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We consider infinite-dimensional Hilbert space-valued random variables that are assumed to be temporal
dependent in a broad sense. We prove a central limit theorem for the moving block bootstrap and for the
tapered block bootstrap, and show that these block bootstrap procedures also provide consistent estimators
of the long run covariance operator. Furthermore, we consider block bootstrap-based procedures for fully
functional testing of the equality of mean functions between several independent functional time series. We
establish validity of the block bootstrap methods in approximating the distribution of the statistic of interest
under the null and show consistency of the block bootstrap-based tests under the alternative. The finite
sample behaviour of the procedures is investigated by means of simulations. An application to a real-life
dataset is also discussed.
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1. Introduction

In statistical analysis, conclusions are commonly derived based on information obtained from a
random sample of observations. In an increasing number of fields, these observations are curves
or images which are viewed as functions in appropriate spaces, since an observed intensity is
available at each point on a line segment, a portion of a plane or a volume. Such observed curves
or images are called ‘functional data’; see, for example, Ramsay and Dalzell [24], who also
introduced the term ‘functional data analysis’ (FDA) which refers to statistical methods used for
analysing this kind of data.

In this paper, we consider observations stemming from a stochastic process X = (Xt , t ∈ Z)

of Hilbert space-valued random variables which satisfies certain stationarity and weak depen-
dence properties. Our goal is to infer properties of the stochastic process based on an observed
stretch X1,X2, . . . ,Xn, i.e., on a functional time series. In this context, we commonly need to
calculate the distribution, or parameters related to the distribution, of some statistics of interest
based on X1,X2, . . . ,Xn. Since in a functional set-up such quantities typically depend in a com-
plicated way on infinite-dimensional characteristics of the underlying stochastic process X, their
calculation is difficult in practice. As a result, resampling methods and, in particular, bootstrap
methodologies are very useful.
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For the case of independent and identically distributed (i.i.d.) Banach space-valued random
variables, Giné and Zinn [6] proved the consistency of the standard i.i.d. bootstrap for the sample
mean. For functional time series, Politis and Romano [22] established validity of the stationary
bootstrap for the sample mean and for (bounded) Hilbert space-valued random variables satisfy-
ing certain mixing conditions. A functional sieve bootstrap procedure for functional time series
has been proposed by Paparoditis [18]. Consistency of the non-overlapping block bootstrap for
the sample mean and for near epoch dependent Hilbert space-valued random variables has been
established by Dehling, Sharipov and Wendler [5]. However, up to date, consistency results are
not available for the moving block bootstrap (MBB) or its improved versions, like the tapered
block bootstrap (TBB), for functional time series. Notice that the MBB for real-valued time se-
ries was introduced by Künsch [12] and Liu and Singh [15]. The basic idea is to resample blocks
of the time series and to joint them together in the order selected in order to form a new set of
pseudo observations. This resampling scheme retains the dependence structure of the time series
within each block and can be, therefore, used to approximate the distribution of a wide range of
statistics. The TBB for real-valued time series was introduced by Paparoditis and Politis [19].
It uses a taper window to downweight the observations at the beginning and at the end of each
resampled block and improves the bias properties of the MBB.

The aim of this paper is twofold. First, we prove consistency of the MBB and of the TBB for
the sample mean function in the case of weakly dependent Hilbert space-valued random vari-
ables. Furthermore, we show that these bootstrap methods provide consistent estimators of the
covariance operator of the sample mean function estimator, that is of the spectral density operator
of the underlying stochastic process at frequency zero. We derive our theoretical results under
quite general dependence assumptions on X, that is, under L2-m-approximability assumptions,
which are satisfied by a large class of commonly used functional time series models; see, for
example, Hörmann and Kokoszka [7]. Second, we apply the above mentioned bootstrap proce-
dures to the problem of fully functional testing of the equality of the mean functions between a
number of independent functional time series. Testing the equality of mean functions for i.i.d.
functional data has been extensively discussed in the literature; see, for example, Benko, Härdle
and Kneip [1], Horváth and Kokoszka ([8], Chapter 5), Zhang [29] and Staicu, Lahiri and Car-
roll [26]. Bootstrap alternatives over asymptotic approximations have been proposed in the same
context by Benko, Härdle and Kneip [1], Zhang, Peng and Zhang [28] and, more recently, by
Paparoditis and Sapatinas [20]. Testing equality of mean functions for dependent functional data
has also attracted some interest in the literature. Horváth, Kokoszka and Reeder [9] developed
an asymptotic procedure for testing equality of two mean functions for functional time series.
Since the limiting null distribution of a fully functional, L2-type test statistic, depends on diffi-
cult to estimate process characteristics, tests are considered which are based on a finite number
of projections. A projection-based test has also been considered by Horváth and Rice [10]. Al-
though such tests lead to manageable limiting distributions, they have non-trivial power only for
deviations from the null which are not orthogonal to the subspace generated by the particular
projections considered.

In this paper, we show that the MBB and TBB procedures can be successfully applied to ap-
proximate the distribution under the null of such fully functional test statistics. This is achieved
by designing the suggested block bootstrap procedures in such a way that the generated pseudo-
observations satisfy the null hypothesis of interest. Notice that such block bootstrap-based test-
ing methodologies are applicable to a broad range of possible test statistics. As an example,
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we prove validity for the L2-type test statistic recently proposed by Horváth, Kokoszka and
Reeder [9].

The paper is organised as follows. In Section 2, the basic assumptions on the underlying
stochastic process X are stated and the MBB and TBB procedures for weakly dependent, Hilbert
space-valued random variables, are described. Asymptotic validity of the block bootstrap proce-
dures for estimating the distribution of the sample mean function is established and consistency
of the long run covariance operator, that is, of the spectral density operator of the underlying
stochastic process at frequency zero, is proven. Section 3 is devoted to the problem of testing
equality of mean functions for several independent functional time series. Theoretical justifica-
tions of an appropriately modified version of the MBB and of the TBB procedure for approxi-
mating the null distribution of a fully functional test statistic is given and consistency under the
alternative is shown. Numerical simulations and a real-life data example are presented and dis-
cussed in Section 4. Auxiliary results and proofs of the main results are deferred to the Appendix
and to the supplementary material [21].

2. Block bootstrap procedures for functional time series

2.1. Preliminaries and assumptions

We consider a strictly stationary stochastic process X = {Xt, t ∈ Z}, where the random vari-
ables Xt are random functions Xt(ω, τ), τ ∈ I , ω ∈ �, t ∈ Z, defined on a probability
space (�,A,P ) and take values in the separable Hilbert-space of squared-integrable R-valued
functions on I , denoted by L2(I). The expectation function of Xt , EXt ∈ L2(I), is inde-
pendent of t , and it is denoted by μ. Throughout Section 2, we assume for simplicity that
μ = 0. We define 〈f,g〉 = ∫

I f (τ)g(τ )dτ , ‖f ‖2 = 〈f,f 〉 and the tensor product between f

and g by f ⊗ g(·) = 〈f, ·〉g. For two Hilbert–Schmidt operators �1 and �2, we denote by
〈�1,�2〉HS = ∑∞

i=1〈�1(ei),�2(ei)〉 the inner product which generates the Hilbert–Schmidt
norm ‖�1‖HS = ∑∞

i=1 ‖�1(ei)‖2, for {ei, i = 1,2, . . .} an orthonormal basis of L2(I). With-
out loss of generality, we assume that I = [0,1] (the unit interval) and, for simplicity, integral
signs without the limits of integration imply integration over the interval I . We finally write L2

instead of L2(I).
To describe the dependent structure of the stochastic process X, we use the notion of Lp-m-

approximability; see Hörmann and Kokoszka [7]. A stochastic process X = {Xt, t ∈ Z} with Xt

taking values in L2, is called L2-m-approximable if the following conditions are satisfied:

(i) Xt admits the representation

Xt = f (δt , δt−1, δt−2, . . .) (1)

for some measurable function f : S∞ → L2, where {δt , t ∈ Z} is a sequence of i.i.d.
elements in L2.

(ii) E‖X0‖2 < ∞ and ∑
m≥1

√
E‖Xt − Xt,m‖2 < ∞, (2)
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where Xt,m = f (δt , δt−1, . . . , δt−m+1, δ
(m)
t,t−m, δ

(m)
t,t−m−1, . . .) and, for each t and k, δ

(m)
t,k is

an independent copy of δt .

The intuition behind the above definition is that the function f in (1) should be such that the
effect of the innovations δi far back in the past becomes negligible, that is, these innovations
can be replaced by other, independent, innovations. We somehow strengthen (2) to the following
assumption.

Assumption 1. X is L2-m-approximable and satisfies

lim
m→∞m

√
E‖Xt − Xt,m‖2 = 0.

Notice that the above assumption is satisfied by many linear and non-linear functional time
series models considered in the literature; see, for example, Hörmann and Kokoszka [7].

2.2. The moving block bootstrap

The main idea of the MBB is to split the data into overlapping blocks of length b and to obtain the
bootstrapped pseudo-time series by joining together the k independently and randomly selected
blocks of observations in the order selected. Here, k is a positive integer satisfying b(k − 1) < n

and bk ≥ n. For simplicity of notation, we assume throughout the paper that n = kb. Since the
dependence of the original time series is maintained within each block, it is expected that for
weakly dependent time series, this bootstrap procedure will, asymptotically, correctly imitate the
entire dependence structure of the underlying stochastic process if the block length b increases
to infinity, at some appropriate rate, as the sample size n increases to infinity. Adapting this
resampling idea to a functional time series Xn = {Xt, t = 1,2, . . . , n} stemming from a strictly
stationary stochastic process X = {Xt, t ∈ Z} with Xt taking values in L2 and E(Xt ) = 0, leads
to the following MBB algorithm.

Step 1: Let b = b(n), 1 ≤ b < n, be an integer. Denote by Bt = {Xt,Xt+1, . . . ,Xt+b−1} the
block of length b starting from observation Xt , t = 1,2, . . . ,N , where N = n − b + 1
is the number of such blocks available.

Step 2: Define i.i.d. integer-valued random variables I1, I2, . . . , Ik having a discrete uniform
distribution assigning the probability 1/N to each element of the set {1,2, . . . ,N}.

