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We present some properties of a Cauchy family of distributions on the sphere, which is a spherical ex-
tension of the wrapped Cauchy family on the circle. The spherical Cauchy family is closed under the
Möbius transformations on the sphere and the parameter of the transformed family is expressed using ex-
tended Möbius transformations on the compactified Euclidean space. Stereographic projection transforms
the spherical Cauchy family into a multivariate t-family with a certain degree of freedom on Euclidean
space. The Möbius transformations and stereographic projection enable us to obtain some results related to
the spherical Cauchy family such as an efficient algorithm for random variate generation, a simple form of
pivotal statistic and straightforward calculation of probabilities of a region. A method of moments estimator
and an asymptotically efficient estimator are expressed in closed form. Maximum likelihood estimation is
also straightforward.
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distribution; wrapped Cauchy distribution

1. Introduction

This paper discusses a family of distributions on the unit sphere with probability density function

f (y;μ,ρ) = �{(d + 1)/2}
2π(d+1)/2

(
1 − ρ2

1 + ρ2 − 2ρμT y

)d

, y ∈ Sd, (1.1)

with respect to surface area, where μ ∈ Sd is the location parameter, ρ ∈ [0,1) is the concen-
tration parameter, and Sd = {y ∈ Rd+1; ‖y‖ = 1} denotes the unit sphere in Rd+1. The circular
case (d = 1) is well-known as the wrapped Cauchy or circular Cauchy family (see, for example,
[26,35]). In this paper, the distribution (1.1) is called the Cauchy distribution on the sphere or the
spherical Cauchy distribution.

McCullagh [35] showed that the wrapped Cauchy family is closed under conformal maps
preserving the unit circle which are called the Möbius transformations on the unit circle, and
that there are similar induced transformations on the parameter space. Related results about the
Cauchy family on the real line and on the Euclidean space have been given by [34] and [28], re-
spectively. A power of a real Cauchy density is transformed into an invariant hyperbolic Laplace

1350-7265 © 2020 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/20-BEJ1222
mailto:skato@ism.ac.jp
mailto:pmcc@galton.uchicago.edu


A Cauchy family on the sphere 3225

density through the inverse Helgason–Fourier transform which is related in form to the Möbius
transformation preserving the upper half plane [16]. To our knowledge, however, there has been
no literature about the association between the Möbius transformations and the spherical Cauchy
family (1.1). Since there have been various statistical applications of the wrapped Cauchy family
and/or the Möbius transformations in directional statistics [6,7,18–20,22,35,41], it is potentially
useful to consider the Cauchy family on the sphere and its relationship with the Möbius transfor-
mations.

This paper presents some properties of the Cauchy family on the sphere, especially, those re-
lated to the Möbius transformations. The spherical Cauchy family is closed under the Möbius
transformations on the sphere, and the transformed parameter is given by the extended Möbius
transformation on the compactified Euclidean space. The statistical benefits of this property in-
clude: (i) an efficient algorithm for random variate generation; (ii) a simple pivotal statistic for
parametric inference; (iii) straightforward calculation of probabilities of a region; (iv) closed
form expression for the maximum likelihood estimator for n ≤ 3; and (v) straightforward calcu-
lation of the Fisher information matrix. The spherical Cauchy family is a transformation model
[2], Sections 1.4 and 2.8, under the action of the Möbius transformations. A method of moments
estimator can be expressed in simple form. A simple algorithm for maximum likelihood estima-
tion is available. The likelihood for the spherical Cauchy is equivalent to that for the t -family
with a certain degree of freedom which is related to the spherical Cauchy via stereographic pro-
jection. An asymptotically efficient estimator is presented which our simulation study suggests
outperforms the method of moments estimator and the maximum likelihood estimator in certain
settings.

Comparing the densities of the spherical Cauchy and von Mises–Fisher, the spherical Cauchy
density takes greater values around the mode and antimode and smaller values in the other area
of the sphere. The advantages of the spherical Cauchy over the von Mises–Fisher in terms of
properties include the closure under the Möbius transformations and the related properties, while
the von Mises–Fisher compares favourably with the spherical Cauchy in terms of its membership
in the exponential family, straightforward maximum likelihood estimation and a well-developed
theory of hypothesis testing.

Apart from the well-known von Mises–Fisher distribution, there exist other probability distri-
butions on the sphere (see, e.g., Section 2.3 of [29]). Many of these existing models are members
of the exponential family including extensions of the von Mises–Fisher distribution. Among non-
members of the exponential family, the directional Cauchy distribution has been proposed in [12],
Section 5.1. Both the spherical Cauchy (1.1) and the directional Cauchy are multi-dimensional
extensions of the wrapped Cauchy distribution for d = 1. Also, the densities of both models have
higher concentration around a peaked mode than the density of the von Mises–Fisher distribu-
tion. A difference between the two Cauchy models is that the directional Cauchy is not closed
under the Möbius transformations for d ≥ 2 and most of the discussion given in this paper is not
directly applicable to the directional Cauchy for d ≥ 2.

Throughout this paper, d is a positive integer. We let Rd and R
d

denote the d-dimensional
Euclidean space and compactified Euclidean space Rd ∪ {∞}, respectively. Suppose that ‖ · ‖
is the Euclidean norm and that Sd is the d-dimensional unit sphere in Rd+1, namely, Sd = {y ∈
Rd+1; ‖y‖ = 1}. Let Dd+1 and D

d+1
denote the open and closed unit balls in Rd+1, so that Sd =
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D
d+1 \ Dd+1. We let C and C denote the complex plane and the compactified complex plane

C∪{∞}, respectively. The set of all (d +1)× (d +1) rotation matrices is denoted by SO(d +1).
The (d + 1)-dimensional unit vector whose j th element equals one is ej . The (d + 1) × (d + 1)

identity matrix is denoted by I .
The paper is organized as follows. In Section 2, we introduce the Möbius transformations and

a Cauchy family on the sphere. Some statistical properties of the spherical Cauchy family are
derived from the Möbius transformations. In Section 3, an extension of the stereographic pro-
jection is defined and it is used to discuss the relationship between the spherical Cauchy family
and a multivariate t -family with a certain degree of freedom. Three estimators of the parameter
for the spherical Cauchy family are proposed in Section 4. In Section 5, a simulation study is
conducted to compare the performance of the proposed estimators. Finally, the spherical Cauchy
family is compared with the von Mises–Fisher family in Section 6. A marginal distribution of
the spherical Cauchy family is discussed in Appendix A.

Proofs can be found in the online Supplementary Material [21].

2. Möbius transformations and a Cauchy family on the sphere

2.1. Möbius transformations on the sphere

The goal of this section is to discuss the Möbius transformations preserving the unit sphere Sd ,
and to investigate their association with the Cauchy family (1.1). The first step to achieve this is
to consider the following function

M̃R,ψ(y) = R

{
1 − ‖ψ‖2

‖y + ψ‖2
(y + ψ) + ψ

}
, y ∈ Sd, (2.1)

where ψ ∈ Rd+1 \ Sd and R ∈ SO(d + 1). The transformation (2.1) maps the unit sphere onto
itself: it is called the Möbius transformation on the sphere. This transformation is a special case

of the Möbius transformation on R
d+1

with a restricted domain. (For the Möbius transformations

on R
d+1

, see, for example, Section 2 of [17] and equation (2.7) below.)
The Möbius transformation on the sphere (2.1) is an extension of the function given in Sec-

tion 10 of [33] which has the restriction R = I , ψ = ψ1e1 and −1 < ψ1 < 1. That function was
derived to obtain the reflected point M̃I,ψ1e1(y) by extending a chord from −y through the point
ψ1e1 to intersect the unit sphere. Similarly, the Möbius transformation on the sphere (2.1) first
sends y ∈ Sd to the point M̃I,ψ(y) which intersects the unit sphere and the chord extended from
−y through ψ . Then the transformed point M̃R,ψ(y) is obtained by rotating M̃I,ψ(y) using R.

