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We consider estimation and inference in a single index regression model with an unknown but smooth link
function. In contrast to the standard approach of using kernels or regression splines, we use smoothing
splines to estimate the smooth link function. We develop a method to compute the penalized least squares
estimators (PLSEs) of the parametric and the nonparametric components given independent and identically
distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We
establish asymptotic normality under mild assumption and prove asymptotic efficiency of the parametric
component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We
also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of
the PLSEs are also investigated.
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1. Introduction

Consider a regression model where one observes i.i.d. copies of the predictor X ∈ Rd and the
response Y ∈ R and is interested in estimating the regression function E(Y |X = ·). In nonpara-
metric regression E(Y |X = ·) is generally assumed to satisfy some smoothness assumptions
(e.g., twice continuously differentiable), but no assumptions are made on the form of dependence
on X. While nonparametric models offer flexibility in modeling, the price for this flexibility can
be high for two main reasons: the estimation precision decreases rapidly as d increases (“curse
of dimensionality”) and the estimator can be hard to interpret when d > 1.

A natural restriction of the nonparametric model that avoids the curse of dimensionality while
still retaining some flexibility in the functional form of E(Y |X = ·) is the single index model. In
single index models, one assumes the existence of θ0 ∈Rd such that

E(Y |X) = E
(
Y |θ�

0 X
)
, almost every (a.e.) X,

where θ�
0 X is called the index; the widely used generalized linear models (GLMs) are special

cases. This dimension reduction gives single index models considerable advantages in applica-
tions when d > 1 compared to the general nonparametric regression model; see [20] and [4] for
a discussion. The aggregation of dimension by the index enables us to estimate the conditional
mean function at a much faster rate than in a general nonparametric model. Since [49], single
index models have become increasingly popular in many scientific fields including biostatistics,
economics, finance, and environmental science and have been deployed in a variety of settings;
see [33].
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Formally, in this paper, we consider the model

Y = m0
(
θ�

0 X
) + ε, E(ε|X) = 0, a.e. X, (1)

where m0 : R → R is called the link function, θ0 ∈ Rd is the index parameter, and ε is the
unobserved mean zero error (with finite variance). We assume that both m0 and θ0 are unknown
and are the parameters of interest. For identifiability of (1), we assume that the first coordinate
of θ0 is non-zero and

θ0 ∈ � := {
η = (η1, . . . , ηd) ∈ Rd : |η| = 1 and η1 ≥ 0

} ⊂ Sd−1,

where | · | denotes the Euclidean norm, and Sd−1 is the Euclidean unit sphere in Rd ; see [4] and
[7] for a similar assumption.

Most of the existing techniques for estimation in single index models can be broadly classified
into two groups, namely, M-estimation and “direct” estimation. M-estimation methods involve
a nonparametric regression estimator of m0 (e.g., kernel estimator [23], Bayesian B-splines [1],
regression splines [45,61,62], local-linear approximation [63,70], and penalized splines [68])
and a minimization of some appropriate criterion function (e.g., quadratic loss [62,68], robust L1
loss [72], profiled likelihood [45], quasi-likelihood [61], modal regression [35,66], and quantile
regression [63]) with respect to the index parameter to obtain an estimator of θ0. The so-called
direct estimation methods include average derivative estimators [6,21,49,53], methods based on
the conditional variance of Y [64,65], dimension reduction techniques, such as sliced inverse
regression [31,32], and partial least squares [69]. Another prominent direct method is a kernel-
based fixed point iterative scheme to compute an efficient estimator of θ0 [7]. In these methods
one tries to directly estimate θ0 without estimating m0, see, for example, in [21] the authors use
the estimate of the derivative of the local linear approximation to E(Y |X = ·) and not the estimate
of m0 to estimate θ0.

In this paper, we propose an M-estimation technique based on smoothing splines to simul-
taneously estimate the link function m0 and the index parameter θ0. When θ0 is known, (1)
reduces to a one-dimensional function estimation problem and smoothing splines offer a fast and
easy-to-implement nonparametric estimator of the link function – m0 is generally estimated by
minimizing a penalized least squares criterion with a (natural) roughness penalty of integrated
squared second derivative [11,59]. However, in the case of single index models, the problem is
considerably harder as both the link function and the index parameter are unknown and inter-
twined (unlike in partial linear regression model [16]).

In other words, given i.i.d. data {(yi, xi)}1≤i≤n from model (1), we propose minimizing the
following penalized loss:

1

n

n∑
i=1

(
yi − m

(
θ�xi

))2 + λ2
∫ ∣∣m′′(t)

∣∣2
dt (λ 	= 0) (2)

over θ ∈ � and ‘smooth’ functions m; we will make this more precise in Section 2. Here λ is
known as the smoothing parameter – high values of |λ| lead to smoother estimators. The theory
developed in this paper allows for the tuning parameter λ in (2) to be data dependent. Thus, data-
driven procedures such as cross-validation can be used to choose an optimal λ; see Section 5. As
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opposed to average derivative methods discussed earlier [21,49], the optimization problem in (2)
involves only 1-dimensional nonparametric function estimation.

To the best of our knowledge, this is the first work that uses smoothing splines in the single
index paradigm, under (only) smoothness constraints. We show that the penalized least squares
loss leads to a minimizer (m̂, θ̂ ). We study the asymptotic properties, that is, consistency, rates of
convergence, of the estimator (m̂, θ̂ ) under data dependent choices of the tuning parameter λ. We
show that under sub-Gaussian errors θ̂ is asymptotically normal and, further, under homoscedas-
tic errors θ̂ achieves the optimal semiparametric efficiency bound in the sense of [3].

Ichimura [23] developed a semiparametric least squares estimator of θ0 using kernel estimates
of the link function. However, the choice of tuning parameters (e.g., the bandwidth for estima-
tion of the link function) make this procedure difficult to implement [8,15] and its numerical
instability is well documented; see, for example, [68]. To address these issues [62,68] used B-
splines and penalized splines to estimate m0, respectively. However, in their proposed procedure
the practitioner is required to choose the number and placement of knots for every θ . Smoothing
splines avoid the choice of number of knots and their placement. Furthermore, smoothing splines
(or more generally RKHS based regression estimators) are unique in that they are defined as min-
imization over a Hilbert space rather than as a local average. Even though smoothing splines can
be approximated by kernel regression estimators or can be seen as a linear smoother, they are
obtained under global smoothness constraint. This viewpoint makes them readily usable (at least
in principle) when more constraints (such as monotonicity, non-negativity, unimodality, convex-
ity, and k-monotonicity) need to be imposed. Several works including [18,48], and [67] advocate
the use of smoothing splines for this reason. The above works also propose numerical methods
for computing the constrained smoothing splines estimator in the case univariate nonparamet-
ric regression; also see [9,10,38,52]. These works suggest that, in addition to the convenience in
problem formulation, the proof techniques for establishing consistency and asymptotic normality
of the estimator for the finite-dimensional parameter in the constrained single index model will
be almost the same as those for the smooth single index model studied here.

In contrast, other regression estimators such as kernel (or Nadaraya–Watson) estimator, se-
ries expansion, and regression splines imposing almost any type of (shape) constraint requires
rethinking of the methods from scratch. This difficulty has posed several interesting works that
consider estimation in constrained one dimensional nonparametric regression models; see [2,14,
40], and [50]. [14] modifies the kernel regression estimator by including probability weights for
the summands and choosing these weights so as to satisfy monotonicity constraints. [50] further
extends this by allowing for negative weights and thus enlarging the possible set of constraints;
the computation, however, becomes difficult. [40] provides specific spline basis such that mono-
tonicity and convexity constraints on functions can be converted into simple linear inequality
constraints on the coefficients. However, this explicit basis construction for other general con-
straints (as discussed in [67]) seems out of reach at present and the extension of these methods
to the case of single index model does not follow directly from existing work.

This paper gives a systematic and rigorous study of a smoothing splines based estimator for
the single index model under minimal assumptions and fills an important gap in the literature.
The assumptions for m0 in this paper are weaker than those considered in the literature. We as-
sume that the link function has an absolutely continuous derivative as opposed to the assumed
(almost) three times differentiability of m0 [7,23,49,62]. We study the model under the assump-
tion that θ ∈ Sd−1. In contrast, when the first coordinate is assumed to be 1, the parameter space
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is unbounded and consistent estimation of θ0 requires further assumptions, see, for example,
[34]. [7] points out that the assumption θ ∈ Sd−1 makes the parameter space irregular and the
construction of paths on the sphere is hard. In this paper, we construct paths on the unit sphere
to study the semiparametric efficiency of the finite dimensional parameter and provide a closed
form expression for the variance of θ̂ ; see Theorem 5.

Our exposition is organized as follows. In Section 2, we introduce some notation, formally
define our estimator, and study its existence. In Section 3, we prove consistency (see Theorem
3) and provide the rates of convergence (see Theorems 2 and 4) for our estimator. We show that
the estimator for θ0 is asymptotically normal and semiparametrically efficient; see Theorem 5
in Section 4. In Section 5, we provide finite sample simulation study of the proposed estimator
and compare performance with existing methods in the literature. In Section 6, we apply the
methodology developed to the car mileage data and the Ozone concentration data. In Section 7,
we briefly summarize the results in the paper and provide some remarks on future directions of
research. Appendices A–B contain proofs of the some of the results in the paper. The proofs of
the results not given in the Appendices can be found in the on-line supplementary article [26].