Step 3: Let B∗
i = BIi

, i = 1,2, . . . , k, and denote by {X∗
(i−1)b+1,X

∗
(i−1)b+2, . . . ,X

∗
ib} the ele-

ments of B∗
i . Join the k blocks in the order B∗

1 ,B∗
2 , . . . ,B∗

k together to obtain a new
set of functional pseudo observations of length n denoted by X∗

1,X∗
2, . . . ,X∗

n.

The above bootstrap algorithm can be potentially applied to approximate the distribution of some
statistic Tn = T (X1,X2, . . . ,Xn) of interest. For instance, let Tn = Xn be the sample mean func-
tion of the observed stretch X1,X2, . . . ,Xn, i.e., Xn = n−1 ∑n

t=1 Xt . We are interested in esti-
mating the distribution of

√
nXn. For this, the bootstrap random variable

√
n(X

∗
n − E

∗(X∗
n)) is

used, where X
∗
n is the mean function of the functional pseudo observations X∗

1,X∗
2, . . . ,X∗

n, i.e.,
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X
∗
n = n−1 ∑n

t=1 X∗
t and E

∗(X∗
n) is the (conditional on the observations Xn) expected value of

X
∗
n. Straightforward calculations yield

E
∗(X∗

n

) = 1

N

[
n∑

t=1

Xt −
b−1∑
t=1

(1 − t/b)(Xt + Xn−t+1)

]
.

It is known that, under a variety of dependence assumptions on the underlying mean zero

stochastic process X, it holds true that
√

nXn
d→ � as n → ∞, where � denotes a Gaussian

process with mean zero and long run covariance operator 2πF0. Furthermore, ‖nE(Xn ⊗ Xn) −
2πF0‖HS → 0 as n → ∞. Here, Fω = (2π)−1 ∑

h∈Z Che
−ihω, ω ∈ R, is the so-called spectral

density operator of X and Ch denotes the lag h autocovariance operator of X, defined by Ch(·) =
E〈Xt, ·〉Xt+h for any h ∈ Z; see Panaretos and Tavakoli [16,17].

The following theorem establishes validity of the MBB procedure for approximating the dis-
tribution of

√
nXn and for providing a consistent estimator of the long run covariance operator

2πF0.

Theorem 2.1. Suppose that the mean zero stochastic process X = (Xt , t ∈ Z) satisfies Assump-
tion 1 and let X∗

1,X∗
2, . . . ,X∗

n be a stretch of pseudo observations generated by the MBB pro-
cedure. Assume that the block size b = b(n) satisfies b−1 + bn−1/2 = o(1) as n → ∞. Then, as
n → ∞,

(i)

d
(
L

(√
n
(
X

∗
n −E

∗(X∗
n

)) | Xn

)
,L(

√
nXn)

) → 0, in probability,

where d is any metric metrizing weak convergence on L2 and L(Z) denotes the law of the
random element Z. Furthermore,

(ii) ∥∥nE∗(X∗
n −E

∗(X∗
n

)) ⊗ (
X

∗
n −E

∗(X∗
n

)) − nE(Xn ⊗ Xn)
∥∥

HS = oP (1), in probability.

2.3. The tapered block bootstrap

The TBB procedure is a modification of the block bootstrap procedure considered in Section 2.2
which is obtained by introducing a tapering of the random elements Xt . The tapering function
down-weights the endpoints of each block Bi , towards zero, that is, towards the mean function of
Xt . The pseudo observations are then obtained by choosing, with replacement, k appropriately
scaled and tapered blocks of length b of centered observations and joining them together.

More precisely, the TBB procedure applied to the functional time series Yn = {Yt , t =
1,2, . . . , n} stemming from a strictly stationary, L2-values, stochastic process Y = (Yt , t ∈ Z)

with EYt = 0, can be described as follows. Let X1,X2, . . . ,Xn be the centered observations,
that is, Xt = Yt − Yn, t = 1,2, . . . , n, where Yn = n−1 ∑n

t=1 Yt . Furthermore, let b = b(n),
1 ≤ b < n, be an integer and let wn(·), n = 1,2, . . ., be a sequence of so-called data-tapering
windows which satisfy the following assumption:



Block bootstrap for functional time series 3501

Assumption 2. wn(τ) ∈ [0,1] and wn(τ) = 0 for τ /∈ {1,2, . . . , n}. Furthermore,

wn(τ) = w

(
τ − 0.5

n

)
, (3)

where the function w : R → [0,1] fulfills the conditions: (i) w(τ) ∈ [0,1] for all τ ∈ R with
w(τ) = 0 if τ /∈ [0,1]; (ii) w(τ) > 0 for all τ in a neighbourhood of 1/2; (iii) w(τ) is symmetric
around τ = 0.5; and (iv) w(τ) is nondecreasing for all τ ∈ [0,1/2].

Let

B̃i =
{
wb(1)

b1/2

‖wb‖2
Xi,wb(2)

b1/2

‖wb‖2
Xi+1, . . . ,wb(b)

b1/2

‖wb‖2
Xi+b−1

}
,

be a block of length b starting from Xt , t = 1,2, . . . ,N , where each centered observation is
multiplied by wb(·) and scaled by b1/2/‖wb‖2, ‖wb‖2

2 = ∑b
i=1 wb(i). Let I1, I2, . . . , Ik be i.i.d.

integers selected from a discrete uniform distribution which assigns probability 1/N to each
element of the set {1,2, . . . ,N}. Let B∗

i = B̃Ii
, i = 1,2, . . . , k, and denote the i-th block selected

by {X∗
(i−1)b+1,X

∗
(i−1)b+2, . . . ,X

∗
ib}. Join these blocks together in the order B∗

1 ,B∗
2 , . . . ,B∗

k to
form the set of TBB pseudo observations X∗

1,X∗
2, . . . ,X∗

n.
Notice that the “inflation” factor b1/2/‖wb‖2 is necessary to compensate for the decrease of

the variance of the X∗
i ’s effected by the shrinking caused by the window wb; see, also, Paparoditis

and Politis [19]. Furthermore, the TBB procedure uses the centered time series X1,X2, . . . ,Xn

instead of the original time series Y1, Y2, . . . , Yn, in order to shrink the end points of the blocks
towards zero.

To estimate the distribution of
√

nYn by means of the TBB procedure, the bootstrap random
variable

√
n(X

∗
n − E

∗(X∗
n)) is used, where X

∗
n = n−1 ∑n

t=1 X∗
t and E

∗(X∗
n) is the (conditional

on the observations Yn) expected value of X
∗
n. Straightforward calculations yield

E
∗(X∗

n

) = 1

N

‖wb‖1

‖wb‖2

[
n∑

t=1

Xt −
b−1∑
t=1

(
1 −

∑t
s=1 wb(s)

‖wb‖1

)
Xt

−
b−1∑
j=1

(
1 −

∑b
t=b−j+1 wb(t)

‖wb‖1

)
Xn−j+1

]
.

The following theorem establishes validity of the TBB procedure for approximating the dis-
tribution of

√
nYn and for providing a consistent estimator of the long run covariance operator

2πF0.

Theorem 2.2. Suppose that the mean zero stochastic process Y satisfies Assumption 1 and
let wn(·), n = 1,2, . . ., be a sequence of data-tapering windows satisfying Assumption 2. Fur-
thermore, let X∗

t , t = 1,2, . . . , n, be a stretch of pseudo observations generated by the TBB
procedure. Assume that the block size b = b(n) satisfies b−1 + bn−1/2 = o(1) as n → ∞. Then,
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as n → ∞,

(i)

d
(
L

(√
n
(
X

∗
n −E

∗(X∗
n

)) | Yn

)
,L(

√
nYn)

) → 0, in probability,

where d is any metric metrizing weak convergence on L2, and
(ii) ∥∥nE∗(X∗

n −E
∗(X∗

n

)) ⊗ (
X

∗
n −E

∗(X∗
n

)) − nE(Y n ⊗ Yn)
∥∥

HS = oP (1), in probability.

Remark 2.1. The asymptotic validity of the MBB and TBB procedures established in The-
orem 2.1 and Theorem 2.2, respectively, can be extended to cover also the case where maps
φ : L2 → D of the sample means Xn (in the MBB case) and Yn (in the TBB case) are con-
sidered, when D is a normed space. For instance, such a result follows as an application of a
version of the delta-method appropriate for the bootstrap and for maps φ which are Hadamard
differentiable at 0 tangentially to a subspace D0 of D (see Theorem 3.9.11 of van der Vaart and
Wellner [27]). Extensions of such results to almost surely convergence and for other types of
differentiable maps, like for instance Fréchet differentiable functionals (see Theorem 3.9.15 of
van der Vaart and Wellner [27]) or quasi-Hadamard differentiable functionals (see Theorem 3.1
of Beutner and Zähle [2]), are more involved since they depend on the particular map φ and the
verification of some technical conditions.

3. Bootstrap-based testing of the equality of mean functions

Among different applications, the MBB and TBB procedures can be also used to perform a test of
the equality of mean functions between several independent samples of a functional time series.
In this case, both block bootstrap procedures have to be implemented in such a way that the
pseudo observations X∗

1,X∗
2, . . . ,X∗

n generated, satisfy the null hypothesis of interest.

3.1. The set-up

Consider K independent functional time series XM = {Xi,t , i = 1,2 . . . ,K, t = 1,2, . . . , ni},
each one of which satisfies

Xi,t = μi + εi,t , t = 1,2, . . . , ni, (4)

where, for each i ∈ {1,2, . . . ,K}, {εi,t , t ∈ Z} is a L2-m-approximable functional process and ni

denotes the length of the i-th time series. Let M = ∑K
i=1 ni be the total number of observations

and note that μi(τ ), τ ∈ I , is the mean function of the i-th functional time series, i = 1,2, . . . ,K .
The null hypothesis of interest is then,

H0 : μ1 = μ2 = · · · = μK
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and the alternative hypothesis

H1 : ∃k,m ∈ {1,2, . . . ,K} with k �= m such that μk �= μm.

Notice that the above equality is in L2, i.e., μk = μm means that ‖μm − μk‖ = 0 whereas μk �=
μm that ‖μm − μk‖ > 0.

3.2. Block bootstrap-based testing

The aim is to generate a set of functional pseudo observations X∗
M = X∗

i,t , i = 1,2 . . . ,K , t =
1,2, . . . , ni , using either the MBB procedure or the TBB procedure in such a way that H0 is
satisfied. These bootstrap pseudo-time series can then be used to estimate the distribution of
some test statistic TM of interest which is applied to test H0. Toward this, the distribution of T ∗

M

is used as an estimator of the distribution of TM , where T ∗
M is the same statistical functional as

TM but calculated using the bootstrap functional pseudo-time series X∗
M.

