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Considering optimal alignments of two i.i.d. random sequences of length n, we show that for Lebesgue-
almost all scoring functions, almost surely the empirical distribution of aligned letter pairs in all optimal
alignments converges to a unique limiting distribution as n tends to infinity. This result helps understanding
the microscopic path structure of a special type of last-passage percolation problem with correlated weights,
an area of long-standing open problems. Characterizing the microscopic path structure also yields robust
alternatives to the use of optimal alignment scores alone for testing the homology of genetic sequences.
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1. Introduction

1.1. Motivation

Let x = x1, . . . , xn and y = y1, . . . , ym be two finite sequences consisting of letters from a finite
alphabet A. An alignment with gaps of x and y is obtained by introducing an arbitrary number of
gaps before, in-between and after the entries of each sequence, subject to the restriction that when
gaps are considered to be entries in their own right, denoted by G, both expanded sequences end
up having the same total number of entries, and such that no gap ends up being aligned with
another gap. The two sequences are then written above one another and aligned entry by entry.

Defining a score S(a,b) for all possible pairs of aligned letters (a,b) ∈ A∗2, where A∗ :=
A ∪ {G} and A∗2 := A∗ × A∗ \ {(G,G)}, the alignment score under the scoring function S is
given as the sum of individual scores of aligned letter pairs. An optimal alignment according to
S is an alignment with gaps that maximizes the alignment score.

These concepts, which will be more rigorously defined in Section 1.2, are of standard use in
computational genomics. Building on these familiar notions, we associate with each alignment
with gaps a concept of empirical distribution over the set of letter pairs. Although such empirical
distributions can be defined for sequences of differing lengths n �= m, we consider only sequences
of equal length n and propose to study the asymptotics when n → ∞ when the letters of x and
y are replaced by i.i.d. random variables. We will discuss the salient concepts more rigorously
in Section 1.2. Before we do so, let us comment on how our investigation contributes to the
literature in several areas.
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1.1.1. Last-passage percolation

Consider the set

E := {{
(z,w), (z,w + 1)

}
,
{
(z,w), (z + 1,w)

} : z,w ∈ Z
}

of vertical and horizontal edges of unit length incident to points in Z
2, and let a random weight

w(e) be associated with each edge. In the classical setting of first-passage percolation, these ran-
dom weights are taken to be i.i.d. with some fixed distribution. A path of smallest total weight
between two points a and b ∈ Z

2 is then sought, any admissible path having to consist of consec-
utive adjacent edges e1, . . . , en ∈ E with e1 and en incident to a and b, respectively. Interpreting
the weights as the time it takes to cross an edge, the total weight w(e1) + · · · + w(en) of a path
corresponds to the time it takes to pass along this path from a to b. Minimum weight paths thus
correspond to fastest links between the two points. On directed graphs one can also consider a
corresponding notion of maximum weight path or slowest link between two points, and one then
speaks of last-passage percolation. Analogous concepts can be defined for other graph topologies
and models of random edge weights.

The problem of understanding the structure of optimal paths in first-passage percolation was
recognized as being important several decades ago but still remains largely unresolved, see
Howard [18]. One open question is to characterize the relative proportions of vertical and hori-
zontal edges in a shortest path from the point (0,0) to (0, n) and their asymptotics as n goes to
infinity.

In this paper, we ask a similar question relating to a special last-passage percolation problem,
which we shall now describe. Consider the set of oriented edges

E′ := {(
(z,w), (z,w + 1)

)
,
(
(z,w), (z + 1,w)

)
,
(
(z,w), (z + 1,w + 1)

) : z,w ∈ Z
}
,

let a scoring function S be given, and define random edge weights

w(e) =

⎧⎪⎨
⎪⎩

S(Xz+1, Yw+1) if e = (
(z,w), (z + 1,w + 1)

)
,

S(Xz+1,G) if e = (
(z,w), (z + 1,w)

)
,

S(G, Yw+1) if e = (
(z,w), (z,w + 1)

)
.

The problem of optimally aligning the random sequences X and Y according to S now becomes
a last-passage percolation problem, as there exists a one-one correspondence between paths from
(0,0) to (n,n) along the oriented edges from E′ and alignments with gaps of X with Y , and as
the length of such a path equals the alignment score of the associated alignment with gaps. The
optimal alignment score thus equals the weight of a maximum weight path. Furthermore, the
empirical distribution of an alignment with gaps reveals the relative proportions of diagonal, hor-
izontal and vertical edges in the associated path. Analogous results for first-passage percolation
can be obtained by multiplying the edge weights by −1.

Another type of path microstructure that was investigated in the context of optimal alignments
is the local uniqueness of an optimal path, see Hauser and Matzinger [14] and Hirmo, Lember
and Matzinger [17] for a definition, theoretical properties and an application of this concept.
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We emphasize that optimal alignments with gaps correspond to very special last-passage per-
colation problems, as edge weights exhibit long-range correlation. As a result, the qualitative
behavior of this model is different from other models considered in the literature. For example,
Theorem 6.2 below shows that in many cases the fluctuations of optimal alignment scores are of
Gaussian order. See also Amsalu, Hauser and Matzinger [2], where strong evidence is provided
that this is the generic order. In contrast, other last- and first-passage models are believed to have
fluctuations of smaller order.

1.1.2. Computational genomics

Consider sections x = x1, . . . , xn and y = y1, . . . , ym of DNA or RNA sequences of two different
taxa, each letter representing a site. One would like to decide if x and y have similar biological
function and are likely to have evolved from a common ancestral sequence.

Under the assumption of a Markov model of independently evolving sites, a scoring function S

is chosen by setting the value S(a,b) at (a,b) ∈A∗2 equal to the logarithm of the probability that
a letter from the ancestral genome evolved into the letter a in the first of the extant taxa and into
the letter b in the second. In alignments with gaps of x and y, aligned letters are thus interpreted
as having evolved from a common ancestral site. Letters aligned with a gap are interpreted as a
site in the ancestral genome that became deleted in one of the two extant taxa, or as a new site
inserted, by mutation, into the genome of one of the two taxa. The Markov model must therefore
also account for the probabilities of insertions and deletions.

Under this choice of scoring function, optimal sequence alignments theoretically correspond to
maximum likelihood homologies of genetic sequences, see Karlin and Altschul [20], Waterman
[34] and Baxevanis and Ouellette [3]. Naturally, this choice of scoring function depends on how
long ago the two taxa got separated on the phylogenetic tree, that is, for how long they evolved
without exchange of genetic material. In practice it is however impossible to identify such a
clean-cut scoring function, as the Markov model is simplistic and rates of mutation and time since
evolutionary separation are not known exactly. Taking feedback of biologists into account, the
widely used scoring function that underlies the BLASTZ algorithm (see Baxevanis and Ouellette
[3]) has been developed to produce decisions on homology that are as biologically relevant as
possible. However, wrong homology classifications may still occur.

A recently pioneered approach to further improve the accuracy of decisions on the homology
of two sequences is to exploit properties of the microscopic path structure of optimal align-
ments. Using the concept of local uniqueness of optimal alignments (see Hauser and Matzinger
[14]), Hirmo, Lember and Matzinger [17] found that optimal alignments of homologous and non-
homologous sequences have entirely different microscopic structures. Preliminary experiments
showed that conducting homology classification on the basis of path micro-structure is compet-
itive with the BLASTZ algorithm of Baxevanis and Ouellette [3], even when an unsophisticated
scoring function is used. This suggests that the exploitation of path micro-structure offers robust
alternatives to homology classification on the basis of optimal alignments alone. The results of
the present paper help taking this work further.

1.1.3. Monte Carlo simulation of null-models

Statistical tests for deciding the homology of two sequences under a particular scoring function
typically involve a null-model of i.i.d. random sequences. More specifically, two sequences are
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deemed to be homologous if their optimal alignment score is significantly higher than typical
optimal alignment scores of two random sequences of the same length. Let Ln(S) be the optimal
alignment score of two random sequences of length n with i.i.d. letters drawn from some fixed
distribution on A. In order to design a statistical test, one typically needs to know E[Ln(S)] and
VAR(Ln(S)), or estimates thereof with guaranteed error bounds.