2. Preliminaries

Suppose that {(yi, xi)}1≤i≤n is an i.i.d. sample from model (1). We start with some notation. Let
χ ⊂ Rd denote the support of X. Let D be the set of possible index values and D0 be the set of
possible index values at θ0, i.e.,

D := {
θ�x : x ∈ χ, θ ∈ �

}
and D0 := {

θ�
0 x : x ∈ χ

}
. (3)

We denote the class of all real-valued functions with absolutely continuous first derivative on D

by S , that is,

S := {
m : D → R|m′ is absolutely continuous

}
.

We use P to denote the probability of an event, E for the expectation of a random quantity, and
PX for the distribution of X. For g : χ →R, define

‖g‖2 :=
∫

χ

g2 dPX and ‖g‖2
n = 1

n

n∑
i=1

g2(xi).

Let Pε,X denote the joint distribution of (ε,X) and Pθ,m denote the joint distribution of (Y,X)

when Y = m(θ�X)+ ε. In particular, Pθ0,m0 denotes the joint distribution of (Y,X) when (Y,X)

satisfy (1). For any function g : I ⊂ Rp → R, let ‖g‖∞ := supu∈I |g(u)|. Moreover, for I1 ⊂ I ,
we define ‖g‖I1 := supu∈I1

|g(u)|. For any set I ⊂ R, ∅(I ) denotes the diameter of the set I .
For any a ∈ Rd and r > 0, Ba(r) denotes the Euclidean ball of radius r centered at a. The
notation a � b is used to express that a is less than b up to a positive constant multiple. For
any function f : χ → Rr , r ≥ 1, let {fi}1≤i≤r denote each of the components, that is, f (x) =
(f1(x), . . . , fr(x)), r ≥ 1 and fi : χ → R. We define ‖f ‖2,2 :=

√∑r
i=1 ‖fi‖2 and ‖f ‖2,∞ :=
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i=1 ‖fi‖2∞. For any real-valued function m and θ ∈ �, we define

(m ◦ θ)(x) := m
(
θ�x

)
, for all x ∈ χ.

For any function f : D ⊂R→R with absolutely continuous first derivative, we define the rough-
ness penalty

J 2(f ) :=
∫

D

∣∣f ′′(t)
∣∣2

dt.

We will now introduce the penalized least square estimator (PLSE). The penalized loss for
(m, θ) ∈ S × � (and λ 	= 0) is defined as

Ln(m, θ;λ) := 1

n

n∑
i=1

(
yi − m

(
θ�xi

))2 + λ2J 2(m). (4)

The following theorem proves the existence of a (possibly non-unique) minimizer of (m, θ) →
Ln(m, θ;λ).1

Theorem 1. For every λ 	= 0, (m, θ) → Ln(m, θ;λ) is a continuous function and attains its
minimum on S × �. Furthermore, there exists a measurable minimizer.

The PLSE (m̂, θ̂ ) is defined to be any measurable element of the set of minimizers of
Ln(m, θ;λ), that is,

(m̂, θ̂ ) ∈ arg min
(m,θ)∈S×�

Ln(m, θ;λ). (5)

We suppress the dependence of (m̂, θ̂ ) on λ, for notational convenience. Theorem 2.4 of [11]
shows that m̂ is a natural cubic spline with knots at {θ̂�xi}1≤i≤n.

It is easy to see that the composite population parameter m0 ◦ θ0 is identifiable. However,
this does not guarantee that both m0 and θ0 are separately identifiable. Ichimura [23] (also see
Horowitz [19], pages 12–17, and Li and Racine [33], Proposition 8.1) find sufficient conditions
on the distribution/domain of X under which m0 and θ0 can be separately identified:

(A0) The function m0(·) is non-constant, non-periodic, and a.e. differentiable. The first coor-
dinate of θ0 is positive, i.e., θ0,1 > 0. The components of X1 ∼ PX (i.e., X1,1, . . . ,X1,d−1
and X1,d ) cannot have a perfect linear relationship. There exists an integer d1 ∈
{1,2, . . . , d}, such that X1,1, . . . ,X1,d1−1, and X1,d1 have continuous distributions and
X1,d1+1, . . . ,X1,d−1, and X1,d be discrete random variables. Furthermore, there exist an
open interval I and constant vectors c0, c1, . . . , cd−d1 ∈Rd−d1 such that

• cl − c0 for l ∈ {1, . . . , d − d1} are linearly independent,
• I ⊂ ⋂d−d1

l=0 {θ�
0 x : x ∈ χ and (xd1+1, . . . xd) = cl}.

1See Section S.1 of the supplementary article [26] for a proof.
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Ichimura [23] and Horowitz [19] prove by examples that each part of Assumption (A0) is neces-
sary for identifiability of m0 and θ0. Further discussion on alternative identifiability assumptions
when X has a Lebesgue density, we refer to Kuchibhotla et al. [27], Section 2.

3. Asymptotic analysis of the PLSE

In this section, we will list the assumptions under which we will establish consistency and find
the rates of convergence of our estimators. Note that we will study (m̂, θ̂ ) for any (possibly
data-driven) choice of λ satisfying two rate conditions; see assumption (A4) below.

(A1) The link function m0 satisfies J (m0) < ∞.
(A2) χ , the support of X, is a compact subset of Rd and supx∈χ |x| ≤ T .
(A3) The error ε in model (1) is conditionally sub-Gaussian, that is, there exists K > 0 such

that

E
[
exp

(
ε2/K

)|X] ≤ 2 a.e. X.

As stated in (1), we also assume that E(ε|X) = 0 a.e. X.
(A4) The smoothing parameter λ can be chosen to be a random variable. For the rest of the

paper, we denote it by λ̂n. Assume that λ̂n satisfies the rate condition:

λ̂−1
n = Op

(
n2/5) and λ̂n = op

(
n−1/4). (6)

The assumptions deserve comments. In (A1) our assumption on m0 is quite minimal – we essen-
tially require m0 to have an absolutely continuous derivative. Most previous works assume m0 to
be three times differentiable; see, for example, [43,49]. Note that the assumption J (m0) < ∞ in
combination with compact support of X implies that m0 is bounded and we set M1 := ‖m0‖∞.
(A2) assumes that the support of the covariates is bounded. As the class of functions S is not
uniformly bounded, we use assumption (A3) to provide control over the tail behavior of ε; see
Chapter 8 of [56] for a discussion on this. Observe that (A3) allows for heteroscedastic errors.
Assumption (A4) allows our tuning parameter to be data dependent, as opposed to a sequence
of constants. This allows for data driven choices of λ̂n, such as cross-validation. We will show
that for any choice of λ̂n satisfying (6), θ̂ will be an asymptotically efficient estimator of θ0. We
use empirical process methods (see, e.g., [58]) to prove the consistency and to find the rates of
convergence of m̂ ◦ θ̂ .

In Theorem 2, we show that (m̂, θ̂ ) is a consistent estimator of (m0, θ0) and m̂ ◦ θ̂ converges
to m0 ◦ θ0 at rate λ̂n (with respect to the L2(PX)-norm).

Theorem 2. Under assumptions (A0)–(A4), the PLSE satisfies J (m̂) = Op(1), ‖m̂‖∞ = Op(1),
and ‖m̂ ◦ θ̂ − m0 ◦ θ0‖ = Op(λ̂n).

Next, we prove the consistency of m̂ and θ̂ . We prove that m̂ is consistent under the Sobolev
norm, which for any set I ⊂R and any function g : I → R is defined as

‖g‖S
I = sup

t∈I

∣∣g(t)
∣∣ + sup

t∈I

∣∣g′(t)
∣∣.

Recall sets D and D0 defined in (3).
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Theorem 3. Under assumptions (A0)–(A4),

θ̂
P→ θ0, ‖m̂ − m0‖S

D0

P→ 0, and
∥∥m̂′∥∥∞ = sup

t∈D

∣∣m̂′(t)
∣∣ = Op(1).

The above result shows that not only is m̂ consistent but its derivative m̂′ also converges
uniformly to m′

0. Proof of Theorem 2 is in Appendix A.1 and proof of Theorem 3 is given in
Section S.2.2 the supplementary article [26]. We next introduce further notation and provide
upper bounds on the rates of convergence of θ̂ and m̂ separately.

Recall that � is a closed subset of Rd and the interior of � in Rd is the null set. Thus we will
define a “local parameterization matrix” that will help us create linear perturbations of θ0 that lie
in �. For every real matrix G ∈ Rm×n, we define ‖G‖2 := maxx∈Sn−1 |Gx|. This is sometimes
called the operator or matrix 2-norm; see, for example, page 281 of [39]. The following lemma
proved2 in Section S.2.3 of the supplementary article [26] shows that the “local parameterization
matrix” as a function of θ is Lipschitz at θ0 with respect to the operator norm.

Lemma 1. There exists a set of matrices {Hθ ∈ Rd×(d−1) : θ ∈ �} satisfying the following prop-
erties:

(a) ξ → Hθξ are bijections from Rd−1 to the hyperplanes {x ∈Rd : θ�x = 0}.
(b) The columns of Hθ form an orthonormal basis for {x ∈Rd : θ�x = 0}.
(c) ‖Hθ − Hθ0‖2 ≤ |θ − θ0|.
(d) For all distinct η,β ∈ � \ θ0, such that |η − θ0| ≤ 1/2 and |β − θ0| ≤ 1/2,

∥∥H�
η − H�

β

∥∥
2 ≤ 8(1 + 8/

√
15)

|η − β|
|η − θ0| + |β − θ0| .

Note that for each θ ∈ �, H�
θ is the Moore-Penrose pseudo-inverse of Hθ , for example,

H�
θ Hθ = Id−1 where Id−1 is the identity matrix of order d − 1; see Section 5.2 of [46] for a

similar construction.
The following distributional assumption on X is used to find the upper bounds on the rates of

convergence of θ̂ and m̂ separately.