To implement the MBB procedure for testing the null hypothesis of interest, assume, without
loss of generality, that the test statistic TM rejects the null hypothesis when TM > dM,α , where,
for α ∈ (0,1), dM,α denotes the upper α-percentage point of the distribution of TM under H0.
The MBB-based testing procedure goes then as follows:

Step 1: Calculate the sample mean functions in each population and the pooled mean func-
tion, that is, calculate Xi,ni

= (1/ni)
∑ni

t=1 Xi,t , for i = 1,2 . . . ,K , and XM =
(1/M)

∑K
i=1

∑ni

t=1 Xi,t , and obtain the residual functions in each population, that is,
calculate ε̂i,t = Xi,t − Xi,ni

, for t = 1,2, . . . , ni ; i = 1,2 . . . ,K .
Step 2: For i = 1,2, . . . ,K , let bi = bi(n) ∈ {1,2, . . . , n − 1} be the block size for the i-th

functional time series and divide {ε̂i,t , t = 1,2, . . . , ni} into Ni = ni − bi + 1 overlap-
ping blocks of length bi , say, Bi,1,Bi,2, . . . ,Bi,Ni

. Calculate the sample mean of the
ξ -th observations of the blocks Bi,1,Bi,2, . . . ,Bi,Ni

, i.e., εi,ξ = (1/Ni)
∑Ni

t=1 ε̂i,ξ+t−1,
for ξ = 1,2, . . . , bi .

Step 3: For simplicity assume that ni = kibi and for i = 1,2, . . . ,K , let qi
1, q

i
2, . . . , q

i
ki

be i.i.d.
integers selected from a discrete probability distribution which assigns the probability
1/Ni to each element of the set {1,2, . . . ,Ni}. Generate bootstrap functional pseudo
observations X∗

i,t , t = 1,2, . . . , ni , i = 1,2, . . . ,K , as X∗
i,t = XM + ε∗

i,t , where

ε∗
i,ξ+(s−1)bi

= ε̂i,qi
s+ξ−1 − εi,ξ , s = 1,2, . . . , ki, ξ = 1,2, . . . , bi . (5)

Step 4: Let T ∗
M be the same statistic as TM but calculated using the bootstrap functional

pseudo-time series X∗
i,t , t = 1,2, . . . , ni , i = 1,2, . . . ,K . Denote by D∗

M,T the dis-
tribution of T ∗

M given XM. For α ∈ (0,1), reject the null hypothesis H0 if TM > d∗
M,α ,

where d∗
M,α denotes the upper α-percentage point of the distribution of T ∗

M , i.e.,
P(T ∗

M > d∗
M,α) = α.

Note that the distribution D∗
M,T can be evaluated by Monte-Carlo.

To motivate the centering used in Step 3, denote, for i = 1,2, . . . ,K , by e∗
i,t , t = 1,2, . . . , ni ,

the pseudo observations generated by applying the MBB procedure, described in Section 2.2,
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directly to the residuals time series ε̂i,t , t = 1,2, . . . , ni . Note that the e∗
i,t ’s differ from the

ε∗
i,t ’s used in (5) by the fact that the later are obtained after centering. The sample mean εi,ξ ,

i = 1,2, . . . ,K , ξ = 1,2, . . . , bi , calculated in Step 2, is the (conditional on XM) expected
value of the pseudo observations e∗

i,t , t = 1,2, . . . , ni , where t = ξ (mod bi). Furthermore,
for i = 1,2, . . . ,K , we generate the ε∗

i,t ’s, t = 1,2, . . . , ni , by subtracting εi,ξ from e∗
i,sb+ξ ,

ξ = 1,2, . . . , b, s = 1,2, . . . ki . This is done in order for the (conditional on XM) expected value
of ε∗

i,t to be zero. In this way, the generated set of pseudo time series X∗
i,t , t = 1,2, . . . , ni , i =

1,2, . . . ,K , satisfy the null hypothesis H0. In particular, given XM = {Xi,t , i = 1,2 . . . ,K, t =
1,2, . . . , ni}, we have

E
∗(X∗

i,ξ+(s−1)bi

) = XM + 1

Ni

Ni∑
t=1

[ε̂i,t+ξ−1 − εi,ξ ] = XM,

for i = 1,2 . . . ,K , ξ = 1,2, . . . , b and s = 1,2, . . . , ki . That is, conditional on XM, the mean
function of each functional pseudo-time series X∗

i,1,X
∗
i,2, . . . ,X

∗
i,n, i = 1,2 . . . ,K , is identical in

each population and equal to the pooled sample mean function XM .
An algorithm based on the TBB procedure for testing the same pair of hypotheses can also

be implemented by modifying appropriate the MBB-based testing algorithm. In particular, we
replace Step 2 and Step 3 of this algorithm by the following steps:

Step 2: For i = 1,2, . . . ,K , let bi = bi(n) ∈ {1,2, . . . , n − 1} be the block size for the i-th
functional time series and Ni = ni − bi + 1. Let also {ε̂i,t , t = 1,2, . . . , ni} be the cen-
tered values of {ε̂i,t , t = 1,2, . . . , ni}, i.e., ε̂i,t = ε̂i,t −εi , where εi = (1/ni)

∑ni

t=1 ε̂i,t .
Also, let wni

(·), ni = 1,2, . . ., be a sequence of data-tapering windows satisfying As-
sumption 2. Now, for t = 1,2, . . . ,Ni , let

B̃i,t =
{
wbi

(1)
b

1/2
i

‖wbi
‖2

ε̂i,t ,wbi
(2)

b
1/2
i

‖wbi
‖2

ε̂i,t+1, . . . ,wbi
(bi)

b
1/2
i

‖wbi
‖2

ε̂i,t+bi−1

}
,

i = 1,2, . . . ,K,

where ‖wbi
‖2

2 = ∑bi

i=1 wbi
(i). Here, B̃i,t denotes the tapered block of ε̂i,t ’s of length

bi starting from ε̂i,t . Furthermore, for i = 1,2, . . . ,K , calculate the sample mean of
the ξ th observations of the blocks B̃i,1, B̃i,2, . . . , B̃i,Ni

, i.e.,

ε̄i,ξ = 1

Ni

Ni∑
t=1

wbi
(ξ)

b
1/2
i

‖wbi
‖2

ε̂i,ξ+t−1, ξ = 1,2, . . . , bi .

Step 3: For i = 1,2, . . . ,K , let qi
1, q

i
2, . . . , q

i
ki

be i.i.d. integers selected from a discrete proba-
bility distribution which assigns the probability 1/Ni to each t ∈ {1,2, . . . ,Ni}. Gen-
erate bootstrap functional pseudo-observations X+

i,t , i = 1,2, . . . ,K , t = 1,2, . . . , ni
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according to X+
i,t = XM + ε+

i,t , where

ε+
i,ξ+(s−1)bi

= wb(ξ)
b

1/2
i

‖wbi
‖2

ε̂i,ki
s+ξ−1 − ε̄i,ξ , s = 1,2, . . . , ki, ξ = 1,2, . . . , bi .

As in the case of the MBB-based testing, the generation of ε+
i,t , t = 1,2, . . . , ni , i = 1,2, . . . ,K ,

ensures that the functional pseudo-time series X+
i,t , t = 1,2, . . . , ni , i = 1,2, . . . ,K , satisfy H0,

that is, given XM = {Xi,t , i = 1,2 . . . ,K, t = 1,2, . . . , ni}, we have that E+(X+
i,t ) = XM .

3.3. Bootstrap validity

Notice that, since the proposed block bootstrap-based methodologies are not designed having
any particular test statistic in mind, they can be potentially applied to a wide range of test
statistics. To prove validity of the proposed block bootstrap-based testing procedures, however,
a particular test statistic has to be considered. For instance, one such test statistic is the fully
functional test statistic proposed by Horváth, Kokoszka and Reeder [9] for the case of K = 2
populations. Let Xi,t , i = 1,2, t = 1,2, . . . , ni , be two independent samples of curves, satisfying
model (4). For i ∈ {1,2} and for (u, v) ∈ [0,1]2, denote by ci(u, v) the kernels of the long run
covariance operators 2πF (i)

0 , given by ci(u, v) = E[εi,0(u)εi,0(v)] + ∑
j≥1 E[εi,0(u)εi,j (v)] +∑

j≥1 E[εi,0(v)εi,j (u)]. The test statistic considered in Horváth, Kokoszka and Reeder [9], eval-

uates then the L2-distance of the two sample mean functions Xi,ni
= n−1

i

∑ni

t=1 Xi,t , i = 1,2,
and it is given by

UM = n1n2

M

∫ (
X1,n1(τ ) − X2,n2(τ )

)2 dτ,

where M = n1 + n2. Horváth, Kokoszka and Reeder [9] proved that if min{n1, n2} → ∞ and
n1/M → θ ∈ (0,1) then, under H0, UM converges weakly to

∫
�2(τ )dτ , where {�(τ) : τ ∈ I}

is a Gaussian process satisfying E(�(τ)) = 0 and E(�(u)�(v)) = (1 − θ)c1(u, v) + θc2(u, v).
Notice that calculation of critical values of the above test requires estimation of the distribution
of

∫
�2(τ )dτ which is a difficult task.

Although the test statist UM is quite appealing because it is fully functional, its limiting dis-
tribution is difficult to implement which demonstrates the importance of the bootstrap. To inves-
tigate the consistency properties of the bootstrap, we first establish a general result which allows
for the consideration of different test statistics that can be expressed as functionals of the basic
deviation process {√

n1n2

M

(
X1,n1(τ ) − X2,n2(τ )

)
, τ ∈ I

}
. (6)

Theorem 3.1. Let Assumption 1 be satisfied. Assume that min{n1, n2} → ∞, n1/M → θ ∈ (0,1)

and that, for i ∈ {1,2}, the block size bi = bi(n) fulfills b−1
i +bin

−1/2
i = o(1), as ni → ∞. Then,

conditional on XM, as ni → ∞,
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(i)
√

n1n2
M

(X
∗
1,n1

− X
∗
2,n2

) ⇒ �, in probability,

and, if additionally Assumption 2 is satisfied,

(ii)
√

n1n2
M

(X
+
1,n1

− X
+
2,n2

) ⇒ �, in probability.

Here, ⇒ denotes weak convergence in L2.

