection of such a bump. More precisely, we would like to derive
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asymptotic conditions1 on the minimal detectable bump amplitude �n depending on �n, λn

and n. To the best of our knowledge, there is no systematic understanding of this problem from
the minimax point of view. We will therefore provide (asymptotic) lower and upper bounds
for the amplitude of asymptotically detectable signals in the following sense (cf. [23,24]). Let
α,β ∈ (0,1) be arbitrary error levels.

upper detection bound: Whenever the bump amplitude �n satisfies �n = cϕn, c ≥ c∗ with a
constant c∗ > 0 and a rate ϕn depending on n, λn and �n, then there is a sequence of tests for
(1.3) with (asymptotic) type I error ≤ α and (asymptotic) type II error ≤ β .

lower detection bound: Whenever the bump amplitude �n satisfies �n = cϕ̃n, c ≤ c∗ with a
constant c∗ > 0 and a rate ϕ̃n depending on n, λn and �n, then no sequence of tests for (1.3)
can have type (asymptotic) I error ≤ α and at the same time (asymptotic) type II error ≤ β .

Precise definitions of the (asymptotic) type I and type II errors and comments on the validity
of these particular notions of the detection bounds will be given in Section 2.1. Note that the
minimax separation rate ϕn might depend on the prescribed significance levels α and β , and
that the definitions become trivial if β ≥ 1 − α, as then any standard Bernoulli experiment with
success probability α defines a corresponding test. However, in our case neither the constants
c∗ and c∗ nor the rate depend on the error levels α and β . That is why in the following we will
always choose α = β ∈ (0, 1

2 ) and argue in Section 2.1 that this is sufficient.
If ϕ̃n = ϕn in the above upper and lower bound, then we speak of the (asymptotic) minimax

separation rate �n ∼ ϕn. If furthermore c∗ = c∗, then �n � c∗ϕn = c∗ϕ̃n is called the (asymp-
totic) minimax detection boundary over all possible amplitudes �n > 0 and positions I ∈ I(λn).
We will provide explicit expressions for this under weak assumptions on the covariance matrix
�n.

We will provide lower and upper bounds in terms of sums over diagonal blocks within �n (cf.
Section 2.3 and Lemmas 5.1 and 5.2), and for the case of noise generated by subsequent samples
of a stationary time series we will show that these lower and upper bounds coincide.

In case of i.i.d. observations, this is �n = σ 2idn in (1.1), the minimax detection boundary is
well-known and given by (see [8,11,15])

�n � σ

√
−2 logλn

nλn

. (1.4)

Here, and in the following, we require

λn → 0 and nλn → ∞ as n → ∞. (1.5)

Signals for which the left-hand side in (1.4) is asymptotically larger than the right-hand side can
be detected consistently (in the sense of an upper detection bound as described above), whereas
they can not be detected consistently once the left-hand side in (1.4) is asymptotically smaller
than the right-hand side (in the sense of a lower detection bound as described above). Although

1Let (an)n∈N and (bn)n∈N two sequences of positive numbers. In the following we write an ∼ bn if 0 <

lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞, and an � bn if limn→∞ an/bn = 1.
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(1.4) is known for a long time when the errors are i.i.d., to the best of our knowledge, the influence
of the error dependency structure on the detection boundary (1.4) is an issue that is much less
investigated systematically, although many methods to estimate such abrupt changes in the signal
corrupted by serially dependent errors have been suggested (see Section 1.3). In this sense, this
paper contributes a benchmark to such methods. Let us illustrate the effect of the dependency
on (1.4) with ξn in (1.1) arising from an AR(1) process with unit variance and auto-correlation
coefficient ρ, this is ξn = (1 − ρ2)1/2(Z1, . . . ,Zn)

T where Zt − ρZt−1 = ζt with i.i.d. standard
Gaussian noise ζt , t ∈ Z. In Figure 1 we illustrate three different situations encoded in terms
of ρ, namely positively correlated noise (ρ = 0.7), independent noise (ρ = 0), and negatively
correlated noise (ρ = −0.7). It seems intuitively clear that the value of ρ influences the difficulty
of detecting a bump substantially, and especially positively correlated noise hinders efficient
detection dramatically. Compare e.g. the first plot in Figure 1, where noise and bump appear
hardly to distinguish. Furthermore, due to the positive correlation, there appear several regions
which suggest a bump in signal, which is not there. In contrast, the middle and bottom plot allow
for simpler identification of the bump region. Our main result makes these intuitive findings
precise.

Figure 1. Model (1.1) in case of AR(1) noise for different values of ρ: Data together with the function mn,
where the model parameters are set to be n = 512 and �n = 1, σ = 1.
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1.2. Results

To describe our results concerning the detection boundary for serially dependent data we require
some more terminology. Let the autocovariance function γZ of the stationary process (Zt )t∈Z
be given by γZ(h) = Cov[Zt ,Zt+h] for h ∈ Z. Assume that γZ is square summable, then the
process Z has the spectral density fZ ∈ L2[−1/2,1/2) defined by

fZ(ν) =
∞∑

h=−∞
γZ(h)e−2πihν, ν ∈ [−1/2,1/2).

In fact, fZ can also be considered as a function on the unit sphere, i.e. one naturally has
limν→1/2 fZ(ν) = fZ(−1/2). We will also assume that the autocovariance function is symmet-
ric, which is equivalent to fZ being real-valued. In the following, we will omit the subscript Z

in the notation of the spectral density of Z when it does not create ambiguities.
With this notation introduced, we will show under mild conditions that the detection boundary

for the hypothesis testing problem (1.3) is given by

�n �
√

−2f (0) logλn

nλn

.

It is immediately clear, that in case of independent observations where �n = σ 2idn, one has
f (0) = σ 2, which reproduces (1.4). In the general case, note that

f (0) =
∑
h∈Z

γ (h),

i.e. the detection boundary solely depends on the value of the spectral density at zero which is
known as long-run variance.2

In case of the AR(1)-based noise ξn := (1 − ρ2)1/2(Z1, . . . ,Zn)
T with unit variance as shown

in Figure 1, the auto-covariance of the underlying AR(1) process Zt is given by γZ(h) =
γZ(0)ρ|h|, where γZ(0) = (1 − ρ2)−1. Thus the spectral density at zero of the noise process
ξ = ((1 − ρ2)1/2Zi)i∈N is

fξ (0) = (
1 − ρ2) ∞∑

h=−∞
γZ(h) = 1 + ρ

1 − ρ
,

and hence the detection boundary is given by

�n �
√

1 + ρ

1 − ρ

√
−2 logλn

nλn

. (1.6)

2The long-run variance of a process (Zt )t∈Z with spectral density f is defined as limn→∞ n−1 Var[Sn], where Sn =∑n
i=1 Zi . It holds that limn→∞ n−1 Var[Sn] = f (0) (see [22] and Section 6.1.3 for details).
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As an immediate consequence, this shows that bump detection is easier under a negative cor-
relation ρ than in case of positive correlations. For the three values employed in Figure 1 we

compute for the factor
√

1+ρ
1−ρ

in (1.6) the values 2.38 when ρ = 0.7 and 0.42 when ρ = −0.7.
This means that the amplitude of detectable signals for ρ = 0.7 and ρ = −0.7 differs approxi-
mately by a factor of 5.6. Also, given the bump length λn, the detection of a bump of the same
size �n for ρ = 0.7 requires approximately a 6 times larger sample size than for ρ = 0, and even
a 31 times larger sample size than for ρ = −0.7. This is in good agreement with the intuitive
findings from Figure 1 and confirmed in finite sample situations in Section 4. In the simulations
we also investigate the influence of several bumps instead of one, and find that independent of ρ,
multiple bumps always help detection, as to be expected.