As will be further discussed in Section 1.9 below, the ratio λn(S) := E[Ln(S)]/n is known
to converge to a limit λ(S) called the Chvàtal–Sankoff constant. While the exact value of this
constant is unknown even in the simplest cases and straight-forward Monte Carlo simulation fails
to produce estimates of usable accuracy, more sophisticated Monte Carlo simulation methods
can be applied to obtain tight estimates, see Hauser, Martinez and Matzinger [13] and Hauser,
Matzinger and Dürringer [9]. Having simulated an approximation of λ(S), estimates of E[Ln(S)]
are available, since by (1.10) we know that λn(S) ≤ λ(S), and since a significant amount of
information is known about the difference λ(S) − λn(S): Lemma 3.2 below, proven in Amsalu,
Hauser and Matzinger [2], establishes a bound of the form

λ(S) − λn(S) ≤ O

(√
lnn√
n

)
. (1.1)

Remarkably, the bound (1.1) is independent of the distribution of the letters over A but only
depends on the scoring function and the assumption that the letters of X and Y be i.i.d. In general,
the order of the bound (1.1) is tight, as Alexander [1] proved a lower bound of the form

λ(S) − λn(S) ≥ c

√
lnn√
n

in the case of the longest common subsequence problem (LCS), which will be further discussed
in Example 1.2 of Supplement A [16].

Bounds on VAR(Ln(S)) are less well understood. In the case of the LCS scoring function of
Example 1.2 of Supplement A and sequences consisting of i.i.d. Ber(0.5) variables, Chvàtal and
Sankoff [8] conjectured that the variance is of order VAR(Ln(S)) = o(n2/3). Steele [30] later
proved the bound VAR(Ln(S)) ≤ 2p(1 − p)n for the case of Ber(p) variables. Waterman [33]
raised the question as to whether or not this bound can be improved. His simulations suggested
that for p < 0.5 the dependence of VAR(Ln(S)) on n is linear. Boutet de Monvel [6] found that
this also applies to the case p = 0.5, although the linear growth only sets in for very large n.
For the case where p is very small, Lember and Matzinger [23] gave a rigorous proof of the
linear order VAR(Ln(S)) = �(n). Their analysis was based on showing that the manipulation
of randomly selecting a letter of specified type from one of the two sequences and changing it
into another specified type has a positive biased effect on the optimal alignment score. See also
Hauser and Matzinger [14], where this technique was pioneered.

The present paper significantly extends the applicability of this technique to general scor-
ing functions and to random sequences whose distributions are not highly asymmetric. The al-
ready mentioned Theorem 6.2 yields a sufficient criterion under which the asymptotic order
VAR(Ln(S)) = �(n) holds.

A related problem was studied in Hauser, Popescu and Matzinger [15], where it was shown
that for two randomly sampled symmetric scoring functions S and T , the deviation of the score
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relative to T of an optimal alignment relative to S of two random sequences of length n has a
deviation of order O((logn)1/4n3/4). Technically, the cited paper is related to the present discus-
sion, as it also approaches a problem of large deviations via geometric probability and convex
analysis.

1.2. Basic concepts and notation

1.2.1. Alignments with gaps

An alignment with gaps π of x = x1, . . . , xn and y = y1, . . . , ym is defined by two strictly in-
creasing functions πx : {1, . . . , k} → {1, . . . , n} and πy : {1, . . . , k} → {1, . . . ,m}. The πx(i)th
entry of x is considered aligned with the πy(i)th entry of y, and all other entries are considered
to be aligned with gaps.

We remark that this definition corresponds to equivalence classes of the less formal notion of
alignments with gaps described in Section 1.1, as the introduction of gaps is not fully determined
in all cases. For example, the alignments

x a G G b

y G b a b
and

x G a G b

y b G a b

both correspond to the choice k = 1, πx : 1 �→ 2, and πy : 1 �→ 3. However, this is inconse-
quential, since all alignments with gaps from the same equivalence class behave as if they were
identical in everything that follows.

1.2.2. The empirical distribution

We may assume that an order has been fixed on A∗, so that a lexicographic ordering of A∗2 is
well-defined. Let π be an alignment with gaps of two sequences x and y of equal length n. For
each possible pair of letters (a,b) ∈ A∗2 let us count the number of times a letter a in x is aligned
with a letter b in y. Divide this number by n and denote the result by pab. We call the vector

pπ(x, y) of all such ratios collected in lexicographical order the empirical distribution vector of
π .

We remark that the vector 
pπ(x, y) corresponds to an empirical probability distribution in the
classical sense that is scaled up by a factor τ ≥ 1, the presence of which is due to having divided
the frequencies by the length n of the sequences not counting the gaps rather than by the length
of the sequences including the gaps. See Example 1.1 in Supplement A for an example of an
empirical distribution of two sequences.

1.2.3. Two sets of empirical distributions: SET(X,Y ) and SETn

We denote the set of all empirical distribution vectors associated with x and y by

SET(x, y) := { 
pπ(x, y) : π is an alignment with gaps of x and y
}
. (1.2)
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Let us next consider two independent random sequences X = X1, . . . ,Xn and Y = Y1, . . . , Yn,
where the random variables Xi and Yj are all i.i.d., taking values in A with some fixed distribu-
tion. We denote the convex hull of SET(X,Y ) by

SETn := conv
(
SET(X,Y )

)
, (1.3)

accounting for n because we will be interested in the asymptotics as n tends to infinity.

1.2.4. Scoring functions and optimal alignments

A scoring function is a function S : A∗2 → R. For an alignment with gaps π of x = x1, . . . , xn

and y = y1, . . . , ym, let us define the score Sπ(x, y) under S as the sum of scores of the aligned
letter pairs, that is,

Sπ(x, y) =
k∑

i=1

S(xπx(i), yπy(i)) +
∑

j /∈πx({1,...,k})
S(xj ,G) +

∑
j /∈πy({1,...,k})

S(G, yj ).

We write

LS(x, y) := max
π

Sπ(x, y) (1.4)

for the optimal alignment score of x and y, where the maximum is taken over all alignments
with gaps π of x and y. Any maximizing alignment π∗ of (1.4) is called an optimal alignment
according to S. Multiple optimal alignments may exist for a given pair of sequences and a given
scoring function. The dynamic programming approach of Needleman and Wunsch [27] allows
to identify an optimal alignment with gaps in in O(nm) time. Furthermore, if there are k optimal
alignments, the algorithm can be easily amended to identify all of these in O(nm + k(n + m))

time.
We remark that, although alignment scores and optimal alignments are well defined for se-

quences x and y of different lengths, hereafter we will only consider sequences that are of equal
length n, as we will be interested in asymptotic results when n → ∞. See Example 2 of Supple-
ment A for examples of optimal alignments.

1.2.5. Relating SETn to optimal alignment scores

For any fixed scoring function S, we may define the linear functional

fS : R|A∗2| → R,


x �→
∑

(a,b)∈A∗2

S(a,b)xab.
(1.5)

We then have Sπ(x, y) = nfS( 
pπ(x, y)), and consequently,

LS(x, y)

n
= max


p∈SET(x,y)
fS( 
p) = max


p∈conv(SET(x,y))
fS( 
p), (1.6)
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the last equation following from the fact that the maximum of a linear functional over a set equals
its maximum over the convex hull of this set.

The problem of maximizing the alignment score over the set of all alignments with gaps, a
purely combinatorial optimization problem, can thus be reformulated as a convex optimization
problem, a class of particularly well-behaved continuous optimization problems. The reformu-
lation is conceptual in that an explicit description of conv(SET(x, y)) is generally exponentially
hard to come by. Hence, this does not provide an avenue for replacing the dynamic programming
approach by a continuous algorithm. Nonetheless, the reformulation provides a powerful theo-
retical tool that will be central to our analysis, making it possible to prove our main results via
the machinery of convex analysis. The relevant results will be developed in Section 2. A deep
connection between convex optimization and optimal sequence alignments was also exploited
in the design of Monte Carlo methods for the simulation of the Chvàtal–Sankoff constant, see
Hauser, Martinez and Matzinger [13] and Hauser, Matzinger and Dürringer [9].

1.2.6. The Chvàtal–Sankoff constant

From this point onwards we consider only the random sequences X and Y introduced in Sec-
tion 1.2.3. To account for the dependence of LS(X,Y ) on the common length n of these se-
quences, we revert to the notations

Ln(S) := LS(X,Y ) (1.7)

and λn(S) = E[Ln(S)]/n introduced in Section 1.1.3.
It is easy to see that the sequence (−Ln(S))n∈N is subadditive. Exploiting this property, Chvà-

tal and Sankoff [8] showed that

λn(S) ≤ λm(S), ∀m = kn, k ∈N, (1.8)

λ(S) := lim
n→∞λn(S) exists, (1.9)

λn(S) ≤ λ(S), ∀n ∈N, (1.10)

P

[
lim

n→∞
Ln(S)

n
= λ(S)

]
= 1. (1.11)

Equation (1.9) follows from Fekete’s lemma (see Fekete [10]). See also Steele [32]. All four
relations also easily follow from Kingman’s Subadditive Ergodic theorem (see Kingman [21]
and Steele [31]).

