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It is known that backward iterations of independent copies of a contractive random Lipschitz function converge
almost surely under mild assumptions. By a sieving (or thinning) procedure based on adding to the functions time
and space components, it is possible to construct a scale invariant stochastic process. We study its distribution and
paths properties. In particular, we show that it is càdlàg and has finite total variation. We also provide examples
and analyse various properties of particular sieved iterative function systems including perpetuities and infinite
Bernoulli convolutions, iterations of maximum, and random continued fractions.
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1. Introduction

Iteration is one of fundamental tools in mathematics going back to famous fixed point theorems for
contractive mappings. In probabilistic setting, one often works with iterated independent identically
distributed (i.i.d.) Lipschitz functions (fi)i∈N defined on a complete separable metric space and study
the convergence of either backward f1(f2(f3(· · ·fn(·)))) or forward fn(fn−1(fn−2(· · ·f1(·)))) itera-
tions as n → ∞. An incomplete list of early works on random iterations include [8,10,12,13,26] and
references therein. A comprehensive study of convergence regimes for contractive (a precise defini-
tion will be given below) iterated random functions goes back to the prominent paper by Diaconis and
Freedman [11].

An important special case of iterated random affine mappings (called stochastic perpetuities) was
studied in [4,19,20,24] and in many other works. The recent books [7,22] provide more comprehensive
lists of further references. A particular instance of perpetuities, infinite Bernoulli convolutions, have
been attracting enormous attention since 1930th, see, for example, [1,15,16,29,30,32].

We recall the main setting, restricting ourselves to the case of Lipschitz functions on the real line R.
Let G be the space of Lipschitz functions f :R �→ R endowed with the usual Lipschitz norm ‖f ‖Lip :=
|f (0)| + Lf , where

Lf := sup
x,y∈R,x �=y

|f (y) − f (x)|
|x − y|

is the Lipschitz constant of f ∈ G. The composition of functions f ◦g defined by (f ◦g)(x) := f (g(x))

for x ∈ R endows G with the semigroup structure and is continuous with respect to ‖ · ‖Lip.
Equip G with a probability measure ν on the Borel σ -algebra of G. Since the composition operation

is continuous, the composition of two G-measurable functions is again G-measurable. If f is a random
function with distribution ν such that

Kf := ELf =
∫
G

Lf dν(f ) < ∞, E logLf =
∫
G

logLf dν(f ) < 0, (1)
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and

E
∣∣f (z0) − z0

∣∣ =
∫
G

∣∣f (z0) − z0
∣∣dν(f ) < ∞ (2)

for some z0 ∈ R, then the sequence of backward iterations

Zn := f1 ◦ · · · ◦ fn(z0) (3)

converges almost surely as n → ∞ and the limit Z∞ does not depend on the choice of z0, see The-
orem 1 and Proposition 1 in [11]. From this, one deduces that the sequence of forward iterations
fn ◦ · · · ◦ f1(z0) converges in distribution to Z∞, see Theorems 1.1 and 5.1 in [11]. Furthermore, the
limiting random variable Z∞ satisfies the stochastic fixed-point equation

Z∞
d= f (Z∞), (4)

where f and Z∞ on the right-hand side are independent.
Many important distributions appear as limits for random iterated functions. This work aims to ex-

tend this construction in order to come up with stochastic processes (in general, set-indexed) whose
univariate distributions arise from iterations and joint distributions are related by leaving some itera-
tions out. For instance, assume that each of the functions fi is associated with a uniformly distributed
random variable Ui and is deleted from the iteration chain in (3) if Ui exceeds a given number x. The
limit of such iterations is a random variable ζ(x) whose distribution is the same as that of Z∞. The
properties of ζ(x) considered a random function of x is the main subject of this paper.

As a preparation to a general construction of such stochastic processes presented in Section 2, we
shall provide a few examples.

Example 1.1. Consider an infinite sequence (Qn)n∈N of independent copies of a random variable Q

taking values 0 or 1 equally likely. For λ ∈ (0,1), the Bernoulli convolution

Z∞ :=
∞∑

n=1

λn−1Qn

results from the backward iteration of independent copies of the function f (z) = λz+Q. Now consider
a sequence (Un)n∈N of i.i.d. uniform random variables on [0,1] which is independent of (Qn)n∈N. Put
Tk(x) := ∑k

j=1 1{Uj ≤x}, k ∈ N, x ∈ (0,1], where 1{xi∈A} is the indicator of the event {xi ∈ A}, and
further Sn(x) := inf{k ∈N : Tk(x) = n}, n ∈ N, x ∈ (0,1]. Let

ζ(x) :=
∞∑

n=1

λn−1QSn(x), x ∈ (0,1].

This yields a stochastic process, whose univariate marginals are all distributed like Z∞. We will explore
path properties of this process, show that for λ ∈ (0,1/2] it is Markov in both forward and reverse time
and find its generating operator. It is well known that if λ = 1/2, then ζ(x) is uniformly distributed
on [0,2] for every x ∈ (0,1]. We show that the bivariate distributions are singular for some x close
enough to 1, determine a bound on their Hausdorff dimension and calculate the local dimension on the
set of binary rational points.

Example 1.2. Generalising the previous example, consider a sequence (Zn)n∈N of backward iterations
of affine mappings fn(x) = Mnx + Qn, n ∈ N, applied to the initial point z0 = 0, where (Mn,Qn)n∈N
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are i.i.d. random vectors in R
2. A criterion for a.s. convergence of (Zn) is known, see [19], Th. 2.1. In

particular, by [19], Cor. 4.1, convergence takes place whenever E log |M| ∈ (−∞,0), E log+ |Q| < ∞,
where log+ x := log(x ∨ 1), and an additional nondegeneracy assumption, see formula (38) below,
holds. Let (Un)n∈N be i.i.d. uniform random variables on [0,1] which are independent of (Mn,Qn)n∈N.
Consider a coupled family of processes

ζ(x) :=
∞∑

n=1

(
n−1∏
k=1

M
1{Uk≤x}
k

)
Qn1{Un≤x}, x ∈ (0,1].

We establish the uniform convergence of partial sums of the above series to the limit ζ(x) and explore
its path properties.

Example 1.3. Consider a continued fraction Wn = 1
Wn−1+an

with (possibly i.i.d. random) coefficients
an > 0, n ∈ N. If

∑
an = ∞ a.s., the continued fraction converges in distribution by the Stern–Stolz

theorem, see Theorem 10 in [25]. Given once again a sequence (Un)n∈N of i.i.d. uniform random
variables on [0,1] which is independent of (an)n∈N, we modify the continued fraction by letting

Wn(x) =
⎧⎨⎩

1

Wn−1(x) + an

, if Un ≤ x,

Wn−1(x), if Un > x,

x ∈ (0,1].

Note that for every fixed x ∈ (0,1], Wn(x) is the forward iteration of the mappings

fn,x(z) = 1

an + z
1{Un≤x} + z1{Un>x}, z > 0.

The a.s. pointwise limits of the corresponding backward iterations Zn(x) as n → ∞ constitute a
stochastic process on (0,1]. We show that this process has a finite total variation, and is Markov if
(an)n∈N ⊂N.

Note that in all above examples we eliminate some iterations from the infinite sequence

Z∞ = f1 ◦ f2 ◦ · · · ◦ fn ◦ · · ·
by replacing the corresponding functions with the identity mapping in a coupled manner. In Section 2,
we suggest a sieving scheme for iterated functions, which is generated by an auxiliary Poisson point
process. As a result, we are led to a set-indexed stochastic process whose univariate marginals are all
the same and are distributed as the almost sure limit of Zn in (3). By taking its values on the segments
[x,1] with x ∈ (0,1], we obtain all constructions mentioned in the above examples as special cases.

The distributional properties of the set-indexed process are analysed in Section 3, in particular, it
is shown that a variant of this process on the half-line is scale invariant. By restricting the process to
a finite interval, it is possible to rephrase our sieving scheme as iteration in a functional space. With
this idea, in Section 4 we use tools from the theory of empirical processes to establish the uniform
convergence on some classes of sets. In Section 5, it is shown that the limiting process ζ is càdlàg and
has a finite total variation on any bounded interval separated from zero. We also discuss integration
with respect to ζ and integrability properties of ζ . Section 6 establishes the Markov property of the
process, assuming a kind of a strong separation condition known in fractal geometry.

The most well-studied family of iterations are perpetuities, also known as autoregressive processes of
the first order, see Example 1.2 above. The sieving scheme is applied to them in Section 7, where also
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an important example of Bernoulli convolutions is considered, see Example 1.1. Section 8 outlines
several other instances of iterations that provide new examples of self-similar stochastic processes.
In the Appendix, we collect some technical proofs and provide several further examples related to
perpetuities.

2. Sieving scheme for iterated functions

Let X be a complete separable metric space with its Borel σ -algebra B(X ) and equipped with a σ -
finite measure μ. Recall that G is the family of Lipschitz functions on the real line with a probability
measure ν satisfying (1) and (2).

Let R+ := [0,∞) be the positive half-line with the Lebesgue measure Leb. Consider a Poisson
process P on R+ × X × G with intensity measure Leb ⊗ μ ⊗ ν. Note that in a triplet (t, x, f ) ∈ P
the function f may be considered as a mark of the point (t, x), the marks of different points are
independent and ν is the probability distribution of the typical mark denoted by f . For A ∈ B(X ),
denote by PA the intersection of P with R+ × A × G.

For a sequence (fn)n∈N of i.i.d. random Lipschitz functions, write

f k↑n = fk ◦ · · · ◦ fn,

and f k↑∞ for the almost sure limit of these iterations as n → ∞ provided it exists. For k > n, we
stipulate that f k↑n is the identity function Id.

For each A ∈ B(X ) with μ(A) ∈ (0,∞), enumerate the points {(tk,A, xk,A, fk,A) : xk,A ∈ A,k ≥ 1}
of PA, so that the first component is a.s. increasing, and define the sieved backward iterations of
(fk,A)k∈N:

ζt (A) := f
1↑NA(t)
A (z0) = f1,A ◦ · · · ◦ fNA(t),A(z0), t > 0, (5)

where z0 ∈ R is fixed and nonrandom, and

NA(t) := sup{k ≥ 1 : tk,A ≤ t, xk,A ∈ A}

with the convention sup∅ = 0. Thus, ζt (A) is a finite backward composition of marks fk for (tk, xk)

from the rectangle [0, t]×A. Equivalently, ζt (A) is the composition of functions fi1{xi∈A} + Id1{xi /∈A}
for ti ≤ t applied to the starting point z0. This equivalent interpretation makes transparent the “sieved”
structure of ζt (A) which might seem disguised in the definition (5).

