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This article presents a weak law of large numbers and a central limit theorem for the scaled realised co-
variation of a bivariate Brownian semistationary process. The novelty of our results lies in the fact that we
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framework. The proofs rely heavily on recent developments in Malliavin calculus.
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1. Introduction

Within the realm of stochastic processes that fail to be a semimartingale, the recent literature
has devoted particular attention to the Brownian semistationary (BSS) process, a process that
has originally been used in the context of turbulence modelling in [8], but has been subsequently
employed as a price process in energy markets in [2]. The BSS process in its most basic form
can be written as:

t
Yt:/ g(t —s)os dWy,
—0oQ

for a deterministic kernel function g, a stochastic volatility process o and a Brownian motion W.
[34] proved that BSS processes have conditional full support and thus may be used as a price
model in financial markets with transaction costs. Also, BSS processes can be used in the context
of option pricing, through the modelling of rough volatility (see [24] and [14]). In this context,
[15] present a hybrid simulation scheme used in Monte Carlo option pricing.

Its spreading use in applications has led to many theoretical questions, some of which have
only recently obtained an answer.

Still, the stochastic-analytic properties of the Brownian semistationary process are not yet
completely understood. The univariate case has been studied in detail, and in particular, numer-
ous papers have been published that deal with its asymptotic theory of multipower variation.

The theory of multipower variation for semimartingales was first introduced in [10] and ex-
panded in several subsequent papers (see [7,11,12,27,29,31,36]). One of the main applications of
multipower variation is the construction of robust estimators that allow to disentangle the impact
of the jump risk from the stochastic volatility risk in the price of financial assets.
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Outside the semimartingale class a general theory seems to be impossible to achieve and results
have to be proved for the particular collection of processes under consideration. For the univariate
BSS process, one can see, for example, [4] with their study of multipower variation through
Malliavin calculus and the more recent paper [5] which deals with the multipower variation of
higher order differences of the BSS process in order to estimate its smoothness.

In the present paper, we define and work with the bivariate Brownian semistationary process.
The introduction of a second dimension greatly increases the complexity, but also allows for
novel possibilities in terms of modelling dependence. Given the importance in practical appli-
cations of the Brownian semistationary process, the first natural result in the multivariate theory
must be a limit theorem allowing inference to be performed on the dependence between two
components.

In the semimartingale case, inference on the dependence can be performed through the
quadratic covariation between two processes. Applying the same ideas to this setting immedi-
ately poses the question of whether the quadratic covariation can be successfully defined between
two BSS processes. There are very few results in the literature concerning quadratic covariation
between two non semimartingales. As an example, [23] deal with this problem, but they only
consider [X, F(X)], where X is a semimartingale and F' is an absolutely continuous function
with square integrable derivative. In this case F(X) is not necessarily a semimartingale, while X
always is.

We instead propose the study of [Y1, Y], when both Y1) and Y® are BSS processes
and are not semimartingales. Hence, the aim is to show convergence of an appropriately scaled
version of the following realised covariation process:

Ln]
Y- - v 0
o 0 n g

A weak law of large numbers in such a setting has recently been obtained in [25]. Here, we
tackle the arguably more difficult case of deriving a suitable central limit theorem. Central limit
theorems for processes are results which are usually hard to prove, and techniques to prove them
vary from case to case. The most celebrated result of this kind is Donsker’s theorem, which states
that an appropriately scaled, symmetric random walk converges weakly to Brownian motion (a
standard reference is [17]). The high frequency limits of semimartingales are typically processes
with a mixed Gaussian distributions, and these central limit theorem results are typically stronger
than the standard ones that only state weak convergence in the Skorokhod space, in order for
statistical inference to be performed in a feasible way. They instead involve stable convergence
of processes, which involves proving weak convergence in an extended sample space, where
typically a new Brownian motion lives, which is independent from the original processes. We
will see that such results can also be obtained in our more general non-semimartingale setting.

The methods we use in our proofs rely heavily on the powerful Fourth Moment Theorem which
was proven in [33]. Their theory was developed by combining Stein’s method with Malliavin
calculus. The most comprehensive reference on the subject is the monograph [32].

The outline of the remainder of this article is as follows. Section 2 introduces the notation and
defines the bivariate Gaussian core and the bivariate Brownian semistationary process. Moreover,
we formulate assumptions which ensure that we are outside the semimartingale setting (since the
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corresponding theory is well-known in the semimartingale framework). The main contributions
of our article can be found in Sections 3 and 4, where we state the central limit theorems for a
suitably scaled version of the realised covariation of a Gaussian core and a Brownian semista-
tionary process, respectively. Section 5 concludes. The proof of the central limit theorem in the
case of the Gaussian core is presented in Section 6, and in the case of a Brownian semistationary
process in Section 7. A brief self-contained summary of the key concepts of Malliavin calcu-
lus and the celebrated Fourth Moment Theorem needed for proving our results and some of the
proofs of our new results are relegated to the supplemental article [26].