Remarkably, as in the case of i.i.d. noise with variance σ 2, where we have f (0) = σ 2, certain
dependent error processes might also satisfy f (0) = σ 2, and hence obey the same difficulty to
detect a bump as for the independent case. As an example, consider the stationary and causal
AR(2) process given by Zt = 1

2Zt−1 − 1
2Zt−2 + ζt , where ζt ∼ N (0,1) for t ∈ Z. In this case

fZ(0) = 1
2 − 1

2 + 1 = 1, even though the process Zt is clearly not independent (see Section 3 for
a comprehensive treatment of ARMA processes).

Proof strategy. To prove a lower detection bound, we will employ techniques dating back to
Ingster [23] and Dümbgen and Spokoiny [11] developed for independent observations. To gener-
alize this approach to our dependent case, we will use a recent weak law of large numbers due to
Wang and Hu [40] for triangular arrays of random variables that are non-independent within each
row and non-identically distributed between rows (see Section 6.1.1 for the precise statement and
also [18,30,33,37] for related results).

For the upper detection bound, we will provide an explicit test based on the supremum of the
moving average process (1T

I Y )I∈I(λn). A valid critical value will be given based on a chaining
technique. Note that this cannot be obtained by a continuous upper bound of the stochastic pro-
cess (as e.g. provided in Theorem 6.1 in [11]) due to the fact that the dependency structure is
allowed to change with n and hence there is no continuous analog of (1T

I Y )I∈I(λn).

1.3. Related work

Bump detection for dependent data appears to be relevant to a variety of applications where
piece-wise constant signals (i.e. several bumps) are observed under dependent noise. Exemplary,
we mention molecular dynamics (MD) simulations, where collective motion characteristics of
protein atoms are studied over time (see e.g. [28] and the references therein). For certain proteins
it has been shown that the noise process can be well modeled by a stationary ARMA(p,q) pro-
cess with small p and q , see [36]. Another application is the analysis of ion channel recordings,
where one aims to identify opening and closing states of physiologically relevant channels (see
[29] and the references therein). Here, the dependency structure is induced by a known band-pass
filter, ensuring that �n in (1.1) can be precomputed explicitly (which corresponds to our setting
of known �n), and allowing for a good approximation by stationary and m-dependent noise with
small m, see [32].
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In fact, bump detection as discussed here is closely related to estimation of a signal which
consists of piece-wise constant segments, often denoted as change point estimation. We refer to
the classical works of Ibragimov and Has’minskii [21], Csörgő and Horváth [9], Brodsky and
Darkhovsky [5], Carlstein, Müller and Siegmund [6], and Siegmund [35] for a survey of the
existing results as well as to the review article by Aue and Horváth [1]. Indeed, if the bumps have
been properly identified by a detection method, posterior estimation of the signal is relatively
easy, see [15] for such a combined approach in case of i.i.d. errors, and [10] in case of dependent
data. We also mention [7], who presented a robust approach for AR(1) errors.

Model (1.1) can be seen as prototypical for the more complex situation when several bumps
are to be detected. We do not intend to provide novel methodology for this situation in this paper,
rather Theorem 2.1 provides a benchmark for detecting such a bump which then can be used to
benchmark the detection power of any method designed for this task. Minimax detection has a
long history, see e.g. the seminal series of papers by Ingster [23] or the monograph by Tsybakov
[39]. More recently, Goldenshluger, Juditsky and Nemirovski [17] provided a general approach
based on convex optimization. In case of independent observations, the problem of detecting a
bump has been considered in [2,3,8,12,15,25], and our strategy of proof for the lower bound is
adopted from [11]. We also mention [14] for a model with a simultaneous bump in the variance,
and [31] for heterogeneous noise, however still restricted to independent observations.

The literature on minimax detection for dependent noise is much less developed, and most
similar in spirit to our work are the papers by Hall and Jin [19] and Keshavarz, Scott and Nguyen
[27]. In the former, the minimax detection boundary for an unstructured version of the model
(1.1) in a Bayesian setting is derived, that is P[mn(

i
n
) = �n] = ρn and P[mn(

i
n
) = 0] = 1 − ρn

with a probability ρn tending to 0. In contrast to [19], in the present setting we can borrow
strength from neighboring observations in a bump. Still, we can exploit a result in [19] about the
decay behavior of inverses of covariance matrices (see Section 6.1.2) to validate Assumption 2.
Keshavarz, Scott and Nguyen [27] deal with the classical change-point in mean problem, i.e.
with the problem to detect whether mn(i/n) ≡ 0 for all 1 ≤ i ≤ n, or if there exists τ ∈ [1, n]
such that mn(i/n) = − 1

2�n1{i ≤ τ } + 1
2�n1{i > τ } for 1 ≤ i ≤ n. The authors derive upper and

lower bounds for detection from dependent data as in (1.1), similar in spirit to our Theorem 2.1.
Their bounds, however, do not coincide with ours, i.e. they do not derive the precise minimax
detection boundary, as they are mostly interested in the rate of estimation. However, as we see
from Theorem 2.1, the

√− logλn rate does not change, it is the constant f (0) which matters. We
will employ several of their computations concerning covariance structures of time series (while
correcting a couple of technical inaccuracies).

We finally comment on the assumption of knowing �n and the length λn. If λn is unknown,
estimation of the function mn can be performed in the independent noise case by SMUCE [15]
via a multiscale approach. SMUCE is known to achieve the asymptotic detection boundary (1.4)
in case of i.i.d. Gaussian errors. For the dependent case with a (partially) unknown covariance
matrix �n, further methods for estimation of mn such as H-SMUCE [31], J-SMURF [20] or
JULES [32] have been developed. They all rely on a local estimation of the covariance struc-
ture in combination with a multiscale approach. None of these methods achieves the detection
boundary derived in this paper, and hence it remains unclear if not knowing �n and / or λn would
affect it. Developing a test which achieves a corresponding upper bound by multiscale methods
is beyond the scope of this paper and is postponed to future work.
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1.4. Organization of the paper

The remaining part of this paper is organized as follows: In Section 2 we give a precise statement
of our assumptions and formulate our main theorem. Also non-asymptotic results are discussed
here. The implications for ARMA models are then given in Section 3, where the previously
mentioned non-asymptotic results are specified for AR(p) noise. In Section 4 we present some
simulations which support that our asymptotic theory is already useful for small samples. All
proofs are deferred to Section 5 and Section 6 in the Supplementary Material [13].

2. Main results

2.1. Notation and assumptions

To treat the testing problem (1.3), we will consider tests �n : Rn → {0,1}, n ∈ N, where
�n(Y ) = 0 means that the null hypothesis H0 is accepted, and �n(Y ) = 1 means that the null
hypothesis is rejected, i.e. the presence of a bump is concluded.

Denote by P0 the measure Nn(0,�n) of Y under the null hypothesis and by PI,δ the measure
Nn(δ1I ,�n) of Y given that there is a bump of height δ within the interval I . With this we will
denote the corresponding expectations accordingly by E0 and EI,δ . We define the type I error of
�n by

ᾱ(�n,�n) := E0
[
�n(Y )

]= P0
[
�n(Y ) = 1

]
.

Furthermore, we say that a sequence (�n)n∈N of such tests has asymptotic level α ∈ [0,1] if
lim supn→∞ ᾱ(�n,�n) ≤ α. The type II error depending on the parameters �n,�n and λn is
defined as

β̄(�n,�n,�n,λn) := sup
I∈I(λn)

sup
|δ|≥�n

PI,δ

[
�n(Y ) = 0

]
.

For a sequence (�n)n∈N of such tests we define its asymptotic type II error to be
lim supn→∞ β̄(�n,�n,�n,λn). The asymptotic power of such a family is then given by
1 − lim supn→∞ β̄(�n,�n,�n,λn). For the sake of brevity, we might suppress the dependency
on the parameters in the following and write only ᾱ(�n) and β̄(�n), respectively.