(A5) H�
θ0
E[Var(X|θ�

0 X){m′
0(θ

�
0 X)}2]Hθ0 is a positive definite matrix.

If one of the continuous covariates with a nonzero index parameter has a density (with respect to
the Lebesgue measure) that is bounded away from zero (on its support) then assumption (A5) is
satisfied. Note that (A5) fails if m0 is a constant function; however a single index model is not
identifiable if m0 is constant (see (A0)). The following bounds (proved in Section S.2.4 of the
supplementary article [26]) will help us compute the asymptotic distribution of θ̂ in Section 4.

Theorem 4. Under (A0)–(A5), m̂ and θ̂ satisfy

|θ̂ − θ0| = Op(λ̂n) and ‖m̂ ◦ θ0 − m0 ◦ θ0‖ = Op(λ̂n).

2Our proof is constructive.
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4. Semiparametric inference

In this section, we show that θ̂ is asymptotically normal and is a semiparametrically efficient
estimator of θ0 under homoscedastic errors. Before going into the derivation of the limit law of
θ̂ , we need to introduce some further notation and some regularity assumptions. For every θ ∈ �,
let us define Dθ := {θ�x : x ∈ χ}. Assumption (A0) implies that there exists r > 0 such that for
all θ ∈ Sd−1 ∩ Bθ0(r) we have

Dθ � D(r) :=
⋃

θ∈Sd−1∩Bθ0 (r)

Dθ . (7)

See Section S.3.2 of the supplementary article [26] for a proof of this. For the rest of the paper,
we redefine D := D(r). For every θ ∈ �, define hθ : D → Rd as

hθ (u) := E
[
X|θ�X = u

]
. (8)

We use the following additional assumptions in the proof of asymptotic normality of θ̂ .

(B1) hθ (·) is twice continuously differentiable except possibly at a finite number of points,
and for every θ1 and θ2 in �,

‖hθ1 − hθ2‖∞ ≤ M̄|θ1 − θ2|,
where M̄ is a fixed finite constant.

Let pε,X denote the joint density (with respect to some dominating measure μ on R × χ )
of (ε,X). Let pε|X(e, x) and pX(x) denote the corresponding conditional probability den-
sity of ε given X and the marginal density of X, respectively. We define σ : χ → R by
σ 2(x) := E(ε2|X = x).

(B2) pε|X(e, x) is differentiable with respect to e, ‖σ 2(·)‖∞ < ∞ and ‖1/σ 2(·)‖∞ < ∞.

The assumptions (B1) and (B2) deserve comments. The function hθ plays a crucial role in the
construction of “least favorable” paths; see Section 4.2.2. For the functions in the path to be
in S , we use the smoothness assumptions on hθ . In a way we need smoothness of m0 or the
distribution of X to be smooth to be able to establish semiparametric efficiency. (B2) gives lower
and upper bounds on the variance of ε as we are using a un-weighted least squares method to
estimate parameters in a (possibly) heteroscedastic model.

In the sequel we will use standard empirical process theory notation. For any function f :
R× χ → R and (m, θ) ∈ S × �, we define

Pθ,mf =
∫

f dPθ,m.

Note that Pθ,mf can be a random variable if θ (or m) is random. Moreover, for any function
f : R× χ →R, we define

Pnf := 1

n

n∑
i=1

f (yi, xi) and Gnf := 1√
n

n∑
i=1

[
f (yi, xi) − Pθ0,m0f

]
.
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4.1. Efficient score

As a first step in showing that θ̂ is an efficient estimator, in the following we find the efficiency
bound for θ0 in model (1). To compute the score for the model, we will first consider parametric
paths on �. For any η ∈ Rd−1 and θ ∈ �, we now define a path s → ζs(θ, η), for s ∈ R and
|s| ≤ |η|−1, as

ζs(θ, η) :=
√

1 − s2|η|2θ + sHθη. (9)

Note that θ�Hθ = 0d−1 and |Hθη| = |η| for all η ∈ Rd−1. When |s| ≤ 1/|η| we have ζs(θ, η) ∈
Sd−1. For every fixed s 	= 0, as η varies in Bd−1

0 (|s|−1), ζs(θ, η) takes all values in the set
{β ∈ Sd−1 : θ�β > 0} and sHθη is the orthogonal projection of ζs(θ, η) onto the hyperplane
{x ∈Rd : θ�x = 0}.

We now attempt to calculate the efficient score for

Y = m
(
θ�X

) + ε (10)

for some (m, θ) ∈ S × � under assumptions (A3) and (B2). The log-likelihood of the model is

lθ,m(y, x) = log
[
pε|X

(
y − m

(
θ�x

)
, x

)
pX(x)

]
.

Remark 1. Note that under (10), we have ε = Y − m(θ�X). For every function b(e, x) :
R× χ → R in L2(Pε,X), there exists an “equivalent” function b̃(y, x) : R× χ → R in L2(Pθ,m)

defined as b̃(y, x) := b(y − m(θ�x), x) ∈ L2(Pθ,m). In this section, we use the function argu-
ments (e, x) (L2(Pε,X)) and (y, x) (L2(Pθ,m)) interchangeably.

For η ∈ Sd−2 ⊂Rd−1, consider the path defined in (9). Note that this is a valid path through θ

as ζ0(θ, η) = θ . The score function for this submodel (the parametric score) is

∂lζs (θ,η),m(y, x)

∂s

∣∣∣∣
s=0

= η�Sθ,m(y, x),

where Sθ,m(y, x) := −p′
ε|X(y − m(θ�x), x)

pε|X(y − m(θ�x), x)
m′(θ�x

)
H�

θ x.

We now define a parametric submodel for the unknown nonparametric components:

ms,a(t) = m(t) − sa(t),

pε|X;s,b(e, x) = pε|X(e, x)
(
1 + sb(e, x)

)
,

pX;s,q(x) = pX(x)
(
1 + sq(x)

)
,

(11)

where s ∈ R, b : R × χ → R is a bounded function such that E(b(ε,X)|X) = 0 and
E(εb(ε,X)|X) = 0, a ∈ S such that J (a) < ∞ and q : χ → R is a bounded function such
that E(q(X)) = 0. Consider the following parametric submodel of (1),

s → (
ζs(θ, η),ms,a,pε|X;s,b,pX;s,q(x)

)
, (12)
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where η ∈ Sd−2. Differentiating the log-likelihood of the submodel in (12) with respect to s, we
get that the score along the submodel in (12) is

η�Sθ,m(y, x) + p′
ε|X(y − m(θ�x), x)

pε|X(y − m(θ�x), x)
a
(
θ�x

) + b
(
y − m

(
θ�x

)
, x

) + q(x). (13)

Newey and Stoker [43] and Ma and Zhu [36] find the following characterization of the orthogonal
complement (⊥) of the nuisance tangent space ,

⊥ = {
f ∈ L2(Pε,X) : f (e, x) = [

g(x) −E
(
g(X)|θ�X = θ�x

)]
e, for some g : χ → R

}
.

A derivation of the above result can also be found in Section S.3.1 of the supplementary article
[26]. Now, using calculations similar those in Proposition 1 in [36], it can be shown that

�
(
Sθ,m|⊥)

(y, x) = (y − m(θ�x))

σ 2(x)
m′(θ�x

)
H�

θ

{
x − E(σ−2(X)X|θ�X = θ�x)

E(σ−2(X)|θ�X = θ�x)

}
, (14)

where for any f ∈ L2(Pε,X), �(f |⊥) denotes the L2(Pε,X) projection of f onto the space ⊥.
�(Sθ,m|⊥) is sometimes denoted by Seff

θ,m. It is important to note that the optimal estimating

equation depends on σ 2(·). Since in the semiparametric model σ 2(·) is left unspecified, it is
unknown. Without additional assumptions, nonparametric estimators of σ 2(·) have a slow rate
of convergence to σ 2(·), especially if d is large. Thus, if we substitute σ̂ (x) in the efficient
score equation, the solution of the modified score equation would lead to poor finite sample
performance; see [54].

To focus our presentation on the main concepts, briefly consider the case when σ 2(·) ≡ σ 2. In
this case the efficient score �(Sθ,m|⊥)(y, x) is

1

σ 2

(
y − m

(
θ�x

))
m′(θ�x

)
H�

θ

{
x − hθ

(
θ�x

)}
,

where hθ (θ
�x) is defined in (8). Asymptotic normality and efficiency of θ̂ would follow if we

can show that (m̂, θ̂ ) satisfies the efficient score equation approximately, that is,

Pn

[
1

σ 2

(
Y − m̂

(
θ̂�X

))
m̂′(θ̂�X

)
H�

θ̂

{
X − h

θ̂

(
θ̂�X

)}] = op

(
n−1/2)

and a class of functions formed by the efficient score indexed by (θ,m) in a “neighborhood” of
(θ0,m0) satisfies some “uniformity” conditions, for example, it is a Donsker class. We formalize
this notion of efficiency in Theorem 5 below.