2. The setting

Throughout this article we denote by (2, ¥, ¥, P) a filtered, complete probability space and by
B(R) the class of Borel subsets of R and we consider a finite time horizon [0, T'] for some T > 0.
We will assume that (2, ¥, #;, P) supports two independent F;-Brownian measures wh w@
on R, for which we briefly recall the definition.

Definition 2.1 (Brownian measure). An F;-adapted Brownian measure W: Q2 x B(R) — R
is a Gaussian stochastic measure such that, if A € B(R) with E[(W(A))?] < oo, then W(A) ~
N(0,Leb(A)), where Leb is the Lebesgue measure. Moreover, if A C [, +00), then W(A) is
independent of %;.

Let us first define the so-called bivariate Gaussian core, which is in fact a bivariate Gaussian
moving average process with correlated components.

Definition 2.2 (The Gaussian core). Consider two Brownian measures W1 and w® adapted

to ¥; with th(]) th(z) = pdt, for p € [—1, 1]. Further take two nonnegative deterministic
functions g(l), g(z) € L2((0, 00)) which are continuous on R\ {0}. Define, for j € {1, 2},

. 1 . .
G :=/ gVt —s)aw,”.
—00

Then the vector process (G;);>0 = (Gl(l), G;z))tlo is called the (bivariate) Gaussian core.

If we add stochastic volatility to the Gaussian core, then we obtain a bivariate Brownian semis-
tationary (BSS) process defined as follows.

Definition 2.3 (Bivariate Brownian semistationary process). Consider two Brownian mea-
sures W and W@ adapted to F; with dW" th(Z) = pdt, for p € [—1, 1]. Further take two
nonnegative deterministic functions g, g@ e L2((0, 00)) which are continuous on R \ {0}. Let
further o, 0@ be cadlag, F;-adapted stochastic processes and assume that for j € {1, 2}, and

forallz €[0,T]: fioo ¢D2(t — 5)0? ds < 0o. Define, for j € (1,2},

. ! . . .
v = f gVt =)0 aw?.
—00
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Then the vector process (Y;);>0 = (Yl(l) s Y,(Z) )LO is called a bivariate Brownian semistationary
process.

2.1. Technical assumptions

Let us now introduce a few working assumptions. Most of them are standard and already appear
in similar forms in the literature, for example, in [20].

2.1.1. (Non-) semimartingale conditions

As mentioned in the introduction, we are exclusively interested in the non-semimartingale setting
since the corresponding asymptotic theory for semimartingales is well established in the litera-
ture, see, for example, [9,35]. It turns out that the (non-) semimartingale property of G or Y /)
(for j = 1,2) depends on the properties of the functions g/).

Let us for a moment suppress the superscripts and write G, = [ ! o0 8(t — 5) dW; for a univari-

ate Gaussian core. Consider the filtration (J“-',W’OO) >0 which is the smallest filtration with respect
to which W is an adapted Brownian measure and recall the classical result due to [30].

Theorem 2.4 (Knight). The process (G;):>0 is an Jﬁw’w—semimartingale if and only if there
exists h € L>(R) and o € R such that: g(t) = o + fol h(s)ds.

In the case of a univariate Brownian semistationary (BSS) process given by

t
Yt:/ gt —s)os dWs, ()

—00

[8] derived the following sufficient conditions for a BSS process Y to be a semimartingale:

Theorem 2.5. Under the assumptions that (i) g is absolutely continuous and g’ € L*((0, 00)),
(i) lim,_, o+ g(x) =: g(0T) < oo, (iii) the process g'(—-)o. is square integrable, then Y; defined
asin(2)isan ?’,W’OO—semimartingale. In this case, Y; admits the decomposition: Y, = g (0T W, +

fot dl[ﬂOQ g'(l —s)og dW].

Let us now return to the bivariate case and formulate conditions which ensure that the bi-
variate processes G, Y are not semimartingales. This can be achieved by relaxing the first two
assumptions in Theorem 2.5 since both assumptions are necessary for G) to belong to the
semimartingale class (see [13]) for j =1, 2.