1.2.7. Another set of empirical distributions: SET

Another set of empirical distributions of interest is defined by

H(S) := {
x ∈R
|A∗2| : fS(
x) ≤ λ(S)

}
, (1.12)

SET :=
⋂
S

H(S), (1.13)
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where the intersection in (1.13) is taken over all scoring functions S. Alternatively, since fS(
x)

and λ(S) are both homogeneous of degree 1 in S, it suffices to take the intersection over the
scoring functions on the unit sphere S|A∗2|−1. It is immediate from (1.13) that SET is a closed
convex set. In Lemma 2.4, we will furthermore show that it is compact and nonempty.

1.2.8. Distance between sets

The Hausdorff distance (see Hausdorff [12]) between two subsets A,B ⊆ R
n is defined as fol-

lows, where ‖ · ‖ denotes the Euclidean norm,

d(A,B) = max
(

sup
x∈A

d(x,B), sup
y∈B

d(A,y)
)
,

d(x,B) = inf
{‖x − y‖ : y ∈ B

}
, (1.14)

d(A,y) = inf
{‖x − y‖ : x ∈ A

}
.

1.3. A roadmap to the paper

1.3.1. Contributions

The following are the main results of this paper: Theorem 4.1 establishes that SETn almost surely
converges to the deterministic set SET in the topology of the Hausdorff distance. We remark that
SET only depends on the distribution of the sequences X and Y , but not their realization, while
SETn depends only on the realization. Furthermore, while the definition of SET involves scor-
ing functions, the definition of SETn does not, as it is solely based on the combinatorial notion
of alignments with gaps. Theorem 4.1 establishes the nontrivial fact that the notions of scoring
functions and empirical distributions asymptotically become duals of each other. Theorem 5.1
shows that, as n tends to infinity, the empirical distributions of all optimal alignments of X and
Y almost surely converge to a deterministic distribution, on condition that the scoring function
S be chosen such that fS has a unique maximizer in SET. Whenever this condition is met, we
denote the unique maximiser by 
pS , a vector that depends only on the distribution of X and Y ,
but not on their realizations. The theorem quantifies the probability that there exists an optimal
alignment of X and Y with respect to S with empirical distribution further away than ε > 0 from

pS as negatively exponentially small in n, where ε is an arbitrary small constant independent of
n. The condition of Theorem 5.1 is difficult to verify in practice, but Theorem 2.1 shows that the
condition is met generically, that is, for Lebesgue-almost every scoring function. As a corollary,
we obtain Theorem 5.2, which says that for Lebesgue-almost every scoring function S the empir-
ical distributions of all optimal alignments of X and Y almost surely converge to a deterministic
distribution. A further consequence is Theorem 6.2, which provides a sufficient criterion to guar-
antee that the fluctuation (defined as the standard deviation) of the optimal alignment score is of
order �(

√
n). This criterion constitutes a practical tool in the design of a statistical test on the

order of fluctuation of the optimal score. A related approach based on Monte Carlo simulation
was discussed in Amsalu, Hauser and Matzinger [2].
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1.3.2. Key ideas

Applying (1.6) to the random sequences X and Y , we have

Ln(S)

n
= max


p∈SETn
fS( 
p). (1.15)

By (1.11), Ln(S)/n almost surely converges to a deterministic constant λ(S) which also appeared
in the definition of SET given in (1.12) and (1.13). These equations further imply that

max

p∈SET

fS( 
p) ≤ λ(S). (1.16)

Lemma 2.4(d) below shows that Inequality (1.16) holds in fact as an equality. Combined with
(1.15), this implies

max

p∈SETn

fS( 
p)
n→∞−→ max


p∈SET
fS( 
p) almost surely. (1.17)

At a first pass it is illustrative to see approximate proofs of the main theorems, free of the
large deviations complications that will be present in the rigorous arguments we will give later.
Theorem 2.1 and Propositions 2.2 and 2.4 from Section 2, provide the crucial insight: By (1.17),
the conditions of Proposition 2.4 are approximately met for C = SET and Cn = SETn. This
makes it plausible that SETn → SET, as claimed in Theorem 4.1. In the rigorous proof, we will
use the fact that Ln(S)/n converges to λ(S) at a rate of order O(lnn/

√
n), which follows directly

from the Azuma–Hoeffding Inequality, as we shall see in Section 3. The convergence of SETn

to SET occurs at the same rate. Theorem 2.1 shows that the conditions of Proposition 2.2 are
satisfied for Lebesgue-almost every linear functional fS , and since choosing the scoring function
S generically is tantamount to choosing fS generically, Theorem 5.2 follows.

1.3.3. Key difficulties

The random variable Ln(S) is a function of the realizations of the i.i.d. random sequences X

and Y . Lemma 3.1 will show that changing the realization of only one entry from either X or Y

results in a change of Ln(S) by at most the deterministic constant

max
(d,c),(e,c)∈A∗2

∣∣S(d, c) − S(e, c)
∣∣.

One can thus apply the Azuma–Hoeffding Inequality to find that, on a scale of
√

n, the tail
of Ln(S) decays at least quadratically exponentially fast: In the notation of Lemma 3.3, set
m = 2n, Zi = Xi for (i = 1, . . . , n) and Zj = Yj−n for (j = n + 1, . . . ,m). We then have
g(Z1, . . . ,Zm) = Ln(S), and setting ε = t/

√
m, the lemma implies that a deviation of Ln(S)

from its mean by t
√

2n is quadratically exponentially rare in t . This powerful tool lends itself to
an elegant analysis of the asymptotic convergence of the alignment score and its fluctuations.

In contrast, analyzing the convergence of the empirical distribution of letter pairs in optimal
alignments is much harder: upon changing the realization of one of the random letters, it has
to be assumed a priori that the entire optimal alignment has changed, and likewise the rela-
tive frequencies at which pairs of letters are aligned. As a consequence, the Azuma–Hoeffding
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Inequality cannot be applied directly. Luckily, it can be applied indirectly through the optimal
alignment scores of different scoring functions, but this comes at the cost of having to deal with
additional technicalities.

A further key difficulty is that for the scoring functions S under consideration it is required
that fS be maximized in only one point on SET. This condition would be met if SET were
known to be strictly convex everywhere, but this seems very difficult to verify in practice, as
the exact shape of SET is unknown: SET corresponds to the asymptotic shape of the wet zone
in the first/last passage percolation formulation of our problem, and determining the shape of
the corresponding zone in standard first passage percolation is a long-standing open problem
in the general case. We get around this problem by showing that if the scoring function S is
chosen generically, then there exists a unique maximizer of fS on SET, see Theorem 2.1 and
Lemma 2.4, which result in Theorem 5.2. Counter-Example 1.1 of Supplement A shows that
the claim of Theorem 5.2 fails on a null-set of scoring functions, whence the theorem cannot be
extended the set of all scoring functions.

2. Convex geometry tools

Section 1.2.5 already alluded to the usefulness of convex geometry as an approach to answering
the questions raised in this paper. In this section, we will develop the tools required in the proofs
of the main theorems. All lemmas and theorems are used in the line of arguments leading to the
proofs of the main theorems. Due to the page limit of the journal, we defer some of the proofs
of this section to Supplement A. The approach and results presented here may be useful in the
analysis of other first- and last-passage percolation models as well.

Sn−1 denotes the unit sphere in R
n, Bρ(
x) the Euclidean ball of radius ρ around 
x ∈ R

n, d

the Hausdorff distance, conv(·) the convex hull and cl(·) the closure of a set in the canonical
subspace topology inherited from R

n. We say that a convex set C ⊂ R
n has dimension k if its

affine hull aff(C) ⊂R
n has dimension k.

The first theorem plays a key role in the proofs of Lemma 2.1, Theorem 5.2 and Proposi-
tion 2.3.

Theorem 2.1. Let C ⊂R
n be nonempty, compact and convex, and let 
S : � → Sn−1 be a random

vector that takes values in the unit sphere with uniform distribution, defined on some probability
space (�,A ,P). Then for almost all ω ∈ �, the optimization problem arg max
y∈C〈 
S(ω), 
y〉 has
a unique solution.