4.2. Efficiency of θ̂

Theorem 5. Assume that (Y,X) satisfies (1) and assumptions (A0)–(A5), (B1), and (B2) hold.
Define

�̃θ,m(y, x) := (
y − m

(
θ�x

))
m′(θ�x

)
H�

θ

{
x − hθ

(
θ�x

)}
. (15)
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If Vθ0,m0 := Pθ0,m0(�̃θ0,m0S
�
θ0,m0

) is a nonsingular matrix in R(d−1)×(d−1), then

√
n(θ̂ − θ0)

d→ N
(
0,Hθ0V

−1
θ0,m0

Ĩθ0,m0

(
Hθ0V

−1
θ0,m0

)�)
, (16)

where Ĩθ0,m0 := Pθ0,m0(�̃θ0,m0 �̃
�
θ0,m0

). If we further assume that σ 2(·) ≡ σ 2 and if the efficient

information matrix, Ĩθ0,m0 , is nonsingular, then θ̂ is an efficient estimator of θ0, i.e.,

√
n(θ̂ − θ0)

d→ N
(
0, σ 4Hθ0 Ĩ

−1
θ0,m0

H�
θ0

)
. (17)

Remark 2. Note that even if E(ε2|X) 	≡ σ 2, θ̂ is a consistent and asymptotically normal estima-
tor of θ . When the constant variance assumption provides a good approximation to the truth, es-
timators similar to θ̂ have been known to have high relative efficiency with respect to the optimal
semiparametric efficiency bound; see Page 94 of [54] for a discussion. When σ 2(x) = V 2(θ�

0 x)

for some unknown real-valued function V , we can define a weighted PLSE as

(m̃, θ̃ ) := arg min
(m,θ)∈S×�

1

n

n∑
i=1

ŵ(xi)
(
yi − m

(
θ�xi

))2 + λ̂2
nJ

2(m),

where ŵ(x) is a consistent estimator of V −2(θ�
0 x). Theorem 5 can be easily generalized to show

that θ̃ is an efficient estimator of θ0 under this specific heteroscedastic structure.

Remark 3. The asymptotic variance of
√

n(θ̂ − θ0) is the same as that obtained in Section 2.4 of
[15] and [5] (under assumption (A4)). However, both require stronger smoothness assumptions
on m0 for their estimators.

Remark 4. Observe that the variance of the limiting distribution (for both the heteroscedastic
and homoscedastic models) is singular. This can be attributed to the fact that � is a Stiefel
manifold of dimension Rd−1 and has an empty interior in Rd .

4.2.1. Proof of Theorem 5

In the following, we give a sketch of the proof of (16). Some of the steps are proved in the
following sections.

Step 1 In Theorem 6, we will show that (m̂, θ̂ ) satisfy the efficient score equation approxi-
mately, that is,

√
nPn�̃θ̂ ,m̂

= op(1). (18)

Step 2 In Section S.3.3 of the supplementary article [26], we prove that �̃
θ̂ ,m̂

is unbiased in
the sense of [57], that is,

P
θ̂,m0

�̃
θ̂ ,m̂

= 0. (19)
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Similar conditions have appeared before in proofs of asymptotic normality of the MLE
(e.g., see [22]) and the construction of efficient one-step estimators (see [24]); see
Section 3 of [41] for further discussion.

Step 3 We prove

Gn(�̃θ̂ ,m̂
− �̃θ0,m0) = op(1) (20)

in Theorem 7. In view of (18) and (19) an equivalent formulation of (20) is
√

n(P
θ̂,m0

− Pθ0,m0)�̃θ̂ ,m̂
=Gn�̃θ0,m0 + op(1). (21)

Step 4 To complete the proof of (16), it is enough to show that
√

n(P
θ̂,m0

− Pθ0,m0)�̃θ̂ ,m̂
= √

nVθ0,m0H
�
θ0

(θ̂ − θ0) + op

(√
n|θ̂ − θ0|

)
. (22)

A proof of slightly simplified version of (22) can be found in the proof of Theorem 6.20
of [57]. However, for the sake of completeness we give a proof of (22) in Section S.3.4
of the supplementary article [26].

Observe that (21) and (22) imply
√

nVθ0,m0H
�
θ0

(θ̂ − θ0) =Gn�̃θ0,m0 + op

(
1 + √

n|θ̂ − θ0|
)
,

⇒ √
nH�

θ0
(θ̂ − θ0) = V −1

θ0,m0
Gn�̃θ0,m0 + op(1)

d→ V −1
θ0,m0

N(0, Ĩθ0,m0). (23)

The proof of the theorem will be complete if we can show that
√

n(θ̂ − θ0) = Hθ0

√
nH�

θ0
(θ̂ − θ0) + op(1).

Let η̂ be the unique vector in Rd−1 that satisfies the following equation:

θ̂ =
√

1 − |η̂|2θ0 + Hθ0 η̂, (24)

note that such an η̂ will always exists as θ̂
P→ θ0. As H�

θ0
θ0 = 0 and H�

θ0
Hθ0 = Id−1, pre-

multiplying both sides of the previous equation by H�
θ0

we get

η̂ = H�
θ0

(θ̂ − θ0). (25)

Substituting the above expression of η̂ in (24) and subtracting θ0 from both sides of (24) we get

θ̂ − θ0 = [√
1 − ∣∣H�

θ0
(θ̂ − θ0)

∣∣2 − 1
]
θ0 + Hθ0H

�
θ0

(θ̂ − θ0).

By (23) we have that
√

nH�
θ0

(θ̂ − θ0) = Op(1). Moreover, note that
√

1 − x2 − 1 = O(x2), as
x → 0. Combining the above facts, we get

√
n(θ̂ − θ0) = √

nOp

(∣∣H�
θ0

(θ̂ − θ0)
∣∣2) + √

nHθ0H
�
θ0

(θ̂ − θ0)

= Hθ0

√
nH�

θ0
(θ̂ − θ0) + Op

(
n−1/2).
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Now we prove (17). Assume that σ 2(·) ≡ σ 2. Observe that, by (14) and (15), we have

Sθ0,m0 = �
(
Sθ0,m0 |⊥) + (

Sθ0,m0 − �
(
Sθ0,m0 |⊥))

= 1

σ 2
�̃θ0,m0 + (

Sθ0,m0 − �
(
Sθ0,m0 |⊥))

.

Thus (17) follows from (16) by observing that

Vθ0,m0 = Pθ0,m0

(
�̃θ0,m0S

�
θ0,m0

) = 1

σ 2
Ĩθ0,m0 .

4.2.2. “Least favorable” path for m

We will now show that (18) holds. Recall the definition (9). For any (θ,m) ∈ �×{m ∈ S|J (m) <

∞} and η ∈ Sd−2, let t → (ζt (θ, η), ξt (·; θ, η,m)) denote a path in � × {m ∈ S|J (m) < ∞}
that goes through (θ,m), i.e., (ζ0(θ, η), ξ0(·; θ, η,m)) = (θ,m); see (29) below for defini-
tion. Recall that (θ̂ , m̂) minimizes Ln(m, θ, λ̂n). Hence, for every η ∈ Sd−2, the function
t → Ln(ξt (·; θ̂ , η, m̂), ζt (θ̂ , η), λ̂n) is minimized at t = 0. In particular, if the above function
is differentiable in a neighborhood of 0, then

∂

∂t
Ln

(
ξt (·; θ̂ , η, m̂), ζt (θ̂ , η), λ̂n

)∣∣∣∣
t=0

= 0. (26)

Moreover if (ζt (θ̂ , η), ξt (·; θ̂ , η, m̂)) satisfies

∂

∂t

(
y − ξt

(
ζt (θ̂ , η)�x; θ̂ , η, m̂

))2
∣∣∣∣
t=0

= η��̃
θ̂ ,m̂

(y, x),

∂

∂t
J 2(ξt (·; θ̂ , η, m̂)

)∣∣∣∣
t=0

= Op(1).

(27)

for all η ∈ Sd−2, then we get (18) as λ̂2
n = op(n−1/2); see assumption (A4).

Observe that θ̂ is a consistent estimator of θ0. As we are concerned with the path t →
Ln(ξt (·; θ̂ , η, m̂), ζt (θ̂ , η), λ̂n), we will try to construct a path for any (θ,m) ∈ {� ∩ Bθ0(r)} ×
{m ∈ S|J (m) < ∞} that satisfies the above requirements. For any set A ⊂ R and any ν > 0 let
us define Aν := ∪a∈ABa(ν) and let ∂A denote the boundary of A. Fix ν > 0. By (7), for every
θ ∈ � ∩ Bθ0(r), η ∈ Sd−2, and t ∈ R sufficiently close to zero, there exists a strictly increasing
function φθ,η,t : Dν → R with

φθ,η,t (u) = u, u ∈ Dθ,

φθ,η,t

(
u + (

θ − ζt (θ, η)
)�

hθ (u)
) = u, u ∈ ∂D,

(28)

where hθ (u) and ζt (θ, η) are defined in (8) and (9), respectively. Furthermore, we can en-
sure that φθ,η,t (u) is infinitely differentiable for u ∈ D and that ∂

∂t
φθ,η,t |t=0 exists. Note
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that φθ,η,t (D) = D. Moreover, φθ,η,t cannot be the identity function for t 	= 0 if (θ −
ζt (θ, η))�hθ (u) 	= 0 for u ∈ ∂D. Now, we can define the following path through m:

ξt (u; θ, η,m) := m ◦ φθ,η,t

(
u + (

θ −
√

1 − t2|η|2θ − tHθη
)�

hθ (u)
)
. (29)

The function φθ,η,t helps us control the partial derivative in the second equation of (27). In the
following theorem (proved in Appendix B.1), we show that (ζt (θ̂ , η), ξt (·; θ̂ , η, m̂)) is a path
through (θ̂ , m̂) and satisfies (26) and (27). Here η is the “direction” for the path t → ζt (θ, η) and
(η,hθ (u)) defines the “direction” for the path t → ξt (·; θ, η,m).