In what follows, we always assume that conditions (1) and (2) are in force. Then ζt (A) in (5) con-
verges almost surely as t → ∞. The limiting random element is denoted by ζ(A); it is a random
set-indexed function defined on

B+(X ) := {
A ∈ B(X ) : μ(A) ∈ (0,∞)

}
.

Furthermore, ζ(A) does not depend on the choice of z0.
If X is the half-line R+ = [0,∞) and μ is the Lebesgue measure, then we work with a Poisson

process on R+ × R+ × G, and, for A = [0, x] with x > 0, the random variable ζt (A) is the result of
iterating the functions fi ordered according to ti ≤ t and such that xi ≤ x. In this case, we write ζ(x)

as a shorthand for ζ([0, x]), x > 0, and regard (ζ(x))x>0 as a stochastic process on (0,∞). Note that
by passing from ζ(x) to ζ(y), we sieve some iterations out if y < x and insert additional ones if y > x.
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3. Distributional properties

3.1. Finite-dimensional distributions and scale invariance

Recall that ζ(A) is defined for A ∈ B+(X ), that is, for Borel A such that μ(A) ∈ (0,∞). Note the
following simple facts.

Proposition 3.1. The distribution of ζ(A) does not depend on A ∈ B+(X ) and ζ(A)
d= Z∞. If P{Z∞ =

0} < 1, the set function ζ is not additive, and hence is not a measure on X . If A1 ∩ A2 = ∅ for
A1,A2 ∈ B+(X ), then ζ(A1) and ζ(A2) are independent.

Theorem 3.2. Let φ : X �→ X be any measurable bijection such that μ(φ−1(A)) = cμ(A) for a con-
stant c > 0 and all A ∈ B+(X ). Then ζ(φ(A)) and ζ(A) share the same finite-dimensional distributions
as functions of A ∈ B+(X ).

Proof. By the transformation theorem for Poisson processes, the process with intensity measure
μ(φ−1(A)) can be obtained as (φ(xi))i∈N, where (xi)i∈N is the Poisson process with intensity μ.
Thus, ζ(φ(A)), A ∈ B+(X ), coincides with the limiting set-indexed process obtained by using Poisson
points from the process of intensity cLeb ⊗ μ ⊗ ν. This process is obtained from the original one by
transform ti �→ c−1ti , which does not change the order of the tis and so the limit in (5). �

It is possible to describe two-dimensional distributions of the set function ζ as follows. Let A1, A2
be two sets from B+(X ). Consider the triplet (t∗, x∗, f∗) such that t∗ is the smallest among all triplets
(ti , xi, fi) with xi ∈ A1 ∪ A2. Then(

ζ(A1), ζ(A2)
) d= (

f∗
(
ζ(A1)

)
, f∗

(
ζ(A2)

))
1{x∗∈A1∩A2}

+ (
ζ(A1), f∗

(
ζ(A2)

))
1{x∗∈A2\A1} + (

f∗
(
ζ(A1)

)
, ζ(A2)

)
1{x∗∈A1\A2}. (6)

A similar equation can be written for the joint distribution of (ζ(A1), ζ(A2), . . . , ζ(Am)) for any
A1, . . . ,Am ∈ B+(X ).

In the special case of X = R+ with μ being the Lebesgue measure, Theorem 3.2 yields that the
finite-dimensional distributions of (ζ(x))x>0 do not change after scaling of its argument by any positive
constant, meaning that (ζ(x))x>0 is scale invariant. After the exponential change of time, the process
ζ̃ (s) := ζ(es), s ∈ R, is strictly stationary on R.

3.2. Power moments

Using known results for perpetuities, it is easy to deduce the following statement.

Proposition 3.3. Assume that, for some p > 0, we have EL
p
f < 1 and E|f (z0) − z0|p < ∞. Then

E|ζ(A)|p < ∞ for all A ∈ B+(X ).

Proof. For every A ∈ B+(X ), the random variable ζ(A) has the same distribution as Z∞. By the
triangle inequality ∣∣fi(z) − z0

∣∣ ≤ ∣∣fi(z0) − z0
∣∣ + Lfi

|z − z0|, z ∈ R, (7)
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and, therefore,

∣∣f 1↑n(z0) − z0
∣∣ ≤

n∑
k=1

∣∣fk(z0) − z0
∣∣ k−1∏
j=1

Lfj
a.s., n ∈N.

Letting n → ∞ yields

|Z∞ − z0|p ≤
( ∞∑

k=1

∣∣fk(z0) − z0
∣∣ k−1∏
j=1

Lfj

)p

a.s.

The term in the parentheses on the right-hand side is a perpetuity. The criterion for existence of power
moments of perpetuities is given in [4], Th. 1.4. In particular, under our assumptions the right-hand
side of the last display is finite. The proof is complete. �

Remark 3.4. The inequality E|Z∞|p < ∞ is stated under weaker assumptions in Theorem 2.3(d) in
[3]. However, in the claimed generality this result does not hold, see the corrigendum [2] for a correct
form which is weaker than Proposition 3.3.

If the conditions of Proposition 3.3 hold for p = 2, then ζ(A) is square integrable for all A ∈ B+(X ),
and (6) leads to an iterative equation for the second moments of ζ as

μ(A1 ∪ A2)E
(
ζ(A1)ζ(A2)

)
= μ(A1 ∩ A2)E

(
f

(
ζ(A1)

)
f

(
ζ(A2)

))
+ μ(A1 \ A2)E

(
f

(
ζ(A1)

)(
ζ(A2)

)) + μ(A2 \ A1)E
(
ζ(A1)f

(
ζ(A2)

))
, (8)

where f is a random element in G with distribution ν independent of ζ(A1) and ζ(A2). For processes
on the half-line, (8) becomes

yE
(
ζ(x)ζ(y)

) = xE
(
f

(
ζ(x)

)
f

(
ζ(y)

)) + (y − x)E
(
ζ(x)f

(
ζ(y)

))
, 0 < x ≤ y,

where f is independent of ζ(x) and ζ(y).

4. Iterations in a finite measure space

4.1. Iterations in a functional space

Assume that μ is not identically zero and finite on X , that is, μ(X ) ∈ (0,∞). Then, the construction
of the limiting process can be done as follows. Let (fi)i∈N be a sequence of i.i.d. copies of f from G
distributed according to ν, and let (Ui)i∈N be i.i.d. copies of a random element U ∈X with distribution

P{U ∈ A} = μ(A)

μ(X )
, A ∈ B(X ). (9)

Assume further that (fi)i∈N and (Ui)i∈N are independent.
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Let A ∈ B+(X ). Then fi contributes to the iterations constituting ζ(A) if Ui ∈ A, and otherwise fi

is replaced by the identity map. In other words, we have the following identity

ζ(A) = f
1↑∞
A (z0), A ∈ B+(X ),

where the limit f
1↑∞
A (z0) of f

1↑n
A (z0), as n → ∞, is understood in the a.s. sense, z0 ∈ R, and f

1↑n
A

are backward iterations of i.i.d. copies of the function

fA(·) := f (·)1{U∈A} + Id(·)1{U /∈A}. (10)

The set function (ζ(A))A∈B+(X ) is the solution of the following iterative distributional equation

(
ζ(A)

)
A∈B+(X )

f.d.= (
f

(
ζ(A)

)
1{U∈A} + ζ(A)1{U /∈A}

)
A∈B+(X )

, (11)

where f , U and ζ on the right-hand side are independent. Note that the Lipschitz constant of fA is

LfA
= Lf 1{U∈A} + 1{U /∈A},

hence,

logLfA
= (logLf )1{U∈A}.

Example 4.1. Assume that X = [0,1] with the Lebesgue measure. Then U has the standard uniform
distribution on [0,1], and

ζ(x) = f 1↑∞
x (z0), x ∈ (0,1],

where the a.s. limit does not depend on z0 ∈ R, and f
1↑∞
x are iterations composed of i.i.d. copies of

the function

fx(·) := f (·)1{U≤x} + Id(·)1{U>x}.

4.2. Uniform convergence of sieved iterations

We now aim to prove the uniform convergence of iterations as functions of Borel set A by reducing the
problem to the uniform convergence of empirical processes. Let A be a subclass of Borel sets in X .
A finite set I of cardinality n is shattered by A if each of its 2n subsets can be obtained as I ∩A for some
A ∈ A. The Vapnik–Červonenkis dimension of A is the supremum of cardinalities n of all finite sets
I in X shattered by A. The family A is called a Vapnik–Červonenkis class if its Vapnik–Červonenkis
dimension is finite. We refer to the classical book [31], see in particular Section 4.9 therein, for the
details of the Vapnik–Červonenkis theory.

Theorem 4.2. Let A be a collection of Borel subsets of X with μ(X ) < ∞ such that A is a Vapnik–
Červonenkis class and infA∈A μ(A) > 0. Then

sup
A∈A

∣∣ζ(A) − f
1↑n
A (z0)

∣∣ a.s.−→ 0 as n → ∞. (12)
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Lemma 4.3. Assume that a family A satisfies conditions of Theorem 4.2. Further, let (ξk)k∈N be a
sequence of i.i.d. copies of an integrable random variable ξ such that Eξ < 0, and let (Uk)k∈N be a
sequence of i.i.d. copies of the random element U with distribution (9), which is also independent of
(ξk)k∈N. Then

sup
A∈A

∑n
k=1 ξk1{Uk∈A}

n

a.s.−→ infA∈A μ(A)

μ(X )
Eξ < 0 as n → ∞. (13)

Proof. Define a random measure (or abstract empirical process) on B(X ) by

Sn(A) :=
n∑

k=1

φnk(A), A ∈ B(X ),

where

φnk(A) := 1

n
ξk1{Uk∈A}, k = 1, . . . , n,A ∈ B(X ).

Note that ESn(A) = μ(A)Eξ/μ(X ) does not depend on n. For a function ψ : A �→ R, denote ‖ψ‖ :=
supA∈A |ψ(A)|.