Proof. Let us first consider the case where C has nonempty interior. Upon a shift of C we may
assume without loss of generality that 
0 lies in the interior of C. Then the polar C◦ = { 
w ∈ R

n :
〈 
w, 
y〉 ≤ 1,∀
y ∈ C} is also compact convex with nonempty interior. Seen as the claim of the
theorem is invariant under positive scaling, we may further assume without loss of generality
that B3(
0) ⊂ C◦ ⊂ B
(
0).

Next, let 
s ∈ Sn−1 be a given point on the unit sphere and consider the function

τ
s : T
s Sn−1 → R,
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Figure 1. The geometry of the Lipschitz estimate.


w �→ max
{
τ > 0 : τ 
w ∈ C◦}

defined on the tangent space at 
s. We claim that τ
s is Lipschitz continuous on a sufficiently
small neighbourhood V
s of 
s in T
s Sn−1 ∩B2(
0). Let 
w1, 
w2 ∈ T
s Sn−1 ∩B2(
0) and W =
span{ 
w1, 
w2}. For (i = 1,2) we then have

1 ≤ ‖ 
wi‖ < 2, (2.1)

τ
s( 
wi) = max
{
τ > 0 : τ 
wi ∈ C◦ ∩ W

}
, (2.2)

1 < τ
s( 
wi)‖ 
wi‖ ≤ 
. (2.3)

By (2.2), we may assume without loss of generality that Rn = W for the purposes of proving
|τ
s( 
w1) − τ
s( 
w2)| ≤ L‖ 
w1 − 
w2‖. We refer the reader to Figure 1 for an illustration of the
geometric setup. The lines a and b are the tangents from τ
s( 
w1) 
w1 to the unit sphere S1 in W .
Denote the angle between the line 
w1 
w2 and the horizontal at 
w1 by θ , the angle between the
horizontal at τ
s( 
w1) 
w1 and the tangents a, b by α, and the angle between the horizontal at 
w1

and the two tangents from 
w1 to S1 by β . Since the affine hull aff( 
w1, 
w2) cannot enter B1(
0), it
must lie wedged between the latter two tangents. In combination with (2.1), this implies

|θ | ≤ β = π

2
− arcsin

1

‖ 
w1‖ ≤ π

2
− arcsin

1

2
. (2.4)

Further, (2.3) implies

α = π

2
− arcsin

1

τ
s( 
w1)‖ 
w1‖ ≤ π

2
− arcsin

1



. (2.5)

Observe that, by convexity, the line segment between the point of tangency of a at S1 and
τ
s( 
w1) 
w1 lies in C◦, and further that the definition of τ
s( 
w1) implies τ
s( 
w1) 
w1 ∈ ∂C◦. There-
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Figure 2. Bounding τ
s( 
w2) by ratios.

fore, the segment of a above τ
s( 
w1) 
w1 lies outside C◦, and it follows that

‖B‖
‖C‖ ≤ τ
s( 
w2) ≤ ‖A‖

‖D‖ , (2.6)

see Figure 2. Let ϕ be the angle between 
w1 and 
w2, and let us assume ϕ < (π − 2θ)/2, so that
the intersection points A,B,C,D exist. This assumption is equivalent to limiting our analysis to
a sufficiently small neighbourhood of 
s in T
s Sn−1, as assumed earlier. We can now express the
inequalities (2.6) in terms of the angles we introduced,

τ
s( 
w1)
1 − tanϕ tanβ

1 + tanϕ tanα
≤ τ
s( 
w2) ≤ τ
s( 
w1)

1 + tanϕ tanβ

1 − tanϕ tanα
.

This can be simplified by Taylor expansion,∣∣τ
s( 
w2) − τ
s( 
w1)
∣∣ ≤ τ
s( 
w1) tanϕ(tanα + tanβ)

(2.1),(2.3),(2.4),(2.5)≤ 
 tanϕ
(



√
1 − 
−2 + √

3
)
, (2.7)

and since ‖ 
w1 − 
w2‖ ≥ ‖ 
w1‖ tanϕ, Equations (2.1) and (2.7) imply∣∣τ
s( 
w1) − τ
s( 
w2)
∣∣≤ L‖ 
w1 − 
w2‖,

with L = 
(

√

1 − 
−2 + √
3).

Next, having shown that τ
s is Lipschitz continuous on a sufficiently small open neighbourhood
V
s ⊂ T
s Sn−1 of 
s, Rademacher’s theorem (see Rademacher [28] and Gruber [11]) implies that
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τ
s is Fréchet-differentiable everywhere on V
s except on a null-set B
s ⊂ V
s . We now claim that
if the optimization problem


x(
s) = arg max

y∈C

〈
s, 
y〉 (2.8)

has multiple solutions, then τ
s is Gâteaux-nondifferentialble at 
s. Since τ
s is then also Fréchet
nondifferentiable at 
s, it must be the case that 
s ∈ B
s . Let us thus suppose that (2.8) has two
different solutions, 
x0 �= 
x1. Then 〈
s, 
x1 − 
x0〉 = 0, so that we have c1 := 〈
s, 
x1〉 = 〈
s, 
x0〉.
Furthermore, writing c2 := 〈
x1 − 
x0, 
x0〉 and c3 := 〈
x1 − 
x0, 
x1〉, our assumption that 
x0 �= 
x1
implies c2 �= c3. Without loss of generality, we may assume that c2 < c3. For all ξ ∈ R let us
define 
wξ := 
s + ξ(
x1 − 
x0) and consider the restriction τ
s |
s+span(
x1−
x0) which we shall de-
note by τ(ξ) := τ
s( 
wξ). Clearly, if τ(ξ) is nondifferentiable at ξ = 0, then τ
s( 
w) is Gâteaux-
nondifferentiable at 
w = 
s. The definition of τ(ξ) implies 〈τ(ξ) 
wξ , 
xj 〉 ≤ 1 for (j = 0,1), so
that

τ(ξ) ≤ min

(
1

c1 + c2ξ
,

1

c1 + c3ξ

)

= 1

c1
min

(
1 − c2

c1
ξ + O

(
ξ2),1 − c3

c1
ξ + O

(
ξ2)).

Furthermore, we have τ(0) = 1/c1. Therefore,

d

d ξ+
τ(0) = lim

ξ→0+
τ(ξ) − 1

c1

ξ
≤ −c3

c2
1

< −c2

c2
1

≤ lim
ξ→0−

τ(ξ) − 1
c1

ξ
= d

d ξ−
τ(0),

showing that τ(ξ) is nondifferentiable at ξ = 0, as claimed.
Next, observe that τ
s is Fréchet differentiable at 
w ∈ V
s if and only if the map

τ̂ : Sn−1 →R,


z �→ max
{
τ > 0 : τ
z ∈ C◦}

is differentiable at ŵ := 
w/‖ 
w‖ and if and only if τŵ is differentiable at ŵ. Denoting the spherical
projections of V
s and B
s by V̂
s and B̂
s , the compactness of Sn−1 implies the existence of finitely
many points 
s1, . . . , 
sk ∈ Sn−1 such that

⋃k
i=1 V
si = Sn−1. Consequently,

B =
k⋃

i=1

B
si

is a null-set with the property that if Problem (2.8) has multiple solutions for a given 
s ∈ Sn−1,
then 
s ∈ B. This proves the claim of the theorem in the case where C has nonempty interior.

Let us now consider the general case. When C consists of a singleton, the claim of the theorem
is trivial. We may thus assume that dim(C) ≥ 1. Upon a shift we may assume without loss of
generality that 
0 ∈ C. Let W = span(C) be the subspace spanned by C, and W⊥ its orthogonal
complement under the Euclidean inner product of Rn. We denote the orthogonal projections onto



14 R.A. Hauser and H. Matzinger

these spaces by πW and πW⊥ respectively. Finally, let SW = Sn−1 ∩W be the unit sphere in W ,
and

πS : Sn−1 → SW,


s �→ πW(
s)
‖πW(
s)‖

the rescaled projection of Sn−1 into W .
The condition dim(C) ≥ 1 implies dim(W⊥) ≤ n − 1, and BW⊥ = {ω ∈ � : 
S(ω) ∈ W⊥} is

a null-set. Hence, πS(
s) is defined for almost all 
s ∈ Sn−1. Further, by isotropy of the uniform
distribution on Sn−1, the random vector

πS(
S) : � \ BW⊥ → SW

is uniformly distributed on SW . Since C has nonempty interior in the subspace topology of W ,
the case we already settled above applies and implies that

BW =
{
ω ∈ � \ BW⊥ : arg max


y∈C

〈
πS
(
S(ω)

)
, 
y〉 is nonunique

}

is a null-set. Observing that for 
s ∈ Sn−1 \W⊥ it is the case that

arg max

y∈C

〈
s, 
y〉 = arg max

y∈C

〈
πS
(
S(ω)

)
, 
y〉,

we find, that arg max
y∈C〈 
S(ω), 
y〉 has a unique solution if and only if ω is not in the null-set
B = BW⊥ ∪ BW . �

The following notion will play a central role in the sequel.