Remark 2.1. An alternative derivation of the Möbius transformation on the sphere (2.1) with
ψ �= 0 is given as follows:

(i) First, rotate y to obtain u = Py, where P ∈ SO(d + 1) is defined to satisfy Pψ =
(‖ψ‖,0, . . . ,0)T and Py = (yT ψ/‖ψ‖, {‖y‖2 − (yT ψ/‖ψ‖)2}1/2,0, . . . ,0)T . Note that
the first row of P is ψT /‖ψ‖ and, for y �= ±ψ/‖ψ‖, the second row of P is {y −
(yT ψ/‖ψ‖2)ψ}T /‖y − (yT ψ/‖ψ‖2)ψ‖.
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(ii) Second, define the complex number z = u1 + iu2, where u1 and u2 are the first and second
components of u, respectively, and transform z via the Möbius transformation preserving
the unit circle

M̆c(z) = z + ‖ψ‖
‖ψ‖z + 1

. (2.2)

Then put ŭ = (Re[M̆c(z)], Im[M̆c(z)],0, . . . ,0)T .
(iii) Finally, the Möbius transformation on the unit sphere (2.1) is obtained by rotating ŭ using

RP T , namely, M̃R,ψ(y) = RP T ŭ.

As will be seen in the next subsection, we will extend the domain of the transformation (2.2) from
the unit circle to the compactified complex plane C in order to derive an extension of M̃R,ψ .

The two parameters R and ψ have a clear interpretation. The matrix R works as a rotation
parameter. In order to discuss the interpretation of ψ , assume, without loss of generality, that R =
I . If ‖ψ‖ < 1, ψ can be interpreted as a parameter vector that attracts the points on the sphere
towards ψ/‖ψ‖, with the concentration of the points around ψ/‖ψ‖ increasing as ‖ψ‖ increases.
In particular, if ψ = 0, then M̃I,ψ reduces to the identify mapping. As ‖ψ‖ → 1, M̃I,ψ (y) →
ψ/‖ψ‖ for any y �= −ψ/‖ψ‖. The points y = ψ/‖ψ‖ and y = −ψ/‖ψ‖ are invariant under
M̃I,ψ , i.e., M̃I,ψ (ψ/‖ψ‖) = ψ/‖ψ‖ and M̃I,ψ (−ψ/‖ψ‖) = −ψ/‖ψ‖ for any ψ �= 0. For the
case of ‖ψ‖ > 1, the transformation M̃I,ψ consists of the two steps of transformations, namely,
the transformation M̃I,ψ/‖ψ‖2(y)(= y′) and the reflection of −y′ along ψ .

2.2. An extension of the Möbius transformations on the sphere

In this subsection, we discuss a set of functions which is an extension of the Möbius transfor-
mations on the sphere (2.1) and is related to the Cauchy family on the sphere. The function is
defined by

MR,ψ(x) = R

{
1 − ‖ψ‖2

‖x̌ + ψ‖2
(x̌ + ψ) + ψ

}
, x ∈ Rd+1 \ {

0,−ψ/‖ψ‖2}. (2.3)

where x̌ = x/‖x‖2, ψ ∈ Rd+1 \ Sd , and R ∈ SO(d + 1). Also, we define MR,ψ(0) = Rψ ,
MR,ψ(−ψ/‖ψ‖2) = ∞ and MR,ψ(∞) = Rψ/‖ψ‖2.

If we restrict the domain of x to be Sd , then MR,ψ reduces to the Möbius transformation
M̃R,ψ on the sphere. For ψ �= 0, the transformation MR,ψ can also be expressed as

MR,ψ(x) = RT
ψ̌

{
1 − ‖ψ̌‖2

‖x + ψ̌‖2
(x + ψ̌) + ψ̌

}
, x ∈ Rd+1 \ {−ψ̌}, (2.4)

where ψ̌ = ψ/‖ψ‖2 and T
ψ̌

= 2ψ̌ψ̌T /‖ψ̌‖2 − I . Throughout the paper, the transformation (2.3)
is denoted by MR,ψ .
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The function MR,ψ with ψ �= 0 can be derived by replacing y ∈ Sd with x ∈ Rd+1 \ {−ψ̌} in
the three steps (i)–(iii) given in Remark 2.1. Notice that, in the step (ii), the Möbius transforma-
tion on the complex plane (2.2) can be expressed as

M̆c(z) = 1 − ‖ψ‖2

|ž + ‖ψ‖|2
(
ž + ‖ψ‖) + ‖ψ‖ = 1 − ‖ψ‖−2

|z + ‖ψ‖−1|2
(
z + ‖ψ‖−1

) + ‖ψ‖−1,

where ž = z/|z|2. The middle and last expressions above lead to the expressions for MR,ψ given
by (2.3) and (2.4), respectively. If ψ = 0, then MR,0(x) = Rx.

In a more intuitively accessible manner, the transformation MR,ψ can be induced as follows.
The function

Mc(z) = αR

z + αψ

αψz + 1
, z ∈ C,

is a Möbius transformation C → C that preserves the unit circle, where αR and αψ are complex
numbers such that |αR| = 1 and |αψ | �= 1. (See, e.g., Section 3.3 of [1] and Chapter 12 of [39]
for the the Möbius transformation on C, especially, the latter for the Möbius transformation
preserving the unit circle.) The inside of the unit circle is preserved for |αψ | < 1 and the inside
is mapped to the outside for |αψ | > 1. Note that Mc can also be expressed as

Mc(z) = αR

{
1 − |αψ |2
|ž + αψ |2 (ž + αψ) + αψ

}
, z ∈C \ {

0,−αψ/|αψ |2}. (2.5)

If follows from this expression that the transformation (2.5) is essentially the same as MR,ψ with
d = 1 apart from the parametrization if the real and imaginary parts of Mc(z) are identified as
the first and second components of MR,ψ(x), respectively. Then it can be readily induced from
this expression that Mc extends to the mapping MR,ψ expressed in form of (2.3).

Theorem 2.1. The following hold for the transformation MR,ψ :

(a) The transformation MR,ψ is a bijective conformal map which maps R
d+1

onto itself.

(b) For any ψ ∈R
d+1 \ Sd , the transformation MR,ψ maps the unit sphere Sd onto itself.

(c) If ‖ψ‖ < 1, then MR,ψ(Dd+1) = Dd+1 and MR,ψ(R
d+1 \ D

d+1
) = R

d+1 \ D
d+1

.

(d) If ‖ψ‖ > 1, then MR,ψ(Dd+1) =R
d+1 \ D

d+1
and MR,ψ(R

d+1 \ D
d+1

) = Dd+1.

It is remarked that, if M̃R,ψ in (2.1) is directly extended to be defined on R
d+1

, then the
properties (c) and (d) of Theorem 2.1 do not hold for M̃R,ψ in general. This extended function
is an anti-Möbius transformation which maps Dd+1 to the outside for ‖ψ‖ < 1 and preserves
Dd+1 for ‖ψ‖ > 1.

The following holds for the set of the Möbius transformations {MR,ψ } with ψ �= 0, whose
elements can be expressed as (2.4).
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Lemma 2.1. Let ψ1,ψ2 �= 0. Then, for ψ2 �= −R1ψ1,

MR2,ψ2

{
MR1,ψ1(x)

} =MR12,ψ12(x), x ∈ R
d+1

, (2.6)

where R12 = R2Tψ2TR1ψ̌1+ψ̌2
R1Tψ1Tψ12 , ψ12 = MI,ψ1(R

T
1 ψ̌2)/‖MI,ψ1(R

T
1 ψ̌2)‖2 = Tψ1R

T
1 ×

T
R1ψ̌1+ψ̌2

Tψ2MI,ψ2(R1ψ1), ψ̌j = ψj/‖ψj‖2, j = 1,2, and Tψ is defined as in (2.4). For ψ2 =
−R1ψ1, MR2,ψ2{MR1,ψ1(x)} = MR2R1,0(x) for any x ∈R

d+1
.