Assumption 2.1. For j € {1, 2}, we assume that g¢/): R — R* are nonnegative functions and
continuous, except possibly at x = 0. Also, g(j)(x) =0 for x <0 and g(j) € L2((0, +00)). We
further ask that g(/ ) be differentiable everywhere with derivative (g(j )Y e L%((g, 00)) for all
e >0 and ((g)")? non-increasing in [b\/), 00), for some b/) > 0. Moreover, we assume that,
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for any ¢ > 0:
N2 (D)2
/ (g(l)(s)) (O’t(l_)x) ds < oo.
1

In the following we will set b = max{b"), b}, then (g\))" € L2((b, 00)) and ((g)")? is
non-increasing in [b, 0o) for j =1, 2.

It is important to note that we are not imposing that (g(j )Y e L2((0, 00)) in order to be able to
exclude the semimartingale case.

2.1.2. Technical assumptions for the cross-correlations

We need some additional technical assumptions to control the terms arising in the covariation
between the two components of the bivariate Gaussian core and the bivariate BSS process. Such
assumptions will be formulated in terms of slowly varying functions, for which we briefly recall
the definition, see e.g. [18].

Definition 2.6 (Slowly and regularly varying function). A measurable function L: (0, o0) —
(0, 00) is called slowly varying at infinity if, for all A > 0 we have that limy_, s % =1.
A function g: (0, 00) — (0, 00) is called regularly varying at infinity if, for x large enough, it
can be written as: g(x) = x%L(x), for a slowly varying function L. The parameter § is called the
index of regular variation. Finally, a measurable function L: (0, co) — (0, 00) is called slowly
varying at zero (resp. regularly varying at zero) if x — L(%) is slowly varying (resp. regularly
varying) at infinity.

For i, j € {1,2}, we write p; j = p fori # j and p; j = 1 for i = j. Also, let us introduce the
functions mapping R* into R, with i, j € {1, 2}:

RED @) =E[(G = 6§ =82 + 8172 — 2E[G5 6] 3)

We note that we can write R/ (1) = Ci,j +2pi; fooo(g(j)(x) — g(«/)(x + t))g(i)(x) dx, where
Cij:=1g® IIiz + IIg(j)Hi2 =20, Jo~ 8" (x)g") (x) dx, where in particular C; ; = 0. This en-
ables us to formulate our next assumption.

Assumption 2.2. For all ¢ > 0, there exist functions L(()i J )(t) and Lg’j )(t) which are continuous
on (0, co) and slowly varying at zero, such that

RUD@y=Cpj+pi it H LD (@), fori,je(l,2), and

L, i i sO1sD_1 (G, j) @)
SREDY = pi i Ly @), ford, je(1,2),

where (1, §@ ¢ (—%, %) \ {0}. Also, if we denote I:(()i’j)(t) =4/ L(()i’i)(t)L(()j’j)(t), we ask that
the functions Lg J )(t) and L(zi’j ) (¢) are such that, for all A > 0, there exists a H®/) € R such
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that:
i, J)
L Mt .
P(ii.)() — H(l“/) < 00, (5)
t—0+ LO’J )
and that there exists d € (0, 1), such that:
@)
L
limsup sup %—)(y) (6)
x—=>0t ye(x,x9) LO’] (x)

In this situation, the restriction §¢/) € (—%, 0) U (0, %) ensures that the process leaves the
semimartingale class.

Remark 2.7. A consequence of Assumption 2.2 is that: v/ RGD(r)RU- (1) = SOV
Z(()”/ )(t), where Z(()”/ )(t) is again a slowly varying function at zero which is continuous on
(0, ).

Example 2.8. In the univariate case, condition (4) reads (suppressing superscripts):

R(t) =t Lo(1). (7
The so-called Gamma kernel given by g(x) = e’“x‘sl{x>o}, for A > 0,6 > —%, has attracted
attention in applications (both to turbulence and finance), see, for instance, the review paper
by [1]. In the case when § € (—%, 0) U (0, %], g satisfies Assumptions 2.1 and condition (4),

see [4].

Example 2.9. Condition (5) in Assumption 2.2 is satisfied if lim,_ o+ Lg’j)(t) =MED < 00

and lim,_>0+,/L(()i)(t)LE)j)(t) = N@) < 0o with % = H®) In the case when i = j, we
have H"J = 1, so condition (5) is satisfied.

As a consequence of Assumption 2.2, we highlight a fact that will be particularly useful for
our purposes.