With this notation, we can now precisely recall the requirements for lower and upper bounds
on detectability as discussed in the introduction:

upper detection bound: For any α ∈ (0, 1
2 ), there exist c∗ > 0 and a sequence of tests �∗

n,α ,
n ∈ N of asymptotic level α such that ∀c > c∗,

lim sup
n→∞

β̄(�n,�n, cϕn,λn) ≤ α.

Note that this notion of the upper detection bound is in accordance with the usual minimax
testing paradigm (cf. Ingster and Suslina [24]), as it implies that

lim
n→∞ inf

�∈�n

[
ᾱ(�,�n) + β̄(�,�n, cϕn,λn)

]= 0,
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as n → ∞, since α was arbitrary. Here, �n is the collection of all tests for the testing problem
(1.3) given n observations.

lower detection bound: For any α ∈ (0, 1
2 ), there exists c∗ > 0 such that ∀c < c∗, and for any

sequence of tests �n, n ∈ N of asymptotic level α,

lim inf
n→∞ β̄(�n,�n, cϕ̃n, λn) ≥ 1 − α.

This implies that

lim
n→∞ inf

�∈�n

[
ᾱ(�,�n) + β̄(�,�n, cϕn,λn)

]= 1.

The choice of 1 − α as the lower bound of the limit of the type II errors in the lower detection
bound is justified by the fact that the minimax testing risk is bounded from below as follows (see
[24], p. 55, Theorem 2.1):

inf
�∈�

[
ᾱ(�,�n) + β̄(�,�n, cϕn,λn)

]≥ 1 − 1

2

∥∥[P0], [P1]
∥∥

1,

where ‖[P0], [P1]‖1 is the L1-distance between the convex hulls of measures corresponding to
the null and the alternative hypotheses and � is the set of all possible tests. It implies that the
type II error of the α-level test will be always greater or equal 1 − α for non-distinguishable null
and alternative hypotheses.

To derive lower and upper bounds in this sense, we will now pose some assumptions on the
possible lengths λn of intervals and the covariance structure �n:

Assumption 1. We assume that

(i) nλn

logn
→ ∞ as n → ∞,

(ii) λn = o( 1
logn

) as n → ∞.

The first part of Assumption 1 assures that the number of observations within any interval of
length λn is at least of logarithmic order as n → ∞. The second condition of Assumption 1,
however, gives a bound for the maximal length of the considered intervals, which ensures less
than n/ logn observations in the bump interval. Roughly speaking both conditions are required
to have enough complementary observations (outside respectively inside the bump) to guarantee
asymptotic detection. Note that, in particular, Assumption 1(ii) means that λn → 0 as n → ∞,
i.e. Assumption 1 especially implies (1.5). We emphasize that conditions as in (ii) restricting λn

from being too large are common. Assumption 1 plays a crucial role in the proof of the upper
bound, whereas the lower bound can be established under milder conditions (1.5).

However, note that when we consider a slightly modified version of the testing problem (1.3)
where the bump may not occur in any interval of length λn, but only within a candidate set
Ik := [(k − 1)λn, kλn), 1 ≤ k ≤ �1/λn� of non-overlapping intervals, then Assumption 1 can be
replaced by (1.5) and the detection boundary will remain the same (cf. Section 2.3).

Instead of posing assumptions on �n directly, we will again employ the spectral density f of
the underlying stationary process Z as mentioned in the introduction. To do so, we require some
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more terminology. For a function g ∈ L2[−1/2,1/2), we denote by T (g) the Toeplitz matrix
generated by g, i.e. the matrix with entries (T (g))i,j∈N = gj−i , where

gk =
∫ 1

2

− 1
2

g(u)e−2πiku du, k ∈ Z,

is the kth Fourier coefficient of g. Note that this allows us to encode the covariance matrix �n

completely in terms of f . More precisely, the covariance matrix �n of the noise ξn in (1.1) has
entries �n(i, j) = γ (|i − j |) = f|i−j |, and we see that �n =: Tn(f ) is the nth truncated Toeplitz
matrix generated by f , i.e. the upper left n × n submatrix, of T (f ). Consequently, we will also
pose the corresponding assumptions in terms of the function f , which allows us to derive results
for any sequence (�n)n≥1 of covariance matrices which are generated by such an f (and not
only for specific dependent processes):

Assumption 2. Let (�n)n≥1 be a sequence of covariance matrices such that �n = Tn(f )

as introduced above with a function f : [−1/2,1/2) → R, that is continuous and satisfies
limν→1/2 f (ν) = f (−1/2) and essinfν∈[−1/2,1/2) f (ν) > 0. Further, suppose that the Fourier co-
efficients fh, h ∈ Z of f decay sufficiently fast, i.e. there are constants C > 0 and κ > 0, such
that

|fh| ≤ C
(
1 + |h|)−(1+κ)

, h ∈ Z.

Assumption 2 ensures that the dependency between 1T
I Y and 1T

I ′Y for two candidate inter-
vals I, I ′ ∈ I(λn), will be asymptotically small as soon as they are disjoint. It excludes trivial
cases such as total dependence described by �n(i, j) = 1 for all i, j ∈ {1, . . . , n}, but also per-
mits spectral densities f with only slowly decaying Fourier coefficients such as discontinuous
functions.

Note that also sequences of covariance matrices of the form (�n)i,j = g(
|i−j |

n
), 1 ≤ i, j ≤

n, n ∈ N, where g is some kernel function, are prohibited due to this assumption. Covariance
matrices of this kind would have the undesired effect to make the dependency between 1T

I Y and
1T
I ′Y even for disjoint candidate intervals I, I ′ ∈ I(λn) stronger as the length λn vanishes.

2.2. Asymptotic detection boundary

Our main theorem will be the following.

Theorem 2.1. If Assumptions 1 and 2 hold for the bump regression model (1.1), then the asymp-
totic minimax detection boundary for the testing problem (1.3) is given by

�n �
√

−2f (0) logλn

nλn

,

as n → ∞.
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For the details of the proof we refer to Section 5. The upper bound will be achieved by a
specific test �a

n, which scans over all intervals of length λn, given by

�a
n(Y ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if sup
I∈I(λn)

|1T
I Y |√

1T
I �n1I

> cα,n,

0 else,

(2.1)

where the threshold cα,n will be determined in the proof of Lemma 5.1 in Section 5. Note that
this test is not a likelihood ratio type test (as the LRT relies on 1T

I �−1
n Y instead of 1T

I Y ).
For the proof of the lower bound we employ a strategy from [11], and use a very specific law

of large numbers for arrays of non-independent and non-identically distributed random variables.

2.3. Non-asymptotic results

Note that Theorem 2.1 yields only an asymptotic result. In this section we give non-asymptotic
results in the case of a seemingly simpler testing problem with possible bumps that belong to a
set of non-overlapping intervals. This is formalized by considering the set I0 of non-overlapping
candidate intervals given by

I0 := {
Ik | 1 ≤ k ≤ ⌊

λ−1
n

⌋}
, Ik := [

(k − 1)λn, kλn

)
,1 ≤ k ≤ ⌊

λ−1
n

⌋
. (2.2)

The goal is still to detect the presence of the bump (but with position being only in I0) and to
derive non-asymptotic results on the detection boundary for the testing problem

H0 : Y ∼Nn(0,�n)

against (2.3)

Hn
1 : ∃1 ≤ k ≤ ⌊

λ−1
n

⌋
,∃δ ∈ R : |δ| ≥ �n such that Y ∼Nn(δ1Ik

,�n).

Note that this testing problem might seem much simpler than (1.3) at a first glance, but we will
see, however, that the (asymptotic) detection boundary is in fact the same. Concerning the lower
bound, this can be seen readily from the proof of Theorem 2.1, cf. Lemma 5.2.