In addition the expression (2.3) implies that MR2,ψ2{MR1,ψ1(x)} = MR2R1,R
T
1 ψ2

(x) for ψ1 =
0 and MR2,ψ2{MR1,ψ1(x)} = MR2R1,ψ1(x) for ψ2 = 0. Thus, we have the following theorem.

Theorem 2.2. Let G be the set of the transformations {MR,ψ } with all possible combinations of
R ∈ SO(d + 1) and ψ ∈Rd+1 \ Sd , namely, G = {MR,ψ ;R ∈ SO(d + 1),ψ ∈ Rd+1 \ Sd}. Then
G forms a group under composition. The identity element of G is MI,0 and the inverse of MR,ψ

is MRT ,−Rψ .

This theorem implies that the Möbius transformations G are tractable transformations for
spherical variables in terms of group operation.

It follows from Theorem 2.2 that G is a subgroup of the Möbius group on R
d+1

. Here the

Möbius group on R
d+1

is defined by G′ = {M′;a, b ∈ Rd+1, γ ∈ R \ {0}, A ∈ O(d + 1), ε ∈
{0,2}}, where

M′(x) = A

(
γ

x + a

‖x + a‖ε
+ b

)
, x ∈Rd+1 \ {−a}, (2.7)

and O(d + 1) is the set of all (d + 1) × (d + 1) orthogonal matrices. If x ∈ {−a,∞}, we define
M′(−a) = Ab and M′(∞) = ∞ for ε = 0 and M′(−a) = ∞ and M′(∞) = b for ε = 2. See,

for example, Section 2 of [17] for more details of the Möbius group on R
d+1

.
It is clear from Theorem 2.2 that the set of Möbius transformations {M̃R,ψ } on the sphere also

forms a group under composition. The set of transformations {MR,ψ } is not an Abelian group,
implying that that MR1,ψ1{MR2,ψ2(x)} = MR2,ψ2{MR1,ψ1(x)} does not hold in general. How-
ever, for fixed μ ∈ Sd , the subset of transformations {MI,ρμ; |ρ| �= 1} forms an Abelian group.
Since any subgroup of an Abelian group is Abelian, the group of the Möbius transformations
{M̃I,ρμ; |ρ| �= 1} on the sphere is also Abelian.

2.3. A Cauchy family on the sphere

The parameters μ and ρ of the spherical Cauchy family (1.1) can be clearly interpreted. The
parameter μ controls the mode of the density. The concentration of the distribution is regulated
by ρ. The greater the value of ρ, the greater the concentration of the density (1.1) around the
mode. In particular, when ρ = 0, the distribution (1.1) reduces to the uniform distribution on
Sd . On the other hand, as ρ tends to 1, the distribution converges to a point distribution with
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singularity at y = μ. See Figure 2 given in Section 6 for some plots of the densities of the
spherical Cauchy (1.1).

In order to investigate the relationship between the spherical Cauchy family (1.1) and the set
of transformations (2.3), it is advantageous to write the parameters of the spherical Cauchy (1.1)

as φ = ρμ and extend the parameter space to be R
d+1

. Specifically, we write the density of the
spherical Cauchy as

f (y;φ) = �{(d + 1)/2}
2π(d+1)/2

( |1 − ‖φ‖2|
‖y − φ‖2

)d

, y ∈ Sd, (2.8)

where φ ∈ Rd+1 \ Sd . For φ ∈ Sd we assume that the distribution is a point mass at y = φ. Also
define that the density is uniform if φ = ∞. It can be seen that f (y;φ) = f (y;φ/‖φ‖2) for
any φ. Write Y ∼ C∗

d (φ) if an Sd -valued random vector Y has density (2.8).
The following result can be readily established from Theorem 2.1 and Lemma 2.1.

Theorem 2.3. The following hold for the spherical Cauchy family (2.8) and the transformation
MR,ψ :

Y ∼ C∗
d (φ) =⇒ MR,ψ(Y ) ∼ C∗

d

{
MR,ψ(φ)

}
.

If d = 1, Theorem 2.3 is essentially the same as the result for the circular Cauchy or wrapped
Cauchy family given in [35]. Regarding the parameter space, Theorem 2.1(c) implies that, if
‖φ‖ < 1, then ‖MR,ψ(φ)‖ < 1 for ‖ψ‖ < 1 and ‖MR,ψ(φ)‖ > 1 for ‖ψ‖ > 1. A similar dis-
cussion can be made for ‖φ‖ > 1 by applying Theorem 2.1(d).

Theorems 2.2 and 2.3 imply the following result.

Corollary 2.1. The spherical Cauchy family (2.8) is a transformation model under the action of
the Möbius group G in the sense of Section 2.8 of [2], where G is defined as in Theorem 2.2.

See also Section 1.4 of [2] for the transformation models. The spherical Cauchy family (2.8)
is the orbit of the uniform distribution on Sd under the action of the Möbius group G.

There are some other statistical applications of Theorem 2.3. For example, this theorem can
be applied to propose an efficient algorithm to generate a random variate following the Cauchy
family on Sd .

Corollary 2.2. If a random vector U follows the uniform distribution on Sd , then MI,φ(U) has
the Cauchy distribution C∗

d (φ) on the sphere.

Note that it immediately follows from this corollary that the integral of the density (2.8) over
Sd is equal to one.

Theorem 2.2 guarantees that, for any φ /∈ Sd , there always exists a Möbius transformation
which transforms the spherical Cauchy C∗(φ) into the uniform distribution on the sphere. Such a
Möbius transformation can be obtained from Theorem 2.3, and it can be applied to constructing
a pivotal statistic for φ and calculating probabilities of a surface area under the spherical Cauchy
density (2.8).
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Corollary 2.3. Suppose Y ∼ C∗(φ). Then MI,−φ(Y ) is a pivotal statistic for φ.

Corollary 2.4. Let f (y;φ) denote the spherical Cauchy density (2.8). Assume A ⊂ Sd . Then∫
A

f (y;φ)dy = Area{MI,−φ(A)}
Area(Sd)

,

where Area(C) denotes the area of C with respect to the surface measure.

The proofs of Corollaries 2.2–2.4 are straightforward from Theorem 2.3 and omitted.
Theorem 2.2 implies that the inverse function of a Möbius transformation is unique. However,

as can be seen in Corollary 2.3, the Möbius transformation transforming a spherical Cauchy into
the spherical uniform is not unique because the spherical uniform is invariant under rotation.

3. Extended stereographic projection

In this section, we consider a transformation of the Cauchy family on the sphere (2.8) via the

stereographic projection. The stereographic projection Sd →R
d

is known to be

P̃(y) = 1

1 − yd+1
(y1, . . . , yd)T , y ∈ Sd \ {ed+1}. (3.1)

Also define P̃(ed+1) = ∞. It is known that the stereographic projection (3.1) maps the unit

sphere Sd onto R
d
. A geometrical interpretation of (3.1) is that P̃(y) corresponds to the point

at the intersection of the embedded Euclidean space R
d × {0} and the line connecting y and the

north pole ed+1.
In order to discuss the transformation of the spherical Cauchy family (2.8) via the stereo-

graphic projection (3.1), we define an extension of the complex numbers to higher dimensions
and an extended stereographic projection.

Definition 3.1. We define an extension of the complex numbers by

θ = μ + iσ,

where μ ∈Rd , σ ∈ R and i is the square root of −1. We write μ + iσ = μ if σ = 0.

Definition 3.2. We define a function on R
d+1

by

P(x) = 2
(x1, . . . , xd)T

‖x − ed+1‖2
+ i

1 − ‖x‖2

‖x − ed+1‖2
, x ∈ Rd+1 \ {ed+1}. (3.2)

Also, P(∞) = −i and P(ed+1) = ∞.