By Theorem 3.1 and the continuous mapping theorem, the suggested block bootstrap-based
testing procedures can be successfully applied to consistently estimate the distribution of any test
statistic of interest which is a continuous function of the basic deviation process (6). We elaborate
on some examples. Below, PH0(Z ≤ ·) denotes the distribution function of the random variable
Z when H0 is true.

Consider for instance the test statistic UM . Let

U∗
M = n1n2

M

∫ (
X

∗
1,n1

(τ ) − X
∗
2,n2

(τ )
)2

dτ

and

U+
M = n1n2

M

∫ (
X

+
1,n1

(τ ) − X
+
2,n2

(τ )
)2 dτ,

where X
∗
i,ni

= (1/ni)
∑ni

t=1 X∗
i,t and X

+
i,ni

= 1
ni

∑ni

t=1 X+
i,t , i = 1,2. We then have the following

result.

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied. Then,

(i) supx∈R |P(U∗
M ≤ x | XM) − PH0(UM ≤ x)| → 0, in probability, and

(ii) supx∈R |P(U+
M ≤ x | XM) − PH0(UM ≤ x)| → 0, in probability.

Remark 3.1. If the following type of one-sided tests H0 : μ1 = μ2 versus H1 : μ1 > μ2 or
H ′

1 : μ1 < μ2 is of interest (where μ1 = μ2 (resp μ1 > μ2 or μ1 < μ2) means μ1(τ ) = μ2(τ )

(resp μ1(τ ) > μ2(τ ) or μ1(τ ) < μ2(τ )) for all τ ∈ I), then the following test statistic

ŨM =
√

n1n2

M

∫ (
X1,n1(τ ) − X2,n2(τ )

)
dτ

can be used. In this case, H0 is rejected if ŨM > d̃M,α or ŨM < d̃M,α , respectively, with d̃M,α

the upper α-percentage point of the distribution of ŨM under H0. Consistent estimators of this
distribution can be also obtained using the block bootstrap procedures discussed. In particular,
the following results can be established:

(i) supx∈R |P(Ũ∗
M ≤ x | XM) − PH0(ŨM ≤ x)| → 0, in probability, and

(ii) supx∈R |P(Ũ+
M ≤ x | XM) − PH0(ŨM ≤ x)| → 0, in probability,

where

Ũ∗
M =

√
n1n2

M

∫ (
X

∗
1,n1

(τ ) − X
∗
2,n2

(τ )
)

dτ
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and

Ũ+
M =

√
n1n2

M

∫ (
X

+
1,n1

(τ ) − X
+
2,n2

(τ )
)

dτ.

To elaborate, notice that using Theorem 1 of Horváth, Kokoszka and Reeder [9], we get, as
n1, n2 → ∞, that (

1√
n1

n1∑
j=1

(X1,j − μ1),
1√
n2

n2∑
j=1

(X2,j − μ2)

)
⇒ (�1,�2),

where �1 and �2 are two independent Gaussian random elements in L2 with mean zero and
covariance operators C1 and C2 with kernels c1(·, ·) and c2(·, ·), respectively. Under H0, and for
μ̃ = μ1 = μ2 the common mean of the two populations, we have√

n1n2

M

(
X1,n1(τ ) − X2,n2(τ )

) =
√

n2

M

1√
n1

n1∑
t=1

(X1,t − μ̃) −
√

n1

M

1√
n2

n2∑
t=1

(X2,t − μ̃),

which implies, for n1, n2 → ∞ and n1/M → θ , that ŨM
d→ ∫

�(τ)dτ , where �(τ) =√
1 − θ�1(τ ) − √

θ�2(τ ), τ ∈ I . Now, working along the same lines as in the proof of The-
orem 3.1, it can be easily shown that Ũ∗

M and Ũ+
M converges weakly to the same limit

∫
�(τ)dτ .

Another interesting class of test statistics for which Theorem 3.1 allows for a success-
ful application of the suggested block bootstrap-based testing procedures, is the class of so-
called projection-based tests. To elaborate, let {ϕ1, ϕ2, . . . , ϕp} be a set of p orthonormal
functions in L2. A common choice is to let ϕj be the orthonormalized eigenfunctions cor-
responding to the p largest eigenvalues of the covariance operator of the stochastic process
{�(τ) = √

1 − θ�1(τ ) − √
θ�2(τ ), τ ∈ I}, which are assumed to be distinct and strictly posi-

tive. A test statistic Sp,M can then be considered which is defined as

Sp,M = n1n2

M

p∑
k=1

〈X1,n1 − X2,n2 , ϕ̂k〉2,

and where ϕ̂k are estimators of ϕk ; see for instance Horváth, Kokoszka and Reeder [9] where
studentized versions of 〈X1,n1 − X2,n2 , ϕ̂k〉 have also been used.

The following result establishes consistency of the suggested block bootstrap methods also for
this class of test statistics.

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied and assume that the p largest
eigenvalues of the covariance operator of the stochastic process {�(τ) = √

1 − θ�1(τ ) −√
θ�2(τ ), τ ∈ I} are distinct and positive. Let ϕk , k = 1,2, . . . , p, be the orthonormalized eigen-

functions corresponding to these eigenvalues and let ϕ̃k and ϕ̂k be estimators of ϕk satisfying

max1≤k≤p ‖ϕ̃k − c̃kϕk‖ P→ 0 and max1≤k≤p ‖ϕ̂k − ĉkϕk‖ P→ 0, where c̃k = sign(〈ϕ̃k, ϕk〉) and
ĉk = sign(〈ϕ̂k, ϕk〉). Then,
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(i) supx∈R |P(S∗
p,M ≤ x | XM) − PH0(Sp,M ≤ x)| → 0, in probability, and

(ii) supx∈R |P(S+
p,M ≤ x | XM) − PH0(Sp,M ≤ x)| → 0, in probability,

where S∗
p,M = (n1n2/M)

∑p

k=1〈X
∗
1,n1

− X
∗
2,n2

, ϕ̃k〉2 and S+
p,M = (n1n2/M)

∑p

k=1〈X
+
1,n1

−
X

+
2,n2

, ϕ̃k〉2.

Remark 3.2. In Corollary 3.2, we allow for ϕ̃k to be a different estimator of ϕk than ϕ̂k , where
the later is used in the test statistic Sp,M . For instance, ϕ̃k could be the same estimator as ϕ̂k but
based on the the bootstrap pseudo observations X∗

i,t , i = 1,2, . . . , k and t = 1,2, . . . , ni , respec-

tively, X+
i,t , i = 1,2, . . . , k and t = 1,2, . . . , ni . This will allow for the bootstrap statistics S∗

p,M ,

respectively S+
p,M , to also imitate the effect of the estimation error of the unknown eigenfunc-

tions ϕk on the distribution of Sp,M . Clearly, a simple and computationally easier alternative will
be to set ϕ̃k = ϕ̂k .

Remark 3.3. If the alternative hypothesis H1 is true, then under the same assumptions as in

Theorem 4 of Horváth, Kokoszka and Reeder [9], we get that UM
P→ ∞. Furthermore, under the

same assumptions as in Theorem 6 of Horváth, Kokoszka and Reeder [9], we get that Sp,M
P→ ∞

provided that 〈μ1 − μ2, ϕk〉 �= 0 for at least one 1 ≤ k ≤ p. Corollary 3.1 and Corollary 3.2
(together with Slutsky’s theorem) imply then, respectively, the consistency of the test UM using
the bootstrap critical values obtained from the distributions of U∗

M and U+
M , and of the test Sp,M

using the bootstrap critical values obtained from the distributions of S∗
p,M and S+

pM
.

4. Numerical examples

We generated functional time series stemming from a first order functional autoregressive model
(FAR(1))

εt (u) =
∫

ψ(u, v)εt−1(v)dv + Bt(u), u ∈ [0,1], (7)

(see also Horváth, Kokoszka and Reeder [9]), and from a first order functional moving average
model (FMA(1)),

εt (u) =
∫

ψ(u, v)Bt−1(v)dv + Bt(u), u ∈ [0,1]. (8)

For both models, the kernel function ψ(·, ·) is defined by

ψ(u, v) = e−(u2+v2)/2

4
∫

e−t2 dt
, (u, v) ∈ [0,1]2, (9)

and the Bt ’s are i.i.d. Brownian bridges. All curves were approximated using T = 21 equidistant
points τ1, τ2, . . . , τ21 in the unit interval I and transformed into functional objects using the
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Fourier basis with 21 basis functions (see Section 3 of the supplementary material for additional
simulations with a larger T ).

Implementation of the MBB and TBB procedures require the selection of the block size b. As
it has been shown in Theorem 2.1 and Theorem 2.2, nE∗[(X∗

n − E
∗(X∗

n)) ⊗ (X
∗
n − E

∗(X∗
n))] is

a consistent estimator of 2πF0, with kernel

cN(u, v) = 1

N

n∑
i=1

Xi(u)Xi(v) +
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[
Xi(u)Xi+h(v) + Xi+h(u)Xi(v)

] + op(1),

in the MBB case, and

c̃N (u, v) = 1

N

n∑
i=1

Yi(u)Yi(v) +
b−1∑
h=1

Wh

‖wb‖2
2

1

N

n−h∑
i=1

[
Yi(u)Yi+h(v) + Yi+h(u)Yi(v)

] + op(1),

in the TBB case, with Wh = ∑b−h
i=1 wb(i)wb(i + h), h = 0,1, . . . , b − 1. Now, cN and c̃N can be

considered as lag-window estimators of the kernel c(u, v) = ∑∞
i=−∞ E[X0(u)Xi(v)], using the

Bartlett window with “truncation lag” b in the MBB case and using the same “truncation lag”
with the window function W = Wh/‖wb‖, in the TBB case. The above observations suggest
that the problem of choosing the block size b can be considered as a problem of choosing the
truncation lag of a lag window estimator of the function c(u, v). Choice of the truncation lag in
the functional context has been recently discussed in Horváth, Rice and Whipple [11] and Rice
and Shang [25]. Although different procedures to select the “truncation lag” have been proposed
in the aforementioned papers, we found the simple rule of setting bi = �n1/3

i �, where �x� is
the least integer greater than or equal to x, quite effective in our numerical examples. In the
following, we denote by b∗ this choice of b, which is used together with some other values of bi .
A simulation study has been first conducted in order to investigate the finite sample performance
of the MBB and TBB procedures. For this, the problem of estimating the standard deviation
function of the normalized sample mean

√
nXn(τ), i.e., of

√
c(τ, τ ) for different values of τ ∈

[0,1] has been considered. The results obtained using both block bootstrap procedures have also
been compared with those using the stationary bootstrap (SB). Realizations of length n = 100 and
n = 500 from the functional time series models (7) and (8) have been used. The results obtained
are presented and discussed in Section 2 of the supplementary material. Furthermore, Table 1
of the supplementary material presents results comparing the performance of projections-based
tests when asymptotic and bootstrap approximations are used to obtain the critical values of the
tests.