Theorem 6. Under assumptions (A0), (A1), (A4), and (B1), (ζt (θ̂ , η), ξt (·; θ̂ , η, m̂)) is a valid
parametric submodel, that is, (ζt (θ̂ , η), ξt (·; θ̂ , η, m̂)) ∈ � × {m ∈ S|J (m) < ∞} for all t in
some neighborhood of 0. Moreover, (ζt (θ̂ , η), ξt (·; θ̂ , η, m̂)) satisfies (27) and Ln(ξt (·; θ̂ , η, m̂),

ζt (θ̂ , η), λ̂n), as function of t , is differentiable at 0 and
√

nPn�̃θ̂ ,m̂
= op(1).

4.2.3. Asymptotic equicontinuity of �̃θ,m at (θ0,m0)

For notational convenience, we define

K1(x; θ) := H�
θ

(
x − hθ

(
θ�x

))
.

With the above notation, from (15) we have

�̃θ,m(y, x) = (
y − m

(
θ�x

))
m′(θ�x

)
K1(x; θ).

Theorem 7. Under assumptions (A0)–(A5), (B1), and (B2), Gn(�̃θ̂ ,m̂
− �̃θ0,m0) = op(1).

Proof. We divide the proof Theorem 7 into two lemmas. First, observe that

Gn(�̃θ̂ ,m̂
− �̃θ0,m0)

=Gn

[(
Y − m̂

(
θ̂�X

))
m̂′(θ̂�X

)
K1(X; θ̂ ) − (

Y − m0
(
θ�

0 X
))

m′
0

(
θ�

0 X
)
K1(X; θ0)

]
=Gn

[(
ε + m0

(
θ�

0 X
) − m̂

(
θ̂�X

))
m̂′(θ̂�X

)
K1(X; θ̂ ) − εm′

0

(
θ�

0 X
)
K1(X; θ0)

]
=Gn

[(
m0

(
θ�

0 X
) − m̂

(
θ̂�X

))
m̂′(θ̂�X

)
K1(X; θ̂ )

]
+Gn

[
ε
(
m̂′(θ̂�X

)
K1(X; θ̂ ) − m′

0

(
θ�

0 X
)
K1(X; θ0)

)]
. (30)

The proof of Theorem 7 will be complete, if we can show that both the terms in (30) converge
to 0 in probability. We begin with some definitions. Let an be a sequence of real numbers such
that an → ∞ as n → ∞ and an‖m̂ − m0‖S

D0
= op(1). We can always find such a sequence an,



Smooth single index models 1601

as we have ‖m̂ − m0‖S
D0

= op(1) (see Theorem 3). For all n ∈N, define3

Cm∗
M1,M2,M3

:= {
m ∈ S : ‖m‖∞ < M1,

∥∥m′∥∥∞ < M2, and J (m) < M3
}
,

Cm
M1,M2,M3

(n) := {
m ∈ Cm∗

M1,M2,M3
: an‖m − m0‖S

D0
≤ 1

}
,

Cθ (n) := {
θ ∈ � ∩ Bθ0(1/2) : λ̂−1/2

n |θ0 − θ | ≤ 1
}
,

CM1,M2,M3(n) := {
(m, θ) : θ ∈ Cθ (n) and m ∈ Cm

M1,M2,M3
(n)

}
,

C∗
M1,M2,M3

:= {
(m, θ) : θ ∈ � ∩ Bθ0(1/2) and m ∈ Cm∗

M1,M2,M3

}
.

Let us consider the first term of (30). Fix δ > 0. For every fixed M1, M2, and M3,

P
(∣∣Gn

[
m̂′ ◦ θ̂ (m0 ◦ θ0 − m̂ ◦ θ̂ )K1(·; θ̂ )

]∣∣ > δ
)

≤ P
(∣∣Gn

[
m̂′ ◦ θ̂ (m0 ◦ θ0 − m̂ ◦ θ̂ )K1(·; θ̂ )

]∣∣ > δ, (m̂, θ̂ ) ∈ CM1,M2,M3(n)
)

+ P
(
(m̂, θ̂ ) /∈ CM1,M2,M3(n)

)
≤ P

(
sup

(m,θ)∈CM1,M2,M3 (n)

∣∣Gn

[
m′ ◦ θ(m0 ◦ θ0 − m ◦ θ)K1(·; θ)

]∣∣ > δ
)

+ P
(
(m̂, θ̂ ) /∈ CM1,M2,M3(n)

)
. (31)

Recall that (m̂, θ̂ ) is a consistent estimator of (m0, θ0) and ‖m̂′‖∞ is Op(1); see Theorem 3.

Furthermore, we have that both ‖m̂‖∞ and J (m̂) are Op(1) (see Theorem 2) and λ̂
−1/2
n |θ̂ −θ0| =

op(1) (see Theorem 4). Thus for any ε > 0, there exists M1, M2, and M3 (depending on ε) such
that

P
(
(m̂, θ̂ ) /∈ CM1,M2,M3(n)

) ≤ ε,

for all sufficiently large n. Hence, it is enough to show that for the above choice of M1, M2, and
M3, we have

P
(

sup
(m,θ)∈CM1,M2,M3 (n)

∣∣Gn

[
m′ ◦ θ(m0 ◦ θ0 − m ◦ θ)K1(·; θ)

]∣∣ > δ
)

≤ ε

for sufficiently large n. Lemma 2 (proved in Section S.3.5 of the supplementary article [26])
shows this. Moreover, Lemma 3 (proved in Section S.3.6 of the supplementary article) shows
that the second term on the right-hand side of (30) converges to zero in probability. Thus our
proof is complete. �

3The notations with ∗ denote the classes of functions that do not depend on n while the ones with n denote shrinking
neighborhoods around (m0, θ0).
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Lemma 2. Fix M1, M2, M3, and δ > 0. For n ∈ N, let us define two classes of functions from χ

to Rd

DM1,M2,M3(n) := {
m′ ◦ θ(m0 ◦ θ0 − m ◦ θ)K1(·; θ) : (m, θ) ∈ CM1,M2,M3(n)

}
,

D∗
M1,M2,M3

:= {
m′ ◦ θ(m0 ◦ θ0 − m ◦ θ)K1(·; θ) : (m, θ) ∈ C∗

M1,M2,M3

}
.

DM1,M2,M3(n) is a Donsker class and

sup
f ∈DM1,M2,M3 (n)

‖f ‖2,∞ ≤ 2T M2
(
a−1
n + T M2λ̂

1/2
n

) =: DM1,M2,M3(n). (32)

Moreover, J[ ](γ,DM1,M2,M3(n),‖ · ‖2,2) � γ 1/2, where for any class of functions F , J[ ] is the
entropy integral (see e.g., Page 270, [58]) defined as

J[ ]
(
δ,F,‖ · ‖2,2

) :=
∫ δ

0

√
logN[ ]

(
t,F,‖ · ‖2,2

)
dt.

Finally, we have

P
(

sup
f ∈DM1,M2,M3 (n)

|Gnf | > δ
)

→ 0 as n → ∞.

Lemma 3. Let us define Uθ,m : χ → Rd−1, Uθ,m(x) := m′(θ�x)K1(x; θ). Fix M1, M2, M3, and
δ > 0. For n ∈N, let us define

WM1,M2,M3(n) := {
Uθ,m − Uθ0,m0 : (m, θ) ∈ CM1,M2,M3(n)

}
,

W∗
M1,M2,M3

:= {
Uθ,m − Uθ0,m0 : (m, θ) ∈ C∗

M1,M2,M3

}
.

Then WM1,M2,M3(n) is a Donsker class such that

sup
f ∈WM1,M2,M3 (n)

‖f ‖2,∞ ≤ [
2T 3/2M3λ̂

1/4
n + 2T a−1

n + M2(2T + M̄)λ̂
1/2
n

] =: WM1,M2,M3(n).

Moreover, J[ ](γ,WM1,M2,M3(n),‖ · ‖2,2) � γ 1/2. Hence, as n → ∞, we have

P
(∣∣Gn

[
ε(U

θ̂,m̂
− Uθ0,m0)

]∣∣ > δ
) → 0. (33)

5. Simulation study

To investigate the finite sample performance of (m̂, θ̂ ), we carry out several simulation experi-
ments. We also compare the finite sample performance of the proposed estimator with the EFM
estimator (estimating function method [7]), the EDR estimator (effective dimension reduction
[21]), and the estimator proposed in [62] (denoted by WY). [7] compares the performance of the
EFM estimator to existing estimators such as the refined minimum average variance estimator
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(rMAVE) [65] and the EDR estimator and argues that EFM has improved overall performance
compared to existing estimators. Thus we do not include the rMAVE estimator in our simulation
study. The code to compute the EDR estimates can be found in the R package EDR. Moreover,
the authors of [7] and [62] kindly provided us with the R codes to evaluate the EFM and the
WY estimators, respectively. The codes used to implement our procedure are available in the
simest package in R; see Kuchibhotla and Patra [25]. In what follows, we chose the penalty
parameter λ̂n for the PLSE through generalized cross validation, that is, choose λ̂n by minimizing
T : R→R

T (λ) := Qn(m̂λ, θ̂λ)

1 − n−1 trace(A(λ))
,

where

Qn(m,θ) := 1

n

n∑
i=1

(
yi − m

(
θ�xi

))2 and (m̂λ, θ̂λ) := arg min
(m,θ)∈S×�

Ln(m, θ;λ),

and A(λ) is the hat matrix for m̂λ (see, e.g., Sections 3.2 and 3.3 of [11] for a detailed descrip-
tion of A(λ) and its connection to the generalized cross validation procedure); see [51] for an
extensive discussion on why the generalized cross validation is an attractive choice for choosing
the penalty parameter in the single index model. We choose λ̂n by minimizing T (·) over a grid
of values that satisfy assumption (A4). For all the other methods considered in the paper, we
have used the suggested values of tuning parameters. In the following, we consider three dif-
ferent data generating mechanisms. The codes used for the simulation examples can be found at
http://stat.ufl.edu/~rohitpatra/research. In the rest of the section, we use GCV to denote the PLSE
to stress the fact that λ is chosen via the generalized cross validation procedure.