Assume first that |ξi | ≤ c a.s. Then

E

(
n∑

k=1

‖φnk‖
)

≤ c, n ≥ 1.

For δ > 0,

E

(
n∑

k=1

1{‖φnk‖>δ}‖φnk‖
)

≤ c

n
E

(
n∑

k=1

1{|ξk |>nδ}

)
= cP

{|ξk| > nδ
} → 0 as n → ∞.

By results from the theory of empirical processes (see [14], Ch. 6),

E‖Sn − ESn‖ → 0 as n → ∞. (14)

The sequence Sn(A) − ESn(A) is a reverse martingale for each A, and so ‖Sn − ESn‖ is a reverse
submartingale which is bounded, since |Sn(A) − ESn(A)| ≤ 2c for all A and n. Thus,

‖Sn − ESn‖ a.s.−→ 0 as n → ∞.

For a not necessarily bounded ξk , decompose the random measure as

Sn(A) = S′
n(A) + S′′

n(A) =
n∑

k=1

φnk(A)1{|ξk |≤c} +
n∑

k=1

φnk(A)1{|ξk |>c}.

Then ‖S′
n − ES′

n‖ → 0 a.s. as n → ∞ by the argument above applicable to the bounded ξks. Further-
more, ∥∥S′′

n − ES′′
n

∥∥ ≤ 1

n

n∑
k=1

|ξk|1{|ξk |>c} + 1

n

n∑
k=1

E
(|ξk|1{|ξk |>c}

)
.
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The a.s. upper limit of the right-hand side can be made arbitrarily small by the choice of c. Therefore,

sup
A∈A

∑n
k=1 ξk1{Uk∈A}

n

a.s.−→ sup
A∈A

μ(A)

μ(X )
Eξ = infA∈A μ(A)

μ(X )
Eξ as n → ∞,

because Eξ < 0. �

Remark 4.4. It is possible to impose weaker conditions that guarantee the uniform convergence of
Sn(A) over A ∈ A. Let N(ε,A, ρ̂n) be the cardinality of the smallest ε-net in A with respect to the
random pseudometric

ρ̂n

(
A,A′) :=

n∑
k=1

∣∣φnk(A) − φnk

(
A′)∣∣ = 1

n

n∑
k=1

|ξk|1{Uk∈A�A′}.

Then the Vapnik–Červonenkis class assumption may be replaced by the assumption that N(ε,A, ρ̂n)

converges to zero in probability as n → ∞. A comprehensive treaty of uniform convergence for empir-
ical processes can be found in [31], Ch. 3. In particular, a necessary and sufficient conditions are given
in Theorem 3.5 on p. 101 therein.

Proof of Theorem 4.2. Let (Lfi,A
)i∈N be the Lipschitz constants of the i.i.d. copies (fi,A)i∈N of the

function fA given by (10). By the Lipschitz property,∣∣ζ(A) − f
1↑n
A (z0)

∣∣ ≤ Lf1,A
· · ·Lfn,A

∣∣f (n+1)↑∞
A (z0) − z0

∣∣ (15)

for any A ∈ B+(X ). Moreover, for each i ∈N and an arbitrary z ∈R, we have, similarly to (7),∣∣fi,A(z) − z0
∣∣ = ∣∣z1{Ui /∈A} + fi(z)1{Ui∈A} − z0

∣∣
= ∣∣(z − z0)1{Ui /∈A} − z01{Ui∈A} + fi(z0)1{Ui∈A} + (

fi(z) − fi(z0)
)
1{Ui∈A}

∣∣
≤ ∣∣fi(z0) − z0

∣∣ + (Lfi
1{Ui∈A} + 1{Ui /∈A})|z − z0| =: Qi + Lfi,A

|z − z0|.

Iterating the above inequality for |fi,A(z) − z0| yields

∣∣f (n+1)↑∞
A (z0) − z0

∣∣ ≤
∞∑

i=n+1

Qi

i−1∏
k=n+1

Lfk,A
. (16)

Plugging this upper bound into (15), we obtain

∣∣ζ(A) − f
1↑n
A (z0)

∣∣ ≤
∞∑

i=n+1

Qi

i−1∏
k=1

Lfk,A
≤

∞∑
i=n+1

Qi

(
sup
A∈A

i−1∏
k=1

Lfk,A

)
. (17)

To show that the right-hand side of the above inequality converges to zero a.s., it suffices to check that

∞∑
i=1

Qi

(
sup
A∈A

i−1∏
k=1

Lfk,A

)
< ∞ a.s. (18)



Sieving random iterative function systems 43

This follows from Cauchy’s radical test. Indeed,

lim sup
i→∞

1

i

(
logQi + sup

A∈A

i−1∑
k=1

logLfk,A

)

≤ lim sup
i→∞

1

i
log+ Qi + lim sup

i→∞
1

i
sup
A∈A

i−1∑
k=1

(logLfk
)1{Uk∈A} = infA∈A μ(A)

μ(X )
E logLf < 0,

where the second lim sup was calculated in Lemma 4.3. The first lim sup is equal to zero by the Borel–
Cantelli lemma and the fact that E log+ Q1 = E log+ |f1(z0) − z0| < ∞ by the assumption (2). Thus,

lim sup
i→∞

(
Qi

(
sup
A∈A

i−1∏
k=1

Lfk,A

))1/i

≤ exp

{
infA∈A μ(A)

μ(X )
E logLf

}
< 1, (19)

and this completes the proof. �

Since the Vapnik–Červonenkis dimension of a monotone family of sets is 2, we obtain the following
result.

Corollary 4.5. Let A = {At, t ≥ 0} be a nondecreasing (respectively, nonincreasing) subfamily of
B+(X ) of finite measure such that

⋃
t At (respectively,

⋂
t At ) is of finite positive measure. Then (12)

holds.

4.3. Uniform convergence for sieved iterations on the half-line

Let X = R+ be the half-line with μ being the Lebesgue measure. Let us consider stochastic process
(ζ(x))x>0 = (ζ([0, x]))x>0. By Corollary 4.5, the iterations

ζn(x) := f
1↑n
[0,x](z0), n ≥ 1, (20)

converge a.s. to ζ uniformly over x ∈ [a, b] for each 0 < a ≤ b < ∞. The following result establishes
their uniform convergence in Lp .

Denote �(x) := ELx
f , and let

I := {
x > 0 : �(x) < 1

}
. (21)

The set I is not empty under assumption (1), because it contains all sufficiently small positive numbers.
This follows from the following three relations: �(0) = 1, �′(0) = E logLf < 0 and �(1) < ∞.

Proposition 4.6. For each a > 0 and p ∈ I ∩ (0,1],
E sup

x∈[a,1]

∣∣ζ(x) − ζn(x)
∣∣p → 0 as n → ∞. (22)

Proof. Repeat the arguments from the proof of Theorem 4.2, see (17), and use the subadditivity of the
function t �→ tp to arrive at

E sup
x∈[a,1]

∣∣ζ(x) − ζn(x)
∣∣p ≤

∞∑
i=n+1

(EQi)
pE

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,[0,x]

)p

. (23)
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Fix i ≥ 2. In order to calculate the last expectation, recall that (tk, xk, fk)k=1,...,i−1 is the enumeration
of the first i − 1 atoms of P[0,1] ordered such that t1 < t2 < · · · < ti−1. Let x(i−1:1) < · · · < x(i−1:i−1)

be the ordered points x1, . . . , xi−1, and let f(i−1:k),[0,x] be the corresponding functions. Note that

i−1∏
k=1

Lfk,[0,x] =
i−1∏
k=1

Lf(i−1,k),[0,x] =
i−1∏
k=1

L
1{a<x(i−1,k)≤x}
f(i−1,k)

i−1∏
k=1

L
1{x(i−1,k)≤a}
f(i−1,k)

, (24)

The two factors on the right-hand side of (24) are independent by the Poisson property, and the second
factor does not depend on x. Thus,

E

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,[0,x]

)p

≤ E

(
sup

x∈[a,1]

i−1∏
k=1

L
1{a<x(i−1,k)≤x}
f(i−1,k)

)p

E

(
i−1∏
k=1

L
1{x(i−1,k)≤a}
f(i−1,k)

)p

.

Further, since (fk) and (xk) are independent,

E

(
sup

x∈[a,1]

i−1∏
k=1

L
1{a<x(i−1,k)≤x}
f(i−1,k)

)p

= E

(
sup

x∈[a,1]

i−1∏
k=1

L
1{a<x(i−1,k)≤x}
fk

)p

≤ E

(
sup
i≥1

i−1∏
k=1

Lfk

)p

≤
∞∑
i=1

E

(
i−1∏
k=1

Lfk

)p

=
∞∑
i=1

(
�(p)

)i−1 = 1

1 − �(p)
< ∞.

Therefore,

E

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,[0,x]

)p

≤ 1

1 − �(p)
E

(
i−1∏
k=1

L
1{x(i−1,k)≤a}
f(i−1,k)

)p

= 1

1 − �(p)

j−1∑
k=0

(
i − 1

k

)
�(p)kak(1 − a)i−1−k = (1 − (1 − �(p))a)i−1

1 − �(p)
,

where the first equality holds by conditioning on the number of points x1, x2, . . . , xi−1 which fall in
the interval [0, a]. Summarising, we see that the series on the right-hand side of (23) converges and
(22) follows. �

5. Path regularity properties

5.1. Set-indexed functions

As we have already mentioned, the set function ζ is not a measure, yet it is possible to show that it is
a.s. continuous from below and from above.

Proposition 5.1. Assume that (Am)m∈N is a nondecreasing sequence of sets from B+(X ) such that
μ(A∞) < ∞, where A∞ := ⋃∞

m=1 Am. Then

ζ(Am)
a.s.−→ ζ(A∞) as m → ∞.