Definition 2.1. Let C ⊂ R
n be convex compact. We say that a boundary point 
x ∈ ∂C is a point

of strict curvature if there exists 
s ∈ Sn−1 such that the optimization problem max
y∈C〈
s, 
y〉 has

x as unique maximizer. We denote the set of points of strict curvature by CSE.

Note that if C has a differentiable boundary, then any point where all principal curvatures
are nonzero is a point of strict curvature. However, the set of points of strict curvature may be
larger. For example, the epigraph of the curve x �→ |x|3 has zero curvature at x = 0, but un-
der our definition this is a point of strict curvature nonetheless. Furthermore, Definition 2.1 also
applies to points where ∂C is nondifferentiable and principal curvatures are not defined. For ex-
ample, vertices of polytopes are points of strict curvature, while points on edges (1-faces) are not.
Definition 2.1 also differs from the related concept of “direction of curvature” used by Howard–
Newman (see, e.g., Howard [18], page 139), in that their notion requires a lower bound on the
order of curvature, while ours does not. To extend our convergence results of Sections 4 and 5
in developing quantitative bounds on the convergence rate, the notion of direction of curvature
would have to be used instead of our weaker notion of point of strict curvature.
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The normal cone of C at 
x ∈ C is defined as N
x C = {
s ∈ R
n : 〈
s, 
x − 
w〉 ≥ 0,∀ 
w ∈ C}, or

equivalently,

N
x C =
{

s ∈R

n : 
x = arg max

w∈C

〈
s, 
w〉
}

=
{
τ 
s : τ ≥ 0, 
s ∈ Sn−1, 
x = arg max


w∈C
〈
s, 
w〉

}
. (2.9)

By the dual description of C, it is the case that

N
x C ∩ Sn−1 ∩ span(C) �=∅ (2.10)

if and only if 
x ∈ ∂C, see also Lemma 2.3(c).
The following proposition provides further insight into the notion of points of strict curvature.

The proof is given in Supplement A.

Proposition 2.1. For any C ⊂R
n nonempty, convex and compact, the following hold true:

(a) 
x ∈ CSE if and only if there exists 
s ∈ N
x C ∩ Sn−1 and sequences (δk)k∈N and (εk)k∈N ⊂
R+ such that εk, δk → 0 as k tends to infinity, and such that{
y ∈ C : N
y C ∩ Sn−1 ∩Bδk

(
s) �=∅
}⊂ Bεk

(
x) ∀k ∈ N.

(b) {
x ∈ ∂C : N
x C ∩ N
v C = span(C)⊥,∀
v ∈ C \ {
x}} ⊂ CSE.

A point 
x ∈ C is an extreme point of C if it cannot be written as a convex combination of two
points 
y, 
z ∈ C \ {
x}, see, for example, Rockafellar [29] or Borwein and Lewis [5]. We denote
the set of extreme points of C by CE .

The following lemma, whose proof is given in Supplement A and which will be used in the
proof of Theorem 2.2, shows that points of strict curvature form a dense subset in the set of
extreme points. In fact, most of the technical difficulties of this section deal with extending
properties of CE to CSE.

Lemma 2.1. For any C ⊂R
n nonempty convex compact, it is true that

CSE ⊆ CE ⊆ cl(CSE).

The next lemma forms a key technical tool in the proofs of Theorems 4.1 and 5.1, two of
the main theorems of this paper, as well as of Proposition 2.4. The proof is again deferred to
Supplement A. The result will be used to establish that for 
x0 ∈ SET a point of strict curvature,
SET can be approximated via finitely many inequalities from the dual description of SET in such
a way that the only points from the approximating set that lie outside the tangent plane of SET
at 
x0 are localized near 
x0.

Lemma 2.2. Let C ⊂ R
n be nonempty, convex and compact, and let 
x0 ∈ CSE and 
s0 ∈ N
x0 C ∩

Sn−1 be chosen such that 
x0 is the unique maximizer of max
y∈C〈
s0, 
y〉. Let ε > 0 be given. Then
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there exist finitely many points 
xi ∈ C and normal vectors 
si ∈ N
xi
C ∩ Sn−1, (i = 1, . . . , k), such

that

C(ξ0, . . . , ξk) := {
x ∈R
n : 〈
s0, 
x − 
x0〉 ≥ ξ0

}∩
k⋂

i=1

{
x ∈R
n : 〈
si, 
x − 
xi〉 ≤ ξi

}
is compact for all (ξ0, . . . , ξk) ∈R

k+1, and C(0, . . . ,0) ⊂ Bε(
x0).

The next result is a template for Theorem 5.1 used in Section 1.3.2, presenting the geometric
ideas without the complications caused by large deviations. See Supplement A for a proof.

Proposition 2.2. Let C ⊂ R
n be nonempty, convex and compact, and let C1,C2, . . . be a se-

quence of compact subsets of Rn such that d(Cn,C) → 0. Let 
s ∈ Sn−1 be such that the opti-
mization problem


x∗ = arg max

x∈C

〈
s, 
x〉 (2.11)

has a unique solution. And finally, for all n ∈N let 
xn be a solution of


xn = arg max

x∈Cn

〈
s, 
x〉.

Then 
xn → 
x∗ as n tends to infinity.

Next, we shall investigate the approximability of compact convex sets by polyhedra and poly-
topes. Results on outer approximations by polyhedra and algorithms to achieve this in practice
are widespread in the literature on the cutting plane approach in numerical optimization, see, for
example, Bertsekas and Yu [4]. Similar results for inner approximations by polytopes play a key
role in Markov chain Monte Carlo methods for the estimation of the volume of high dimensional
convex bodies, see, for example, Jerrum [19]. The literature in both areas is focused on algo-
rithms and relies on separation or membership oracles. As a result, the constructions use outer
approximations by cutting planes that do not necessarily touch the boundary of the convex body
to be approximated, and likewise, inner approximations use generators that generally do not lie
on the boundary either.

In contrast, the approximations required by our analysis have a crucial interplay with the
boundary. For outer approximations, we would like cutting hyperplanes to be supported at points
of strict curvature. Likewise, we would like inner approximations to be generated as the convex
hull of points of strict curvature. Since we are not aware of the required results appearing in the
literature, we derive them from first principles.

The following result is key in the proofs of Theorem 4.1, Lemma 2.4, and of Propositions 2.3
and 2.4. See Supplement A for a proof.

Lemma 2.3. Let C ⊂R
n be a set of the form

C =
⋂


s∈Sn−1

H
s , (2.12)
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where H
s = {
x : 〈
s, 
x〉 ≤ λ(
s)} for some continuous function 
s �→ λ(
s) ∈ R. Then the following
hold true:

(a) C is convex and compact.
(b) For any given ε > 0, there exists a finite collection of points 
s1, . . . , 
sk ∈ Sn−1 for which

max

x∈⋂k

i=1 H(
si )
d(
x,C) ≤ ε. (2.13)

(c) For every point 
x ∈ ∂C, there exists s ∈ Sn−1 such that

〈
s, 
x〉 = max

y∈C

〈
s, 
y〉 = λ(
s).

The following is a strengthening of Lemma 2.3(b) of independent interest. The proof is de-
ferred to Supplement A.

Proposition 2.3. Let C be as in Lemma 2.3 and nonempty. Then the points 
si in part (b) of
Lemma 2.3 can be chosen so that 
xi = arg max
y∈C〈
si , 
y〉 is unique for all i, that is, 
xi are points
of strict curvature.

The following result is required for the purposes of the proofs of Theorem 4.1 and of Proposi-
tion 2.4.

Theorem 2.2. Let C ⊂ R
n be nonempty compact convex. The for all ε > 0 there exist finitely

many points of strict curvature 
x1, . . . , 
xk ∈ CSE such that

max

x∈C

d
(
x, conv(
x1, . . . , 
xk)

)≤ ε.