Theorem 3.1. The following hold for the function P .



3232 S. Kato and P. McCullagh

(i) The function P is a bijective function which maps R
d+1

onto (Rd + iR) ∪ {∞}.
(ii) The function P reduces to P̃ if x ∈ Sd .

(iii) If ‖x‖ < 1 (‖x‖ > 1), then the imaginary part of P(x) is positive (negative).

A Möbius transformation, which maps Rd ×R− onto Dd+1 and is related to the function (3.2),
is given in equation (4.4.2) of [38]. Theorem 3.1 can also be proved by transforming the function
(3.2) and utilizing the results for the Möbius transformation of [38].

Theorem 3.1 implies that there exists the inverse function of (3.2) which is

P−1(θ) = 2

‖μ‖2 + (1 + σ)2

(
μT ,

‖μ‖2 + σ 2 − 1

2

)T

,

where θ = μ + iσ ∈ (Rd + iR) \ {−i}. Also, define P−1(−i) = ∞ and P−1(∞) = ed+1. Then
the following result is established.

Theorem 3.2. The following hold for the spherical Cauchy family (2.8) and the extended stere-
ographic projection P :

Y ∼ C∗
d (φ) =⇒ P(Y ) ∼ Cd

{
P(φ)

}
.

Equivalently,

X ∼ Cd(θ) =⇒ P−1(X) ∼ C∗
d

{
P−1(θ)

}
.

Here Cd(θ) denotes a d-variate t -distribution with d degrees of freedom with location parameter
μ and scale matrix d−1σ 2I , which has density

f (x; θ) = �(d)

(πσ 2)d/2�(d/2)

(
1 + ‖x − μ‖2

σ 2

)−d

, x ∈R
d
, (3.3)

where θ = μ + iσ , μ ∈ Rd and σ �= 0. For σ = 0, we interpret the distribution with density (3.3)
as a point mass at x = μ. If θ = ∞, then the distribution is assumed to be the point distribution
with singularity at x = ∞.

This is an extended result of [8] that the uniform distribution on Sd is transformed into the
standard multivariate t -distribution with d degrees of freedom. This theorem and Theorem 2.3
imply that a random variate following the t -distribution with d degrees of freedom Cd(θ) can be
generated from the uniform distribution on Sd .

4. Statistical inference

4.1. Method of moments estimation

In statistical inference for rotationally symmetric distributions, it is common to express their
parameters in terms of one unit vector (as the mean direction) and one positive scalar (as the
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concentration parameter). However, for the spherical Cauchy family, it is more convenient and
often more interpretable to express its parameter in terms of φ as in (2.8) rather than μ and ρ as
in (1.1). Nonetheless, it is possible to discuss the statistical inference for the parameters μ and ρ

in a similar manner as will be seen in this section.
Throughout this section, we assume that Y1, . . . , Yn is a random sample from the multivariate

Cauchy distribution C∗
d (φ) on the sphere with ‖φ‖ < 1.

Theorem 4.1. Let Y have the spherical Cauchy distribution C∗
d (φ) with ‖φ‖ < 1. Then, for

φ �= 0,

E(Y ) = η1,d

(‖φ‖) φ

‖φ‖ ,

E
(
YYT

) = 1

d

[{
1 − η2,d

(‖φ‖)}I + {
(d + 1)η2,d

(‖φ‖) − 1
} φφT

‖φ‖2

]
,

where

η1,d (ρ) = 1 + ρ2

2ρ

[
1 − (1 + ρ)2

1 + ρ2
F

{
1,

d

2
;d; −4ρ

(1 − ρ)2

}]
,

η2,d (ρ) = (1 + ρ2)2

4ρ2

[
1 − 2

(1 + ρ)2

1 + ρ2
F

{
1,

d

2
;d; −4ρ

(1 − ρ)2

}
+ (1 + ρ)4

(1 + ρ2)2
F

{
2,

d

2
;d; −4ρ

(1 − ρ)2

}]
,

and F denotes the hypergeometric series [[13], equation (9.111)]. If φ = 0, E(Y ) = 0 and
E(YYT ) = (d + 1)−1I .

As can be seen in the Supplementary Material [21], the proof of this theorem can be partly
simplified using the general result for rotationally symmetric distributions given in Section 3.4
of [42]. This theorem and Theorems A.3 and A.4 of Appendix A imply that E(Y ) and E(YYT )

can be expressed in closed form without hypergeometric functions for any d .
A method of moments estimator of φ is obtained by equating the expectation of Y and its

sample analogue. In other words the method of moments estimator is the solution of the equation

η1,d

(‖φ‖) φ

‖φ‖ = Y , (4.1)

where η1,d (‖φ‖) is defined as in Theorem 4.1 and Y = n−1 ∑n
j=1 Yj . As is clear from Lemma

A.1 of Appendix A, it holds that η1,d (0) = 0, lim‖φ‖→1 η1,d (‖φ‖) = 1, and η1,d (‖φ‖) is mono-
tonically increasing with respect to ‖φ‖. This immediately leads to the following theorem.
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Theorem 4.2. The equation (4.1) has the unique solution φ̂MM on the (d + 1)-dimensional unit
disc

φ̂MM = η−1
1,d

(‖Y‖) Y

‖Y‖ , (4.2)

where η−1
1,d (ρ) is the inverse of η1,d (ρ) for 0 ≤ ρ < 1.

Since η1,d is monotonically increasing, the method of moments estimate φ̂MM can be estimated
numerically via usual optimization algorithms.

Theorem 4.3. Let φ̂MM be the method of moments estimator (4.2). Then
√

n(φ̂MM − φ) tends in
distribution to N(0,�) as n → ∞, where

� = d−1
[{

1 − η2,d

(‖φ‖)}I + {
(d + 1)η2,d

(‖φ‖) − 1 − dη2
1,d

(‖φ‖)} φφT

‖φ‖2

]
,

 = η−1
1,d

′{
η1,d

(‖φ‖)} φT φ

‖φ‖2
+ ‖φ‖

|η1,d (‖φ‖)|
(

I − φT φ

‖φ‖2

)
,

η−1
1,d

′{
η1,d

(‖φ‖)} = d + 1

2d

(1 − ‖φ‖)3

1 + ‖φ‖
{
F

(
2,

d

2
+ 1;d + 2;− 4‖φ‖

(1 − ‖φ‖)2

)}−1

.

Using the expression of the density (1.1), the method of moments estimators of μ and ρ are
given by

μ̂MM = Y

‖Y‖ , ρ̂MM = η−1
1,d

(‖Y‖),
respectively. The asymptotic normality of these estimators can be proved in a similar manner
as in Theorem 4.3. Note that μ̂MM is known as the extrinsic sample mean of spherical random
vectors. The asymptotic normality of the extrinsic sample mean holds not only for the random
vectors following the spherical Cauchy but also for random vectors taking values in rather general
manifolds under certain conditions. (Any bounded subset would suffice.) See Theorem 3.6 of [3]
and Theorem 2 of [14] for details.

4.2. Maximum likelihood estimation

As the following theorem shows, maximum likelihood estimation for the Cauchy distribution
on the sphere and that for the multivariate t -distribution with a certain degree of freedom are
equivalent.

Theorem 4.4. Let Y1, . . . , Yn be an i.i.d. sample from the spherical Cauchy distribution C∗
d (φ).

Suppose that P is the function (3.2). Then the maximum likelihood estimator of φ is equal to
P−1(θ̂), where θ̂ is the maximum likelihood estimator of the d-variate t -distribution with d

degrees of freedom Cd(θ), given in (3.3), for the sample P(Y1), . . . ,P(Yn).
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The proof is clear from Theorems 3.1 and 3.2 and omitted. This theorem implies that, in order
to estimate the parameter of the spherical Cauchy, it suffices to estimate the parameter of the
d-variate t -distribution with d degrees of freedom.