The same holds for a nonincreasing sequence (Am)m∈N from B+(X ) such that 0 < μ(A∞) with A∞ :=⋂∞
m=1 Am.
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Proof. Assume that (Am)m∈N is nondecreasing. For fixed t > 0, we can write∣∣ζ(A∞) − ζ(Am)
∣∣ ≤ ∣∣ζ(A∞) − ζt (A∞)

∣∣ + ∣∣ζt (A∞) − ζt (Am)
∣∣ + ∣∣ζt (Am) − ζ(Am)

∣∣
≤ ∣∣ζ(A∞) − ζt (A∞)

∣∣ + ∣∣ζt (A∞) − ζt (Am)
∣∣ + sup

m≥1

∣∣ζt (Am) − ζ(Am)
∣∣,

where ζt was defined by (5). Letting m → ∞ yields

lim sup
m→∞

∣∣ζ(A∞) − ζ(Am)
∣∣ ≤ ∣∣ζ(A∞) − ζt (A∞)

∣∣ + sup
m≥1

∣∣ζt (Am) − ζ(Am)
∣∣,

since NAm(t) → NA∞(t) a.s., and so NAn(t) = NA∞(t) a.s. for all sufficiently large m. Letting t go to
infinity and applying Corollary 4.5 yield the desired statement. The proof for nonincreasing sequences
is similar. �

Remark 5.2. Proposition 5.1 also holds in the sense of Lp-convergence for p ∈ I , see (21) for the
definition of I .

The recursive equation (6) makes it possible to obtain bounds on the increments of ζ . Let A ⊂ B

with A,B ∈ B+(X ), and let U be distributed in B according to the normalised μ, see formula (9) with
X = B . Then∣∣ζ(B) − ζ(A)

∣∣ d= ∣∣(f (
ζ(B)

) − f
(
ζ(A)

))
1{U∈A} + (

f
(
ζ(A)

) − ζ(A)
)
1{U∈B\A}

∣∣
≤ Lf

∣∣ζ(B) − ζ(A)
∣∣ + ∣∣f (

ζ(A)
) − ζ(A)

∣∣1{U∈B\A},

with independent ζ , f and U on the right-hand side. If Kf = ELf < 1 and (2) holds, then ζ(A) is
integrable by Proposition 3.3. Since ζ(A) and f (ζ(A)) share the same distribution, it holds

E
∣∣ζ(B) − ζ(A)

∣∣ ≤ μ(B) − μ(A)

(1 − Kf )μ(B)
E

∣∣f (
ζ(A)

) − ζ(A)
∣∣.

Note that the latter expectation does not depend on A, since the distribution of ζ(A) does not de-
pend on A. A similar estimate can also be written for p-th moment, p > 0, assuming �(p) < 1 and
E|f (z0) − z0|p < ∞.

5.2. Stochastic processes on the half-line

In the special case of μ being the Lebesgue measure on X =R+, we obtain the following result.

Proposition 5.3. The process (ζ(x))x>0 is a.s. continuous at every fixed (nonrandom) x > 0; it has
càdlàg paths and it is not pathwise continuous and is not pathwise monotone.

Proof. Fix arbitrary x > 0. Let (xn)n≥1 and (x′
n)n≥1 be sequences such that xn ↓ x and x′

n ↑ x as
n → ∞. By Proposition 5.1, we obtain

ζ
([0, xn)

) a.s.−→ ζ
([0, x]) and ζ

([0, x′
n)

) a.s.−→ ζ
([0, x)

)
as n → ∞.

Since ζ(x−) := ζ([0, x)) = ζ(x) a.s. we deduce the first property.
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The process ζn(x) from (20) is càdlàg in x by construction, being a composition of càdlàg functions
fi,[0,x]. The uniform convergence established in Corollary 4.5 yields that (ζ(x))x>0 has càdlàg paths
a.s. on [a, b] for any 0 < a < b, being the uniform limit of càdlàg functions.

To show that it is not pathwise continuous, consider the projection {(ti , xi) : i ≥ 1} of the Poisson
process P and take an atom1 (t, x) such that the rectangle [0, t] × [0, x] does not contain other atoms
of {(ti , xi) : i ≥ 1}. Then ζ is not left-continuous at x. More precisely, for such (random) x we have
ζ(x) = f (ζ(x−)), where f is the mark of the atom at (t, x). Since the jump f (ζ ) − ζ has expectation
zero, see (4), the process is not pathwise monotone. �

Our next result concerns the total variation of ζ .

Theorem 5.4. The total variation of the process (ζ(x))x>0 is a.s. finite on every interval [a, b] with
a > 0.

Proof. Without loss of generality, we may consider an interval [a,1] for a fixed a ∈ (0,1). Fix an
arbitrary partition a = y0 < y1 < y2 < · · · < ym = 1, and let

τj = τ(yj , yj+1) := inf
{
k ≥ 1 : xk ∈ (yj , yj+1]

}
, j = 0,1, . . . ,m − 1,

be the index of the first point in P such that the second coordinate of this point falls in (yj , yj+1]. Note
that, for every fixed i ∈N,

m−1∑
j=0

1{τj ≤i} =
m−1∑
j=0

i∑
k=1

1{τj =k} ≤
m−1∑
j=0

i∑
k=1

1{xk∈(yj ,yj+1]}

=
i∑

k=1

m−1∑
j=0

1{xk∈(yj ,yj+1]} =
i∑

k=1

1{xk∈(a,1]} ≤ i. (25)

Let us now consider the increments ζ(yj+1)− ζ(yj ) for j = 0, . . . ,m− 1. Write (fi,y)i∈N for the i.i.d.
copies of the function fy := f[0,y] from (10). We have∣∣ζ(yj+1) − ζ(yj )

∣∣ ≤ ∣∣ζ(yj+1) − f
1↑(τj −1)
yj

(z0)
∣∣ + ∣∣ζ(yj ) − f

1↑(τj −1)
yj

(z0)
∣∣

= ∣∣ζ(yj+1) − f
1↑(τj −1)
yj+1 (z0)

∣∣ + ∣∣ζ(yj ) − f
1↑(τj −1)
yj

(z0)
∣∣,

where the second equality holds because fk,yj+1 = fk,yj
for k < τj by the definition of τj . By the

Lipschitz property, ∣∣ζ(yj+1) − ζ(yj )
∣∣ ≤ Lf1,yj+1

· · ·Lfτj −1,yj+1

∣∣f τj ↑∞
yj+1 (z0) − z0

∣∣
+ Lf1,yj

· · ·Lfτj −1,yj

∣∣f τj ↑∞
yj

(z0) − z0
∣∣,

and, with the help of (16),

∣∣ζ(yj+1) − ζ(yj )
∣∣ ≤

∞∑
i=τj

Qi

i−1∏
k=1

Lfk,yj+1
+

∞∑
i=τj

Qi

i−1∏
k=1

Lfk,yj
≤ 2

∞∑
i=τj

Qi

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,x

)
, (26)

1Such atoms are usually called (lower) records of the point process.
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where Qi := |fi(z0) − z0| as in the proof of Theorem 4.2. Summing over j = 0, . . . ,m − 1 and subse-
quently taking the supremum over the set P of all partitions, we deduce

sup
P

m−1∑
j=0

∣∣ζ(yj+1) − ζ(yj )
∣∣ ≤ sup

P

∞∑
i=1

Qi

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,x

)
m−1∑
j=0

1{τj ≤i}

≤
∞∑
i=1

iQi

(
sup

x∈[a,1]

i−1∏
k=1

Lfk,x

)
, (27)

where (25) yields the last bound. It remains to note that the series on the right-hand side converges a.s.
by the Cauchy radical test using the same reasoning as in the proof of Theorem 4.2 in conjunction with
a trivial observation i1/i → 1 as i → ∞. The proof is complete. �

Inequality (26) provides an upper a.s. bound on the increments of the process ζ in terms of the tail
of a convergent series.

Denote by Vp(ζ ; [a, b]) the p-variation of ζ over the interval [a, b]. The next result demonstrates
that the p-variation of ζ is integrable. Recall that the set I was defined in (21).

Proposition 5.5. For every p ∈ I ∩ (0,1] and 0 < a ≤ b, we have

EVp

(
ζ ; [a, b]) ≤ (

log(b/a)
) 2E|Z∞|p

1 − �(p)
. (28)

Proof. First of all note that E|Z∞|p is finite by Proposition 3.3. Further, it suffices to prove the state-
ment for the interval [a/b,1] with 0 < a < b. The scale invariance property then yields the desired
result for the interval [a, b]. Thus, without loss of generality, assume that b = 1 and a ∈ (0,1).

The process (ζ(x))x∈(0,1] has a countable dense set of jumps occurring at points (xk)k≥1, where the
enumeration (tk, xk, fk)k≥1 of the atoms of P is such that 0 < t1 < t2 < t3 < · · · and xk ∈ [0,1] a.s.

The size of a jump at xk ∈ [0,1], k ∈N, depends on the number of iterations applied before fk . More
precisely,

ζ(xk) − ζ(xk−)
d= f 1↑(θk+1)(Z∞) − f 1↑θk (Z∞), k ∈ N,

where θk := ∑k−1
j=1 1{xj <xk}, and Z∞ is independent of (fj )j≤k and distributed like ζ(x) for any x.

Taking the expectation and using independence we obtain

E
∣∣ζ(xk) − ζ(xk−)

∣∣p1{xk>a} ≤ E
((

�(p)
)θk1{xk>a}

)
E

∣∣f (Z∞) − Z∞
∣∣p

≤ E
((

�(p)
)θk1{xk>a}

)
2E|Z∞|p,

where (4) has been utilised on the last step. Since xk has the uniform distribution on [0,1],

E
((

�(p)
)θk1{xk>a}

) =
k−1∑
j=0

(
k − 1

j

)(
�(p)

)j
∫ 1

a

yj (1 − y)k−1−j dy

=
∫ 1

a

(
1 − y + y

(
�(p)

))k−1 dy = (1 − (1 − (�(p)))a)k − (�(p))k

k(1 − (�(p)))
. (29)
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Finally, note that

E
∑

xk∈[a,1]

∣∣ζ(xk) − ζ(xk−)
∣∣p = (− loga)

2E|Z∞|p
1 − �(p)

. �

By the subadditivity of the function t �→ tp , Proposition 5.5 implies that the total variation of ζ over
[a, b] is p-integrable with a bound on its pth moment given by the right-hand side of (28).

For each ε > 0, the set J := {x > 0 : |ζ(x) − ζ(x−)| ≥ ε} of jumps of size at least ε is a scale
invariant point process on (0,∞). Indeed, since the p-variation of ζ is finite on any interval [a, b] with
0 < a < b < ∞ and sufficiently small p > 0, the number of points in J ∩ [a, b] is a.s. finite. For c > 0,
cJ is the functional of (ζ(c−1x))x>0, which coincides in distribution with (ζ(x))x>0, hence J is scale
invariant.