To detect a bump, we will here employ the maximum likelihood ratio test

�d
n(Y ) = 1

{
T 0

n (Y ) > cα,n

}
based on the statistic

T 0
n (Y ) = sup

I∈I0

|1T
I �−1

n Y |√
1T
I �−1

n 1I

= sup
1≤k≤�λ−1

n �

|1T
Ik

�−1
n Y |√
σ̃k

, (2.4)

where we denote

σ̃k = 1T
Ik

�−1
n 1Ik

, k = 1, . . . ,
⌊
λ−1

n

⌋
. (2.5)
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The quantities σ̃k are in fact the variances of 1T
I �−1

n Y corresponding to the sum of �nλn� random
variables with covariance structure given by the Ik-block of �−1

n . The type I and II errors of the
test �d

n are defined as

α̃
(
�d

n

) := P0
[
�d

n(Y ) = 1
]

and β̃
(
�d

n

) := sup
I∈I0

sup
|δ|≥�n

PI,δ

[
�d

n(Y ) = 0
]
.

Then the following result establishes basic properties of the test �d
n.

Theorem 2.2. Consider the testing problem (2.3) and let α ∈ (0,1) be any fixed significance
level. For the maximum likelihood ratio test �d

n set

cα,n :=
√

2 log
2

αλn

. (2.6)

Then it holds α̃(�d
n) ≤ α for all n ∈N and

β̃
(
�d

n

)≤ P

[
|Z| > �n inf

1≤k≤�λ−1
n �

√
σ̃k − cα,n

]

with a standard Gaussian random variable Z ∼N (0,1) and σ̃k as in (2.5).

The proof is obtained by straightforward computations, see Section 6.2.2 of the Supplementary
Material [13] for details. Theorem 2.2 yields explicit non-asymptotic bounds for the test �d

n, but
those do also yield an asymptotic upper bound for the detection boundary:

Corollary 2.3. Let (εn)n∈N be a positive sequence satisfying

εn

√− logλn ≥
√

log
2

α
+
√

log
1

α
, (2.7)

and suppose that the bump altitude �n in the testing problem (2.3) obeys

�n inf
1≤k≤�λ−1

n �

√
σ̃k ≥ √

2(1 + εn)
√− logλn. (2.8)

Then the asymptotic type II error of �d
n with cα,n as in (2.6) satisfies

lim sup
n→∞

β̃
(
�d

n

)≤ α,

This shows that the upper bound to be obtained by �d
n depends only on the asymptotic be-

havior of inf1≤k≤�λ−1
n �

√
σ̃k with σ̃k as in (2.5). Inspecting the proof of Lemma 5.2, we find

that we can derive an according lower bound depending only on the asymptotic behavior of
sup1≤k≤� 1

λn
�
√

σ̃k . In case of AR(p) noise we will see in Section 2.3 that these quantities can be

computed explicitly and will asymptotically equal in agreement with Theorem 2.1.
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3. ARMA processes and finite sample results

3.1. Application to ARMA processes

Suppose that the noise vector ξn = (Z1, . . . ,Zn)
T in (1.1) is sampled from n consecutive real-

izations of a stationary ARMA(p, q) time series Zt , with p ≥ 0, q ≥ 0 defined as

φ(B)Zt = θ(B)ζt , ζt
i.i.d.∼ N (0,1), t ∈ Z. (3.1)

Here B is the so-called backshift operator, defined by BXt = Xt−1, and φ(z) and θ(z), z ∈ C,
are polynomials of degrees p and q , respectively, given by

φ(z) = 1 +
p∑

i=1

φiz
i, θ(z) = 1 +

q∑
i=1

θiz
i . (3.2)

We further suppose that φ and θ have no common roots, and that all roots of both φ and θ lie
outside of the unit circle {z ∈ C : |z| ≤ 1} (see [4] for more details).

Denote by γ the auto-covariance function of Z, i.e. γ (h) = E[ZtZt+h] for h ∈ Z (as clearly
E[Zt ] = 0 for all t ∈ Z). It is well-known (see for example [4], Theorem 4.4.2), that in the case
of an ARMA(p, q) time series, its spectral density is given by

f (ν) = |θ(e−2πiν)|2
|φ(e−2πiν)|2 , ν ∈ [−1/2,1/2). (3.3)

Note that the spectral density f is continuous at 0 as well as the function 1/f , since the process
is reversible and causal under the posed assumptions on φ and θ . Thus, applying Theorem 2.1 to
this setting immediately yields the following:

Theorem 3.1. Assume that we are given observations from (1.1), where the noise ξn is given by
n consecutive samples of an ARMA(p, q) time series as in (3.1) with the polynomials φ and θ

in (3.2) having no common roots and no roots within the unit circle. Furthermore, assume that
Assumption 1 holds. Then the asymptotic detection boundary of the hypothesis testing problem
(1.3) is given by

�n �
√

−2f (0) logλn

nλn

=
∣∣∣∣ 1 +∑q

i=1 θi

1 +∑p

i=1 φi

∣∣∣∣
√

−2 logλn

nλn

, (3.4)

as n → ∞.

We find that the presence of dependency either eases or loads the bump detection, depending
on f (0) = |θ(1)/φ(1)|2 (which is 1 in the independent noise case). If f (0) < 1, then the de-
tection becomes simpler (and smaller bumps are still consistently detectable), but if f (0) > 1
detection becomes more difficult. For AR(1) noise, this issue was already discussed in the intro-
duction.
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3.2. Non-asymptotic results for AR(p)

In this Section we will derive non-asymptotic results for the specific case of AR(p) noise. Let us
therefore specify (3.1) to a stationary AR(p) process Zt ,

p∑
i=0

φiZt−i = ζt , t ∈ Z (3.5)

with independent standard Gaussian innovations ζt . In the notation of (3.1), we have φ(z) =∑p

i=0 φiz
i and θ(z) ≡ 1. Again, we work under the standard assumptions that the characteristic

polynomial φ(z) has no zeros inside the unit circle {z ∈C : |z| ≤ 1}. Note that in this case f (0) =
|∑p

i=0 φi |−2.
We have seen in the discussion succeeding Theorem 2.2 that the upper and lower bounds de-

pend on the quantities σ̃k = 1T
Ik

�−1
n 1Ik

and correspondingly, their minimal and maximal values.
Theorem 3.1 gives the detection boundary condition for ARMA noise with an asymptotic risk
constant. Since σ̃k is just the sum over the block of �−1

n , using the exact inverse of �n (see the
appendix for the exact formula of �−1

n obtained by [34]), we can calculate the minimax risk
constants exactly.

Lemma 3.2. Let �n be the auto-covariance matrix induced by an AR(p) process Zt and σ̃k =
1T
Ik

�−1
n 1Ik

, k = 1, . . . , �λ−1
n �. Assume that 1 ≤ �nλn� ≤ n − 2p and n > 3p.

1. If �nλn� ≤ p, then

inf
1≤k≤�λ−1

n �
σ̃k =

�nλn�∑
i=1

(
i−1∑
t=0

φt

)2

, (3.6)

sup
1≤k≤�λ−1

n �
σ̃k = inf

1≤k≤�λ−1
n �

σ̃k +
p−�nλn�∑

i=0

(�nλn�∑
t=1

φt+i

)2

+
p∑

i=p−�nλn�

(
p−i∑
t=0

φt+i

)2

. (3.7)

2. If p < �nλn� ≤ n − 2p, then

inf
1≤k≤�λ−1

n �
σ̃k = (�nλn� − p

)( p∑
t=0

φt

)2

+
p∑

i=1

(
i−1∑
t=0

φt

)2

, (3.8)

sup
1≤k≤�λ−1

n �
σ̃k = inf

1≤k≤�λ−1
n �

σ̃k +
p∑

i=1

(
p−i∑
t=0

φt+i

)2

. (3.9)

We can now use the results of Theorem 2.2 and get the exact detection boundaries for two
different regimes, when �nλn� ≤ p and p < �nλn� ≤ n − 2p. Note that condition (5.4) is auto-
matically satisfied since the inverse covariance matrix �−1

n is 2p + 1-diagonal.
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Corollary 3.3. Assume that possible locations k of the bump Ik ∈ I0 are separated from the
endpoints of the interval: p < k < n − p − �nλn�. Then the upper and lower bound constants
match in both cases and are given by formulas (3.6) and (3.8) for the case of �nλn� ≤ p and
p < �nλn� ≤ n− 2p, respectively. This follows immediately from the discussion in Section 6.3.1,
in particular equations (6.4) and (6.5).