Proof. Let {
x1, . . . , 
xk} ⊂ CSE be an ε-net on the set CE of extreme points of C, that is, 
xi are
chosen so that

min
i

‖
z − 
xi‖ ≤ ε

for all 
z ∈ CE . The existence of such an ε-net is established as follows: C being compact, cl(CSE)

is a compact set too, and by the Heine–Borel theorem, we can extract a finite covering by Eu-
clidean balls of radius ε/2 around points 
yi ∈ cl(CSE), which by Lemma 2.1 is also a covering
of CE ,

k⋃
i=1

Bε/2(
yi) ⊃ CE.

Next, for all i choose 
xi ∈ CSE within distance ε/2 of 
yi . It then follows from the triangular
inequality that {
x1, . . . , 
xk} is the required ε-net.

By the theorems of Minkowski (see Minkowski [26] and Gruber [11]: this theorem says that
a convex compact set in R

n is equal to the convex hull of its extreme points; the generalization
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to arbitrary topological vector spaces is the Krein–Milman theorem (Krein and Milman [22],
Milman [25])) and Carathéodory (see Carathéodory [7]: this result says that if K = conv(X) for
some X ⊂R

n, then every point in K is a convex combination of at most n+1 elements of X, see
also Gruber [11]), any point 
x ∈ C can be written as a convex combination 
x = ξ1
z1 +· · ·+ξm
zm

of m ≤ n + 1 extreme points zj ∈ CE , and by construction of the ε-net, it is then possible to
choose 1 ≤ ij ≤ k such that ‖
zj − 
xij ‖ ≤ ε for all j . Using the triangular inequality once again,
we find that

d
(
x, conv(
x1, . . . , 
xk)

)≤ d
(
x, conv(
xi1, . . . , 
xim)

)
≤ d(ξ1
z1 + · · · + ξm
zm, ξ1 
xi1 + · · · + ξm
xim) ≤ ε,

as claimed. �

The next result, proven in Supplement A, can be seen as an template for Theorem 4.1, exhibit-
ing the main argument without the complications introduced by large deviations.

Proposition 2.4. Let C be a nonempty convex compact subset of Rn with dual description (2.12),
and let C1,C2, . . . be convex compact subsets of Rn such that for all linear functionals f : Rn →
R it is true that max 
p∈Cn f ( 
p)

n→∞−→ max 
p∈C f ( 
p). Then d(Cn,C) → 0.

The final result shows among other things that the above developed theory is applicable to
C = SET, defined in (1.13). This lemma is used in the point-convergence proofs of Theorems
5.1 and 5.2. We once again defer the proof to Supplement A.

Lemma 2.4.

(a) The function S �→ λ(S) is continuous.
(b) SET is nonempty, convex and compact.
(c) For every 
x ∈ ∂SET there exists S
x �= 0 such that {
y : fS
x (
y) = λ(S
x)} is a tangent plane

to SET supported at 
x.
(d) max
x∈SET fS(
x) = λ(S) holds true for all scoring functions S.

3. Large deviation tools

Recall the quantities LS(x, y), Ln(S) and λn(S) introduced in Section 1.2. From (1.9), we know
that that λn(S) → λ(S). In this section, we will show a stronger result that quantifies the conver-
gence rate as being of order O(

√
lnn/n). For this purpose, we introduce the following notation,

‖S‖∗ =
(

max
(d,c),(e,c)∈A∗2

∣∣S(d, c) − S(e, c)
∣∣, max

(c,d)∈A∗2

∣∣S(c,d)
∣∣).

The following two lemmas are required for the purposes of the proof of Theorem 3.1. The first
result is proven in Supplement A.
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Lemma 3.1. Let x = x1, . . . , xm and y = y1, . . . , yn be two finite sequences with letters from
A, and let S be a scoring function. Let x ∈ A, and consider two amendments of the sequence
x, x[i] = x1, . . . , xi−1, x, xi+1, . . . , xm, obtained by replacing an arbitrary letter xi by x, and
x[+] = x1, . . . , xm, x, obtained by extending x by a letter x. Then the following hold true,∣∣LS

(
x[i], y

)− LS(x, y)
∣∣≤ ‖S‖∗, (3.1)∣∣LS

(
x[+], y

)− LS(x, y)
∣∣≤ ‖S‖∗. (3.2)

Lemma 3.2 (Amsalu, Hauser and Matzinger [2]). The convergence of λn(S) to λ(S) is gov-
erned by the inequality

λn(S) ≤ λ(S) ≤ λn(S) + cn‖S‖∗
√

lnn√
n

+ 2‖S‖∗
n

∀n ∈N, (3.3)

where

cn :=
√

2 ln 3 + 2 ln(n + 2)

lnn
.

Note that cn tends to
√

2 when n → ∞, so that it effectively acts as a constant.
The following result will be required to prove Theorems 3.1 and 6.2.

Lemma 3.3 (McDiarmid’s Inequality (McDiarmid [24])). Let Z1,Z1, . . . ,Zm be i.i.d. ran-
dom variables that take values in a set D, and let g : Dm → R be a function of m variables with
the property that

max
i=1,...,m

sup
z∈Dm,ẑi∈D

∣∣g(z1, . . . , zm) − g(z1, . . . , ẑi , . . . , zm)
∣∣≤ C.

Thus, changing a single argument of g changes its image by less than a constant C. Then the
following bounds hold,

P
[
g(Z1, . . . ,Zm) − E

[
g(Z1, . . . ,Zm)

]≥ ε × m
]≤ exp

{
−2ε2m

C2

}
,

P
[
E
[
g(Z1, . . . ,Zm)

]− g(Z1, . . . ,Zm) ≥ ε × m
]≤ exp

{
−2ε2m

C2

}
.

The following constitutes a key tool for the proofs of Theorems 4.1 and 5.1.

Theorem 3.1. For fixed ε > 0 and scoring function S there exists nε ∈ N such that

P

[
Ln(S)

n
≥ λ(S) + ε

]
≤ exp

{
− ε2n

4‖S‖2∗

}
∀n ∈N, (3.4)

P

[
Ln(S)

n
≤ λn(S) − ε

]
≤ exp

{
− ε2n

4‖S‖2∗

}
∀n ∈N, (3.5)
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P

[
Ln(S)

n
≤ λ(S) − ε

]
≤ exp

{
− ε2n

4‖S‖2∗

}
∀n ≥ nε. (3.6)

Proof. We know from Lemma 3.1 that

g(X1, . . . ,Xn,Y1, . . . , Yn) = S(X1, . . . ,Xn,Y1, . . . , Yn) = Ln(S)

satisfies the assumptions of Lemma 3.3 with m = 2n and C = ‖S‖∗. McDiarmid’s Inequality
therefore shows

P

[
Ln(S)

n
≥ λn(S) + ε

]
= P

[
Ln(S) ≥ E

[
Ln(S)

]+ ε

2
× 2n

]

≤ exp

{
− ε2

‖S‖2∗
× n

}
, (3.7)

and similarly,

P

[
Ln(S)

n
≤ λn(S) − ε

]
≤ exp

{
− ε2

‖S‖2∗
× n

}
. (3.8)

Claim (3.5) therefore holds.
Furthermore, Lemma 3.2 established that

λn(S) ≤ λ(S) ≤ λn(S) + cn‖S‖∗
√

lnn√
n

+ 2‖S‖∗
n

∀n ∈ N, (3.9)

holds, where cn = √
2 ln 3 + 2 ln(n + 2)/

√
lnn. Using the first inequality from (3.9) in conjunc-

tion with (3.7), we find

P

[
Ln(S)

n
≥ λ(S) + ε

]
≤ P

[
Ln(S)

n
≥ λn(S) + ε

]
≤ exp

{
− ε2

‖S‖2∗
× n

}
,

which shows Claim (3.4).
Using now the second inequality from (3.9) in conjunction with (3.8), we find

P

[
Ln(S)

n
≤ λ(S) − ε

]

≤ P

[
Ln(S)

n
≤ λn(S) −

(
ε − cn‖S‖∗

√
lnn√
n

− 2‖S‖∗
n

)]

≤ exp

{
−

(ε − cn‖S‖∗
√

lnn√
n

− 2‖S‖∗
n

)2

‖S‖2∗
× n

}

≤ exp

{
− ε2

4‖S‖2∗
× n

}
∀n ≥ nε,
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where nε ∈ N is chosen large enough to satisfy

ε − cn‖S‖∗
√

lnn√
n

− 2‖S‖∗
n

>
ε

2
∀n ≥ nε.