5.3. Integration with respect to ζ

Since the process ζ has finite total variation, it is possible to integrate continuous functions with respect
to ζ on intervals bounded from 0 in the sense of Riemann–Stieltjes integration. For arbitrary 0 < a <

b < ∞ and continuous h : [a, b] → R, we have∫
(a,b]

h(x)dζ(x) =
∑

xk∈(a,b]
h(xk)

(
ζ(xk) − ζ(xk−)

)
, (30)

and the series on the right-hand side converges absolutely a.s.
The following proposition shows that one can also integrate over intervals (0, b] provided h satisfies

an additional integrability assumption.

Proposition 5.6. Let h : [0,1] �→ R be a continuous function such that
∫ 1

0 |h(t)|pt−1 dt < ∞ for some
p ∈ I ∩ (0,1]. Then the limit

∫
(0,1] h(x)dζ(x) of (30) as a ↓ 0 exists a.s. and in Lp .

Proof. It suffices to show that

E
( ∑

xk∈(0,1]

∣∣h(xk)
∣∣∣∣ζ(xk) − ζ(xk−)

∣∣)p

< ∞. (31)

This immediately implies ∑
xk∈(0,1]

∣∣h(xk)
∣∣∣∣ζ(xk) − ζ(xk−)

∣∣ < ∞ a.s.

and, thus, by the dominated convergence∑
xk∈(a,1]

h(xk)
(
ζ(xk) − ζ(xk−)

) a.s.−→
∑

xk∈(0,1]
h(xk)

(
ζ(xk) − ζ(xk−)

)
as a ↓ 0.

Furthermore, (31) implies that∥∥∥∥∫
(a,1]

h(x)dζ(x) −
∫

(0,1]
h(x)dζ(x)

∥∥∥∥
p

≤ E
( ∑

xk∈(0,a]

∣∣h(xk)
∣∣∣∣ζ(xk) − ζ(xk−)

∣∣)p

→ 0
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as a ↓ 0. To prove (31), note that subadditivity of t �→ tp yields

E
( ∑

xk∈(0,1]

∣∣h(xk)
∣∣∣∣ζ(xk) − ζ(xk−)

∣∣)p

≤
∞∑

k=1

E
(∣∣ζ(xk) − ζ(xk−)

∣∣p · ∣∣h(xk)
∣∣p)

.

Let us prove that the series on the right-hand side converges. Using the same calculations as in (29),
we derive

E
(∣∣ζ(xk) − ζ(xk−)

∣∣p · ∣∣h(xk)
∣∣p) ≤ 2E|Z∞|pE

((
�(p)

)θk
∣∣h(xk)

∣∣p)
= 2E|Z∞|p

∫ 1

0

(
1 − y + y�(p)

)k−1∣∣h(y)
∣∣p dy.

The right-hand side is summable to 2E|Z∞|p
1−�(p)

∫ 1
0 |h(y)|py−1 dy, which is finite by assumptions. Note

that E|Z∞|p is finite by Proposition 3.3, since �(p) < 1 and E|f (z0) − z0|p < ∞ in view of (2). �

Let us now turn to integration of ζ with respect to a continuous deterministic function h. The easiest
way to define such integrals is via integration by parts, that is, for 0 < a < b and continuous h : [a, b] �→
R, put ∫

(a,b]
ζ(x)dh(x) := ζ(b)h(b) − ζ(a)h(a) −

∫
(a,b]

h(x)dζ(x)

= ζ(b)h(b) − ζ(a)h(a) −
∑

xk∈(a,b]
h(xk)

(
ζ(xk) − ζ(xk−)

)
. (32)

Under the additional integrability assumption, the definition can be extended to a = 0.

Theorem 5.7. Under assumptions of Proposition 5.6 and assuming also that h is continuous, the
integral

∫
(a,b] ζ(x)dh(x) converges in Lp as a ↓ 0 to a limit which is denoted by

∫
(0,1] h(x)dζ(x).

Proof. In view of Proposition 5.6 and definition (32), it suffices to check that

lim
a↓0

∣∣h(a)
∣∣pE

∣∣ζ(a)
∣∣p = 0.

But this follows immediately from lima↓0 |h(a)| = |h(0)| = 0 and E|ζ(a)|p = E|ζ(1)|p < ∞, where
finiteness is secured by Proposition 3.3. �

In particular, if �(p) < 1 for some p ∈ (0,1] then
∫ 1

0 ζ(x)dx is well defined in Lp . Hence,∫ 1
0 ζ(x)dx is well defined in Lp for all sufficiently small p > 0.

6. Markov property

Assume that knowledge of the value y = f (x) allows one to recover in a unique way the value of the
argument x ∈ R and also the realisation of the random function f (·) with the distribution ν. To get a
better understanding of this assumption, suppose for a moment that ν is supported by a finite set of
strictly monotone and strictly contractive functions h1, . . . , hm ∈ G which satisfy the strong separation
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condition. The latter means that the unique attractor of the iterated function system {h1, h2, . . . , hm},
that is the unique nonempty compact set K such that

K =
m⋃

i=1

hi(K),

satisfies additionally hi(K)∩hj (K) =∅ for i �= j . Thus, for every point y ∈K we can find the unique
index i such that y ∈ hi(K), hence, uniquely recover a deterministic function hi , the realisation of f .
Since h1, . . . , hm are assumed to be strictly monotone, it is further possible to find the unique x ∈ K
such that y = hi(x) = f (x). Moreover, since the support of Z∞, the limit of iterations (3), is equal to K,
given the event {Z∞ = z} one can uniquely determine the full (deterministic) sequence (gz

n)n∈N ⊂ G,
such that

z = (
gz

)1↑∞
(z0).

A typical example of a random Lipschitz mapping satisfying the above recovery property are Bernoulli
convolutions with λ < 1/2, see Example 1.1 and Section 7.3 below, for which

m = 2, h1(x) = λx, h2(x) = λx + 1, ν
({h1}

) = ν
({h2}

) = 1/2.

An example where ν is not finitely supported, yet the corresponding random function f satisfies the
recovery property, is given by random continued fractions with integer entries, see Example 8.3 below,
in which

f (x) = 1

ξ + x

with ξ ∈N a.s. From the value y = f (x) one can recover the function f by letting ξ be the integer part
of 1/y and x the fractional part of 1/y.

The aim of this section is to show that the process (ζ(x))x>0 generated by a random Lipschitz
function f which satisfies the recovery property, is Markov and calculate the corresponding generators.
Denote by F[a,b] the σ -algebra generated by ζ(x), x ∈ [a, b], where 0 < a ≤ b ≤ ∞. Write Fa for F{a}.
The recovery property implies that Fa is equal to the σ -algebra generated by the projection of P[0,a]
onto the last component G.

Theorem 6.1. Assume that each z ∈ suppZ∞ corresponds to a unique sequence (gz
n)n∈N from G such

that

z = (
gz

)1↑∞
(z0), (33)

and, for all n ∈ N, the mapping z �→ gz
n is measurable as a function from R to G. Then the process

(ζ(x))x>0 is Markov both in forward and reverse time, that is, with respect to filtration (F(0,x])x>0 and
(F[x,∞))x>0, respectively.

Proof. Fix x,u > 0. Given {ζ(x) = z}, we know the projection of P[0,x] onto G, which is the sequence

(gz
n)n∈N. The σ -algebra F(0,x] is generated by the family of sequences (g

ζ(y)
n )n∈N with y ≤ x. Note

that (g
ζ(y)
n )n∈N is a subsequence of (g

ζ(y′)
n )n∈N if y ≤ y′.

Let κ0 := 0 and put

κk+1 := min{i > κk : xi ≤ x}, k ≥ 0,
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where (tk, xk, fk)k∈N is the enumeration of atoms of P[0,x+u] such that (tk)k∈N is a.s. increasing. We
have

ζ(x + u) = lim
n→∞f (1) ◦ fκ1 ◦ · · · ◦ f (n) ◦ fκn(z0), (34)

where the limit is in the almost sure sense, fκk
= g

ζ(x)
k , and

f (k)(z) := f
(κk−1+1)↑(κk−1)

(x,x+u] (z), k ∈N.

Note that P(x,x+u] is independent of P[0,x] by the Poisson property and, in particular, (κk − κk−1)k∈N
are i.i.d. with geometric distribution which are also independent of F(0,x]. Hence, ζ(x + u) is deter-
mined by ζ(x) and P(x,x+u], so that the conditional distribution of ζ(x +u) given F(0,x] coincides with
the conditional distribution given Fx .

Let us now prove the Markov property in the reverse time. Given {ζ(x) = z} and y ≤ x, we have

ζ(y) = (
gz

y

)1↑∞
(z0).

where gz
j,y is equal in distribution to gz

j with probability y/x, is the identity function with probability
1 − y/x and the choices are mutually independent given {ζ(x) = z}. That is to say, ζ(y) is a func-
tional of (gz

n)n∈N, and P[0,x]. Since ζ(x) determines the sequence (gz
n)k∈N, and by the independence

of Poisson processes, we have the Markov property in the reverse time. �

The conditional distribution of ζ(x +u) given {ζ(x) = z} can be determined as follows. Let (gz
n)n∈N

be a sequence recovered from {ζ(x) = z}. In view of (34), ζ(x + u) for u > 0 can be derived by
inserting between each consecutive pair of functions in the infinite iteration

z = ζ(x) = gz
1 ◦ g2(z) ◦ · · · ◦ gz

n ◦ · · · ,

an independent copy of a mapping f (k) composed of a geometric number of independent copies of f .
The aforementioned geometric random variables take values in {0,1,2, . . .}, are independent and all
have the same parameter u/(x + u). Similarly, it is possible to determine the conditional distribution
of ζ(y) given {ζ(x) = z} with x ≥ y by deleting each of the functions gz

n independently of others with
probability 1 − y/x.

Maintaining assumptions of Theorem 6.1, we now aim at finding the generating operator of the
time-homogeneous Markov process ζ̃ (t) := ζ(et ), t ∈ R. This generating operator in the forward time
is defined as the limit

(A↑h)(z) := lim
δ↓0

1

δ

[
E

(
h
(
ζ
(
et+δ

))|ζ (
et

) = z
) − h(z)

]
,

and in the reverse time as

(A↓h)(z) := lim
δ↓0

1

δ

[
E

(
h
(
ζ
(
et−δ

))|ζ (
et

) = z
) − h(z)

]
for all functions h from their domains of definition.