Lemma 2.10.
Define

X o
c(x) = /O gV (5)g? (5)ds + /0 (8P +2) =) (g6 +x) 8P (s) ds.
If Assumption 2.2 holds, then it is possible to show that:

C(.X) — x8(l)+8(2)+]Lil,2) ()C) (8)
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where Lil’z) is a continuous function on (0, 00) which is slowly varying at zero, and 8V, 8@ e
(—%, %) \ {0}. Moreover, there exists a constant |H| < 0o such that

1.2
L{?P ()
x>0+ i(()l’z)(x)

C))

More precisely, H = %(H(M) + H@Dy,

Example 2.11 (Gamma kernel). If the kernel function is the Gamma kernel gV (s) =
s‘s(l)e_}‘(l)sl{szo}, for A > 0, §©) ¢ (—%, %) \ {0}, and similarly for g(j), then one can show

directly that Lemma 2.10 holds, and give an explicit expression for the constant H:

e W +Dr=1-860-52) 1E®4DHr(=1-80 —-5@)
B r(—=5M) I'(—5@)

I3 +8Mra3 +80)

o plH80 45 .
r(% — 5(1’))1*(% —8W)

A proof of this result can be found in the supplemental article [26].

2.2. Discrete observations and scaling factor

While the stochastic processes we are going to consider are defined in continuous time, we
work under the assumption that we only observe them discretely which is the case of practical
relevance. Moreover, our asymptotic results rely on so-called in-fill asymptotics where the time
interval is fixed, but we sample more and more frequently. This is in contrast to the, in time series
more widely used, concept of long span asymptotics where the stepsize between observations
stays constant, but the number of observations grows, meaning that a bigger and bigger time
interval is considered in the asymptotic case.

Suppose that we sample our processes discretely along successive partitions of [0, T']. A parti-
tion IT, of [0, T] will be a collection of times 0 =1ty < --- <t; <tjy1 <--- <t, =T, where, for
simplicity, we assume that the partition is equally spaced. The mesh of the partition will therefore
be A, = % and we have lim,,_, o A, =0.

We will use the following notation for (high-frequent) increments of the stochastic processes
we are considering: For instance, for the process G/), we denote its increment by A?G(f )=

G;Qﬂ — GE{ 11) a,» for j =1,2. A straightforward computation shows that the increments can be
represented as

) (—=DA, . :
A;]G(J) :/ (g(’)(iAn —5) — g(j)((i — DA, — S))dVVS(j)
—00
i, ' " (10)
+[ gV, —s)dwy”.
(i_l)An



2252 A. Granelli and A.E.D. Veraart

We define the realised covariation as

Lnt)
Y AGVAIGD,  forn>1,1€[0,T].
i=1

We know that in the case when G is a semimartingale, then

[nt]
Y AIGYAIGP I [61, 6P, asn— oo,

i=1

where the convergence is uniform on compacts in probability (u.c.p.) and the limiting process
is the quadratic covariation. However, outside the semimartingale framework, the quadratic co-
variation does not necessarily exist. [25] recently considered the non-semimartingale case and
showed that, under suitable assumptions, the (possibly scaled) realised covariation converges
u.c.p. to an appropriate limit which can be viewed as the correlation between the two non-
semimartingale components. In the present work, we would like to go a step further and prove a
central limit theorem associated with the scaled realised covariation. In order to do so, we need
to define the suitable scaling factor. It turns out that the following choice is appropriate. For
Jje{l,2}, set

. 00 Ay,
o) = JE[(A"GWD)?] =\// (g (s + Ap) —g<f')(s))2ds+/ (sV)(s)) ds. (11)
0 0

The scaled realised covariation of the Gaussian core is then given by

Lnt] A?G(l) A?G(z)
1 2)

ST

Our aim is now to derive a central limit theorem for the suitably centred and scaled realised
covariation of the Gaussian core. As soon as we have that result, we will generalise it to the case
when the underlying bivariate process is a bivariate Brownian semistationary process and, hence,
also accounts for stochastic volatility in each component.

The key component for proving the two central limit theorems is the so-called Fourth Moment
Theorem, see [32]. The supplemental article [26] gives a very brief self-contained introduction
to Malliavin calculus and reviews the Fourth Moment Theorem.

3. A central limit theorem for the realised covariation of the
Gaussian core

This section focusses on the Gaussian core G as defined in Definition 2.2; we will use the notation
from Section 2.2 and from the supplemental article [26] in the following.
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Since G is a Gaussian process, we can apply the Hilbert-space techniques depicted above, us-
ing the Hilbert space of L>-Gaussian variables. To this end, let H be the Hilbert space generated
by the random variables given by the scaled increments of the Gaussian core:

3

<A’.’G(j)>
1
Tygj) n>1,1<i<|nt],je{l,2}
equipped with the scalar product (-, -)¢; induced by Lz(Q, F,P), ie., for X,Y € H, we have
(X,Y)y =E[XY].