Although Theorem 4.4 is helpful for computing the maximum likelihood estimates of the
parameter, there remain various properties of the maximum likelihood estimator which are not
clear from this theorem. The rest of this subsection is devoted to investigating properties of the
maximum likelihood estimator which are not clear from Theorem 4.4. The loglikelihood function
is

�(φ) =
n∑

j=1

logf (yj ;φ) = C + d

{
n log

(
1 − ‖φ‖2) −

n∑
j=1

log
(
1 + ‖φ‖2 − 2φT yj

)}
, (4.3)

where C = n log�{(d + 1)/2} − n log{2π(d+1)/2}. The first derivative of the loglikelihood func-
tion with respect to φ is

∂�

∂φ
= −2d

(
nφ

1 − ‖φ‖2
+

n∑
j=1

φ − yj

1 + ‖φ‖2 − 2φT yj

)
= 2d

1 − ‖φ‖2

n∑
j=1

MI,−φ(yj ), (4.4)

where MR,ψ is as in (2.3). Therefore the estimating equation for φ has a simple form

n∑
j=1

MI,−φ(yj ) = 0.

Theorem 4.5. For n ≤ 3, the maximum likelihood estimator of φ, φ̂ML, can be expressed as
follows.

(i) For n = 1, the maximum likelihood estimator of φ is φ̂ML = y1.
(ii) Suppose n = 2. If y1 �= ±y2, the contour of maximum likelihood of φ is the circle perpen-

dicular to the unit sphere with chord (y1, y2) in the two-dimensional plane spanned by y1

and y2. When y1 = −y2, the contour of maximum likelihood of φ is the line connecting
y1 and y2. If y1 = y2, then φ̂ML = y1.

(iii) Assume n = 3 and yj �= yk (j �= k). Then the maximum likelihood estimator of φ is

φ̂ML =P−1(μ̂ + iσ̂ ),

where P is defined as in (3.2) and

μ̂ = ‖P(y1) −P(y2)‖2P(y3) + ‖P(y2) −P(y3)‖2P(y1) + ‖P(y3) −P(y1)‖2P(y2)

‖P(y1) −P(y2)‖2 + ‖P(y2) −P(y3)‖2 + ‖P(y3) −P(y1)‖2
,

σ̂ = √
3

‖P(y1) −P(y2)‖‖P(y2) −P(y3)‖‖P(y3) −P(y1)‖
‖P(y1) −P(y2)‖2 + ‖P(y2) −P(y3)‖2 + ‖P(y3) −P(y1)‖2

.
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For d = 1 and n = 4, Ferguson [9] and McCullagh [35] showed the maximum likelihood
estimator of φ̂ML can be expressed in closed form. However it does not appear clear that there
are closed form expressions for the maximum likelihood estimators for n ≥ 4 for general d .

Lemma 4.1. Let f (y) be the density (2.8) with ‖φ‖ < 1. Then the Fisher information matrix is

I = −E

{
∂

∂φ∂φT
logf (Y )

}
= 4

(1 − ‖φ‖2)2

d2

d + 1
I. (4.5)

Thus the asymptotic variance of the maximum likelihood estimator of φ can be expressed in
simple form. The proof is clear from the general theory and therefore omitted.

Theorem 4.6. Let Y1, . . . , Yn be a random sample from C∗
d (φ) with ‖φ‖ < 1. Assume φ̂ML is the

maximum likelihood estimator of φ. Then
√

n(φ̂ML − φ) tends in distribution to N(0,I−1) as
n → ∞, where I−1 = (1 − ‖φ‖2)2(d + 1)/(4d2)I .

As seen in Theorem 4.4, the maximum likelihood estimates for the sample from the spherical
Cauchy (2.8) for general sample size can be estimated via the transformation of the spherical
Cauchy into the d-variate t with d degrees of freedom. For the maximum likelihood estima-
tion for the multivariate t -distribution with known degrees of freedom, one can apply the EM
algorithm (see, e.g., Section 2.6.1 of [36]).

However it would be more efficient if the parameter estimates are obtained directly from the
sample without transformation. For d = 1, the algorithm of [26] is available to estimate the
parameter φ. Using the fact that the Fisher information (4.5) and the score function (4.4) for the
spherical Cauchy are expressed in simple and closed form, here we present a simple algorithm
based on the method of scoring [e.g., [10], Section 20].

Algorithm 4.1.

Step 1. Take an initial value φ0.
Step 2. Compute φ1, . . . , φN as follows until the value φN remains virtually unchanged from

the previous value φN−1.

φt = φt−1 + (d + 1)(1 − ‖φt−1‖2)

2dn

n∑
j=1

MI,−φt−1(yj ), t = 1, . . . ,N.

Step 3. Record φN as the maximum likelihood estimate of φ.

The convergence of this algorithm is not proved mathematically. However our simulation study
implies that the algorithm converges fast when the method of moments estimate (4.2) is used
as the initial value φ0. In addition, for d = 1, it seems that the parameter estimates based on
Algorithm 4.1 numerically coincide with those based on the algorithm of [26].

The following tractable property holds for stationary points of the loglikelihood function.
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Theorem 4.7. Let Y1, . . . , Yn be a random sample from the spherical Cauchy distribution C∗(φ).
Assume that Yj �= Yk for some (j, k). Then any stationary point of the loglikelihood function (4.3)
is a local maximum.

In this theorem, if the loglikelihood function (4.3) satisfies certain conditions, it can be seen
that there exists only one stationary point in (4.3) and therefore the loglikelihood function (4.3)
is unimodal (see [11] for details).

Maximum likelihood estimation for the reparametrized parameters μ and ρ in (1.1) can be
discussed in a somewhat similar manner. The maximum likelihood estimators of μ and ρ are
essentially the same as φ̂ML, namely, μ̂ML = φ̂ML/‖φ̂ML‖ and ρ̂ML = ‖φ̂ML‖. The score function
and the Fisher information can be readily calculated using the chain rule.

4.3. Asymptotically efficient estimation

Consider the estimator

φ̂AE = η−1
1,d

(‖Y‖) Y

‖Y‖ + d + 1

2dn

n∑
j=1

M
I,−φ̂MM

(Yj ). (4.6)

This estimator is derived as φ̂AE = φ̂MM + (nI)−1∂�/∂φ, where φ̂MM is the method of moments
estimator (4.2), a consistent estimator of φ, and I denotes the Fisher information matrix (4.5)
evaluated at φ̂MM. It follows, for example, from Theorem 20 of [10] that the estimator (4.6)
is an asymptotically efficient estimator of φ with asymptotic variance I−1 = (1 − ‖φ‖2)2(d +
1)/(4d2)I . The estimator (4.6) also appears as φ1 in Algorithm 4.1 when the method of moments
estimator (4.2) is taken as the initial value φ0.

An advantage of the estimator (4.6) is that it achieves both closed-form expression and asymp-
totic efficiency, whereas the method of moments estimator (4.2) has only closed-form expression
and the maximum likelihood estimator only asymptotic efficiency.

5. Simulation study

We compare the method of moments estimator (4.2), the maximum likelihood estimator and the
asymptotically efficient estimator (4.6) in terms of their performance for finite sample sizes and
their asymptotic behaviour. In order to compare the performance of the three estimators, the mean
squared error MSE = E(‖φ̂ − φ‖2) is considered, where φ̂ is an estimator of φ of the spherical
Cauchy C∗

d (φ). We consider the relative mean squared error defined by

RMSEE/ML = MSEE/MSEML,

where MSEML denotes the MSE of the maximum likelihood estimator and MSEE is the MSE of
the method of moments estimator (4.2) or the asymptotically efficient estimator (4.6). The stan-
dard errors of the MSE of the maximum likelihood estimator, the method of moments estimator
(4.2) and the asymptotically efficient estimator (4.6) were also computed.
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First, we consider the performance of the three estimators for finite sample sizes via a Monte
Carlo simulation study. Random samples of sizes n = 10, 25 and 100 were generated from
the spherical Cauchy C∗

d (φ) with φ/‖φ‖ = e1, ‖φ‖ = η−1
1,d (0.1), η−1

1,d (0.5) and η−1
1,d (0.9) and

d = 1, 2, 10 and 100. The values of ‖φ‖ are defined such that the mean resultant lengths of the
underlying distributions are 0.1, 0.5 and 0.9. For each combination of d , n and ‖φ‖, r = 2000
random samples were generated using Corollary 2.2. Then the three estimators were computed
for each random sample. We used Algorithm 4.1 to estimate the maximum likelihood estimator
and the method of moments estimator (4.2) was adopted as the initial value of the algorithm.