Remark 3.4. It seems reasonable, that, in case of bumps of length smaller than p, we would
need to analyze the type I error with some finer technique than just the union bound.

On the other hand, we observe that if nλn → ∞ and λn → 0 as n → ∞, then

sup
1≤k≤�λ−1

n �
σ̃k � nλn

(
p∑

t=0

φt

)2

� inf
1≤k≤�λ−1

n �
σ̃k,

in accordance with Theorem 3.1.

4. Simulations

In this Section we will perform numerical studies to examine the finite sample accuracy of the
asymptotic upper bounds for the detection boundary. We focus on the situation that the noise
ξn in (1.1) is generated by an AR(1) process, given by φ(z) = 1 − ρz and θ(z) ≡ 1 (in the
notation of (3.1)), where |ρ| < 1. More precisely, the AR(1) process is given by the equation
Zt − ρZt−1 = ζt , t ∈ Z where ζt ∼ N (0,1) are i.i.d.. Note the slight difference to the setting
considered in the introduction and Figure 1, as here the noise does not have standardized margins.

From Theorem 3.1 we obtain the detection boundary

�n �
√

2

1 − ρ

√
− logλn

nλn

. (4.1)

In the following we fix the value of the detection rate
√− logλn/(nλn) in (4.1) to be roughly 1/6

and consider three different situations, namely small sample size (λn = 0.1, n = 829), medium
sample size (λn = 0.05, n = 2157) and large sample size (λn = 0.025, n = 5312). Thus, the
remaining free parameters are ρ and �n, and the detection boundary (4.1) connects them by the
asymptotic relation

�n �
√

2

1 − ρ
· 1

6
≈ 0.236

1 − ρ
. (4.2)

Let us now specify the investigated tests. For the (general) test from Section 2.2, the critical

value cα,n is only given implicitly, cf. (5.2). To simplify, in view of cα,n =
√

2 log 2
αλn

(1 + o(1)),
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we will therefore use

�a
n(Y ) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if sup
I∈I(λn)

|1T
I Y |√

1T
I �n1I

>

√
2 log

2

αλn

,

0 else,

(4.3)

as an asymptotic version. Further we would like to investigate the maximum likelihood ratio
test relying only on non-overlapping intervals Ik = [(k − 1)�nλn�+ 1, k�nλn�) from Section 2.3
given by

�d
n(Y ) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if sup
1≤k≤� 1

λn
�

|1T
Ik

�−1
n Y |√

1T
Ik

�−1
n 1Ik

>

√
2 log

2

αλn

,

0 else.

(4.4)

Note that the latter requires to scan only over �1/λn� intervals, whereas the former requires
to scan over �n(1 − λn)� intervals. Consequently, the maximum likelihood ratio test from Sec-
tion 2.3 can be computed faster by a factor of

n(1 − λn)

1/λn

= nλn(1 − λn)

independent of �n. For the three situations mentioned above this yields values of ≈ 74 in the
small sample regime, ≈ 102 in the medium sample regime, and ≈ 129 in the large sample regime.
However, our results from Theorem 2.1 and the discussion succeeding Theorem 2.2 imply, that
the testing problems (1.3) and (2.3) are of the same difficulty in the sense that they both have the
same separation rate.

In the following we examine the type I and type II errors ᾱ(�∗) and β̄(�∗) with ∗ ∈ {a,d}
by 2000 simulation runs for α = 0.05 with different choices of ρ, n, λn and �n. The position
I ∈ I(λn) is always drawn uniformly at random. Furthermore, we investigate the situation of 2
and 5 disjoint bumps within [0,1].

The finite sample type I error of both �a
n and �d

n in all three sample size situations are shown
in Figure 2 versus the correlation parameter ρ ∈ {−0.99,−0.98, . . . ,0.99}. We find that �d

n is
somewhat conservative, which is clearly due to the usage of the union bound in deriving the
critical value in (4.4), see the proof of Theorem 2.2. Opposed, �a

n is conservative for ρ > 0,
and liberal for ρ < 0. This is clearly due to the simplified critical value in (4.3), which is only
asymptotically valid, and furthermore the employed asymptotics depend on ρ due to the result by
Ibragimov and Linnik [22], see also Section 6.1.3 of the Supplementary Material [13]. However,
it seems that already in the small sample size regime our asymptotic results provide a very good
approximation for both tests.

Next we computed the finite sample type II error in all three sample size situations for
ρ ∈ {−0.99,−0.98, . . . ,0.99} and �n ∈ {0.01,0.02, . . . ,0.5}. The corresponding results are
shown in Figures 3–5. We also depict the contour line of equation (4.2) for a comparison and
find a remarkably good agreement with the contour lines of the power function already in the
small sample regime, which strongly supports the finite sample validity of our asymptotic the-
ory. Finally, we conclude that detection becomes easier for a larger number of bumps.
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Figure 2. Type I error of the tests �a
n (blue line) and �d

n (dashed line) for the AR(1) case vs. ρ (x-axis)
simulated by 2000 Monte Carlo simulations with the nominal type I error α = 0.05 (red line) in three
different situations: small sample size λn = 0.1, n = 829 (left), medium sample size λn = 0.05, n = 2157
(middle) and large sample size λn = 0.025, n = 5312 (right).

5. Proofs

Several useful results from various sources that we are going to use in our proofs can be found
in the Supplementary Material [13]. The proof of Theorem 2.1 will then be split into three parts.

Figure 3. Type II error in the small sample regime λn = 0.1, n = 829 (top row: �a
n; bottom row: �d

n) for
the AR(1) case for ρ (x-axis) vs. �n (y-axis) with one bump (left column) together with the contour line
of the detection boundary equation (4.2), two bumps (middle column) and five bumps (right column), each
simulated by 2000 Monte Carlo simulations.
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Figure 4. Type II error in the medium sample regime λn = 0.05, n = 2157 (top row: �a
n; bottom row: �d

n)
for the AR(1) case for ρ (x-axis) vs. �n (y-axis) with one bump (left column) together with the contour
line of the detection boundary equation (4.2), two bumps (middle column) and five bumps (right column),
each simulated by 2000 Monte Carlo simulations.

Figure 5. Type II error in the large sample regime λn = 0.025, n = 5312 (top row: �a
n; bottom row: �d

n)
for the AR(1) case for ρ (x-axis) vs. �n (y-axis) with one bump (left column) together with the contour
line of the detection boundary equation (4.2), two bumps (middle column) and five bumps (right column),
each simulated by 2000 Monte Carlo simulations.
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We will provide asymptotic upper and lower bounds in Sections 5.1.1 and 5.1.2, respectively. The
lower bound result will in fact hold for a wider class of covariance matrices than those allowed by
Assumption 2. Finally, in Section 5.1.3, this will be used to show that the upper and lower bound
coincide asymptotically in the setting of Theorem 2.1, and this will yield the desired result. All
remaining proofs can be found in Section 6 of the Supplementary Material [13].

5.1. Proofs for Section 2

5.1.1. Upper detection bound

For I ∈ I(λn) we define

σn(I ) := 1T
I �n1I .