Denoting by I the multiple integral of order d, acting on H®?, with values in L2(2), we can
write:

APGD (A’?Gm) ATG® <A’.’G(2)>

l l l l
= 1 K = 1

r,fl) r}gl) ‘[,&2) t’gZ)

Recall the definition of the symmetrisation of the tensor product: x @ y := %(x Ry +y®x).
Using the product formula (2.20) in [26], the product of two multiple integrals becomes:

ArGM A?G(2) ; <AZV}G(1))I (A:}G(Z)) i ‘<1) <l>] (Alr_zG(l) - A?G(Z))
=11 WW—F )= r. 2.9,
TR 7 o ) T T P
APGD _ APGD APGD APGD
(55 {2

T,gl) 77152) Trg]) tr52) ’

Rearranging, this yields:

APGD APGD [A’.‘G(l) A”G(z)} (A’?GW - A"GD
1 1 1 1 1 1
— =D ® )
r,gl) TrEZ) ‘L’,El) Tr52) r,gl) _5152)

Let us hence define the function f: L*(Q) x L?(Q2) — R given by f(X,Y) = XY — E[XY],
and the process:

I L’f AIGD ATGON 1 rArGD | ArG?
e ) R
' ﬁi:l e 2 «/ﬁi:l e 2

3.1. A uniform bound for the covariance

Al G® Al GW

: i
o o on)

We can now formulate a uniform bound for the covariance term ri(? k) :=E[
fori, j € {1, 2}.

Theorem 3.1. Let & > 0, withe < 1 — 89 — 8, fori, j € {1,2}. Define:

ri k)= (k= DPUHE L s
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and r; j(0) =r; j(1) = 1. Under Assumption 2.2, there exists a positive constant C < oo and a
natural number no(e) such that:

") < Crijk), fork =0, (12)

for all n > no(e). Moreover, define pf;’j)(O) = pH fori # j and pg’j)(O) =1 fori=j, and for
any i, j € {1, 2} set

- 1 -
py W)= 2o HOP (k=17 =27 + (k1)) forkz 1. (13)

Then it holds that:

Tim r" ) = pjil L 0, forall k=0, i, j € {1,2). (14)

3.2. Convergence of the finite dimensional distributions of the Gaussian
core

In order to look at the convergence of the finite-dimensional distributions, let {ax}, {bx} be two
increasing sequences of positive real numbers, with a; < by < a1, and consider, for any d € N
the vector:

-
(Z;;1 —Zg],...,z,’;d—zgd) ,

whose generic k—th component is:

(1) (2)
ﬁi:[nak}H Tn Tn

| L%J L (MGY L ArGe) 1 W ArGM) _ AnG®
— ) =D
\/— [€9] t,?)

n i=|nay]+1 n

Theorem 3.2 (Convergence of the finite dimensional distributions). Take a Gaussian core
as defined in Definition 2.2. Let Assumption 2.2 be satisfied and suppose that 8V e (—%, %) \
{0}, 8@ e (=4, 1)\ {0}. Consider f: L?(Q) x L?(Q) — R given by f(X,Y) = XY —E[XY],

and the process:

1 % ATGD ATGDN 1 ¥R ATGD) _ ATG®
Zl=— f(lil’liz>=_ ’2< m me )
Vi 2 w i 7 7

Let {ay}, {br} be two increasing sequences of positive real numbers, with ay < by < ay+1, and
consider, for any d € N the vector:

T T

VASES (Z;,'l -7 ..,Zl',‘d —ng) =Frpn....Fan) .

ap’”
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Then Z} = N ~ Ny (0, C), where C; j = lim, o E[F; , Fj 11,1 <1, j < d. Finally, the matrix
C is diagonal, and the general j-th diagonal element is equal to C(1,1)(b; — aj), with

o
2
COL D=2 (P (PSS () + (o5iir) s 0))7) + (1 + p2HY) <00, (15)
k=1

In order to compute C(1, 1), we remark that the definition of the terms of the form pg J )(k)
was given in equation (13).
The series in (15) converges absolutely, thanks to Theorem 3.1, as it is bounded by:

o0
O 2 —
k=1

which converges if and only if 28V +28@ +2¢ —2 < —1 «= §) + 6@ 4 ¢ < % which is
implied by our assumption that V) € (=1, 1)\ {0}, 8@ e (=1, 1)\ {0}.