4.1. Testing equality of mean functions

We investigate the size and power performance of the tests considered in Section 3.3. As can
be seen in Section 2 of the supplementary material, the TBB estimators perform best in our
simulations. For this reason, we concentrate in this section, on tests based on TBB critical values
only. Two sample sizes n1 = n2 = 100 and n1 = n2 = 200 as well as a range of block sizes b =



3510 D. Pilavakis, E. Paparoditis and T. Sapatinas

Table 1. Empirical size and power of the test based on TBB critical values and FAR(1) errors

n1 = n2 = 100 n1 = n2 = 200

γ b α = 0.01 α = 0.05 α = 0.1 b α = 0.01 α = 0.05 α = 0.1

0 4 0.026 0.077 0.142 6 0.013 0.057 0.113
6 0.015 0.061 0.112 8 0.010 0.052 0.115
8 0.015 0.071 0.128 10 0.013 0.066 0.106
b∗ 0.027 0.074 0.143 b∗ 0.013 0.057 0.113

0.2 4 0.048 0.135 0.206 6 0.058 0.160 0.237
6 0.045 0.126 0.206 8 0.065 0.158 0.253
8 0.034 0.118 0.185 10 0.070 0.162 0.247
b∗ 0.042 0.116 0.178 b∗ 0.058 0.160 0.237

0.5 4 0.225 0.418 0.544 6 0.408 0.615 0.715
6 0.200 0.374 0.499 8 0.411 0.632 0.759
8 0.184 0.356 0.490 10 0.425 0.645 0.749
b∗ 0.218 0.424 0.532 b∗ 0.408 0.615 0.715

0.8 4 0.584 0.772 0.853 6 0.864 0.966 0.980
6 0.543 0.763 0.841 8 0.865 0.948 0.975
8 0.529 0.739 0.831 10 0.843 0.948 0.976
b∗ 0.557 0.752 0.825 b∗ 0.864 0.966 0.980

1 4 0.779 0.898 0.945 6 0.972 0.995 0.998
6 0.746 0.891 0.941 8 0.975 0.994 0.999
8 0.755 0.898 0.943 10 0.969 0.994 0.998
b∗ 0.769 0.901 0.945 b∗ 0.972 0.995 0.998

b1 = b2, are considered. The tests have been applied using three nominal levels, i.e., α = 0.01,
α = 0.05 and α = 0.1. All bootstrap calculations are based on B = 1000 bootstrap replicates and
R = 1000 model repetitions. To examine the empirical size and power behavior of the TBB-based
test, the curves in the two samples were generated according to model (4) and with the errors
εi,t following model (7), for i ∈ {1,2}, with mean functions given by μ1(t) = 0 and μ2(t) =
γ t (1 − t) for the first and for the second population, respectively; see also Horváth, Kokoszka
and Reeder [9]. The results obtained are shown in Table 1 for a range of values of γ . Notice that
γ = 0 corresponds to the null hypothesis.

As it is evident from this table, the TBB-based test statistic U+
M has a good size behavior even

in the case of n1 = n2 = 100 observations while for n1 = n2 = 200 observations the sizes of
the TBB-based test are quite close to the nominal sizes for a range of block length values. It
seems that the choice of the block size has a moderate effect on the power of the test. Further-
more, the power of the TBB-based test increases as the deviations from the null become larger
(i.e., larger values of γ ) and/or as the sample size increases. Finally, using the suggested simple
method to choose the block size b, the corresponding test has good size and power behavior in
all cases.
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Figure 1. Temperature curves: summer 2005 (left panel) and summer 2009 (right panel).

4.2. A real-life data example

We apply the TBB-based testing procedure to a data set consisting of the summer temperature
measurements recorded in Nicosia, Cyprus, for the years 2005 and 2009. Our aim is to test
whether there is a significant increase in the mean summer temperatures in 2009. The data con-
sists of two samples of curves {Xi,t (τ ), i = 1,2, t = 1,2, . . . ,92}, where, Xi,t represents the
temperature of day t of the summer 2005 for i = 1 and of the summer 2009 for i = 2. More
precisely, Xi,1 represents the temperature of the 1st of June and Xi,92 the temperature of the 31st
of August. The temperature recordings have been taken in 15 minutes intervals, i.e., there are 96
temperature measurements for each day. These measurements have been transformed into func-
tional objects using the Fourier basis with 21 basis functions. All curves are rescaled in order to
be defined in the interval I . Figure 1 shows the temperatures curves of the summer of 2005 and
of 2009.

Since we are interested in checking whether there is an increase in the summer temperature
in the year 2009 compared to 2005, the hypothesis of interest is H0 : μ1(τ ) = μ2(τ ) versus
H1 : μ1(τ ) < μ2(τ ), for all τ ∈ I . The p-values of the TBB-based test using the test statistic
ŨM are: 0.001 (for b = 4), 0.003 (for b = 6), 0.004 (for b = 8) and 0.002 (for b = b∗). These
p-values have been obtained using B = 1000 bootstrap replicates. As it is evident from these
results, the p-values of the test statistic ŨM are quite small leading to the rejection of H0 for all
commonly used α-levels.

Appendix: Proofs

To prove Theorem 2.1 and Theorem 2.2, we first establish Lemma A.1 and Lemma A.2. The
proofs of Lemma A.2 and Theorem 2.2 are given in Section 1 of the supplementary material.
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Note also that, throughout the proofs, we use the fact that, by stationarity, E‖Xi,m − Xi‖ =
E‖X0,m − X0‖ and E‖Xi,m‖ = E‖Xi‖ = E‖X0‖ for all i ∈ Z.

Lemma A.1. Let gb be a non-negative, continuous and bounded function defined on R, satisfying
gb(0) = 1, gb(u) = gb(−u), gb(u) ≤ 1 for all u, gb(u) = 0, if |u| > c, for some c > 0. Suppose
that (Xt , t ∈ Z) satisfies Assumption 1 and b = b(n) is a sequence of integers such that b−1 +
bn−1/2 = o(1) as n → ∞. Assume further that, for any fixed u, gb(u) → 1 as n → ∞. Then, as
n → ∞,

b−1∑
h=−b+1

gb(h)γ̂h
P→

∞∑
i=−∞

E
(〈X0,Xi〉

)
,

where γ̂h = 1
n

∑n−|h|
i=1 〈Xi,Xi+|h|〉 for −b + 1 ≤ h ≤ b − 1.

Proof. First, note by the independence of X0 and Xi,i , that
∑∞

i=1 |E〈X0,Xi〉| = ∑∞
i=1 |E〈X0,

Xi − Xi,i〉| ≤ ∑∞
i=1(E‖X0‖2)1/2(E‖X0 − X0,i‖2)1/2, which implies by (2) that

∑∞
i=−∞ |E〈X0,

Xi〉| < ∞. Since n−1 ∑n
i=1〈Xi,Xi〉−E〈X0,X0〉 = oP (1) as n → ∞, it suffices to show that, as

n → ∞,

b−1∑
h=1

gb(h)
1

n

n−h∑
i=1

〈Xi,Xi+h〉 −
∑
i≥1

E〈X0,Xi〉 = oP (1). (10)

Let c+∞ = ∑
i≥1 E[〈X0,Xi〉], c+

m = ∑
i≥1 E[〈X0,m,Xi,m〉] and γ̂

(m)
h = 1

n

∑n−h
i=1 〈Xi,m,Xi+h,m〉.

Because∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂h −c+∞

∣∣∣∣∣ ≤ ∣∣c+
m −c+∞

∣∣+ ∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂
(m)
h −c+

m

∣∣∣∣∣+
∣∣∣∣∣
b−1∑
h=1

gb(h)γ̂h −
b−1∑
h=1

gb(h)γ̂
(m)
h

∣∣∣∣∣, (11)

assertion (10) is proved by showing that there exists m0 ∈ N such that all three terms on the
right-hand side of (11) can be made arbitrarily small in probability as n → ∞ for all m ≥ m0.

For the first term, we use the bound

∣∣∣∣∑
i≥1

E
[〈X0,m,Xi,m〉 − 〈X0,Xi〉

]∣∣∣∣ ≤
∣∣∣∣∣

m∑
i=1

E
[〈X0,m,Xi,m〉 − 〈X0,Xi〉

]∣∣∣∣∣
+

∣∣∣∣∣
∞∑

i=m+1

E
[〈X0,m,Xi,m〉 − 〈X0,Xi〉

]∣∣∣∣∣, (12)

and handle the first term on the right-hand side of (12) using 〈X0,m,Xi,m〉− 〈X0,Xi〉 = 〈X0,m −
X0,Xi,m〉 + 〈X0,Xi,m − Xi〉. Cauchy–Schwarz’s inequality and Assumption 1 yields that for
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every ε1 > 0, ∃m1 ∈ N such that∣∣∣∣∣
m∑

i=1

E
[〈X0,m,Xi,m〉 − 〈X0,Xi〉

]∣∣∣∣∣ ≤ 2
m∑

i=1

(
E‖X0,m − X0‖2

E‖X0‖2)1/2

≤ 2
(
E‖X0‖2)1/2(

m
[
E‖X0,m − X0‖2]1/2)

< ε1

for all m ≥ m1. For the second term of the right-hand side of (12), we get, using 〈X0,Xi〉 =
〈Xi,i,X0〉 + 〈X0,Xi − Xi,i〉, the fact that X0 and Xi,i as well as X0,m and Xi,m are independent
for i ≥ m + 1 and Lemma 2.1 of Horváth and Kokoszka [8], that, for any ε2 > 0, there exists
m2 ∈ N such that∣∣∣∣∣