We calculate the above generators under additional assumptions:

Lf ≤ cf for some deterministic constant cf < 1 and Z∞ is compactly supported. (35)

The above assumption holds, for example, for Bernoulli convolutions.
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Proposition 6.2. Assume that f possesses the recovery property and (35) holds. Then, for h ∈
C1(suppZ∞), it holds

(A↑h)(z) =
∞∑

k=0

[
Eh

((
gz

)1↑k ◦ f ◦ ((
gz

)1↑k)−1
(z)

) − h(z)
]
, z ∈ suppZ∞, (36)

and also

(A↓h)(z) =
∞∑

k=0

[
h
((

gz
)1↑(k−1) ◦ (

gz
k

)−1 ◦ ((
gz

)1↑(k−1))−1
(z)

) − h(z)
]
, z ∈ suppZ∞, (37)

where (gz
j )j∈N is a sequence of deterministic functions which is uniquely determined by z ∈ suppZ∞.

The proof of Proposition 6.2 if given in the Appendix.
We close this section by noticing that the Markov property holds without the recovery property but

with respect to a larger filtration generated by the Poisson process in horizontal strips.

7. Perpetuities

7.1. Moments and covariances

Let f (z) = Mz + Q, where (M,Q) is a random vector in R
2, so that Lf = M . The iterations of

i.i.d. copies of the affine random mapping z �→ Mz + Q are known as perpetuities. In order to avoid
trivialities, we assume throughout this section that

P{Mx + Q = x} < 1 for all x ∈R. (38)

Assume that E|M| < 1 and Q is integrable. Then ζ(A) is integrable and

Eζ(A) = EQ

1 − EM
.

If EM2 < 1 and EQ2 < ∞, then ζ(A) is square integrable for all A ∈ B+(X ), see [4] and Propo-
sition 3.3, Th. 1.4, and the general expression for the covariance can be found from (8). Assuming
additionally EQ = 0 and independence of M and Q, we obtain

E
(
ζ(A1)ζ(A2)

) = EQ2μ(A1 ∩ A2)

(1 − EM)μ(A2 ∪ A1) + (EM − EM2)μ(A1 ∩ A2)
.

From this, we deduce

Eζ(A)2 = EQ2

1 − EM2
,

and

E
(
ζ(A1) − ζ(A2)

)2 = 2EQ2(1 − EM)μ(A1�A2)

(1 − EM2)((EM − EM2)μ(A1 ∩ A2) + (1 − EM)μ(A1 ∪ A2))
.

Thus, ζ is continuous in L2 with respect to the convergence of its argument in measure.
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From now on, assume that X =R+, and ζ(x) = ζ([0, x]). Then

E
(
ζ(x)ζ(y)

) = xEQ2

(1 − EM)y + (EM − EM2)x
, x ≤ y.

By exponential change of time, we obtain the stationary process ζ̃ (s) = ζ(es), s ∈ R, with covariance

E
(
ζ̃ (0)ζ̃ (s)

) = a

ce|s| + 1
,

where a > 0 and c > 1. Note that the covariance is not differentiable at zero, so the process is not
L2-differentiable.

If M and Q are independent, but Q is not centred, then

E
(
ζ(x)ζ(y)

) = 1

1 − EM
· EQ2(1 − EM) + (2EM − 1)(EQ)2 + (EQ)2(y/x)

(1 − EM)(y/x) + EM − EM2
. (39)

The covariance between ζ(x) and ζ(y) tends to (EQ)2/(1 − EM)2 as y/x → ∞, which, in particular
means that correlation between ζ(x) and ζ(y) tends to 0, as y/x → ∞.

7.2. The case of a finite interval

Now consider iterations of f (z) = Mz + Q on the finite interval (0,1] as described in Section 4.
Equation (11) can be written as(

ζ(x)
)
x∈(0,1]

f.d.= (
(M1{U≤x} + 1{U>x})ζ(x) + Q1{U≤x}

)
x∈(0,1]. (40)

The process ζ(x) can be also expressed as the a.s. (pointwise) convergent functional series

ζ(x) =
∞∑

n=1

M ′
1,x · · ·M ′

n−1,xQ
′
n,x, x ∈ (0,1], (41)

where

M ′
n,x := Mn1{Un≤x} + 1{Un>x} = M

1{Un≤x}
n , Q′

n,x := Qn1{Un≤x}, n ≥ 1, x ∈ (0,1].
If M = λ ∈ (0,1) is fixed, then

ζ(x) =
∞∑

n=1

λ
1{U1≤x}+···+1{Un−1≤x}Qn1{Un≤x} =:

∞∑
n=1

λTn−1(x)Qn1{Un≤x}, (42)

where Tn(x) := nF̂n(x), with F̂n(x) being the standard empirical distribution function for the sample
{U1, . . . ,Un}. Note that if Q1 is Gaussian, then the sum also has a Gaussian distribution, that is, the
univariate distributions of ζ(x) are Gaussian. Recall that the distribution of ζ(x) does not depend on
x > 0.

Let us derive an alternative representation for ζ(x). Put

Sn(x) := inf

{
k ∈ N :

k∑
j=1

1{Uj ≤x} = n

}
= inf

{
k ∈N : Tk(x) = n

}
, n ∈N,
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and note that {Tk−1(x) = j,Uk ≤ x} = {Sj+1(x) = k} for all j ≥ 0 and k ∈N. Thus,

ζ(x) =
∞∑

n=1

λTn−1(x)Qn1{Un≤x} =
∞∑

n=1

∞∑
j=0

λj1{Tn−1(x)=j}Qn1{Un≤x}

=
∞∑

j=0

λj

∞∑
n=1

Qn1
{
Sj+1(x) = n

} =
∞∑

j=0

λjQSj+1(x).

Summarising we derive the following representation

ζ(x) =
∞∑

j=1

λj−1QSj (x), x ∈ (0,1]. (43)

Note that Sn(x) is distributed as a sum of n independent geometric random variables on {1,2, . . .} with
success probability x.

7.3. Bernoulli convolutions

If M = λ ∈ (0,1) and Q takes values 0 and 1 with equal probabilities, then ζ(x) = ζ([0, x]) is the
Bernoulli convolution for each x > 0, see [15,16,30].2 By (39),

E
(
ζ(x)ζ(y)

) = x + y

4(1 − λ)2(y + λx)
, x ≤ y. (44)

If λ < 1/2, then the distribution of ζ(x) and the finite-dimensional distributions of the process ζ

are singular. If λ = 1/2, then ζ(x) has the uniform distribution on [0,2] for all x. Let μ
(x)
BC,1/2 denote

the joint distribution of (ζ(x), ζ(1)) for λ = 1/2. A sample from the distribution μ
(0.8)
BC,1/2 is shown on

Figure 1, suggesting that the μ
(x)
BC,1/2 is singular for x ∈ (0,1).

The probability measure μ
(x)
BC,1/2 is the invariant measure for the affine iterated function system on

R
2 generated by gi(z) := M̂iz + Q̂i , i = 1, . . . ,4, where

M̂1 = M̂2 :=
(

1/2 0
0 1/2

)
, M̂3 = M̂4 :=

(
1 0
0 1/2

)
,

and

Q̂1 := (1,1), Q̂2 := (0,0), Q̂3 := (0,1), Q̂4 := (0,0).

The corresponding probabilities

p1 = p2 := x

2
, p3 = p4 := 1 − x

2
(45)

determine a measure on {1, . . . ,4} and then the product measure m on {1, . . . ,4}Z. Then μ
(x)
BC,1/2 is the

image of m under the map

{1, . . . ,4}Z+ � (i0, i1, . . .) �→ lim
n→∞(Q̂i0 + M̂i0Q̂i1 + · · · + M̂i0 · · ·M̂in−1Q̂in).

2It is often alternatively assumed that Q takes values 1 and −1.
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Figure 1. A simulated sample of values for (ζ(0.8), ζ(1)) for Bernoulli convolutions.

The above system of affine maps g1, g2, g3, g4 exhibits exact overlaps, for example, g1 ◦g3 ◦g3 ◦g1 =
g3 ◦ g1 ◦ g1 ◦ g3.

The top Lyapunov exponent is

λ1(x) := lim
n→∞

1

n
log‖M̂i1 · · ·M̂in‖ = −x log 2,

where the limit holds for m-almost all sequences (i1, i2, . . .) by the strong law of large numbers. Since
the top Lyapunov exponent is negative, the iterated function system is contracting on average. Notic-
ing that m is ergodic, Theorem 1.2 in [17] applies and yields that μ

(x)
BC,1/2 is exact dimensional. By

definition, this means that the limit

dimloc
(
μ

(x)
BC,1/2, z

) := lim
r↓0

logμ
(x)
BC,1/2(Br(z))

log r
, (46)

which defines the local dimension of μ
(x)
BC,1/2 at point z, exists and takes the same value for μ

(x)
BC,1/2-

almost all z. Moreover, this common value coincides with the Hausdorff dimension dimHμ
(x)
BC,1/2.

Here Br(z) is the Euclidean ball of radius r centred at z. The dimension formula of Feng [17], Th. 1.3,
applies in this case and yields that

dimHμ
(x)
BC,1/2 = h1 − h0

λ1(x)
+ h2 − h1

λ2
, (47)

where λ2 = − log 2 is the second Lyapunov exponent, and h0, h1, h2 are (conditional) entropies of the
system. First,

h0 = −x logx − (1 − x) log(1 − x) + log 2 := I (x) + log 2

is the unconditional entropy of the distribution (45). While the exact calculation of h2 constitutes a
hard combinatorial problem, h1 can be determined by noticing that the first summand in (47) is equal
to the dimension of the invariant measure for the iterative system on the line composed of the functions
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x/2 + 1, x/2, x, x with probabilities (45).3 This invariant measure is the uniform distribution on [0,2],
hence, h1 = h0 − x log 2. Finally, since h2 ≥ 0, we obtain

1 ≤ dimHμ
(x)
BC,1/2 ≤ min

(
2,2 − x + I (x)/ log 2

)
. (48)

The upper bound alternatively arises from the calculation of the Lyapunov dimension of the iterative
function system, see [23] and [21]. Note that the right-hand side of (48) is smaller than 2 if and only
if x ∈ (x∗,1) where x∗ ≈ 0.772908 is the unique positive root of the equation I (x) = x log 2. Thus,
μ

(x)
BC,1/2 is singular for x > x∗. In particular, if x = 0.8, then the upper bound equals ≈ 1.92, confirming

singularity of the distribution corresponding to Figure 1. We conjecture that μ
(x)
BC,1/2 is singular for all

x ∈ (0,1).