3.3. Tightness of the law of the realised covariation for the Gaussian core
As customary when proving weak convergence, we also need a tightness result for the law of the
realised covariation process. This turns out to be a lot simpler than the convergence of the finite

dimensional distributions.

Theorem 3.3 (Tightness). Let the assumptions as in Theorem 3.2 hold. For all n € N, let P" be
the law of the process:

o 1 %J:f(A;’G“) A?Gu)) 1 Ln~JI (A;;G(l) _ A;’G@))
.= = 5 = = 2 5
NP MU R AN P RN

on the Skorokhod space D[0, T). Then, the sequence {IP"},cN is tight.

3.4. The central limit theorem for the Gaussian core

With Theorem 3.2 and 3.3 at our disposal, it is immediate to prove the fundamental theorem
stating weak convergence of the realised covariation of the Gaussian core.

Theorem 3.4 (Weak Convergence of the Gaussian Core). With the same setting and assump-
tions of Theorem 3.2, we obtain:

Lnt] ne(1) an~(2) ne() An(Q2)

1 AT"GWY ATG A'GYW ATG

(7 Z( NORE) _E[ o ])) = VBB, (16)
N T Tn Tn Tn 1€[0,T]
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where B; is a Brownian motion independent of the processes GV, G® | g = C(1, 1) from (15)
and the convergence is in the Skorokhod space D|0, T equipped with the Skorokhod topology.

Remark 3.5. We remark that the above central limit theorem (Theorem 3.4) can be formulated
under more general conditions which do not require the particular integral representation we
are working with throughout the paper. That is, consider a bivariate Gaussian stationary process
G =(GM,GAT. Define for i, j € (1,2} and t > 0: R (1) := E[(G\” — G{")2]. Suppose
that Assumption 2.2 is satisfied in this setting, where p; ; € [—1, 1] is linked to the correlation
between G® and G and is such that pi,j=1fori=jand p;; =0 if G and GY) are
uncorrelated, also C;; = E(G,(j)z) + E(Gg)z) — ZE(G(()j)G(()i)).

Then Theorem 3.4 holds for 8 = C(1, 1), where in the definition of C(1, 1) the parameter p
is replaced by pj 2. The proof of this extended result is contained in the supplementary material
to this article, see [26], Section 4.3.

4. A central limit theorem for the realised covariation of the
Brownian semistationary process

The weak convergence result for the Gaussian core obtained in the previous section is the corner-
stone needed to obtain the general central limit theorem for a Brownian semistationary process
Y, which includes stochastic volatility in each component, recall Definition 2.3.

We will need two additional assumptions:

Assumption 4.1. For k € {1, 2}, we require that o® has bounded moments of order two, that
. k
18! SUP;¢(—o0. 7] E[(Ut( ))2] < 00.

Example 4.1. Assumption 4.1 is easily satisfied in many cases of interests, for example, if the
stochastic volatility processes are second-order stationary.

Assumption 4.2. The stochastic volatility process o (D (resp. o®) has oV -Holder (resp. a®)
continuous sample paths, for a e (%, 1). Furthermore, both the kernel functions g(l) and g(Z)
satisfy the following property: For j € {1, 2}, write:

) L4V (x + Ay) — gV (x))2ds
' (A) = _ ,
JoZ (@D (x + Ay) — g0 (x))2ds

and note that n,gj ) are probability measures. We ask that there exists a constant A) < —1 such

that for any ¢, = O (n™"), it holds that:

jTr(lj)((En» OO)) — O(H)\U)(I—K))-
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4.1. The central limit theorem

We are now in the position to formulate our key result: the central limit theorem for the suit-
ably centred and scaled realised covariation of a bivariate Brownian semistationary process. We
remark that the notation 25 is used for stable convergence in law, whose definition and basic
properties are reviewed in the supplemental article [26].

Theorem 4.2 (Central limit theorem). Let § be the sigma algebra generated by the Gaussian
core G, and let oV and o @ be 9—measurable. For the bivariate BSS process, provided that
Assumptions 2.1, 2.2, 4.1 and 4.2 are satisfied with §V, 8@ € (-4, 1)\ {0}, the following §-
stable convergence holds:

nt] Any (1) any(2) n~() an(2) t
1 ATYW Ay A"GYW A'G
N QTT—WE[% e } f oo ds
ﬁi:l T, T Ty Tn 0

tel0,7T] (17)

n—oo

t
N <JB f oD@ de> ,
0 tel0,T]

in the Skorokhod space DI0, T], where B = C(1,1), see equation (15). Also, B is Brown-
ian motion, independent of ¥ and defined on an extension of the filtered probability space
Q,F,7.P).