∞∑
i=m+1

E
[〈X0,m,Xi,m〉 − 〈X0,Xi〉

]∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
i=m+1

E
[〈Xi,i,X0〉

]∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=m+1

E
[〈X0,Xi − Xi,i〉

]∣∣∣∣∣
≤

∞∑
i=m+1

(
E‖X0‖2

E‖Xi − Xi,i‖2)1/2

= (
E‖X0‖2)1/2

∞∑
i=m+1

(
E‖X0 − X0,i‖2)1/2

< ε2

for all m ≥ m2 because of (2). For the second term of (11), first note that, for every fixed
m ≥ 1 and for any fixed h, we have that |γ̂ (m)

h − E[〈X0,m,Xh,m〉]| = op(1). Furthermore, since
{Xn,m,n ∈ Z} is an m-dependent sequence, c+

m = ∑m
i=1 E[〈X0,m,Xi,m〉]. Hence, the second term

of the right-hand side of (11) is op(1), if we show that |∑b−1
h=m+1 gb(h)γ̂

(m)
h | = op(1). We have

E[∑b−1
h=m+1 gb(h)γ̂

(m)
h ]2 = n−2 ∑b−1

h1=m+1
∑b−1

h2=m+1
∑n−h1

i1=1

∑n−h2
i2=1 gb(h1)gb(h2)E(〈Xi1,m,

Xi1+h1,m〉〈Xi2,m,Xi2+h2,m〉). Since the sequence {Xi,m, i ∈ Z} is m-dependent, Xi,m and Xi+h,m

are independent for h ≥ m + 1, that is, using Lemma 2.1 of Horváth and Kokoszka [8] we
have that E〈Xi,m,Xi+h,m〉 = 0 for the same h. Hence, the number of non-vanishing terms
E[〈Xi1,m,Xi1+h1,m〉〈Xi2,m,Xi2+h2,m〉] in the last equation above is of order O(nb) and, conse-

quently, E[∑b−1
h=m+1 gb(h)γ̂

(m)
h ]2 = O(b/n) = o(1) from which the desired convergence follows

by Markov’s inequality. For the third term in (11), we show that, for m ≥ m0,

lim sup
n→∞

P

(∣∣∣∣∣
b−1∑
h=1

gb(h)
(
γ̂h − γ̂

(m)
h

)∣∣∣∣∣ > δ

)
= 0, (13)

for all δ > 0. From this, it suffices to show that, for m ≥ m0,

E

∣∣∣∣∣
b−1∑
h=1

gb(h)
(
γ̂h − γ̂

(m)
h

)∣∣∣∣∣ = o(1). (14)
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Now, by the definitions of γ̂h and γ̂
(m)
h , we have

E

∣∣∣∣∣
b−1∑
h=1

gb(h)
(
γ̂h − γ̂

(m)
h

)∣∣∣∣∣ ≤ E

∣∣∣∣∣1

n

m∑
h=1

gb(h)

n−h∑
i=1

(〈Xi,Xi+h〉 − 〈Xi,m,Xi+h,m〉)∣∣∣∣∣
+E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

(〈Xi,Xi+h〉 − 〈Xi,m,Xi+h,m〉)∣∣∣∣∣. (15)

For the first term of the right-hand side of the above inequality, we use 〈Xi,Xi+h〉 −
〈Xi,m,Xi+h,m〉 = 〈Xi −Xi,m,Xi+h〉+〈Xi+h −Xi+h,m,Xi,m〉, and we get, by to get, by Cauchy–
Schwarz’s inequality and simple algebra, that,

E

∣∣∣∣∣1

n

m∑
h=1

gb(h)

n−h∑
i=1

(〈Xi,Xi+h〉 − 〈Xi,m,Xi+h,m〉)∣∣∣∣∣
≤ m

[(
E‖X0 − X0,m‖2

E‖X0‖2)1/2 + (
E‖X0 − X0,m‖2

E‖X0,m‖2)1/2]
.

Assumption 1 implies then that, for every ε3 > 0, there exists m3 ∈ N such that, for every m ≥
m3, the last quantity above is bounded by ε3. For the second term on the right-hand side of (15),
we use the bound

E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,Xi+h〉
∣∣∣∣∣ +E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,m,Xi+h,m〉
∣∣∣∣∣. (16)

Note that the second summand of (16) is o(1), while for the first term we use 〈Xi,Xi+h〉 =
〈Xi,Xi+h,h〉 + 〈Xi,Xi+h − Xi+h,h〉 to get the bound

E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,Xi+h,h〉
∣∣∣∣∣ +E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,Xi+h − Xi+h,h〉
∣∣∣∣∣. (17)

For the last term of expression (17), we get, using (2), that for every ε4 > 0, there exists m4 ∈ N

such that

1

n

b−1∑
h=m+1

n−h∑
i=1

E
∣∣〈Xi,Xi+h − Xi+h,h〉

∣∣ ≤
b−1∑

h=m+1

E
∣∣〈X0,Xh − Xh,h〉

∣∣
≤ (

E‖X0‖2)1/2
∞∑

h=m+1

(
E‖X0 − X0,h‖2)1/2

< ε4
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for all m ≥ m4. Consider next the first term of (17). Because 〈Xi,Xi+h,h〉 = 〈Xi − Xi,h,

Xi+h,h〉 + 〈Xi,h,Xi+h,h〉, we get for this term the bound

E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi − Xi,h,Xi+h,h〉
∣∣∣∣∣ +E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,h,Xi+h,h〉
∣∣∣∣∣. (18)

The first term above is bounded by

E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi − Xi,h,Xi+h,h〉
∣∣∣∣∣ ≤ (

E‖X0‖2)1/2
∞∑

h=m+1

(
E‖X0 − X0,h‖2)1/2

.

Thus, and by (2), for every ε5 > 0, there exists m5 ∈ N such that, for every m ≥ m5, this term
is bounded by ε5. For the last term of (18), note that {〈Xi,h,Xi+h,h〉, i ∈ Z} is an 2h-dependent
stationary process, and since Xi and Xi+h,h are independent, that is, E〈Xi,Xi+h,h〉 = 0 for all
i ∈ Z, {〈Xi,h,Xi+h,h〉, i ∈ Z} is then a mean zero 2h-dependent stationary process which implies
that n−1/2 ∑n

i=1〈Xi,h,Xi+h,h〉 = OP (1). Using Portmanteau’s theorem, and since the function
f (x) = |x| is Lipschitz, we get that E|n−1/2 ∑n

i=1〈Xi,h,Xi+h,h〉| = O(1). Therefore,

E

∣∣∣∣∣1

n

b−1∑
h=m+1

gb(h)

n−h∑
i=1

〈Xi,h,Xi+h,h〉
∣∣∣∣∣ ≤ 1√

n

b−1∑
h=m+1

E

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi,h,Xi+h,h〉
∣∣∣∣∣

= O(b/
√

n) = o(1),

which concludes the proof of the lemma by choosing m0 = max{m1,m2,m3,m4,m5}. �

Lemma A.2. Suppose that (Yt , t ∈ Z) satisfies Assumption 1 and that b = b(n) is a sequence
of integers satisfying b−1 + bn−1/2 = o(1) as n → ∞. Let wn(·), i = 1,2, . . ., be a sequence of
data-tapering windows satisfying Assumption 2. Then, as n → ∞,

(i) ∑
|h|<b

( W|h|
‖wb‖2

2

)
E

[〈Y0, y〉〈Yh, y〉] →
∞∑

i=−∞
E

[〈Y0, y〉〈Yi, y〉] for every y ∈ L2,

(ii) ∫∫ {
c̃n(u, v) − c(u, v)

}2 dudv = oP (1),

where c(u, v) = ∑∞
i=−∞ E[Y0(u)Yi(v)], Wh = ∑b−h

i=1 wb(i)wb(i +h), h = 0,1, . . . , b−1
and

c̃n(u, v) = 1

n

n∑
i=1

Yi(u)Yi(v) +
b−1∑
h=1

Wh

‖wb‖2
2

1

n

n−h∑
i=1

[
Yi(u)Yi+h(v) + Yi+h(u)Yi(v)

]
.
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Proof of Theorem 2.1. By the triangle inequality and Theorem 1 of Horváth, Kokoszka and
Reeder [9], the assertion of the theorem is established if we show that, as n → ∞,

√
n
(
X

∗
n −E

∗(X∗
n

)) ⇒ �, in probability, (19)

where � is a Gaussian process in L2 with mean 0 and covariance operator C with kernel c(u, v) =
E(�(u)�(v)) given for any u,v ∈ [0,1]2 by

c(u, v) = E
[
X0(u)X0(v)

] +
∑
i≥1

E
[
X0(u)Xi(v)

] +
∑
i≥1

E
[
X0(v)Xi(u)

]
.

Using the notation S∗
n = √

n(X
∗
n − E

∗(X∗
n)), it follows from Proposition 7.4.2 of Laha and Ro-

hatgi [13] that, to prove (19), it suffices to prove that,

(L1) 〈S∗
n, y〉 d→ N(0, σ 2(y)) for every y ∈ L2 where σ 2(y) = 〈C(y), y〉, and that

(L2) the sequence {S∗
n, n ∈N} is tight.

Consider (L1). To establish the desired weak convergence, we prove that, as n → ∞,

Var∗
(〈
S∗

n, y
〉) P→ σ 2(y) (20)

and that

〈S∗
n, y〉√

Var∗(〈S∗
n, y〉)

d→ N(0,1). (21)

Consider (20) and notice that S∗
n = 1√

k

∑k
i=1[U∗

i − E
∗(U∗

i )], where U∗
i = b−1/2(X∗

(i−1)b+1 +
X∗

(i−1)b+2 + · · · + X∗
ib), i = 1,2, . . . , k. Due to the block bootstrap resampling scheme, the ran-

dom variables U∗
i , i = 1,2, . . . , k are i.i.d. Thus, using 〈S∗

n, y〉 = k−1/2 ∑k
i=1[W ∗

i − E
∗(W ∗

i )],
where W ∗

i = 〈U∗
i , y〉, i = 1,2, . . . , k, we have

Var∗
(〈
S∗

n, y
〉) = E

∗(W ∗
1

)2 − (
E

∗(W ∗
1

))2
. (22)

Let μ∗ = E
∗(W ∗

1 ) and Ui = b−1/2(Xi +Xi+1, . . .+Xi+b−1), i = 1,2, . . . ,N . We then have that

μ∗ =
√

b

N

[
n∑

i=1

〈Xi, y〉 −
b−1∑
j=1

(
1 − j

b

)[〈Xj ,y〉 + 〈Xn−j+1, y〉]]. (23)

Therefore, E∗(μ∗) = 0. Using[
n∑

i=1

〈Xi, y〉 −
b−1∑
j=1

(
1 − j

b

)(〈Xj ,y〉 + 〈Xn−j+1, y〉)]2

=
n∑

i=1

n∑
j=1

〈Xi, y〉〈Xj ,y〉 − 2
n∑

i=1

b−1∑
j=1

(
1 − j

b

)
〈Xi, y〉[〈Xj ,y〉 + 〈Xn−j+1, y〉]
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+
b−1∑
i=1

b−1∑
j=1

(
1 − i

b

)(
1 − j

b

)[〈Xi, y〉 + 〈Xn−i+1, y〉][〈Xj ,y〉 + 〈Xn−j+1, y〉]
we get,

E
(
μ∗)2 = b

N2

n∑
i=1

n∑
j=1

E
[〈Xi, y〉〈Xj ,y〉] + O

(
b2/n

) = O
(
b2/n

)
, (24)

where the last equality follows since, by Kronecker’s lemma,

1

n

n∑
i=1

n∑
j=1

E
[〈Xi, y〉〈Xj ,y〉] =

∑
|h|<n

(
1 − |h|

n

)
E

[〈X0, y〉〈Xh,y〉]
→

∫∫
c(u, v)y(u)y(v)dudv (25)

as n → ∞. Since E
∗(μ∗) = 0, (24) implies that μ∗ = OP (b/

√
n).