An estimate of MSE based on r random samples is defined by M̂SE = r−1 ∑r
j=1 ‖φ̂j − φ‖2,

where φ̂j is an estimator of φ estimated from the j th random sample (j = 1, . . . , r). We then
discuss an estimate of relative mean squared error defined by

R̂MSEE/ML = M̂SEE/M̂SEML, (5.1)

where M̂SEML denotes M̂SE of the maximum likelihood estimator and M̂SEE is M̂SE of the
method of moments estimator (4.2) or the asymptotically efficient estimator (4.6).

Table 1 shows estimates of relative mean squared error (5.1) for some selected combinations of
d , n and ‖φ‖. The values of the relative mean squared error (5.1) for n = ∞ given in the table are
those of the asymptotic relative mean squared error, namely, limn→∞ RMSEE/ML, which can be
calculated using Theorems 4.3 and 4.6. Also, Table 1 provides estimates of standard error of the
relative mean squared error (5.1). Since the number of simulation samples r is large, we apply
the central limit theorem and delta method to obtain estimates of standard error of the relative
mean squared error (5.1) as

ŜEE/ML = r−1/2
(

1

M̂SE
2
ML

σ̂ 2
E − 2M̂SEE

M̂SE
3
ML

σ̂E,ML + M̂SE
2
E

M̂SE
4
ML

σ̂ 2
ML

)1/2

,

where σ̂ 2
E and σ̂ 2

ML are the sample variance of {‖φ̂Ej − φ‖2}rj=1 and {‖φ̂MLj − φ‖2}rj=1, respec-

tively, σ̂E,ML is the sample covariance of {(‖φ̂Ej − φ‖2,‖φ̂MLj − φ‖2)}rj=1, φ̂Ej is the method
of moments estimate (4.2) or the asymptotically efficient estimate (4.6) estimated from the j th
random sample, and φ̂MLj is the maximum likelihood estimate estimated from the j th random
sample (j = 1, . . . , r).

The table suggests that, for high dimensional cases, that is, d ≥ 10, the asymptotically efficient
estimator (4.6) slightly outperforms the method of moments estimator (4.2) and the maximum
likelihood estimator in terms of the mean squared error. For low dimensional cases, that is, d = 1
or 2, the asymptotically efficient estimator (4.6) outperforms the other two estimators for small
values of ‖φ‖ (low concentration) and the maximum likelihood estimator is preferable other-
wise. The method of moments estimator (4.2) shows worse performance than the asymptotically
efficient estimator (4.6) in all the cases, especially, those of small d and large ‖φ‖ (high con-
centration). As n increases, the value of R̂MSEE/ML for the method of moments estimator (4.2)
increases and the value of R̂MSEE/ML for the asymptotically efficient estimator (4.6) approaches
one. Estimated values of standard error of R̂MSEE/ML are small, especially, for high dimensional
cases, and hence the observations given above seem reasonable ones.
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Table 1. Relative mean squared error (RMSE) of the method of moments estimator (4.2) (MM) and that
of the asymptotically efficient estimator (4.6) (AE) with respect to the maximum likelihood estimator and,
in brackets, standard error (SE) of the RMSE of the MM and that of the AE with respect to the maximum
likelihood estimator estimated from 2000 simulation samples of size n from the spherical Cauchy C∗

d
(φ)

with φ/‖φ‖ = e1 and (a) d = 1, (b) d = 2, (c) d = 10 and (d) d = 100

‖φ‖ Est. n = 10 n = 25 n = 100 n = ∞
RMSE (SE) RMSE (SE) RMSE (SE) RMSE

(a)
η−1

1,1(0.1) MM 0.920 (0.011) 0.964 (0.008) 0.996 (0.005) 1.010
AE 0.844 (0.005) 0.932 (0.002) 0.980 (0.001) 1.000

η−1
1,1(0.5) MM 1.123 (0.017) 1.250 (0.019) 1.304 (0.020) 1.333

AE 0.936 (0.006) 0.981 (0.004) 0.994 (0.003) 1.000
η−1

1,1(0.9) MM 3.814 (0.153) 4.623 (0.145) 5.015 (0.145) 5.263
AE 2.025 (0.065) 1.812 (0.044) 1.291 (0.023) 1.000

(b)
η−1

1,2(0.1) MM 0.940 (0.008) 0.980 (0.006) 0.997 (0.003) 1.005
AE 0.898 (0.003) 0.959 (0.001) 0.990 (0.000) 1.000

η−1
1,2(0.5) MM 1.062 (0.011) 1.120 (0.011) 1.132 (0.011) 1.153

AE 0.922 (0.004) 0.971 (0.002) 0.993 (0.001) 1.000
η−1

1,2(0.9) MM 1.902 (0.037) 2.149 (0.040) 2.154 (0.041) 2.234
AE 1.059 (0.011) 1.044 (0.007) 1.012 (0.003) 1.000

(c)
η−1

1,10(0.1) MM 0.990 (0.002) 0.998 (0.001) 1.000 (0.001) 1.001
AE 0.977 (0.000) 0.992 (0.000) 0.998 (0.000) 1.000

η−1
1,10(0.5) MM 1.014 (0.003) 1.026 (0.002) 1.028 (0.002) 1.027

AE 0.978 (0.001) 0.992 (0.000) 0.998 (0.000) 1.000
η−1

1,10(0.9) MM 1.086 (0.005) 1.111 (0.005) 1.113 (0.005) 1.111
AE 0.984 (0.001) 0.994 (0.000) 0.999 (0.000) 1.000

(d)
η−1

1,100(0.1) MM 0.999 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000
AE 0.998 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000

η−1
1,100(0.5) MM 1.002 (0.000) 1.002 (0.000) 1.002 (0.000) 1.003

AE 0.998 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000
η−1

1,100(0.9) MM 1.007 (0.000) 1.008 (0.000) 1.007 (0.000) 1.008
AE 0.998 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000

Next, we discuss the limits of the values of the relative mean squared error of the method of
moments estimator (4.2) with respect to the maximum likelihood estimator as n → ∞. Figure 1
displays the asymptotic relative mean squared error of the method of moments estimator (4.2)
with respect to the maximum likelihood estimator as a function of ‖φ‖ or d . This figure implies
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Figure 1. Asymptotic relative mean squared error of the method of moments estimator (4.2) with respect
to the maximum likelihood estimator for the spherical Cauchy C∗

d
(φ) as a function of ‖φ‖ for d = 1 (solid),

d = 2 (dashed), d = 10 (dotted), d = 50 (dotdashed), and d = 100 (longdashed). The vertical axis is plotted
in logarithmic scale.

that, when ‖φ‖ is small, the asymptotic relative mean squared error is close to one for any d . The
figure also suggests that the asymptotic relative mean squared error is monotonically increasing
with respect to ‖φ‖. In particular, when d is small and ‖φ‖ is large, the asymptotic relative
mean squared error is very large. As d increases, The asymptotic relative mean squared error
approaches one for any ‖φ‖. The same discussion can be given to the relative mean squared error
of the method of moments estimator (4.2) with respect to the asymptotically efficient estimator
(4.6).