Theorem 7.1. The local dimension of the distribution μ
(x)
BC,1/2 of (ζ(x), ζ(1)) in the Bernoulli convo-

lution scheme with λ = 1/2 equals

dimloc
(
μ

(x)
BC,1/2, z

) = 2 − log(1 + x)

log 2
(49)

for arbitrary z := (z1, z2) ∈ [0,2]2 with finite binary expansions such that the expansion of z1 is a
substring of the expansion of z2.

The proof is postponed to Appendix.
Since the binary rational points in [0,2]2 have μ

(x)
BC,1/2-measure zero, Theorem 7.1 does not allow

us to conclude that the dimension of μ is given by (49). We leave the stronger variant of this statement
as a conjecture. Note that (49) complies with the bounds given in (48).

Conjecture 7.2. We conjecture that dimHμ
(x)
BC,1/2 = 2 − log(1+x)

log 2 .

The following result shows that the right-hand side of (49) provides a lower bound on the dimension
of μ

(x)
BC,1/2.

Theorem 7.3. The dimension of the distribution μ
(x)
BC,1/2 of (ζ(x), ζ(1)) in the Bernoulli convolution

scheme with λ = 1/2 satisfies

dimHμ
(x)
BC,1/2 ≥ 2 − log(1 + x)

log 2
. (50)

We close the section on perpetuities by referring the reader to the last subsection of the Appendix
where two further examples related to perpetuities are discussed in brief.

8. Other examples

Example 8.1. Assume that f (x) ≡ Q for some random variable Q whose distribution we denote
by PQ. Note that this case corresponds to a degenerate perpetuity with M = 0 a.s. Let us assume
that X is [0,∞) with μ being the Lebesgue measure. The process P can be regarded as a marked

3The authors are grateful to D.-J. Feng for this argument.
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Poisson process on [0,∞)2 with unit intensity and the marks being i.i.d. random variables (Qk) with
distribution PQ which are also independent of positions of the points in P . Let (tk, xk)k∈Z be the set
of lower left records of P such that (t0, x0) and (t1, x1) are separated by the bisectrix x = t . Using this
notation, the process (ζ(x))x>0 can be written as follows

ζ(x) = Qinf{n∈Z:xn≤x}, x > 0.

In other words, ζ(x) = Qi if x ∈ (xi−1, xi], i ∈ Z. The jump points (xk)k∈Z form a scale invariant
Poisson point process, see, for example, [18], Prop. 2. After the exponential time change, we obtain a
process (ζ̃ (s))s∈R = (ζ(es))s∈R that takes i.i.d. values distributed as Q between the points of a standard
two-sided Poisson process on R with unit intensity.

Example 8.2. Assume that f (z) = max(1, eξ z), where Eξ < 0. Then Lf = min(1, eξ ). The back-
ward iterations converge a.s. to a random variable eY such that Y satisfies the Lindley equation

Y
d= max(0, ξ + Y) from queuing theory. It is well known that Y is distributed as

sup
j≥0

j∑
i=1

ξi,

where (ξi)i∈N are i.i.d. copies of ξ . In other words, ζ(x) is the supremum of a random walk with
negative drift. For the corresponding process (ζ(x))x∈(0,1] we have the representation

ζ(x) = sup
j≥0

j∑
i=1

ξi1{Ui≥x}, x ∈ (0,1],

where (Ui)i∈N are i.i.d. uniform on [0,1] which are also independent of (ξj )j∈N.

Example 8.3. Let f (z) = 1/(z + ξ), where ξ is a positive random variable and z ≥ 0. The iterations
produce random continued fractions, see, for example, [27]. The Lipschitz constant of f is Lf = ξ−2,
so (1) and (2) are fulfilled if Eξ−2 < ∞ and E log ξ > 0.

If ξ is Gamma distributed, then the backwards iterations converge almost surely, and the limit ζ(x)

has the inverse Gaussian distribution. Therefore, one obtains a stochastic process whose all univariate
marginals are inverse Gaussian.

If ξ takes values from N, then it is possible to uniquely recover the sequence of iterations from the
limit, so Theorem 6.1 yields the Markov property of the process (ζ(x))x>0.

9. Concluding remarks

Most of the presented results (with appropriate amendements) hold for Lipschitz functions taking val-
ues in an arbitrary Polish space; in this case, one obtains set-indexed functions with values in this Polish
space.

It is possible to amend the sieving construction in various ways. For instance, let P be the Poisson
process {(xi, fi)} in R

d marked by i.i.d. random Lipschitz functions satisfying (1) and (2). For each
point x ∈ R

d , order the points (xi)i∈N of the process according to their distance to x and take the
backward iterations of the corresponding functions. This results in a random field indexed by R

d whose
one-dimensional distributions are all identical and which is also scale invariant.
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For yet another alternative construction, let P be the Poisson process {(si , ti , fi)} in R × R+ × G.
Fix a > 0, and for each x ∈ R consider the points (si , ti) such that |x − si | ≤ ati . Order these points
by increasing second coordinates ti and let ζ(x) be the limit of the backwards iterations of the corre-
sponding functions.

Finally, let us make a concluding remark that a different notion of probabilistic sieving related to
so-called generalized leader-election procedures has been recently considered in [5] and [6].

Appendix

In the Appendix, we collect the promised proofs and examples skipped in the main text.

Proof of Proposition 6.2

Let us prove (36), the proof of (37) is similar. Order all points of P[0,x+δ] according to their arrival
times ti . Formula (33) implies that, conditionally on {ζ(et ) = z}, the random variable ζ(et+δ) is dis-
tributed as the following a.s. limit

lim
n→∞

(
gz

)1↑(τ1−1) ◦ f1 ◦ (
gz

)τ1↑(τ2−1) ◦ f2 ◦ · · · ◦ (
gz

)τn−1↑(τn−1) ◦ fn(z0),

where

τ0 := 0, τn := min
{
i > τn−1 : xi ∈ (et , et+δ]}, n ∈N,

and (fk)k∈N are i.i.d. copies of f which are independent of everything else. Note that (τn − τn−1)n∈N
are i.i.d. and

P{τ1 = j} = e−δ(j−1)
(
1 − e−δ

)
, j ∈ N.

On the first step we show that it is possible to neglect f2, f3, . . ., which have been inserted after gz
τ1

,
that is

lim
δ↓0

1

δ
E

(
h
((

gz
)1↑(τ1−1) ◦ f1 ◦ (

gz
)τ1↑(τ2−1) ◦ f2 ◦ · · · ◦ (

gz
)τn−1↑(τn−1) ◦ fn ◦ · · · (z0)

)
− h

((
gz

)1↑(τ1−1) ◦ f1 ◦ (
gz

)τ1↑∞
(z0)

)) = 0. (51)

Using the fact that h′ is continuous, hence, bounded on the compact set suppZ∞, we derive using the
mean value theorem for differentiable functions∣∣h((

gz
)1↑(τ1−1) ◦ f1 ◦ (

gz
)τ1↑(τ2−1) ◦ f2 ◦ · · · ◦ (

gz
)τn−1↑(τn−1) ◦ fn ◦ · · · (z0)

)
− h(

(
gz

)1↑(τ1−1) ◦ f1 ◦ (
gz

)τ1↑∞
(z0)

∣∣ ≤ const · cτ2
f .

Since δ−1Ec
τ2
f = δ−1(Ec

τ1
f )2 → 0 as δ ↓ 0, the generating operator is given by

(A↑h)(z) = lim
δ↓0

1

δ

[
Eh

((
gz

)1↑(τ1−1) ◦ f1 ◦ (
gz

)τ1↑∞
(z0)

) − h(z)
]

= lim
δ↓0

1

δ

[
Eh

((
gz

)1↑(τ1−1) ◦ f ◦ ((
gz

)1↑(τ1−1))−1
(z)

) − h(z)
]
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= lim
δ↓0

1

δ

∞∑
k=0

[
Eh

((
gz

)1↑k ◦ f ◦ ((
gz

)1↑k)−1
(z)

) − h(z)
]
e−δk

(
1 − e−δ

)
, (52)

where for the second equality we have used that(
gz

)τ1↑∞
(z0) = ((

gz
)1↑(τ1−1))−1

(z).

Using the inequality

Eh
((

gz
)1↑k ◦ f ◦ ((

gz
)1↑k)−1

(z)
) − h(z) ≤ const · ck

f , k ≥ 0,

by the Lebesgue dominated convergence theorem we can swap the sum and the limit on the right-hand
side of (52). This completes the proof of (36).

Markov processes generated by Bernoulli convolutions

As we have mentioned in Section 6, the process (ζ(x))x>0 generated by the mapping f (x) = λx + Q

with λ ∈ (0,1/2) and Q equally likely taking the values 0 and 1, is Markov both in forward and reverse
time.

In order to calculate its generating operator, note that each z ∈ suppZ∞ ⊂ [0, (1−λ)−1] corresponds
to a sequence (qz

n)n∈N from {0,1}N such that gz
n(x) = λx + qz

n and

z = (
gz

)1↑∞
(z0) =

∞∑
k=1

λk−1qz
k . (53)

Direct calculations yield

gz
1 ◦ · · · ◦ gz

k ◦ f ◦ (
gz

k

)−1 · · · (gz
1

)−1
(x) = (1 − λ)

k∑
i=1

λi−1qz
i + λkQ + λx, x ∈ R.

By (36),

(A↑h)(z) =
∞∑

k=0

[
Eh

(−(1 − λ)ẑk + λkQ + z
) − h(z)

]
,

where Q equally likely takes values 0, 1 and

ẑk :=
∞∑

i=k+1

λi−1qz
i , k ≥ 0.

If h(z) = z, then

(A↑h)(z) = −(1 − λ)

∞∑
k=0

ẑk + EQ

1 − λ
= −(1 − λ)

∞∑
i=1

iλi−1qz
i + EQ

1 − λ
.
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A curious observation is that the sum in the last formula is the derivative of λ �→ λz(λ) in (53). The
generating operator in the reverse time is given by

(A↓h)(z) =
∞∑

k=0

[
h
(−(

1 − λ−1)ẑk−1 − λk−2qz
k + z

) − h(z)
]
.