This establishes Claim (3.6). �

4. Set convergence of empirical distributions

Equipped with the tools of Sections 2 and 3, we are ready to prove the first main theorem of this
paper.

Theorem 4.1. Let SET and SETn be as defined in (1.13) and (1.3). Then

P
[
d
(
SETn,SET

) n→∞−→ 0
]= 1, (4.1)

where d is the Hausdorff distance.

Proof. By the definition of d in (1.14), we need to prove the two identities

P
[

max

x∈SETn

d(
x,SET)
n→∞−→ 0

]
= 1, (4.2)

P
[

max

x∈SET

d
(
x,SETn

) n→∞−→ 0
]

= 1. (4.3)

To prove Equation (4.2), we use Lemma 2.3 which establishes that, given ε > 0, there exist
finitely many scoring functions S1, . . . , Sk such that

max

x∈⋂k

i=1 H(Si)

d(
x,SET) ≤ ε,

where the half-spaces

H(Si) := {
x ∈R
|A∗|2 : fSi

(
x) ≤ λ(Si)
}
,

are defined as in Equation (1.12). Let H+
n (Si) denote the shifted half-space

H+
n (Si) =

{

x : fSi

(
x) ≤ λn(Si) + lnn√
n

}
,

and let us define the event An(Si) = {ω ∈ � : SETn(ω) ⊆ H+
n (Si)}, where � is the probability

space over which the random sequences X and Y are defined.
Since the extreme points of SETn are determined by alignments with gaps of X1, . . . ,Xn and

Y1, . . . , Yn, the event An(Si)
c occurs exactly when there exists an alignment with gaps π such

that

fSi

( 
pπ

(
(X1, . . . ,Xn), (Y1, . . . , Yn)

))
> λn(Si) + lnn√

n
,
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and this in turn occurs if and only if

Ln(Si)

n
> λn(Si) + lnn√

n
.

We thus have

P
[
An(Si)

c
]= P

[
Ln(Si)

n
> λn(Si) + lnn√

n

]
≤ exp

{
− (lnn)2

‖Si‖2∗

}
= n−cSi

lnn,

where the inequality follows by setting ε = (lnn)/
√

n in Inequality (3.7) of the proof of Theo-
rem 3.1, and where cSi

= ‖Si‖−2∗ > 0 does not depend on n, since ‖Si‖∗ is as defined in Section 3.
It follows that

P

[
SETn ⊂

k⋂
i=1

H+
n (Si)

]
≥ 1 −

k∑
i=1

n−cSi
lnn ≥ 1 − n−c lnn,

where c > 0 is a constant independent of n. The series
∑

n n−c lnn being convergent, the Borel–
Cantelli lemma implies that almost surely there exists n0 ∈N such that

SETn ⊂
k⋂

i=1

H+
n (Si) ∀n ≥ n0.

By the definition of the Si , this implies that for all n ≥ n0, we have

max

x∈SETn

d(
x,SET) ≤ C × lnn√
n

+ ε, (4.4)

where C > 0 is a constant independent of n. This implies that

P
[
lim sup
n→∞

max

x∈SETn

d(
x,SET) ≤ ε
]

= 1 ∀ε > 0.

Finally, since this is true for all ε rational, Equation (4.2) follows.
To prove Equation (4.3), we employ Theorem 2.2, which establishes that for any given ε > 0,

there exist points 
x1, . . . , 
xk ∈ SETSE, chosen such that

d
(
x, conv(
x1, . . . , 
xk)

)≤ ε ∀
x ∈ SET.

We now claim that for each 
xi there almost surely exists a sequence of points 
x1,i , 
x2,i , 
x3,i , . . .

such that 
xj,i ∈ SETj for all j ∈N and lim supj→∞ ‖
xj,i − 
xi‖ ≤ ε. By the triangular inequality,
our claim implies that almost surely it is the case that

lim sup
n→∞

max

x∈SET

d
(
x,SETn

)≤ 2ε ∀ε > 0,

and since this is true for all ε rational, Equation (4.3) follows.
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It remains to prove our claim. Lemma 2.2 shows that there exist scoring functions S
xi
and

S1, . . . , S� such that


xi ∈ Ci := {
x : fS
xi
(
x) ≥ λ(S
xi

), fSj
(
x) ≤ λ(Sj ), (j = 1, . . . , �)

}⊂ Bε(
xi)

and such that the sets

Cn,i :=
{


x : fS
xi
(
x) ≥ λn(S
xi

) − lnn√
n

,fSj
(
x) ≤ λ(Sj ) + lnn√

n
, (j = 1, . . . , �)

}

are compact for all n ∈ N.
Further, by (1.8), the sets Cn,i are nested in the following sense: for any finite set

{n1, . . . , nk} ⊂N there exist infinitely many integers n ∈N such that Cn,i ⊆ Cnj ,i , (j = 1, . . . , k).
By compactness and (1.9), we then have

lim sup
n→∞

d(
xi,Cn,i) ≤ ε. (4.5)

We will now show that with high probability Cn,i has a nonempty intersection with SETn.
Consider the events

Bn,j :=
{
ω ∈ � : Ln(Sj )

n
≤ λ(Sj ) + lnn√

n

}
,

Cn,i :=
{
ω ∈ � : ∃
x ∈ SETn s.t. fS
xi

(
x) ≥ λn(S
xi
) − lnn√

n

}
.

By Theorem 3.1, we have

P
[
Bc

n,j

]≤ n−Kj lnn,

where Kj > 0 is a constant that does not depend on n. Note also that Equation (1.15) implies

Bn,j =
{
ω ∈ � : fSj

(
x) ≤ λ(Sj ) + lnn√
n

,∀
x ∈ SETn

}
.

Theorem 3.1 further implies

P
[
C c

n,i

]≤ n− lnn.

But note that when the events Cn,i and Bn,1, . . . ,Bn,� occur jointly, then SETn ∩ Cn,i �= ∅

holds. The probability that the intersection is empty is thus bounded from above by

P
[
C c

n,i

]+
�∑

i=1

P
[
Bc

n,i

]≤ (� + 1)n−K lnn,

where K > 0 is a constant that does not depend on n.
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In view of the fact that the series

∞∑
n=1

(� + 1)n−K lnn

converges, the Borel–Cantelli lemma now implies that, almost surely, for all but a finite number
of n ∈ N there exists xn,i ∈ SETn ∩ Cn,i . In the finitely many cases where SETn ∩ Cn,i = ∅, we
can pick an arbitrary point xn,i ∈ SETn to complete the sequence. In view of (4.5), we thus find
that almost surely it is possible to construct a sequence (xn,i)n∈N with the claimed properties.
This settles the theorem. �

5. Point convergence

So far we established that the empirical distributions of optimal alignments of random sequences
under any scoring function asymptotically lie in SET. We will now show that for a fixed, ran-
domly chosen scoring function S, the empirical distributions of all optimal alignments of X and
Y under S converge to a unique point in SET. Recalling the notation 
pπ(x, y) introduced in
Section 1.2, we write

SET∗(X,Y ) = { 
pπ(X,Y ) : π is an optimal alignment of X and Y
}

for the set of empirical distributions of optimal alignments of X = X1, . . . ,Xn and Y =
Y1, . . . , Yn. Consider the event

Dn( 
p, ε) := {
ω ∈ � : SET∗(X(ω),Y (ω)

) \ Bε( 
p) �=∅
}

that there exists an optimal alignment π of x = X(ω) and y = Y(ω) under the scoring function
S such that ‖ 
pπ(x, y) − 
p‖ > ε.

Theorem 5.1. Let S be a scoring function such that the hyperplane{
x : fS(
x) = λ(S)
}

(5.1)

intersects SET in a unique point 
pS , and let ε > 0 be given. Then there exists a constant Kε such
that for all n ∈ N it is true that

P
[
Dn( 
pS, ε)

]≤ e−Kεn.

Furthermore, SET∗(X,Y ) → { 
pS} almost surely as n tends to infinity.