We note that the central limit theorem implies a weak law of large numbers, which we present
next, cf. also [25].

Proposition 4.3. Assume that the conditions of Theorem 4.2 hold. Then

|nt] t
A P
u ZA;’Y(I)A;’Y(Z) — pf US(I)US(Z) ds, asn— oo.
: 0
i=1

c(Ap)

So Theorem 4.2 implies a weak law of large numbers. It is to be stressed though, that the law
of large numbers can be formulated in a more general way, modulo some different assumptions
on the volatility processes. We refer to the discussion in [25] for the details. In particular, for the
weak law of large numbers to hold, we do not need the restriction that § M 5@ ¢ (—%, %) \ {0},
but we can have the whole range § M 5@ ¢ (—%, %) \ {0}. On the other hand, we remark that
the weak law of large numbers formulated in [25] required the kernel functions to be decreasing,
and we do not have such a restriction for the central limit theorem.

5. Conclusion

In this article, we have employed techniques that were successfully used in the univariate case
for the power, multipower, and bipower variation of the BSS process and of Gaussian processes,
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(as appearing in [3,4,6,20]) to show a central limit theorem for the realised covariation of the
bivariate Gaussian core and the BSS process.

This result, apart from being interesting from a purely mathematical point of view, can be
viewed as the starting point of the use of multivariate BSS processes in stochastic modelling.
The central limit theorem unlocks inference on the dependence parameter for the multivariate
BSS process. There are still parts of such a multivariate theory that need to be developed in
the future. For instance, one interesting aspect would be to allow for the correlation coefficient
to be stochastic. Another direction of future research would include extending our results from
the realised covariation to more general functionals, obtaining a fully multidimensional theory of
multipower variation of the BSS process. Also, one could investigate whether similar results can
be obtained for other forms of volatility modulated Gaussian processes outside the semimartin-
gale setting.

6. Proofs for the Gaussian core

The proofs of Lemma 2.10 and Example 2.11 are relegated to the supplemental article [26].

6.1. Proof of Theorem 3.1

The uniform bound on the covariances r(")(k) that we prove on Theorem 3.1 is a fundamental
analytical result that allows us to sit w1th1n the reach of some powerful results of Malliavin
calculus. In this section, we give the proof of that theorem. Let us start off with an elementary
result.

Lemma 6.1. For a C? function u, and h > 0:
u(x +h) = 2u(x) +ulx —h) =h>u" ),
where { € (x —h,x + h).

The proof of Lemma 6.1 is given in the supplemental article [26]. We have now the tools to
tackle the proof of Theorem 3.1.

Proof of Theorem 3.1. The objective in the section is to show that we can bound:
" (k)| < ri ), (18)
uniformly in n, for all choices of i, j. In order to do so, recall the functions mapping R* into

RY, with i, j € {1,2}: R©) (1) :=E[(GY — GI)?]. We need to show that this function is well
defined. More generally, note that for the Gaussian core, we have for any u € R:

E[(GY), — G{)] =fo (e () dy +f0 (e () dy —2/0 §PMeV (y+1)pidy

= 16O e+ [ I3 — 26[G 61")
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which is indeed a function of 7 only. It is straightforward to find the connection between rl.("z/) (k)
and R/ (k), when k € N:

APGD AT GO
ri(,’;) (k) — ]E|: 1 1+k ]

ORI
1 (KN Voaa(k=1\ 1 -qn(k+1
— (_R(z,n<_> i _Rm)( ) i _Ro,/)( * )) (19)
Tn T, n 2 n 2 n
L _geny (k2% 20)
m2t D) non)

for some [9}| < 1, thanks to the elementary result stated in Lemma 6.1.
The connection between ri(’"j) and RY7)(¢) was derived in (19) and (20):

()
r" (k) =

CHRUG) RO LR 1 (b )
2\/150,0(%)13(/',]')(%) m2 D) ’

n n
1500
, _ /1 , : 1\2®&7+D [
o) = /Rw)(;)=\/JE[(G<1”—G§;>)Z]=(;> Lg>(;).