Consider next the first term of the right hand side of expression (22). For this term, we have

E
∗(W ∗

1

)2 = 1

N

N∑
i=1

〈Ui, y〉2

= 1

N

n∑
i=1

〈Xi, y〉〈Xi, y〉

+
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[〈Xi, y〉〈Xi+h, y〉 + 〈Xi+h, y〉〈Xi, y〉]

− 1

N

b−1∑
s=1

(
1 − s

b

)[〈Xs,y〉〈Xs,y〉 + 〈Xn−s+1, y〉〈Xn−s+1, y〉]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1 − j + t

b

)[〈Xj ,y〉〈Xj+t , y〉 + 〈Xn−j+1−t , y〉〈Xn−j+1, y〉

+ 〈Xj+t , y〉〈Xj ,y〉 + 〈Xn−j+1, y〉〈Xn−j+1−t , y〉]. (26)

Thus,

E
∗(W ∗

1

)2 = 1

N

n∑
i=1

〈Xi, y〉〈Xi, y〉

+
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[〈Xi, y〉〈Xi+h, y〉 + 〈Xi+h, y〉〈Xi, y〉]
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+ OP (b/n) + OP

(
b2/n

)
,

from which we get

Var∗
(
W ∗

1

) =
∫∫

cN(u, v)y(u)y(v)dudv + Op

(
b2/n

)
, (27)

where

cN(u, v) = 1

N

n∑
i=1

Xi(u)Xi(v) +
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[
Xi(u)Xi+h(v) + Xi+h(u)Xi(v)

]
. (28)

By the ergodic theorem and equation (A.2) of Horváth, Kokoszka and Reeder [9], choosing the
kernel K in their notation to be the kernel K(x) = (1 − |x|)1[−1,1](x), where 1A(x) denotes the
indicator function of A, it follows that∫∫ [

cn(u, v) − c(u, v)
]2 dudv = oP (1) (29)

as n → ∞, where c(u, v) = ∑∞
i=−∞ E[X0(u)Xi(v)] and cn(u, v) = (N/n)cN(u, v). Using

Cauchy–Schwarz’s inequality, we get that, as n → ∞,∣∣∣∣∫∫ (
cn(u, v) − c(u, v)

)
y(u)y(v)dudv

∣∣∣∣ ≤
(∫∫ {

cn(u, v) − c(u, v)
}2 dudv

)1/2

‖y‖2 = oP (1).

That is, ∫∫
cn(u, v)y(u)y(v)dudv

P→
∫∫

c(u, v)y(u)y(v)dudv.

Since N/n → 1 as n → ∞, we finally get from (27) that,

Var∗
〈
S∗

n, y
〉 = Var∗

(
W ∗

1

) P→
∫∫

c(u, v)y(u)y(v)dudv = σ 2(y). (30)

Consider next (21). Observe that W ∗
i = 〈U∗

i , y〉, i = 1,2, . . . , k are i.i.d. random variables and,
therefore, it suffices to show that Lindeberg’s condition

lim
n→∞

1

τ ∗2
k

k∑
t=1

E
∗[(W ∗

t − μ∗)21
(∣∣W ∗

t − μ∗∣∣ > ετ ∗
k

)] = 0, for every ε > 0, (31)

is fulfilled, where τ ∗2
k = ∑k

t=1 Var∗(W ∗
t ) = k Var∗(W ∗

1 ) and μ∗ = E
∗(W ∗

i ). To establish (31),
and because of (30), it suffices to show that, for any δ > 0 and as n → ∞,

P

(
1

k

k∑
t=1

E
∗[(W ∗

t − μ∗)21
(∣∣W ∗

t − μ∗∣∣ > ετ ∗
k

)]
> δ

)
→ 0. (32)
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Towards this, notice first that, for any two random variables X and Y and any η > 0, it yields
that

E
[|X + Y |21(|X + Y | > η

)]
≤ 4

[
E|X|21(|X| > η/2

) +E|Y |21(|Y | > η/2
)]; (33)

see Lahiri [14], p. 56. We then get by Markov’s inequality that

P

(
1

k

k∑
t=1

E
∗[(W ∗

t − μ∗)21
(∣∣W ∗

t − μ∗∣∣ > ετ ∗
k

)]
> δ

)

≤ δ−1
E

{
E

∗[(W ∗
1 − μ∗)21

(∣∣W ∗
1 − μ∗∣∣ > ετ ∗

k

)]}
= δ−1

E

[
1

N

N∑
i=1

(
Wi − μ∗)21

(∣∣Wi − μ∗∣∣ > ετ ∗
k

)]

= δ−1
E

[(
W1 − μ∗)21

(∣∣W1 − μ∗∣∣ > ετ ∗
k

)]
≤ 4δ−1[

EW 2
1 1

(|W1| > ετ ∗
k /2

) +E
(
μ∗)2]

, (34)

where Wi = 〈Ui, y〉, i = 1,2, . . . ,N . Furthermore, we have

E
(
W 2

1

) = E
∣∣〈U1, y〉∣∣2 =

∑
|h|<b

(
1 − |h|

b

)
E

[〈X0, y〉〈Xh,y〉] →
∫∫

c(u, v)y(u)y(v)dudv,

as n → ∞. Therefore, by the dominated convergence theorem, limn→∞ EW 2
1 1(|W1| > ετ ∗

k /2) =
0. Hence, using expression (24), we conclude that (34) converges to 0 as n → ∞.

To establish (L2), it suffices, by Theorem 1.13 of Prokhorov [23] and Theorems 5.1 and
5.2 of Billingsley [3], to prove that limk→∞ supn≥1

∑∞
j=k E|〈S∗

n, ej 〉|2 = 0, where {ej , j ≥ 1}
is a complete orthonormal basis of L2. Using E

∗|〈S∗
n, ej 〉|2 = Var∗(〈U∗

1 , ej 〉) and Lemma 14
of Cerovecki and Hörmann [4], (L2) is satisfied if the following five conditions are ful-
filled.

(a) Var∗(〈U∗
1 , ej 〉) ≥ 0 ∀j, n;

(b) limn→∞ Var∗(〈U∗
1 , ej 〉) = �j , in probability;

(c)
∑

j≥1 �j < ∞;
(d) limn→∞

∑
j≥1 Var∗(〈U∗

1 , ej 〉) = ∑
j≥1 �j , in probability;

(e)
∑

j≥1 Var∗(〈U∗
1 , ej 〉) is bounded for all n ≥ 1, in probability.

Note that, by letting y = ej in expression (30), property (b) follows with �j = ∫∫
c(u, v)ej (u) ×

ej (v)dudv. To prove (c), notice that, by Proposition 6 of Horváth, Rice and Whipple [11], and
since the stochastic process {Xt, t ∈ Z} is L2-m-approximable, the covariance operator C with
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kernel c(·, ·) is trace class. Therefore,∑
j≥1

�j =
∑
j≥1

∫∫
c(u, v)ej (u)ej (v)dudv =

∑
j≥1

λj < ∞, (35)

where λj , j ≥ 1 are the eigenvalues of C.
To establish (d), we get, using (23), that

Var∗
(〈
U∗

1 , ej

〉) = 1

N

N∑
i=1

〈Ui, ej 〉2

−
(√

b

N

[
n∑

i=1

〈Xi, ej 〉 −
b−1∑
l=1

(
1 − l

b

)[〈Xl, ej 〉 + 〈Xn−l+1, ej 〉
]])2

. (36)

By Parseval’s identity, we have,

∞∑
j=1

1

N

N∑
i=1

∣∣〈Ui, ej 〉
∣∣2 = 1

N

N∑
i=1

‖Ui‖2

= 1

N

n∑
i=1

〈Xi,Xi〉 +
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[〈Xi,Xi+h〉 + 〈Xi+h,Xi〉
]

− 1

N

b−1∑
s=1

(
1 − s

b

)[〈Xs,Xs〉 + 〈Xn−s+1,Xn−s+1〉
]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1 − t + j

b

)[〈Xj ,Xj+t 〉 + 〈Xn−j+1−t ,Xn−j+1〉

+ 〈Xj+t ,Xj 〉 + 〈Xn−j+1,Xn−j+1−t 〉
]
.