5.1. A simple model

We start with a simple model. Assume that (X1,X2) ∈R2, (X1,X2) ∼ Uniform[−2,2] × [0,1],
ε ∼ N(0,0.52), and

Y = (
θ�

0 X
)2 + ε, where θ0 = (1,−1)/

√
2. (34)

Observe that for this example, H�
θ0

= [1,1]/√2 (see Section S.2.3 of the supplementary article
[26]) and the analytic expression of the efficient information is

Ĩθ0,m0 = 4 Var(ε)E
(
θ�

0 XH�
θ0

[
X −E

(
X|θ�

0 X
)])2 = 4 Var(ε)E

∣∣(θ�
0 X

)2[
H�

θ0
Var

(
X|θ�

0 X
)
Hθ0

]∣∣.
Using the above expression, we calculated the asymptotic variance of

√
n(θ̂1 − θ0,1) to be 0.328.

Figure 1 contains the quantile-quantile plot of the four estimators considered in this section based
on 500 replications of random samples from (34) with n = 500.

http://stat.ufl.edu/~rohitpatra/research
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Figure 1. Quantile quantile plot of θ̂1 − θ0 from 500 replications with the true asymptotic distribution of
the θ̂1 − θ0,1 on the X-axis when we have 500 i.i.d. samples from (34).

5.2. Dependent covariates

We now consider a simulation scenario where covariates are dependent and the predictor
X ∈ R6 contains discrete components. More precisely, (X1, . . . ,X6) is generated according to
the following law: (X1,X2) ∼ Uniform[−1,1]2, X3 := 0.2X1 + 0.2(X2 + 2)2 + 0.2Z1, X4 :=
0.1 + 0.1(X1 + X2) + 0.3(X1 + 1.5)2 + 0.2Z2, X5 ∼ Bernoulli(exp(X1)/{1 + exp(X1)}), and
X6 ∼ Bernoulli(exp(X2)/{1 + exp(X2)}). Here Z1 and Z2 are two independent Uniform[−1,1]
random variables independent of (X1,X2). Finally, we let

Y = (
θ�

0 X
)2 + ε, (35)

where θ0 is (1.3,−1.3,1,−0.5,−0.5,−0.5)/
√

5.13. In the following, we consider three differ-
ent scenarios based on different error distributions:

(2.1) ε ∼ N(0,1), (Homoscedastic, Gaussian Error)
(2.2) ε|X ∼ N(0, log(2 + (X�θ0)

2)), (Heteroscedastic, Gaussian Error)
(2.3) ε|ξ ∼ (−1)ξ Beta(2,3), where ξ ∼ Ber(0.5). (Homoscedastic, Non-Gaussian Error)

The results of our simulations based 500 replications with sample size n = 200 from (35) for
each of the above three error distributions is displayed in Figure 2. The first two rows of Figure 2
show the box plots of L1 and L2 loss of GCV, EFM, EDR, and WY estimators of θ0. In the third
row of Figure 2, we display the box plot of the in-sample L2(Pn) loss (‖m̂ ◦ θ�

0 −m0 ◦ θ�
0 ‖n) for

the GCV and the WY estimators. EFM and EDR are not included because they do not provide
estimators for the link function.4

Gu and Yang [12] show that for any root-n consistent estimator θ̂ of the index estimator,
the kernel (or Nadaraya–Watson) regression estimator on the data {(θ̂�Xi,Yi),1 ≤ i ≤ n} is

4Our proposed method and [62] provide estimators for both the link function and the index parameter.
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Figure 2. Box plots (over 500 replications) of various errors based on 200 observations from models (2.1),
(2.2), and (2.3) in the left, the middle, and the right columns, respectively. First two rows display L1 and
L2 errors of estimates of θ0. The third row corresponds to ‖m̂ ◦ θ0 − m0 ◦ θ0‖n for the estimators proposed
in Section 2 and [62]. The fourth and fifth rows corresponds to ‖m̃ ◦ θ0 − m0 ◦ θ0‖n for one-dimensional
smoothing splines and Nadaraya–Watson estimators based on the estimated index {(θ̂�Xi,Yi),1 ≤ i ≤ n},
respectively. In the fourth and fifth rows, “Oracle” refers to the estimator of link function based on true
index {(θ�

0 Xi,Yi),1 ≤ i ≤ n}.

asymptotically indistinguishable from the kernel estimator based on {(θ�
0 Xi,Yi),1 ≤ i ≤ n}.

This oracle type property led us to compute the estimators of the link function based the data
{(θ̂�Xi,Yi),1 ≤ i ≤ n} for GCV, EFM, EDR, and WY.5 The “Oracle” in Figure 2 refers to the es-
timator of link function based on the true θ0. The plot of the error (see fifth row of Figure 2) in the
estimation of the link function based on the Nadaraya–Watson estimator provides numerical con-
firmation of the oracle property proved in [12]; we used the np package [17] to compute the band-
width choice for the nonparametric regression estimator. We also estimate the one-dimensional

5Recall that GCV, EFM, EDR, and WY are all root-n consistent.
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link function based on smoothing splines6 applied to the data {(θ̂�Xi,Yi),1 ≤ i ≤ n}; see fourth
row of Figure 2. The results of [12] do not directly imply a similar oracle type phenomenon
for smoothing splines based estimators. However, the fourth row of Figure 2 provides some nu-
merical evidence for this oracle type property for the smoothing splines estimators. The proof
of the oracle type property developed in [12] crucially uses the smoothness of the Nadaraya–
Watson estimator (as a function of the index) and we have not been able to extend it to the case
of smoothing splines estimators in single index models.7

The relative poor performance of EDR, EFM, and WY in estimating θ0 can possibly be at-
tributed to the dependency between covariates. Scenarios (2.1) and (2.2) are similar to simulation
settings considered in [34] and [36], respectively. The codes to compute the estimator proposed
in [34] were not available to us.

5.3. High dimensional covariates

For the final simulation scenario, we consider a setting similar to that of Example 4 in Cui et
al. [7], Section 3.2. We consider d-variate covariates for d = 10,50, and 100. For each d , we
assume that X ∼ Uniform[0,5]d , ε ∼ N(0,0.22), θ0 = (2,1,0d−2)

�/
√

5, and have n = 400
observations from the following model:

Y = sin
(
aX�θ0

) + ε, where a = π/2,3π/4, and 3π/2. (36)

Note that here a higher value of a represents a more oscillating link function. Figure 3 summa-
rizes the finite sample performance of the estimators over 500 replications. The performance of
all the estimators worsen as the a increases. When a is π/2 or 3π/4, GCV significantly outper-
forms the estimators considered in the simulation study. The IQR bars for the GCV in the first

Figure 3. The quartiles of |θ̂ − θ0| from 500 replications for n = 400 from (36).

6We used smooth.spline command in R and choose λ by the GCV procedure proposed in [11].
7This is a very interesting research direction and we plan to study it in the near future.
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two panels of Figure 3 are not visible because they are very small (relative to the scale of the
plot).

6. Real data analysis

6.1. Car mileage data

In this sub-section, we model the mileages (Y ) of 392 cars using the covariates (X): displacement
(D), weight (W), acceleration (A), and horsepower (H); see http://lib.stat.cmu.edu/datasets/cars.
data for the data set. For our data analysis, we have scaled and centered each of covariates to
have mean 0 and variance 1. To compare the prediction capabilities of the linear model to that of
the single index model for this data set, we randomly split the data set into a training set of size
260 and a test set of size 132 and compute the prediction error for both the linear model fit and
the single index model fit. The average prediction error over 1000 such random splits was 4.3
for the linear model fit and 3.8 for the single index model fit. The results indicate that the single
index model is a better fit.

In the left panel of Figure 4, we have the scatter plot of {(θ̂�xi, yi)}392
i=1 overlaid with the plot

of m̂(θ̂�x). In Table 1, we display the estimates of θ0 based on the methods considered in the
paper. The MAVE, the EFM estimator, and the GCV give similar estimates while the EDR gives
a different estimate of the index parameter.

6.2. Ozone concentration data

For the second real data example, we study the relationship between Ozone concentration (Y )
and three meteorological variables (X): radiation level (R), wind speed (W ), and temperature

Figure 4. Scatter plots of {(x�
i

θ̂ , yi )}ni=1 overlaid with the plots of m̂ (in solid red line) for the two real
data sets considered. Left panel: the car mileage data (Section 6.1); right panel: Ozone concentration data
(Section 6.2).

http://lib.stat.cmu.edu/datasets/cars.data
http://lib.stat.cmu.edu/datasets/cars.data
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Table 1. Estimates of θ0 for the data sets in Sections 6.1 and 6.2

Car mileage data Ozone data

Method D W A H R W T

GCV 0.48 0.18 0.11 0.85 0.32 −0.62 0.71
EFM 0.44 0.18 0.13 0.87 0.29 −0.60 0.75
EDR 0.33 0.11 0.15 0.93 0.22 −0.64 0.73
rMAVE 0.48 0.17 0.17 0.84 0.31 −0.58 0.75

(T ). The data consists of 111 days of complete measurements from May to September, 1973,
in New York city. The data set can be found in the EnvStats package in R. [68] fit a linear
model, an additive model, and a fully nonparametric model and conclude that the single index
model fits the data best. To fit a single index model to the data [68] fix 10 knots and fit cubic
penalized splines to the data. It should be noted that observations from consecutive days are not
independent. However in our analysis, we have ignored this dependence; see [68] for a similar
analysis. The right panel of Figure 4 shows the scatter plot of θ̂�X and Y overlaid with the plot
of m̂(θ̂�X). As in the previous example, we have scaled and centered each of the covariates such
that they have mean 0 and variance 1. We see that all the considered methods in the paper give
similar estimates for θ0; see Table 1.