Lemma 5.1 (Upper detection bound). Fix α ∈ (0,1), consider the testing problem (1.3) and
suppose that Assumption 1 and Assumption 2 hold. In addition, assume that the sequence
(�n)n∈N of covariance matrices satisfies

�n inf
I∈I(λn)

�nλn�√
σn(I )

� (
√

2 + ε̃n)
√− logλn, (5.1)

as n → ∞, where (ε̃n)n∈N is a sequence of real numbers that satisfies ε̃n → 0 and ε̃n

√− logλn −√
log logn → ∞ as n → ∞.
Then the sequence of level α tests (�a

n)n∈N as in (2.1) with suitably chosen cα,n satisfies
ᾱ(�a

n) ≤ α for all n ∈ N and lim supn→∞ β̄(�a
n) ≤ α.

Proof. Define the test statistic

Tn(Y ) = sup
I∈I(λn)

|1T
I Y |√
σn(I )

,

and recall that �a
n(Y ) := 1{Tn(Y ) > cα,n}, for some threshold cα,n to be determined later.

We begin by noting that although the random process( |1T
I Y |√
σn(I )

)
I∈I(λn)

has an infinite index set, it only takes finitely many different values. Thus, we can find a finite
representative system Ifin(λn) ⊆ I(λn), such that for any I ∈ I(λn) there is I ′ ∈ Ifin(λn), such
that

|1T
I Y |√
σn(I )

= |1T
I ′Y |√

σn(I ′)
,

which implies that

Tn(Y ) = sup
I∈Ifin(λn)

|1T
I Y |√
σn(I )
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i.e. Tn(Y ) can be written as the supremum over the absolute values of a Gaussian process with a
finite index set. Let Mn such that E0Tn(Y ) ≤ Mn. Then, for any λ > 0, it follows that

P0
(
Tn(Y ) > λ + Mn

)≤ P0
(
Tn(Y ) −E0Tn(Y ) > λ

)
≤ P0

(∣∣∣∣ sup
I∈Ifin(λn)

|1T
I Y |√
σn(I )

−E0 sup
I∈Ifin(λn)

|1T
I Y |√
σn(I )

∣∣∣∣> λ

)
≤ 2e− λ2

2 ,

where the last inequality follows the results of Talagrand [38] and can be found in Theorem 2.1.20
of [16]. Thus, if we let

cα,n =
√

2 log
2

α
+ Mn,

�a
n has level α for any n.
In order to find a suitable bound Mn we consider an even coarser finite subset of I(λn). Let

Cn =
{[

k

n
,
k

n
+ λn

)
: 1 ≤ k ≤ ⌊

n(1 − λn)
⌋}⊆ I(λn).

Clearly, #Cn = �n(1 − λn)� ≤ n < ∞. For any I ∈ I(λn) there is I ′ ∈ Cn, such that 1I differs
from 1I ′ in at most one entry. Thus, it is easy to see that

Tn(Y ) ≤ sup
I∈Cn

|1T
I Y |√
σn(I )

+ sup1≤i≤n |Yi,n|
infI∈I(λn)

√
σn(I )

,

Thus, we can set

Mn = M̃n + κn,

where

M̃n = E0 sup
I∈Cn

|1T
I Y |√
σn(I )

and

κn = E0
sup1≤i≤n |Yi,n|

infI∈I(λn)

√
σn(I )

.

The latter term is easy to handle: We have

E0 sup
1≤i≤n

|Yi,n| ≤
√

2f0 log(2n),

since Yi,n has variance f0 for any n and 1 ≤ i ≤ n, and

inf
I∈I(λn)

σn(I ) = nλnf (0)
(
1 + o(1)

)
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by Theorem 18.2.1 of Ibragimov and Linnik [22]. Thus,

κn = O

(√
logn

nλn

)
,

and thus, κn → 0 by Assumption 1. The next part of the proof will be devoted to computing M̃n.
Note that under H0, we have

1T
I Y√
σn(I )

∼N (0,1)

for any I ∈ Cn. For any I, I ′ ∈ Cn, we have

∣∣∣∣ 1T
I Y√
σn(I )

− 1T
I ′Y√

σn(I ′)

∣∣∣∣=
∣∣∣∣
(

1T
I√

σn(I )
− 1T

I ′√
σn(I ′)

)
Y

∣∣∣∣=
(

2 − 2
1T
I �n1I ′√

σn(I )σn(I ′)

) 1
2 |ZI,I ′ |

for some random variable ZI,I ′ ∼ N (0,1). Note that the system {ZI,I ′ : I, I ′ ∈ Cn} is not neces-
sarily independent. Let

dn

(
I, I ′) :=

(
2 − 2

1T
I �n1I ′

σn(I )

) 1
2

.

Since �n is a Toeplitz matrix, it follows that σn(I ) = σn(I
′) for any I, I ′ ∈ Cn, and thus,

dn(I, I
′) = dn(I

′, I ). Since �n is also positive definite, it is then easy to see that dn is a met-
ric on Cn.

Now let En ⊆ Cn be an ηn-net for (Cn, dn), i.e. for any I ∈Dn there is J ∈ En, such that

dn(I, J ) ≤ ηn.

For any I ∈ Cn and J ∈ En we have

|1T
I Y |√
σn(I )

≤
∣∣∣∣ 1T

I Y√
σn(I )

− 1T
J Y√

σn(J )

∣∣∣∣+ |1T
J Y |√

σn(J )
,

and thus,

sup
I∈Cn

|1T
I Y |√
σn(I )

≤ sup
I∈Cn

inf
J∈En

∣∣∣∣ 1T
I Y√
σn(I )

− 1T
J Y√

σn(J )

∣∣∣∣+ sup
J∈En

|1T
J Y |√

σn(J )

= sup
I∈Cn

inf
J∈En

dn(I, J )|ZI,J | + sup
J∈En

|1T
J Y |√

σn(J )

≤ ηn sup
I∈Cn

inf
J∈En

|ZI,J | + sup
J∈En

|1T
J Y |√

σn(J )
.
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It follows that

M̃n ≤ ηn

√
2 log(2n) +

√
2 log

(
2N(Cn, dn, ηn)

)
≤ ηn

√
2 logn +√

2 logN(Cn, dn, ηn) + (1 + ηn)
√

2 log 2,

where N(Cn, dn, ηn) is the ηn-covering number of (Cn, dn). Now let I, I ′ ∈ Cn, I �= I ′, with
dH (I, I ′) ≤ λn

logn
, where dH denotes the Hausdorff metric on the set of subintervals of [0,1]

(with respect to the euclidean distance on [0,1]), i.e. dH (I, I ′) = | inf I − inf I ′|. In addition, we
assume that inf I < inf I ′ without loss of generality. Then

1T
I �n1I ′ = (

1T
I∩I ′ + 1T

I\I ′
)
�n(1I∩I ′ + 1I ′\I )

= 1T
I∩I ′�n1I∩I ′ + 1T

I\I ′�n1I∩I ′ + 1T
I∩I ′�n1I ′\I + 1T

I\I ′�n1I ′\I .

Due to �n being symmetric and Toeplitz, we have 1T
I∩I ′�n1I ′\I = 1T

I∩I ′�n1I\I ′ , and thus,

1T
I �n1I ′ = 1T

I �n1I − 1T
I\I ′�n1I\I ′ + 1T

I\I ′�n1I ′\I .

It follows that

d2
n

(
I, I ′)= 2 − 2

(
1T
I �n1I

)−1[1T
I �n1I − 1T

I\I ′�n1I\I ′ + 1T
I\I ′�n1I ′\I

]
= 2

(
1T
I �n1I

)−1[1T
I\I ′�n1I\I ′ − 1T

I\I ′�n1I ′\I
]
.