Proof. By Lemma 2.4, SET is a compact convex set with nonempty intersection with the hyper-
plane (5.1), and by (1.16) all such intersection points are maximizers of the optimization problem
max
y∈SET〈
s, 
y〉, where 
s is the normalization of the vector representation of the linear functional
fS defined by the scoring function. It follows that 
pS satisfies Definition 2.1 of a point of strict
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curvature of SET. Lemma 2.2 therefore implies that there exist finitely many scoring functions
S1, S2, . . . , Sk and thresholds ε0, . . . , εk > 0 such that

{
x : fS(
x) ≥ λ(S) − ε0
}∩

k⋂
i=1

{
x : fSi
(
x) ≤ λ(Si) + εi

}⊂ Bε( 
pS). (5.2)

Consider now the events

En,i := {
ω ∈ � : SETn ⊂ {
x : fSi

(
x) ≤ λ(Si) + εi

}}
.

By (1.15) this is equivalent to requiring that the rescaled optimal alignment score Ln(Si)/n

satisfy Ln(Si)/n ≤ λ(Si) + εi . By Theorem 3.1, there exists Ki > 0 such that

P[En,i] ≥ 1 − e−Kin ∀n. (5.3)

Let us further define the event

En,0 := {
ω ∈ � : SETn ∩ {
x : fSi

(
x) ≥ λ(S) − ε0
} �=∅

}
,

which is the same as requiring that Ln(S)/n exceed the value λ(S)−ε0. Corollary 3.1 once again
shows that there exists K0 > 0 such that

P[En,0] ≥ 1 − e−K0n ∀n. (5.4)

Combining all of the above, we now find Dc
n ⊆⋃k

i=0 En,i , so that

P[Dn] ≤
k∑

i=0

P
[
E c

n,i

]≤
k∑

i=0

e−Kin ≤ e−Kεn

for some constant Kε > 0, as claimed.
The last statement follows from the Borel–Cantelli lemma in a similar construction as in the

proof of Theorem 4.1. �

The above theorem shows that if 
pS is the only solution to fS( 
pS) = λS , then almost surely
it is the case that for all sequences (πn)N, constructed by choosing an optimal alignment πn of
X = X1, . . . ,Xn and Y = Y1, . . . , Yn for each n ∈ N, it is true that 
pπn(X,Y ) → 
pS . Note that
the convergence rate was not specified. However, our convergence argument, which is based on
the Azuma–Hoeffding Inequality, could be made quantitative if a bound on the curvature of SET
at 
pS were known.

Our second and main result of this section shows that the above theorem applies generically.

Theorem 5.2. For Lebesgue-almost every scoring function S, the following is true: Almost surely
it is the case that for all sequences (πn)N, constructed by choosing an optimal alignment πn of
X = X1, . . . ,Xn and Y = Y1, . . . , Yn for each n ∈ N, we have 
pπn(X,Y ) → 
pS , where 
pS is a
unique empirical distribution that only depends on S.
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Proof. Consider a scoring function S and denote the normalization of the vector representation
of the linear functional fS by 
S. For Lebesgue-almost every S, 
S corresponds to a point where
the optimization problem of Theorem 2.1 has a unique optimizer. Together with Lemma 2.4, this
implies that the condition that the hyperplane {
x : fS(
x) = λ(S)} intersect SET in a unique point

pS is satisfied, and hence Theorem 5.1 applies, for almost every S. �

6. Fluctuation of the optimal alignment score

Let X = X1, . . . ,Xn and Y = Y1, . . . , Yn be the random sequences introduced earlier, and let
a and b be two distinct letters from the alphabet A. We define a new random sequence X̃ =
X̃1, . . . , X̃n via the following compound procedure:

1. Sample a realization x = x1, . . . , xn of X.
2. If J := {i : xi = a} �=∅,

(a) let J be a random index defined on some probability space (�̃, P̃) and taking values
with uniform distribution on J ,

(b) select a sample j = J (ω̃),
(c) set x̃j = b and x̃i = xi for i �= j .

3. Else, set x̃ = x.

Note that the distribution of X̃ generally differs from the distribution of X, and that, while X =
X1, . . . ,Xn consists of the first n letters of an infinite random sequence (Xi)i∈N, the same is
not true for X̃: we only ever sample (at most) one entry of X realized in the form of an a,
independently of n, so that the probability of any given index to be chosen diminishes as n

grows.
The following result was proven in Lember and Matzinger [23], where we use the notation

L̃n(S) := max
π

Sπ(X̃,Y ),

in analogy to the earlier introduced random variable Ln(S) = maxπ Sπ(X,Y ), and where we
write f (n) = �(n) if there exist constants 0 < c1 < c2 such that c1n ≤ f (n) ≤ c2n for all n ∈N.

Theorem 6.1 (Lember and Matzinger [23]). Let the scoring function S and the distribution of
X and Y be chosen so that there exist parameters β, ε > 0 for which

P
[
EP̃

[
L̃n(S) − Ln(S)‖X,Y

]≥ ε
]≥ 1 − e−βn ∀n ∈ N.

Then the variance of the optimal alignment score is of order

VAR
[
Ln(S)

]= �(n).

Up until now, the criterion of Theorem 6.1 could only be verified in a few special cases, notably
for random sequences whose letters have highly asymmetrical distribution on A. We will now
reduce this criterion to the following two conditions:
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C1 The scoring function S is chosen so that the hyperplance {
x : fS(
x) = λ(S)} intersects
SET in a unique point 
pS = (pcd).

C2 There exist a,b ∈ A for which it is the case that∑
c∈A∗

pac(Sbc − Sac) > 0.

These two conditions are much easier to verify, as C1 holds generically by the argument of the
proof of Theorem 5.2, and in many cases C2 can be established to high confidence by Monte
Carlo simulation.

Theorem 6.2. Let a scoring function S be chosen so that conditions C1 and C2 apply. Then the
variance of the optimal alignment score is of order

VAR
[
Ln(S)

]= �(n).

Proof. Let J = {i ∈ {1, . . . , n} : Xi = a}, qa = P[X1 = a], and let us define the event

Fn :=
{
ω ∈ � : n

|J | ≥ 1

2qa

}
.

Since X has i.i.d. entries, McDiarmid’s Inequality (Lemma 3.3) implies that for all n ∈N,

P[Fn] ≥ 1 − e−n
q2
a
2 . (6.1)

Next, let

ε := 1

4qa

〈 
pS, (Sbc − Sac)c
〉 := 1

4qa

∑
c∈A∗

pac(Sbc − Sac),

where qa = P[X1 = a]. Condition C2 shows that ε > 0, and by the continuity of inner products,
there exists δ > 0 so that for any 
p ∈ Bδ( 
pS), we have

1

2qa

〈 
p, (Sbc − Sac)c
〉≥ ε. (6.2)

Recall now the notations SET∗(X,Y ) and Dn( 
p, ε) introduced in Section 5. By virtue of Condi-
tion C1, Theorem 5.1 applies, which shows that there exists Kδ > 0 such that the probability that
all optimal alignments of X and Y have empirical distributions that lie within a distance δ of 
pS

equals

P
[
SET∗(X,Y ) ⊆ Bδ( 
pS)

]= P
[
Dc

n( 
pS, δ)
]≥ 1 − e−Kδn ∀n ∈N. (6.3)

But when Dc
n( 
pS, δ) occurs, then for any optimal alignment π∗

n of X and Y , (6.2) holds with

p = 
pπ∗

n
(X,Y ). Denoting the components of 
pπ∗

n
(X,Y ) by p∗

cd, where (c,d) ∈ A∗2, we have

P
[
EP̃

[
L̃n(S) − Ln(S)‖X,Y

]≥ ε‖Dc
n( 
pS, δ),Fn

]
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≥ P
[
EP̃

[
Sπ∗

n
(X̃, Y ) − Sπ∗

n
(X,Y )‖X,Y

]≥ ε‖Dc
n( 
pS, δ),Fn

]
= P

[
n

|J |
∑
c∈A∗

p∗
ac(Sbc − Sac) ≥ ε‖Dc

n( 
pS, δ),Fn

]

(6.2)≥ P

[
2nqa

|J | ε ≥ ε‖Dc
n( 
pS, δ),Fn

]
= 1 (6.4)

Therefore,

P
[
EP̃

[
L̃n(S) − Ln(S)‖X,Y

]≥ ε
]

≥ P
[
EP̃

[
L̃n(S) − Ln(S)‖X,Y

]≥ ε‖Dc
n( 
pS, δ),Fn

]× P
[
Dc

n( 
pS, δ),Fn

]
(6.1),(6.3),(6.4)≥ 1 − e−n

q2
a
2 − e−Kδn ∀n ∈ N.

The conditions of Theorem 6.1 are thus met for β > 0 small enough, and the claimed order of
fluctuation holds true. �
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the omitted proofs of Sections 2 and 3.
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