Hence,

∞∑
j=1

1

N

N∑
i=1

∣∣〈Ui, ej 〉
∣∣2 = 1

N

n∑
i=1

〈Xi,Xi〉

+
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[〈Xi,Xi+h〉 + 〈Xi+h,Xi〉
] + OP

(
b2/n

)
. (37)

Then, by letting gb(h) = (1 − |h|
b

) in Lemma A.1, we get that, as n → ∞,

∞∑
j=1

1

N

N∑
i=1

〈Ui, ej 〉2 P→
∞∑

i=−∞
E

(〈X0,Xi〉
)
. (38)
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For the second term of equation (36), we show that,

∑
j≥1

(√
b

N

[
n∑

i=1

〈Xi, ej 〉 −
b−1∑
l=1

(
1 − l

b

)[〈Xl, ej 〉 + 〈Xn−l+1, y〉]])2

= oP (1), (39)

as n → ∞. Using 〈x, y〉 = ∑
j≥1〈x, ej 〉〈y, ej 〉, we have

∑
j≥1

[
n∑

i=1

〈Xi, ej 〉 −
b−1∑
l=1

(
1 − l

b

)(〈Xl, ej 〉 + 〈Xn−l+1, ej 〉
)]2

=
n∑

i=1

n∑
l=1

〈Xi,Xl〉 − 2
n∑

i=1

b−1∑
l=1

(
1 − l

b

)[〈Xi,Xl〉 + 〈Xi,Xn−l+1〉
]

+
b−1∑
i=1

b−1∑
l=1

(
1 − i

b

)(
1 − l

b

)[〈Xi,Xl〉 + 〈Xn−i+1,Xl〉

+ 〈Xi,Xn−l+1〉 + 〈Xn−i+1,Xn−l+1〉
]

=
n∑

i=1

n∑
l=1

〈Xi,Xl〉 + OP (nb) + OP

(
b2).

Now note that, by the continuous mapping theorem and using Theorem 1 of Horváth, Kokoszka
and Reeder [9], we get

1

n

n∑
i=1

n∑
l=1

〈Xi,Xl〉 = 〈√nXn,
√

nXn, 〉 = Op(1). (40)

Therefore,

b

N2

[
n∑

i=1

n∑
l=1

〈Xi,Xl〉 + OP (nb) + OP

(
b2)] = OP

(
b2/n

) = op(1),

which establishes (39). Hence, from (36), (38) and (39), we conclude that

∑
j≥1

Var∗
(〈
U∗

1 , ej

〉) →
∞∑

i=−∞
E

(〈X0,Xi〉
)
, in probability. (41)

Therefore, and by (35), property (d) is proved if we show that,

∑
j≥1

λj =
∞∑

i=−∞
E

(〈X0,Xi〉
)
. (42)
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Using Mercer’s theorem, we have

∑
j≥1

λj =
∫

c(u,u)du =
∫ ∞∑

i=−∞
E

[
X0(u)Xi(u)

]
du

=
∞∑

i=−∞
E

∫ [
X0(u)Xi(u)

]
du =

∞∑
i=−∞

E〈X0,Xi〉. (43)

Notice that the above interchange of summation and integration is justified since, using Assump-
tion 1, and the fact that X0 and Xi,i are independent for i ≥ 1, we get

∞∑
i=−∞

∫ ∣∣E[
X0(u)Xi(u)

]∣∣du

=
∫ ∣∣E[

X0(u)X0(u)
]∣∣du + 2

∞∑
i=1

∫ ∣∣E{
X0(u)

[
Xi(u) − Xi,i(u)

]}∣∣du

≤
∫

E
(
X0(u)

)2 du + 2
∞∑
i=1

{∫
E

[
X0(u)

]2 du

}1/2{∫
E

[
Xi(u) − Xi,i(u)

]2 du

}1/2

≤ E‖X0‖2 + 2
(
E‖X0‖2)1/2

∞∑
i=1

(
E‖X0 − X0,i‖2)1/2

< ∞.

To prove (e), notice first that, by (36),
∑∞

j=1 Var∗(〈U∗
1 , ej 〉) ≤ ∑∞

j=1(1/N)
∑N

i=1 |〈Ui, ej 〉|2
and, therefore, using (37), for any given n ≥ 1,

∑∞
j=1 Var∗(〈U∗

1 , ej 〉) is bounded in probability.
Furthermore, by (41), the sequence {∑∞

j=1 Var∗(〈U∗
1 , ej 〉), n ≥ 1} converges in probability as

n → ∞.
Consider next assertion (ii) of the theorem. By the triangle inequality, it suffices to prove that

as n → ∞, ‖nE∗(X∗
n − E

∗(X∗
n)) ⊗ (X

∗
n − E

∗(X∗
n)) − 2πF0‖HS = oP (1). Now, recall that U∗

i ,
i = 1,2, . . . , n, are i.i.d., and note that

nE∗(X∗
n −E

∗(X∗
n

)) ⊗ (
X

∗
n −E

∗(X∗
n

))
(y)(v)

=
∫

E
∗[[U∗

1 (u) −E
∗(U∗

1 (u)
)][

U∗
1 (v) −E

∗(U∗
1 (v)

)]]
y(u)du,

i.e., nE∗(X∗
n −E

∗(X∗
n)) ⊗ (X

∗
n −E

∗(X∗
n)) is an integral operator with kernel

d(u, v) = E
∗[U∗

1 (u)U∗
1 (v)

] −E
∗(U∗

1 (u)
)
E

∗(U∗
1 (v)

)
. (44)
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Now,

E
∗[U∗

1 (u)U∗
1 (v)

] = 1

N

n∑
i=1

Xi(u)Xi(v)

+
b−1∑
h=1

(
1 − h

b

)
1

N

n−h∑
i=1

[
Xi(u)Xi+h(v) + Xi+h(u)Xi(v)

]

− 1

N

b−1∑
s=1

(
1 − s

b

)[
Xs(u)Xs(v) + Xn−s+1(u)Xn−s+1(v)

]

− 1

N

b−1∑
t=1

b−t∑
j=1

(
1 − j + t

b

)[
Xj(u)Xj+t (v)

+ Xn−j+1−t (u)Xn−j+1−t (v) + Xj+t (u)Xj (v)

+ Xn−j+1(u)Xn−j+1−t (v)
]

(45)

and

E
∗(U∗

1 (u)
) =

√
b

N

[
n∑

i=1

Xi(u) −
b−1∑
j=1

(
1 − j

b

)(
Xj(u) + Xn−j+1(u)

)]
. (46)

Therefore, d(u, v) = cN(u, v) + R(u, v), where R(u, v) is defined as the difference of d(u, v)

given in (44) and cN(u, v) given in (28). Now, notice that 2πF0(y)(v) = ∫ ∑∞
h=−∞ E[X0(u) ×

Xh(v)]y(u)du, that is, 2πF0 is an integral operator with kernel c(u, v) = ∑∞
h=−∞ E[X0(u) ×

Xh(v)]. Hence, ∥∥nE∗(X∗
n −E

∗(X∗
n

)) ⊗ (
X

∗
n −E

∗(X∗
n

)) − 2πF0
∥∥

HS

=
∫∫ [

d(u, v) − c(u, v)
]2 dudv

≤ 2
∫∫ [

cN(u, v) − c(u, v)
]2

dudv + 2
∫∫ [

R(u, v)
]2

dudv.

Using (29) it suffices to prove that
∫∫ [R(u, v)]2 dudv = op(1). To prove this, recall the inequal-

ity (
∑L

i=1 ai)
2 ≤ L

∑L
i=1 a2

i , where L is a positive integer, and notice that, using (40),

b2

N4

∫∫ (
n∑

i=1

n∑
j=1

Xi(u)Xj (v)

)2

dudv

= b2

N2

1

N

n∑
i1=1

n∑
i2=1

∫
Xi1(u)Xi2(u)du

1

N

n∑
j1=1

n∑
j2=1

∫
Xj1(v)Xj2(v)dv
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= b2

N2

(
1

N

n∑
i1=1

n∑
i2=1

〈Xi1,Xi2〉
)2

= OP

(
b2/N2) = op(1). (47)

Furthermore, ∫∫ [
1

N

b−1∑
t=1

b−t∑
j=1

(
1 − j + t

b

)
Xj(u)Xj+t (v)

]2

dudv

≤ 1

N2
b2

∫∫ b−1∑
t=1

b−t∑
j=1

X2
j (u)X2

j+t (v)dudv

= OP

(
b4/N2) = op(1), (48)

where all other terms appearing in R(u, v) are handled similarly. This completes the proof of the
theorem. �

Proof of Theorem 3.1. Consider assertion (i). For i = 1,2, let {e∗
i,j , j = 1,2, . . . , ni} be the

pseudo-observations generated by implementing the MBB procedure at {εi,j , j = 1,2, . . . , ni}.
Using Theorem 2.1, it follows that, conditionally on XM, for i = 1,2, and as n1, n2 → ∞,

1√
ni

ni∑
j=1

(
e∗
i,j −E

∗(e∗
i,j

)) ⇒ �i, in probability,

where �i is a Gaussian random element with mean zero and covariance operator Ci with kernel
ci(·, ·). Now, recall from Step 3 of the MBB-based testing algorithm that, for i = 1,2, the pseudo-
observations ε∗

i,ξ+sb(τ ), ξ = 1,2, . . . , b, s = 0,1, . . . , qi , τ ∈ I , are generated by first applying
the MBB procedure to ε̂i,ξ+sb(τ ), ξ = 1,2, . . . , b, s = 0,1, . . . , qi , τ ∈ I and then εi,ξ (τ ) is
subtracted. Note further that εi,j (τ ) = ε̂i,j (τ ) + Xi,ni

− μi(τ ). Thus, e∗
i,ξ+sb(τ ) = ε∗

i,ξ+sb(τ ) +
εi,ξ (τ ) + Xi,ni

(τ ) − μi(τ ) and, using expression (3.2), we get

1√
ni

ni∑
j=1

(
e∗
i,j −E

∗(e∗
i,j

)) = 1√
ni

ni∑
j=1

(
X∗

i,j −E
∗(X∗

i,j

)) = 1√
ni

ni∑
j=1

(
X∗

i,j − XM

)
.

Therefore, and conditionally on XM, as n1, n2 → ∞,(
1√
n1

n1∑
j=1

(
X∗

1,j − XM

)
,

1√
n2

n2∑
j=1

(
X∗

2,j − XM

)) ⇒ (�1,�2), in probability,

where �1 and �2 are two independent Gaussian random elements with mean zero and covariance
operator C1 and C2 with kernel c1(·, ·) and c2(·, ·), respectively. Since√

n1n2

M

(
X

∗
1,n1

− X
∗
2,n2

) =
√

n2

M

1√
n1

n1∑
j=1

(
X∗

1,j − XM

) −
√

n1

M

1√
n2

n2∑
j=1

(
X∗

2,j − XM

)
,
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and because n1/M → θ , we get that, as n1, n2 → ∞,√
n1n2

M

(
X

∗
1,n1

− X
∗
2,n2

) ⇒ �, in probability,

where � = √
1 − θ�1 − √

θ�2. The proof of assertion (ii) follows along the same lines using
Theorem 2.2. This completes the proof of the theorem. �
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