Since 1T
I\I ′�n1I ′\I is the sum over a submatrix with rn = n| inf I − inf I ′| rows, and its lower

left entry is f�nλn�−1−rn , we find the trivial bound

∣∣1T
I\I ′�n1I ′\I

∣∣≤ nλn

logn

∞∑
h=�nλn(1−1/ logn)�−1

M
(
1 + |h|)−1−κ = o

(
nλn

logn

)
,

as n → ∞. We use Theorem 18.2.1 of Ibragimov and Linnik [22] (see also Section 6.1.3 of the
Supplementary Material [13]) to find 1T

I �n1I = nλnf (0)(1 + o(1)) and

1T
I\I ′�n1I\I ′ ≤ f (0)

nλn

logn

(
1 + o(1)

)
,

as n → ∞. This yields

dn

(
I, I ′)≤

√
2

logn
+ ζn,

where ζn = o((logn)− 1
2 ). This implies that for any I ∈ Cn and for large enough n we have the

inclusion {
I ′ ∈ Cn : dH

(
I, I ′)≤ λn

logn

}
⊆
{
I ′ ∈ Cn : dn

(
I, I ′)≤

√
2

logn
+ ζn

}
.
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Thus, if we choose ηn =
√

2
logn

+ ζn, this yields the bound

N(Cn, dn, ηn) ≤ logn

2λn

,

and consequently,

M̃n ≤ 2 + ζn

√
2 logn +

√
2 log

logn

2λn

+
(

1 + ζn +
√

2

logn

)√
2 log 2.

Thus, if we choose

cα,n = 2 + ζn

√
2 logn +

√
2 log

2

α
+
√

2 log
logn

2λn

+ κn

+
(

1 + ζn +
√

2

logn

)√
2 log 2, (5.2)

the test �a
n will have level α for all n ∈ N. Note that ζn

√
2 logn = o(1) as n → ∞. Concerning

the type II error of the test �a
n, recall that, under H1, i.e. if Y ∼ N (δ1I ,�n) for some δ with

|δ| > �n, and I ∈ I(λn), we have

1T
I ′Y√

σn(I ′)
∼N

(
δ1T

I ′1I√
σn(I ′)

,1

)

for all I ′ ∈ I(λn). For n large enough, it follows from plugging in (5.1) and (5.2), that

β̄
(
�a

n

)= sup
I∈I(λn)

sup
|δ|≥�n

PI,δ

[
�a

n(Y ) = 0
]

= sup
I∈I(λn)

sup
|δ|≥�n

P

[
sup

I ′∈I(λn)

∣∣∣∣ZI ′ + δ1T
I ′1I√

σn(I ′)

∣∣∣∣≤ cα,n

]

≤ sup
I∈I(λn)

sup
|δ|≥�n

P

[∣∣∣∣ZI + δ1T
I 1I√

σn(I )

∣∣∣∣≤ cα,n

]

≤ sup
I∈I(λn)

sup
|δ|≥�n

P

[
|δ| 1T

I 1I√
σn(I )

− |ZI | ≤ cα,n

]

≤ P

[
|Z| > �n inf

I∈I(λn)

1T
I 1I√
σn(I )

− cα,n

]
,
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where (ZI )I∈I(λn) and Z are (not necessarily independent) standard Gaussian random variables.
Plugging in (5.1), we have

�n inf
I∈I(λn)

1T
I 1I√
σn(I )

− cα,n

≥ ε̃n

√
log

1

λn

− 2 − ζn

√
2 logn −

√
2 log

2

α
−
√

2 log
logn

2
− κn

−
(

1 + ζn +
√

2

logn

)√
2 log 2

for n large enough. Since ε̃n

√− logλn − √
log logn → ∞ by assumption and κn = o(1) and

ζn

√
2 logn = o(1) as n → ∞, it follows that the right-hand side diverges to ∞. This finishes the

proof. �

5.1.2. Lower detection bound

We start by giving some technicalities on LR-statistics required throughout the paper at several
places. As λn and �n are known, the likelihood ratio Lδ,I = Lδ,I (Y ) between the distributions
of Y under H0 and Hn

δ,I is given by

LI,δ = exp

[
δ1T

I �−1
n Y − 1

2
δ21T

I �−1
n 1I

]
.

Note that, under H0, the likelihood ratio Lδ,I follows a log-normal distribution, i.e.

logLI,δ = δ1T
I �−1

n Y − 1

2
δ21T

I �−1
n 1I

H0∼ N1

(
−1

2
δ2σ̃n(I ), δ2σ̃n(I )

)
,

where

σ̃n(I ) := 1T
I �−1

n 1I .

Note that, under H0, for I, I ′ ∈ Cn and δ ∈ R, we have ELI,δ = 1, VarLI,δ = exp(δ2σ̃n(I )) − 1
and Cov(LI,δ,LI ′,δ) = exp(δ21T

I �−1
n 1I ′) − 1. Finally, let

I0 := {[
(k − 1)λn, kλn

) : 1 ≤ k ≤ ⌊
λ−1

n

⌋}⊆ I(λn)

be a system of non-overlapping intervals of length λn as defined in (2.2).

Lemma 5.2 (Lower detection bound). Fix α ∈ (0,1), and suppose that (1.5) holds. Let
(�n)n∈N be a sequence of covariance matrices, such that

�n sup
I∈I(λn)

√
σ̃n(I ) � (

√
2 − εn)

√− logλn, (5.3)



3304 Enikeeva, Munk, Pohlmann and Werner

where (εn)n∈N is a sequence that satisfies εn → 0 and εn

√− logλn → ∞ as n → ∞. In addition,
assume that for some m ∈N0

lim
n→∞

1

�λ−1
n �2

∑
I,I ′∈I0

n| inf I−inf I ′|>m

Cov(LI,�n,LI ′,�n
) = 0, (5.4)

as n → ∞.
Then any sequence of tests (�n)n∈N with lim supn→∞ ᾱ(�n) ≤ α will obey

lim supn→∞ β̄(�n) ≥ 1 − α, i.e. the bump is asymptotically undetectable.

Proof. We employ the same strategy as in the proof of Theorem 3.1(a) of Dümbgen and
Spokoiny [11]. We bound the type II error of any given test by an expression that does not de-
pend on the test anymore, and then employ an appropriate L1-law of large numbers for dependent
arrays of random variables.

For any sequence of tests �n with asymptotic level α under H0 we have

β̄(�n) = sup
I∈I(λn)

sup
|δ|≥�n

EI,δ

[
1 − �n(Y )

]≥ sup
I∈I0

sup
|δ|≥�n

EI,δ

[
1 − �n(Y )

]

≥ 1

�λ−1
n �

∑
I∈I0

sup
|δ|≥�n

EI,δ

[
1 − �n(Y )

]≥ 1 − 1

�λ−1
n �

∑
I∈I0

EI,�n

[
�n(Y )

]

≥ 1 − 1

�λ−1
n �

∑
I∈I0

E0

[
�n(Y )

dPI,�n

dP0
− �n(Y )

]
− α + o(1)

= 1 −E0

[(
1

�λ−1
n �

∑
I∈I0

LI,�n − 1

)
�n(Y )

]
− α + o(1)

≥ 1 − α −E0

∣∣∣∣ 1

�λ−1
n �

∑
I∈I0

LI,�n − 1

∣∣∣∣+ o(1).

Next, we show that the array {L�n,I : I ∈ I0, n ∈ N} is h-integrable with exponent 1 (see
Definition 6.1 in the Supplementary Material [13] or Definition 1.5 in Sung, Lisawadi and
Volodin[37]), i.e. we show that

sup
n∈N

1

�λ−1
n �

∑
I∈I0

E0
[|LI,�n |

]
< ∞ and

lim
n→∞

1

�λ−1
n �

∑
I∈I0

E0
[|LI,�n |1

{|LI,�n | > h(n)
}]= 0,

(5.5)

where h(n) = �λ−1
n � 1

2 (1+εn)(
√

2−εn)2
. Since E0|LI,�n | = 1 for all n ∈ N and I ∈ I0, the first

condition is satisfied.
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Further, if n large is enough, we have

1

�λ−1
n �

∑
I∈I0

E0
[
LI,�n1

{
LI,�n > h(n)

}]≤ sup
I∈I0

E0
[
LI,�n1

{
LI,�n > h(n)

}]

= sup
I∈I0

P

(
Z ≤

1
2�2

nσ̃n(I ) − logh(n)

�n

√
σ̃n(I )

)

≤ P

(
Z ≤ sup

I∈I0

1

2
�n

√
σ̃n(I ) − logh(n)

supI∈I0 �n

√
σ̃n(I )

)

(a)≤ P
(
Z ≤ −εn(

√
2 − εn)

√− logλn

)
,

where Z is a standard Gaussian random variable. The inequality (a) follows immediately from
(5.3) and the definition of h(n). The claim follows from the assumption that limn→∞ εn ×√− logλn = ∞ as n → ∞.