7. Concluding remarks

In this paper, we propose a simple penalized least squares based estimator (m̂, θ̂ ) for the unknown
link function, m0, and the index parameter, θ0, in the single index model under mild smoothness
assumptions on m0. We prove that m̂ is rate optimal (for the given smoothness) and θ̂ is

√
n-

consistent and asymptotically normal. Moreover under homoscedastic errors, we show that θ̂ is
efficient in the sense of [3]. We have developed the R package simest to compute the proposed
estimators. We observe that the PLSE has superior finite sample performance compared to most
competing methods.

Several interesting future directions follow. Estimation and inference adapting to the smooth-
ness of the link function is an interesting direction. [29] proposes an estimator for the single
index model that adapts to the smoothness of the true link function, but the estimator depends on
true (unknown) density of X and requires independence between ε and X; also see [28]. In the
context of one dimensional smoothing splines Györfi et al. [13], Chapter 21, consider adaptation
to smoothness using complexity regularization and extension of such a procedure to the case of
single index model is an interesting direction of future research. In line with the recent literature
on high-dimensional asymptotics in the single index model [30,60,71], it would be interesting to
prove analogues of our results in a finite sample setting and under sparsity inducing regulariza-
tion of the index parameter. [30,47] consider variable selection in the single index model via a
(additional) SCAD penalty (on the index parameter) on local linear and regression splines based
estimation methods, respectively. They suggest that for the single index model, SCAD based
variable selection methods have better performance when compared to LASSO based methods
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studied in [60,71]. Variable selection by incorporating a SCAD penalty on (4) is an exciting
direction of research and we plan to pursue this in the near future.

Appendix A: Proofs of results in Section 3

We start with two useful lemmas concerning the properties of functions in S .

Lemma 4 (Lemma 3.6 of [42]). Let m ∈ {g ∈ S : J (g) < ∞}. Then |m′(s)−m′(s0)| ≤ J (m)|s−
s0|1/2 for every s, s0 ∈ D.

Lemma 5. Let m ∈ {g ∈ S : J (g) < ∞ and ‖g‖∞ ≤ M}, where M is a finite constant. Then∥∥m′∥∥∞ ≤ 2M/∅(D) + (
1 + J (m)

)
∅(D)1/2,

where ∅(D) is the diameter of D. Moreover if ∅(D) < ∞, then∥∥m′∥∥∞ ≤ C
(
1 + J (m)

)
,

where C is a finite constant depending only on M and ∅(D).

Proof. Fix s0 ∈ D. Integrating the inequality

−J (m)|t − s0|1/2 ≤ m′(t) − m′(s0) ≤ J (m)|t − s0|1/2

with respect to t , we get∣∣m(s) − m(s0) − m′(s0)(s − s0)
∣∣ ≤ J (m)∅(D)3/2,

where ∅(D) is the diameter of D. Since ‖m‖∞ ≤ M , we get that∣∣m′(s0)(s − s0)
∣∣ ≤ 2M + J (m)∅(D)3/2.

If we choose s such that |s − s0| = ∅(D)/2, then we have∥∥m′∥∥∞ ≤ 2M/∅(D) + (
1 + J (m)

)
∅(D)1/2.

The rest of the lemma follows by choosing C = 2M/∅(D) +∅(D)1/2. �

A.1. Proof of Theorem 2

Our proof of Theorem 2 is along the lines of the proofs of Lemma 3.1 in [37] and Theorem 10.2
in [56]. Since (m̂, θ̂ ) minimizes Qn(m,θ) + λ̂2

nJ
2(m), we have

Qn(m̂, θ̂) + λ̂2
nJ

2(m̂) ≤ Qn(m0, θ0) + λ̂2
nJ

2(m0). (37)
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Observe that by definition of Qn(m,θ), we have that (37) implies

‖m̂ ◦ θ̂ − m0 ◦ θ0‖2
n + λ̂2

nJ
2(m̂) = 2

n

n∑
i=1

εi

(
m̂

(
θ̂�xi

) − m0
(
θ�

0 xi

)) + λ̂2
nJ

2(m0).

To find the rate of convergence of ‖m̂ ◦ θ̂ − m0 ◦ θ0‖n we will try to find upper bounds for∑n
i=1 εi(m̂(θ̂�xi) − m0(θ

�
0 xi)) in terms of ‖m̂ ◦ θ̂ − m0 ◦ θ0‖n (modulus of continuity); see

Section 1 of [55] for a similar proof technique. To be able to find such a bound, we first study the
behavior of m̂ ◦ θ̂ . Observe that by Cauchy–Schwarz inequality we have

Qn(m0, θ0) − Qn(m̂, θ̂)

= 2

n

n∑
i=1

εi

(
m̂

(
θ̂�xi

) − m0
(
θ�

0 xi

)) − 1

n

n∑
i=1

(
m̂

(
θ̂�xi

) − m0
(
θ�

0 xi

))2

≤
(

4

n

n∑
i=1

ε2
i

)1/2

‖m̂ ◦ θ̂ − m0 ◦ θ0‖n − ‖m̂ ◦ θ̂ − m0 ◦ θ0‖2
n. (38)

Note that by (A3), (1/n)
∑n

i=1 ε2
i = O(1) almost surely. On the other hand, since (m̂, θ̂ ) mini-

mizes Qn(m,θ) + λ̂2
nJ

2(m), we have

Qn(m0, θ0) − Qn(m̂, θ̂) ≥ λ̂2
n

(
J 2(m̂) − J 2(m0)

) ≥ −λ̂2
nJ

2(m0) ≥ op(1), (39)

as λ̂n = op(1). Combining (38) and (39), we have

‖m̂ ◦ θ̂ − m0 ◦ θ0‖2
n ≤ ‖m̂ ◦ θ̂ − m0 ◦ θ0‖nOp(1) + op(1).

Thus, we have ‖m̂◦ θ̂ −m0 ◦θ0‖n = Op(1). We also have ‖m̂◦ θ̂‖n = Op(1) as ‖m0 ◦θ0‖∞ < ∞.
We will now use the Sobolev embedding theorem to get a bound on ‖m̂‖∞ in terms of J (m̂).

Lemma 6 (Sobolev embedding theorem, Page 85, [44]). Let m : I → R (I ⊂R is an interval)
be a function such that J (m) < ∞. We can write

m(t) = m1(t) + m2(t),

with m1(t) = β1 + β2t and ‖m2‖∞ ≤ J (m)∅(I ).

Thus, by the above lemma, we can find functions m̂1 and m̂2 such that

m̂(t) = m̂1(t) + m̂2(t),

where m̂1 = β̂1 + β̂2t , and ‖m̂2‖∞ ≤ J (m̂)∅(D). Then

‖m̂1 ◦ θ̂‖n

1 + J (m0) + J (m̂)
≤ ‖m̂ ◦ θ̂‖n

1 + J (m0) + J (m̂)
+ ‖m̂2 ◦ θ̂‖n

1 + J (m0) + J (m̂)
= Op(1). (40)
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Let us define

An(θ) := 1

n

n∑
i=1

ϕθ (Xi)ϕ
�
θ (Xi) and A(θ) :=

∫
ϕθ (x)ϕθ (x)� dPX(x),

where ϕθ (x) := (1, θ�x)�. Furthermore, we denote the smallest eigenvalues of An(θ) and A(θ)

by ϑn(θ) and ϑ(θ) respectively. Since � is a bounded subset of Rd , by the Glivenko–Cantelli
theorem, we have

sup
θ∈�

∣∣ϑn(θ) − ϑ(θ)
∣∣ = op(1).

Let ϑ0 := minθ∈� ϑ(θ). By assumption (A0) and and the fact that |θ | = 1, we have det(A(θ)) =
θ� Var(X)θ and infθ∈� det(A(θ)) > 0. It follows that ϑ0 > 0 and

‖m̂1 ◦ θ̂‖2
n = (β̂1, β̂2)An(θ)(β̂1, β̂2)

�

≥ ϑn(θ̂)
(
β̂2

1 + β̂2
2

)
= [

ϑn(θ̂) − ϑ(θ̂)
](

β̂2
1 + β̂2

2

) + ϑ(θ̂)
(
β̂2

1 + β̂2
2

)
≥ op

(
β̂2

1 + β̂2
2

) + ϑ0
(
β̂2

1 + β̂2
2

)
≥ op

(
β̂2

1 + β̂2
2

) + ϑ0 max(β̂1, β̂2)
2.

Thus by (40) we have

max(β̂1, β̂2)

1 + J (m0) + J (m̂)
= Op(1). (41)

Moreover, since D is a bounded set, by (41) we have ‖m̂1‖∞/(1 + J (m0) + J (m̂)) = Op(1).
Combining this with Lemma 6, we get

‖m̂‖∞
1 + J (m0) + J (m̂)

≤ ‖m̂1‖∞
1 + J (m0) + J (m̂)

+ ‖m̂2‖∞
1 + J (m0) + J (m̂)

= Op(1). (42)

Now define the class of functions

BC :=
{

m ◦ θ − m0 ◦ θ0

1 + J (m0) + J (m)
: m ∈ S, θ ∈ �, and

‖m‖∞
1 + J (m0) + J (m)

≤ C

}
.