Proof of Theorems 7.1 and 7.3

Proof. First of all, note that we may replace the Euclidean ball in (46) with the �∞-ball. Further, for
any sequence rn ↓ 0, there exist a sequence (kn) ↑ ∞ of integers such that 2−kn ≤ rn < 2−kn+1, and by
the standard sandwich argument we see that it suffices to prove (46) along the sequence rk = 2−k as
k → ∞.

Order the points (ti , xi, fi)i∈N of the point process P[0,1] so that t1 ≤ t2 ≤ · · · . Recall the notation

Tn(x) =
n∑

j=1

1{xj ≤x} and Sn(x) = inf
{
k ∈ N : Tk(x) = n

}
, n ∈ N.

Since x is fixed, in the following the argument x is omitted.
Let z1 = ∑m

k=1 γk/2k−1, γm = 1, and z2 = ∑n
k=1 γ ′

k/2k−1, γ ′
n = 1, be the binary expansions of z1

and z2, respectively. By the assumption, γ1γ2 . . . γm is a substring of γ ′
1γ

′
2 . . . γ ′

n and, in particular,
m ≤ n. Recalling the representation (43) for ζ , we can write

ζ(x) =
∞∑

n=1

QSn

2n−1
and ζ(1) =

∞∑
n=1

Qn

2n−1
.

For k > max(n,m), we have

μ
(x)
BC,1/2

(
z + [

0,2−k
]2) = P

{
ζ(x) ∈ [

z1, z1 + 2−k
]
, ζ(1) ∈ [

z2, z2 + 2−k
]}

= P
{
Q1 = γ ′

1, . . . ,Qn = γ ′
n,Qn+1 = · · · = Qk+1 = 0,

QS1 = γ1, . . . ,QSm = γm,QSm+1 = · · · = QSk+1 = 0
}
.

Denote the event under the last probability sign by A. Since we assume γm = 1, event A can occur
only if {Sm ≤ n} ∪ {Sm > k + 1}. We proceed by bounding P{A,Sm > k + 1} as follows:

P{A,Sm > k + 1}
≤ P{Sm > k + 1,Qn+1 = · · · = Qk+1 = 0,QSm+1 = · · · = QSk+1 = 0}

= P{Sm > k + 1}
(

1

2

)k−n+1(1

2

)k−m+1

≤ mP
{
S1 >

k + 1

m

}(
1

2

)k−n+1(1

2

)k−m+1

= m(1 − x)(k+1)/m

(
1

2

)k−n+1(1

2

)k−m+1

=O
(

(1 − x)1/m

4

)k

as k → ∞.
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In order to calculate P{A,Sm ≤ n}, note that {Sm ≤ n} = {Tn ≥ m}. By definition, STn ≤ n and
STn+1 > n. Therefore,

P{A,Sm ≤ n} =
n∑

l=m

n∑
j=l

P{Sm ≤ n,Tn = l, Sl = j, Sl+1 > n,Bm,n,Cn,k}

where

Bm,n = {
Q1 = γ ′

1, . . . ,Qn = γ ′
n,QS1 = γ1, . . . ,QSm = γm,QSm+1 = · · · = QSTn

= 0
}
,

Cn,k = {Qn+1 = · · · = Qk+1 = 0,QSTn+1 = · · · = QSk+1 = 0}.
Note that Sl+i = Sl + S′

i , i ≥ 1, where (S′
i )i∈N is a distributional copy of the random walk (Si)i∈N.

Then

P{Sm ≤ n,Tn = l, Sl = j, Sl+1 > n,Bm,n,Cn,k}
= P{Cn,k, Sl+1 > n|Tn = l, Sl = j,Bm,n}P{Sm ≤ n,Tn = l, Sl = j,Bm,n},

and further

P{Cn,k, Sl+1 > n|Tn = l, Sl = j,Bm,n}
= P

{
Qn+1 = · · · = Qk+1 = 0,Qj+S′

1
= · · · = Qj+S′

k−l+1
= 0, j + S′

1 > n
}

= P{Qn+1 = · · · = Qk+1 = 0,Qn+S′
1
= · · · = Qn+S′

k−l+1
= 0}P{

j + S′
1 > n

}
,

where the last equality relies on the memoryless property of the geometrically distributed S′
1. Let N be

binomially distributed Bin(k − n + 1, x). Then

P{Qn+1 = · · · = Qk+1 = Qn+S′
1
= · · · = Qn+S′

k−l+1
= 0}

=
(

1

2

)k−n+1

E
(

1

2

)k−l+1−N

=
k−n+1∑

i=0

(
k − n + 1

i

)
xi(1 − x)k−n+1−i

(
1

2

)2k−n−l+2−i

=
(

1

2

)k−l+1(1 + x

2

)k−n+1

.

Thus,

P{A,Sm ≤ n}

=
(

1

2

)k(1 + x

2

)k

×
n∑

l=m

n∑
j=l

(1 − x)n−j

(
1

2

)−l+1(1 + x

2

)−n+1

P{Sm ≤ n,Tn = l, Sl = j, Sl+1 > n,Bm,n}.

Note that the double sum does not depend on k. Hence,

μ
(x)
BC,1/2

(
z + [

0,2−k
]2) = const

(
1

2

)k(1 + x

2

)k

+O
(

(1 − x)1/m

4

)k

,
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where the constant does not depend on k (but might depend on m and n). The same expression holds
for μ

(x)
BC,1/2(z + [−2−k,0]2).

Furthermore,

μ
(x)
BC,1/2

(
z + [−2−k,0

] × [
0,2−k

])
= P

{
Q1 = γ ′

1, . . . ,Qn = γ ′
n,Qn+1 = · · · = Qk+1 = 0,

QS1 = γ1, . . . ,QSm−1 = γm−1,QSm = 0,QSm+1 = · · · = QSk+1 = 1
}
.

The event under probability sign occurs only if Sm+1 ≤ n or Sm+1 > k + 1. By taking the double sum
over Tn = l and Sl = j for m + 1 ≤ l ≤ n and l ≤ j ≤ n as above, we arrive at

μ
(x)
BC,1/2

(
z + [−2−k,0

] × [
0,2−k

]) ≤ const ·
(

1 − x

4

)k

,

where the constant does not depend on k. Furthermore, μ(x)
BC,1/2(z+[0,−2−k]×[−2−k,0]) is bounded

by the same expression. Thus,

μ
(x)
BC,1/2

(
z + [−2−k,2−k

]2) = c

(
1

2

)k(1 + x

2

)k

+O
(

(1 − x)1/m

4

)k

.

Finally, (46) yields (49). �

Proof of Theorem 7.3. All points z := (z1, z2) in the support of μ
(x)
BC,1/2 can be represented as binary

expansions z1 = ∑∞
k=1 γk/2k−1 and z2 = ∑∞

k=1 γ ′
k/2k−1, where the sequences γ := (γk)k∈N and γ ′ =

(γ ′
n)n∈N in {0,1}N are such that γ is a subsequence of γ ′. For almost all z, there is an infinite increasing

sequence (τk)k∈N of natural numbers such that γτk+1 = γ ′
τk+1 = 0 and γτk+2 = γ ′

τk+2 = 1 for all k ≥ 1.
This follows from the Borel–Cantelli lemma applied to the sequence of independent events

Bn := {QYn = 0,QYn+1 = 1,QSYn
= 0,QSYn+1 = 1}, n ≥ 1,

where Y1 = 1, and Yn+1 = SYn+1 + 1, n ≥ 1. Note that the sequence (τk)k∈N is not random, it is
determined by the sequences γ and γ ′. Given that μ

(x)
BC,1/2 is exact dimensional and the limit in (46)

exists, it is possible to take the limit along rk = 2−τk , k ∈ N.
Consider z̃ := (z̃1, z̃2) with

z̃1 :=
τk∑

j=1

2−(j−1)γj and z̃2 :=
τk∑

j=1

2−(j−1)γ ′
j .

Then

z + [−2−(τk+1),2−(τk+1)
] ⊂ z̃ + [

0,2−τk
] ⊂ z + [−2−τk ,2−τk

]
,

where we used that γτk+2 = γ ′
τk+2 = 1. Therefore, it suffices to consider

μ
(x)
BC,1/2

(
z̃ + [

0,2−τk
])

= P
{
Qi = γ ′

i , i = 1, . . . , τk, γ
′
Sj

= γj , j = 1, . . . , Tτk
,QSl

= γSl
, l = Tτk

+ 1, . . . , τk

}
.
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Note that Tτk
:= ∑τk

j=1 1{xj ≤x} has the binomial distribution Bin(τk, x), so that

μ
(x)
BC,1/2

(
z̃ + [

0,2−τk
]) ≤ P

{
Qi = γ ′

i , i = 1, . . . , τk,QSl
= γSl

, l = Tτk
+ 1, . . . , τk

}
=

(
1

2

)τk

E
(

1

2

)τk−Tτk =
(

1

2

)τk
(

1 + x

2

)τk

.

The conclusion follows from (46). �

Further examples related to perpetuities

Example A.1. Assume that Q is standard normal and M = λ ∈ (0,1) is constant. Then ζ(x), x > 0,
has univariate Gaussian marginals, and its covariance is given by

E
(
ζ(x)ζ(y)

) = x

(1 − λ)(y + λx)
.

By time change x = es , we arrive at a centred stationary process ζ̃ (s), s ∈ R, with univariate Gaussian
marginals and covariance

E
(
ζ̃ (0)ζ̃ (s)

) = 1

(1 − λ)(e|s| + λ)
.

The bivariate distributions of this process are no longer Gaussian, see Figure 2.

Example A.2. Let M = Q for the standard uniform Q. In this case, ζ(x) for each x > 0 follows the
Dickman distribution, see, for example, [28]. While the obtained stochastic process has all univariate
Dickman marginals, it does not have independent increments like the Dickman process constructed us-
ing the infinite divisibility property of the Dickman law, see [9]. In our case we have the representation

ζ(x) =
∞∑

n=1

Q
1{U1≤x}
1 · · ·Q1{Un−1≤x}

n−1 Qn1{Un≤x}.

Figure 2. A simulation of (ζ(0.7), ζ(1)) for normal Q and λ = 1/2.
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