Then, given that (5.4) and (5.5) hold, it follows from an L1-law of large numbers for dependent
arrays (see Theorem 6.2 in the Supplementary Material [13] or Theorem 3.2 of Wang and Hu
[40]), that

E0

∣∣∣∣ 1

�λ−1
n �

∑
I∈I0

L�n,I − 1

∣∣∣∣→ 0, (5.6)

as n → ∞, which finishes the proof. �

5.1.3. Proof of Theorem 2.1

In the setting described in Theorem 2.1 the noise vector ξn in model (1.1) is given by n consecu-
tive realizations of a stationary centered Gaussian process with the square summable autocovari-
ance function γ (h), h ∈ Z and the spectral density f . We suppose that Assumption 2 is satisfied,
i.e. the autocovariance of ξn has a polynomial decay. In terms of �n, this means∣∣�n(i, j)

∣∣≤ C
(
1 + |i − j |)−(1+κ)

for 1 ≤ i, j ≤ n and some constants C > 0 and κ > 0.
In order to apply Lemma 5.2 in such a setting, first, we need to examine the asymptotic behav-

ior of the coefficients σ̃n(I ), and second, we need to verify that condition (5.4) is satisfied under
the lower detection boundary condition (5.3) and Assumption 2.

For the setting of Theorem 2.1, we will do the former in Lemma 5.3 and the latter in
Lemma 5.4.

Lemma 5.3. If Assumption 2 holds, then for any I ∈ I(λn), it follows that

σ̃n(I ) = nλn

f (0)

(
1 + o(1)

)
,

as n → ∞.
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The proof of Lemma 5.3 is very similar to the proof of Proposition C.1 in Keshavarz, Scott
and Nguyen [26], and can be found in the Supplementary Material [13].

Lemma 5.4. If Assumption 2 holds, and given that

�n sup
I∈I(λn)

√
σ̃n(I ) � (

√
2 − εn)

√− logλn (5.7)

for a sequence (εn)n∈N satisfying εn → 0 and εn

√− logλn → ∞ as n → ∞, then condition
(5.4) holds with m = 1, i.e.

lim
n→∞λ2

n

∑
I,I ′∈I0

n| inf I−inf I ′|>1

exp
(
�2

n1T
I �−1

n 1I ′
)− 1 = 0.

Proof. For I, I ′ ∈ I0 with n| inf I − inf I ′| > 1. Write

exp
(
�2

n1T
I �−1

n 1I ′
)− 1 =

∞∑
p=1

1

p!
[
�2

n1T
I �−1

n 1I ′
]p

=
∞∑

p=1

1

p!
[

1

2
�2

n

√
σ̃n(I )σ̃n

(
I ′)]p[

2
1T
I �−1

n 1I ′√
σ̃n(I )σ̃n(I ′)

]p

.

If nλn is an integer, the latter term 1T
I �−1

n 1I ′ is the sum over a square submatrix of �−1
n , and if

nλn is not an integer, then the number of non-zero entries of 1I and 1I ′ cannot differ by more
than 1. From Lemma A.1 of [19] (see also Section 6.1.2 in the Supplementary Material [13]), it
trivially follows that

∣∣1T
I �−1

n 1I ′
∣∣≤ C′�nλn�

�nλn�∑
t=1

(
n
∣∣inf I − inf I ′∣∣�nλn� + t

)−(1+κ)

≤ C′�nλn�
�nλn�∑
t=1

(�nλn�
)−(1+κ) = o(nλn).

From Lemma 5.3, we know that
√

σ̃n(I )σ̃n(I ′) = nλn

f (0)
(1 + o(1)) as n → ∞, and thus, it fol-

lows that
√

σ̃n(I )σ̃n(I ′)−1
1T
I �−1

n 1I ′ → 0 as n → ∞. Hence, for n large enough, we have∣∣∣∣∣
∞∑

p=1

1

p!
[

1

2
�2

n

√
σ̃n(I )σ̃n

(
I ′)]p[

2
1T
I �−1

n 1I ′√
σ̃n(I )σ̃n(I ′)

]p
∣∣∣∣∣

≤ 2
|1T

I �−1
n 1I ′ |√

σ̃n(I )σ̃n(I ′)
exp

[
1

2
�2

n

√
σ̃n(I )σ̃n

(
I ′)]. (5.8)
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Note that from the lower detection boundary condition (5.7) it immediately follows that

exp

[
1

2
�2

n

√
σ̃n(I )σ̃n

(
I ′)]≤ λ

− 1
2 (

√
2−εn)2

n ≤ λ−1
n (5.9)

for n large enough. Applying Lemma A.1 of [19] again, it follows that |�−1
n (i, j)| ≤ C(1 +

|i − j |)−(1+κ) for some C > 0. Let �n be the n × n-matrix with entries �n(i, j) = C(1 +
|i − j |)−(1+κ), and let �(ν) =∑∞

h=−∞ C(1 + |i − j |)−(1+κ)e−2πihν . Then

∑
I,I ′∈I0

n| inf I−inf I ′|>1

∣∣1T
I �−1

n 1I ′
∣∣≤ ∑

I,I ′∈I0

I �=I ′

1T
I �n1I ′ ≤

n∑
i,j=1

�n(i, j) −
∑
I∈I0

1T
I �n1I

(a)= o(n), (5.10)

where (a) follows from Theorem 18.2.1 of Ibragimov and Linnik [22], since it yields that∑n
i,j=1 �n(i, j) = n�(0) + o(n) and 1T

I �n1I = nλn�(0) + o(nλn) for any I ∈ I0.

Finally, combining (5.8), (5.9) and (5.10), and once again using that
√

σ̃n(I )σ̃n(I ′) = nλn

f (0)
(1+

o(1)) as n → ∞, we find

∑
I,I ′∈I0

n| inf I−inf I ′|>1

2
|1T

I �−1
n 1I ′ |√

σ̃n(I )σ̃n(I ′)
exp

[
1

2
�2

n

√
σ̃n(I )σ̃n

(
I ′)]= o

(
1

λ2
n

)
,

which concludes the proof. �

Since Lemma 5.4 guarantees that Lemma 5.2 can be applied in the setting of Theorem 2.1, the
proof of the latter now follows immediately from Lemmas 5.1 and 5.2.

Proof of Theorem 2.1. The two Lemmas 5.1 and 5.2 yield that the asymptotic detection bound-
ary is (in terms of �n) given by

(
√

2 − εn)

√
− logλn

nλn

sup
I∈I(λn)

√
nλn

σ̃n(I )
� �n � (

√
2 + ε̃n)

√
− logλn

nλn

inf
I∈I(λn)

√
σn(I )

nλn

, (5.11)

as n → ∞. For any I ∈ I(λn), it follows from Theorem 18.2.1 of Ibragimov and Linnik [22] (see
Section 6.1.3 of the Supplementary Material [13]) that σn(I ) = nλnf (0)(1 + o(1)), and Lemma
5.3 yields

σ̃n(I ) = nλn

f (0)

(
1 + o(1)

)
, n → ∞.

Plugging this into (5.11) finishes the proof. �
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