Given these observations, the following conclusions can be made as to the choice of the three
estimators of the parameter of the spherical Cauchy in terms of mean squared error. If the di-
mension of the data is large, then the asymptotically efficient estimator (4.6) is preferred. This
estimator outperforms both the maximum likelihood estimator and method of moments estimator
(4.2) in terms of mean squared error for large d . When the dimension of the data is small, the
asymptotically efficient estimator (4.6) is preferred for dispersed data and the maximum likeli-
hood estimator is recommended otherwise.

The calculation of the asymptotically efficient estimator (4.6) is as efficient as that of the
method of moments estimator (4.2) and is more efficient than that of the maximum likelihood es-
timator. However, our simulation study suggests that the convergence of the maximum likelihood
estimation based on Algorithm 4.1 is very fast when n is not very small and d is greater than one.
Actually, our computation for producing Table 1 implies that Algorithm 4.1 converges in almost
all the combinations of (d,n,‖φ‖) when the method of moments estimator (4.2) is adopted as the
initial value. To be more precise, using the stopping rule ‖φt − φt−1‖ < 1 × 10−7 and t ≤ 100,
Algorithm 4.1 failed to converge only once for (d,n,‖φ‖) = (1,10, η−1

1,1(0.1)), (d,n,‖φ‖) =
(1,10, η−1

1,1(0.5)) and (d,n,‖φ‖) = (1,10, η−1
1,1(0.9)) among 2000 simulation samples for each

combination of (d,n,‖φ‖). When the stopping rule is relaxed to be ‖φt −φt−1‖ < 1 × 10−5 and
t ≤ 100, then Algorithm 4.1 converged in all the cases. Also, when d = 1, our simulation study
implies that the maximum likelihood estimates estimated via Algorithm 4.1 numerically coincide
with those estimated via the algorithm of [26] in the sense that the sum of squared differences
between these two estimates is very small.
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6. Comparison with von Mises–Fisher family

We compare the spherical Cauchy family with the von Mises–Fisher family or the Fisher–von
Mises–Langevin family, which is a well-known family of distributions on the sphere. The von
Mises–Fisher family on Sd has density

f (y) = κ(d−1)/2

(2π)(d+1)/2I(d−1)/2(κ)
exp

(
κμT y

)
, y ∈ Sd, (6.1)

where μ ∈ Sd controls the mode of the density, κ ≥ 0 regulates the concentration of the distri-
bution, and Iν denotes the modified Bessel function of the first kind and order ν. For an Sd -
valued random vector Y , its mean direction is defined by E(Y)/‖E(Y)‖ provided E(Y) �= 0
and its mean resultant length by ‖E(Y)‖. If Y has the von Mises–Fisher distribution (6.1), the
mean direction and mean resultant length of Y are given by μ and Ad(κ), respectively, where
Ad(κ) = I(d−1)/2(κ)/I(d+1)/2(κ). See, for example, for Section 9.3.2 of [32] and Section 2.3.1
of [29] for properties of the von Mises–Fisher family.

First, we discuss similarities and differences between the densities of the spherical Cauchy
family (2.8) and von Mises–Fisher family (6.1). The densities of both families are unimodal and
rotationally symmetric around their modes. If the mean resultant lengths are small, the densities
of both models have similar shapes. However, when the mean resultant lengths are not small,
the densities of the spherical Cauchy and von Mises–Fisher show different behaviour. Figure 2
displays densities and their log ratios of the spherical Cauchy distributions (2.8) and the von
Mises–Fisher distributions (6.1) for some selected values of d , φ and κμ. The values of the
concentration parameters are selected such that the mean resultant lengths of both models are
0.5 in Figure 2(a)–(c) and 0.9 in Figure 2(d). The figure suggests that, when the mean resultant
lengths are not small, the spherical Cauchy density takes greater values than the von Mises–
Fisher density around the mode and antimode and smaller values than the von Mises–Fisher
density in the other area of the sphere. The comparison between Figure 2(a) and (b) implies that,

Figure 2. (a),(b): Density of the spherical Cauchy (solid) and von Mises–Fisher (dashed) as a function
of y1, for φ = η−1

1,d
(0.5)e1, κμ = A−1

d
(0.5)e1 and (a) d = 1, (b) d = 10. (c),(d): The spherical Cauchy to

von Mises–Fisher log density ratio as a function of y1 for d = 1 (solid), d = 2 (dashed), d = 10 (dotted), and
d = 100 (dotdashed). The parameters in (c) are φ = η−1

1,d
(0.5)e1, κμ = A−1

d
(0.5)e1, and φ = η−1

1,d
(0.9)e1,

κμ = A−1
d

(0.9)e1 in (d). In (c) and (d), the longdashed line represents the horizontal line whose intercept
is log(1)(= 0).
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compared with the densities with d = 2, the densities with d = 10 take greater values around the
mode. Figure 2(c) and (d) suggests that, the greater the value of d , the smaller the range of y1
in which the von Mises–Fisher density takes greater values than the spherical Cauchy density.
When the mean resultant lengths are large, the von Mises–Fisher density takes greater values
than the spherical Cauchy density in a small range of y1.

Next, we compare other statistical aspects of the spherical Cauchy family and von Mises–
Fisher family. The von Mises–Fisher has a well-developed theory of statistical inference. Some
tractable results about statistical inference for the von Mises–Fisher partly follow from the fact
that, unlike the spherical Cauchy, the von Mises–Fisher is a member of the exponential family.
The maximum likelihood estimator of the parameter for the von Mises–Fisher distribution can
be expressed in closed form. On the other hand, a closed form expression for the maximum
likelihood estimator of the parameter for the spherical Cauchy has not been found apart from
n ≤ 4 for d = 1 and n ≤ 3 for d ≥ 2. As for hypothesis testing, many tractable test statistics
have been proposed in the literature for testing the location parameter and/or the concentration
parameter of the von Mises–Fisher family in various settings. Apart from the use of pivotal
statistics, methods of hypothesis testing for the spherical Cauchy do not seem immediately clear.
However some general methods of hypothesis tests related to rotationally symmetric models
are available, including tests of mode [37], tests of uniformity [4] and tests of concentration [5].
Also various extensions are available for the von Mises–Fisher distribution, including the Fisher–
Bingham distribution [31] as a general and flexible model for any d and Kent distributions [24,25]
as tractable and interpretable models for d = 2. There have not been extensions of the spherical
Cauchy distribution at the moment apart from general constructions given, for example, in [30].
A flexible extension of the spherical Cauchy family is a potential future research topic.

The spherical Cauchy family has the tractable property that it forms a transformation model:
the family is closed under the Möbius transformations on the sphere and there are similar induced
transformations on the parameter space. This result can be applied to derive tractable properties
of the spherical Cauchy family such as an efficient algorithm for random variate generation, a
simple form of pivotal statistic, a closed form expression for probabilities of a surface area under
the spherical Cauchy density. These properties do not hold for the von Mises–Fisher family in
general. Furthermore, the spherical Cauchy family is related to the t -family with d degrees of
freedom via the stereographic projection. A simple algorithm for maximum likelihood estima-
tion and the asymptotically efficient estimator (4.6) enable us to use the spherical Cauchy, which
has a different shape of the density from the von Mises–Fisher in general, as a practical statisti-
cal model. Since the Möbius transformations and/or the wrapped Cauchy family are applied to
propose statistical models for circular data including regression models [7,23] and time series
models [15,19], the theory of the Möbius transformations and/or the spherical Cauchy presented
in this paper can be potentially useful for the development of statistical models for spherical data.

Appendix A: A marginal distribution of the Cauchy family on
the sphere

A.1. A marginal distribution and real Möbius group

Here we discuss a marginal distribution of the spherical Cauchy family.