Observe that by (42), we can find a Cε such that

P

(
m̂ ◦ θ̂ − m0 ◦ θ0

1 + J (m0) + J (m̂)
∈ BCε

)
≥ 1 − ε, ∀n. (43)

The following lemma in [56] gives a upper bound for
∑n

i=1 εig(xi), in terms of entropy of the
class of functions g.



1612 A.K. Kuchibhotla and R.K. Patra

Lemma 7 (Lemma 8.4, [56]). Suppose G be a class of functions. If logN[ ](δ,G,‖·‖∞) ≤ Aδ−α ,
supg∈G ‖g‖n ≤ R, and ε satisfies assumption (A3), for some constants 0 < α < 2, A, and R. Then
for some constant c, we have for all T ≥ c,

P

(
sup
g∈G

| 1√
n

∑n
i=1 εig(xi)|

‖g‖1− α
2

n

≥ T

)
≤ c exp

[−T 2

c2

]
.

Lemma 8, proved in Section S.2.1 of the supplementary article [26], finds the bracketing num-
ber for the class of functions BC .

Lemma 8. For every fixed positive M1, M2, and C, we have

logN
(
δ,BC,‖ · ‖∞

)
� δ−1/2.

In the view of (43), Lemmas 7 and 8 allow us to conclude

(1/n)
∑n

i=1 εi(m̂(θ̂�xi) − m0(θ
�
0 xi))

‖m̂ ◦ θ̂ − m0 ◦ θ0‖3/4
n (1 + J (m0) + J (m̂))1/4

= Op

(
n−1/2). (44)

Together, (39) and (44) imply

λ̂2
n

(
J 2(m̂) − J 2(m0)

)
≤ Qn(m0, θ0) − Qn(m̂, θ̂)

= 2

n

n∑
i=1

(
yi − m0

(
θ�

0 xi

))(
m̂

(
θ̂�xi

) − m0
(
θ�

0 xi

)) − ‖m̂ ◦ θ̂ − m0 ◦ θ0‖2
n

≤ ‖m̂ ◦ θ̂ − m0 ◦ θ0‖3/4
n

(
1 + J (m0) + J (m̂)

)1/4
Op

(
n−1/2) − ‖m̂ ◦ θ̂ − m0 ◦ θ0‖2

n. (45)

We will now consider two cases.
Case 1: Suppose J (m̂) > 1 + J (m0). By the proof of Theorem 10.2 of [57] with ν = 2 and

α = 1/2, we have that

J (m̂) = Op

(
n−1/2)λ̂−5/4

n and ‖m̂ ◦ θ̂ − m0 ◦ θ0‖n = Op

(
n−1/2)λ̂−1/4

n .

However, by assumption (A3), we have that λ̂−1
n = Op(n2/5). Hence, the conclusion follows.

Case 2: When J (m̂) ≤ 1 + J (m0), (45) implies,

‖m̂ ◦ θ̂ − m0 ◦ θ0‖2
n ≤ ‖m̂ ◦ θ̂ − m0 ◦ θ0‖3/4

n

(
1 + J (m0)

)1/4
Op

(
n−1/2) + λ̂2

nJ
2(m0).

Therefore, it follows that either

‖m̂ ◦ θ̂ − m0 ◦ θ0‖n ≤ (
1 + J (m0)

)1/5
Op

(
n−2/5) = Op(λ̂n)



Smooth single index models 1613

or

‖m̂ ◦ θ̂ − m0 ◦ θ0‖n ≤ Op(1)λ̂nJ (m0) = Op(λ̂n)J (m0).

Thus, we have that J (m̂) = Op(1), ‖m̂◦ θ̂ −m0 ◦ θ0‖n = Op(λ̂n), and, by (42), ‖m̂‖∞ = Op(1).
To find the rates of convergence of ‖m̂ ◦ θ̂ − m0 ◦ θ0‖, we use the following lemma.

Lemma 9 (Lemma 5.16, [56]). Suppose G is a class of uniformly bounded functions and for
some 0 < ν < 2,

sup
δ>0

δν logN[ ]
(
δ,G,‖ · ‖∞

)
< ∞.

Then for every given α > 0 there exists a constant C > 0 such that

lim sup
n→∞

P

(
sup

g∈G,‖g‖>Cn−1/(2+ν)

∣∣∣∣‖g‖n

‖g‖ − 1

∣∣∣∣ > α

)
= 0.

Appendix B: Proofs of results in Section 4

B.1. Proof of Theorem 6

We will first show that ξt (u; θ, η,m) is a valid submodel. Note that φθ,η,0(u+ (θ − θ)�hθ (u)) =
u, ∀u ∈ D. Hence,

ξ0
(
θ�x; θ, η,m

) = m ◦ φθ,η,0
(
θ�x

) = m
(
θ�x

)
.

Now we will prove that J 2(ξt (·; θ, η,m)) < ∞. Let us define

ψθ,η,t (u) := φθ,η,t

(
u + (

θ − ζt (θ, η)
)�

hθ (u)
)
,

then ξt (u; θ, η,m) = m ◦ ψθ,η,t (u) Observe that

J 2(ξt (·; θ, η,m)
)

=
∫

D

∣∣ξ ′′
t (u; θ, η,m)

∣∣2
du

=
∫

D

[
m′′ ◦ ψθ,η,t (u)ψ ′

θ,η,t (u)2 + m′ ◦ ψθ,η,t (u)ψ ′′
θ,η,t (u)

]2
du

=
∫

D

[
m′′(u)

(
ψ ′

θ,η,t ◦ ψ−1
θ,η,t (u)

)2 + m′(u)ψ ′′
θ,η,t ◦ ψ−1

θ,η,t (u)
]2 du

ψ ′
θ,η,t ◦ ψ−1

θ,η,t (u)
,

where ψ ′
θ,η,t (u) = ∂

∂u
ψθ,η,t (u). Thus, we have that J 2(ξt (·; θ, η,m)) = O(1) whenever J (m) =

O(1), ‖m‖∞ = O(1), and t in a small neighborhood of 0 (as ψθ,η,t (·) is a strictly increasing
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function when t is small). Next, we evaluate ∂ξt (ζt (θ, η)�x; θ, η,m)/∂t to help with the calcu-
lation of the score function for the submodel {ζt (θ, η), ξt (·; θ, η,m)}. Note that

∂

∂t
ξt

(
ζt (θ, η)�x; θ, η,m

)
= ∂

∂t
m ◦ φθ,η,t

(
ζt (θ, η)�x + (

θ − ζt (θ, η)
)�

hθ

(
ζt (θ, η)�x

))
= m′ ◦ φθ,η,t

(
ζt (θ, η)�x + (

θ − ζt (θ, η)
)�

hθ

(
ζt (θ, η)�x

))
×

[
φ̇θ,η,t

[
ζt (θ, η)�x + [

θ − ζt (θ, η)
]�

hθ

(
ζt (θ, η)�x

)]

+ φ′
θ,η,t

[
ζt (θ, η)�x + (

θ − ζt (θ, η)
)�

hθ

(
ζt (θ, η)�x

)]∂ζt (θ, η)

∂t

�[
x

+ (
θ − ζt (θ, η)

)�
h′

θ

(
ζt (θ, η)�x

)
x − hθ

(
ζt (θ, η)�x

)]]
,

where φ̇t,θ (u) = ∂φθ,η,t (u)/∂t . We will now show that the score function of the submodel
{t, ξt (·; , θ, η,m)} is �̃θ,m(y, x). Using the facts that φ′

θ,η,t (u) = 1 and φ̇θ,η,t (u) = 0 for all

u ∈ D (follows from the definition (28)) and ∂ζt (θ, η)/∂t = (−2t/
√

1 − t2|η|2)θ + Hθη, we
get

∂

∂t

(
y − ξt

(
ζt (θ, η)�x; θ, η,m

))2
∣∣∣∣
t=0

= −2
(
y − ξt

(
ζt (θ, η)�x; θ, η,m

))∂ξt (ζt (θ, η)�x; θ, η,m)

∂t

∣∣∣∣
t=0

= −2
(
y − m

(
θ�x

))
m′(θ�x

)
η�H�

θ

(
x − hθ

(
θ�x

))
.

Observe that (m̂, θ̂ ) minimizes the penalized loss function in (5) and ξ0(ζ0(θ̂ , η)�x; θ̂ , η, m̂) =
m̂(θ̂�x), where ζt (θ̂ , η) = √

1 − t2|η|2θ̂ + sH
θ̂
η. Hence, for every η ∈ Rd−1, the function

t
1

n

n∑
i=1

(
yi − ξt

(
ζt (θ̂ , η)�x; θ̂ , η, m̂

))2 + λ̂2
n

∫
D

∣∣∣∣ ∂2

∂u2
ξt (u; θ̂ , η, m̂)

∣∣∣∣
2

du (46)

on a some small neighborhood of 0 (that depends on η) is minimized at t = 0. Moreover, using
some tedious algebra it can be shown that J 2(ξt (·; θ, η,m)) is differentiable and

∂

∂t
J 2(ξt (·; θ, η,m)

)∣∣∣∣
t=0

�
∫

D

∣∣m′′(p)
∣∣2

dP.
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This we have that the function in (46) is differentiable at t = 0. Conclude that, for all η ∈ Rd−1

we have

η�Pn�̃θ̂ ,m̂
− λ̂2

n

∂J 2(ξt (·; θ, η,m))

∂t

∣∣∣∣
t=θ̂

= 0.

The proof of the theorem is now complete as λ̂2
n = op(n−1/2).
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