A Cauchy family on the sphere 3243

Theorem A.1. Suppose Y = (Y1, . . . , Yν+1)
T ∼ C∗

ν (φ), where φ = (ρ,0, . . . ,0)T and ρ ∈ R \
{−1,1}. Then the marginal density of Y1 is of the form

f (y1;ρ, ν) = 1

B(ν/2,1/2)

( |1 − ρ2|
1 + ρ2 − 2ρy1

)ν(
1 − y2

1

)(ν−2)/2
, −1 < y1 < 1, (A.1)

where B(·, ·) denotes the beta function.

The proof is straightforward and therefore omitted. It is important to discuss the marginal
distribution (A.1) because this marginal is essentially the distribution of the inner product of a
spherical Cauchy variable and its mean direction; if Ỹ ∼ C∗(φ̃) with ‖φ̃‖ �= 1, then the distribu-
tion of μT Ỹ has the density (A.1) with ρ replaced by ‖φ̃‖.

In a similar manner as in [33], if we view ν as a continuous-valued parameter with ν ≥ 0, then
(A.1) can be considered a two-parameter family. Clearly, f (y1;ρ, ν) = f (y1;ρ−1, ν). If ρ = 0,
then the distribution (A.1) reduces to the symmetric beta distribution with density

f (y1;ν) = (1 − y2
1)(ν−2)/2

B(ν/2,1/2)
, −1 < y1 < 1. (A.2)

It can be readily seen from equation (8.384.5) of [13] that the family (A.1) with −1 < ρ < 1 is
equivalent to Seshadri’s family [40] with the parameterization given in Example 1 of his paper.
As discussed there, if ν = 1, then the family (A.1) reduces to the family discussed in [27,33]
whose density is given by equation (2) of the latter paper.

Theorem A.2. Let R be the real Möbius transformation

R(y1) = y1 + b

by1 + 1
, −1 < y1 < 1;−1 < b < 1. (A.3)

If Y1 has the density (A.1), then R(Y1) belongs to the same family with the parameter ρ replaced
by (ρ + ρ′)/(ρρ′ + 1), where ρ′ = (1 − √

1 − b2)/b.

The proof is clear from straightforward calculation and therefore omitted. Another approach
to proving this result is to remember the derivation of the model given in Theorem A.1 and apply
Theorem 2.3 with R1 = R2 = I and φ1 = (ρ,0, . . . ,0)T and φ2 = (ρ′,0, . . . ,0)T .

This is an extension of the result given in [40] that the family (A.1) is transformed into the
symmetric beta density (A.2) via a special case of the Möbius transformation (A.3) with b =
−2ρ/(1 + ρ2).

A.2. Moments

We discuss some moments of the marginal family (A.1) which can be applied to obtain moments
for the spherical Cauchy family. Define

ηk,ν(ρ) = E
(
Y k

1

) =
∫ 1

−1

yk
1

B(ν/2,1/2)

( |1 − ρ2|
1 + ρ2 − 2ρy1

)ν(
1 − y2

1

)(ν−2)/2
dy1, −1 < ρ < 1,
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where Y1 has the density (A.1). As the following lemma shows, the monotonicity holds for ηk,ν

for an odd integer of k.

Lemma A.1. Suppose that k is an odd integer. Then ηk,ν(0) = 0, limρ→1 ηk,ν(ρ) = 1, and
∂ηk,ν(ρ)/∂ρ > 0 for 0 < ρ < 1.

Next the first and second moments of the marginal family (A.1) are discussed. Seshadri [40]
obtained closed-form expressions for the mean and variance of the family (A.1) with ν = 1 and
approximated values of these statistics with general ν. Here we provide exact expressions for the
moments for general ν.

Theorem A.3. The following hold for η1,ν(ρ):

(i) for any ν ≥ 0,

η1,ν(ρ) = 1 + ρ2

2ρ

[
1 − (1 + ρ)2

1 + ρ2
F

{
1,

ν

2
;ν;− 4ρ

(1 − ρ)2

}]
= 1 + ρ2

2ρ

[
1 − 1 − ρ2

1 + ρ2
F

{
1

2
,
ν − 1

2
; ν + 1

2
;− 4ρ2

(1 − ρ2)2

}]
,

where F denotes the hypergeometric series [[13], equation (9.111)],
(ii) for ν = 1, . . . ,4,

η1,1(ρ) = ρ, η1,2(ρ) = 1 + ρ2

2ρ

{
1 − (1 − ρ2)2

2ρ(1 + ρ2)
log

(
1 + ρ

1 − ρ

)}
,

η1,3(ρ) = ρ(3 − ρ2)

2
,

η1,4(ρ) = 1 + ρ2

2ρ

{
1 − 3(1 − ρ2)2

8ρ2
+ 3

16ρ3

(1 − ρ2)4

1 + ρ2
log

(
1 + ρ

1 − ρ

)}
,

(iii) for ν ≥ 4,

η1,ν(ρ) = ν − 1

(ν − 2)(ν − 3)

[{
ν − 2 + (ν − 3)(1 − ρ2)2

4ρ2

}
μ1(ν − 2)

− (ν − 3)(1 − ρ2)2

4ρ2
μ1(ν − 4) − ν − 2

ν − 1

1 + ρ2

ρ

]
.

It follows from these results that, for any positive integer ν, the mean of η1,ν(ρ) can be ex-
pressed in closed form.

Theorem A.4. The following results hold for η2,ν(ρ):
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(i) for ν ≥ 0,

η2,ν(ρ) = (1 + ρ2)2

4ρ2

[
1 − 2

(1 + ρ)2

1 + ρ2
F

{
1,

ν

2
;ν;− 4ρ

(1 − ρ)2

}
+ (1 + ρ)4

(1 + ρ2)2
F

{
2,

ν

2
;ν;− 4ρ

(1 − ρ)2

}]
, (A.4)

(ii) for ν = 1, . . . ,4,

η2,1(ρ) = 1 + ρ2

2
, η2,2(ρ) = 1 + ρ2

4ρ2

{
2(1 + ρ4)

1 + ρ2
− (1 − ρ2)2

ρ
log

(
1 + ρ

1 − ρ

)}
,

η2,3(ρ) = 1 + 6ρ2 − 3ρ4

4
,

η2,4(ρ) = 1 + ρ2

16ρ4

{−2(3 − 8ρ2 + 2ρ4 − 8ρ6 + 3ρ8)

1 + ρ2
+ 3(1 − ρ2)4

ρ
log

(
1 + ρ

1 − ρ

)}
,

(iii) for ν > 4,

η2,ν(ρ) = 1

(ν − 3)(ν − 4)

[
−3(1 + ρ2)2

2ρ2
+ 1 + ρ2

ρ

{
(ν − 3)(ν − 4)η1,ν(ρ)

− c1η1,ν−2(ρ) + c2η1,ν−4(ρ)
} + c1η2,ν−2(ρ) − c2η2,ν−4(ρ)

]
,

where c1 = (ν − 1)(ν − 6) − (ν − 1)(ν − 3)(1 − ρ2)2/(4ρ2) and c2 = −(ν − 1)(ν −
3)(1 − ρ2)2/(4ρ2).

It follows from these results and equation (9.134.3) of [13] that η2,ν(ρ) has a closed-form
expression for any ν ∈ N. Thus the variance of Y1 can also be expressed in closed from for any
positive integer ν.

Theorems A.3 and A.4 can be applied to express certain moments of the spherical Cauchy
family (see Section 4.1).
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Supplementary Material

Supplement to “Some properties of a Cauchy family on the sphere derived from the
Möbius transformations” (DOI: 10.3150/20-BEJ1222SUPP; .pdf). The supplement [21] pro-
vides proofs for claims made in Sections 2, 3 and 4 and Appendix A. Specifically, we prove
Lemma 2.1 and Theorems 2.1 and 2.3 of Section 2, Theorems 3.1 and 3.2 of Section 3, Lemma
4.1 and Theorems 4.1, 4.3, 4.5 and 4.7 of Section 4, and Lemma A.1 and Theorems A.3 and A.4
of Appendix A.
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