Let us now show the uniform bound (12) and the limit result for the case when k € N. For
k € N, we go back to the second equality in (21), and deduce that:

as well as:

@4 50— 19" @) 150 — i,j DA
C R e SRS 4 LA G

L(l J)( ) ng])(%)

Note that for k > 1, we deduce from 97 € (—1, 1) and 8© +§¢) — 1 < —¢ < 0 that
n QNS {00 | s s 1
(k+97) <(k-1 .

n n —d
Now, if 2 <k < Lnl_”’J,then%+%’(G(%+%,L"]7J 0")C( J)C(n, L) and

n

hence, the bound (6) in Assumption 2.2 applies and we obtain that
. g
Ly G+ )
Ly

is bounded close to the origin for n big enough.
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If instead Lnl’dj < k < n, then, for all ¢ > 0, and any § < ¢(1 — d) there exists a constant

C(8) > 0 such that

n

0] G)_ .’. Hn
(k+ 1407, )07 Ly DG + S
Ly

|ri(’"j)(k+ D=

(22)
kS(i)+3(j)—1+€—8 1
=C@©)

=5 =G .
ng( ) L(()l ])(%)

We used the fact that for any &, # > 0, there exists a constant C depending on § (and #) only such
that |Lo(x)| < C)x % ina neighborhood x € (0, t].
Observe now that M©)(n) := is a slowly varying function at co. Indeed, for any

A>0:

L
MEDGn) Ly )
n—oo MU.J)(n) n—00 i(l,])(l)
0 n
But since M /) is slowly varying, there exists a constant C such that, by Potter’s bound:

1 -
<dC,

M(n) < Cn—e-d+s —
ne(lfd)ﬂSL(()’vl)(%)

that gives us

r" e+ 1| < ECr® e

As § is arbitrary, set C; = CC(8) for any § > 0.
Next, let us prove the limit result. To this end, we will use the first equality in (21) to show the
convergence in (14). Using the expression (4) from Assumptions 2.2, we get for k € N:

QIR ik @) 450 infk—1
ri{’})(k)=p,-,j<—2k5 +‘“+1Lg/)(;)+(k—1)‘S LY ”(—n )

)5 i k+1 ~i.nf1
+k+ 1>5“+8<”+1Lg-/><_+ ))/(ngw(_)).
n n

Because of (5), we get in the limit:

(23)

k8<i)+8(j)+l +(k — l)g(i)+5(j)+1 + (k—‘r l)g(i)+5(_i)+1)

gy g (52
nlggor,-,j (k) = pi,j H >

Let us now consider the case when k = 0. We need to show that lim,,_, rl.(,';.) (0) = pH for

i # j and lim,_ oo rl.(";) (0) =1 for i = j. First, suppose that i = j. Then r[(";) (0) = 1, and hence
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limy,— 0o rl.(";.) (0) = 1. Next, assume that i # j. Then

Sn
PR

(n) _
O =p

where
Ail S
0 = / g ()@ (s)ds + / (6P s+ a0 =gV ) (P s+ A — P () ds,
0 0
A o8}

Ay 00
' (/ (8@ () ds + f (e (s + Ap) — g@ (s))zds>]
0 0

Using Lemma 2.10, we get:

1/2

D@ 1,2
é—n:Ai +§ +1L4(1 )(An)

Also, Remark 2.7 implies that

) 1 2 W 4s@415(1.2
&= A LD (A LD () = AL A,

Then equation (9) in Lemma 2.10 ensures that lim,—, o ¢, /&, = H and hence lim,,_, rl.'f i ) =
pH for i # j. Finally, we remark that since ri('}) (0) converges, there exists a positive con-

stant Co such that |ri(’"j)(0)| < C; for all n € N. So, we can conclude that (12) holds with
C =max{l, C, Cp}. O

6.2. Limiting covariance

Our strategy for proving the central limit theorem for the Gaussian core relies on the Fourth

Moment Theorem reviewed in Theorem 2.21 in the supplemental article [26], which gives us the

fundamental tool for proving convergence in distribution to a Gaussian variable in this setting.
In order to be able to apply the Fourth Moment Theorem to prove the central limit the-

orem later on, we must first compute the limiting covariance: that is, we need to compute

limy, 00 E[L2(fr.n) I2(f5,n)], Where:

1 & arg | arg®

Jrni=— ®
’ (L (2)
n i=|na,]+1 Tn Tn
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We start with the case r # s:

E[IZ(fr,n)IZ(fs,n)]
= 2<fr,ns fs,n)H@Z
25
< 1 [nbr] AnG(l) _A'GD Lnbs ] A’?G(l) _ A?G(2)> 25)
=2(— ® — — ®
(1) 2 (1) )
ﬁi:l_narJJrl Tn Tn ﬁj:l_naxj+1 Tn Tn HO2

Without loss of generality, we will choose r = 1,5 =2,a1 =0, b1 =ay =1, by = 2, obtaining:

(26)

n 1 2 2n n(1) nQ2)
g< A?G() N A”G() A4G _ AJ,G >
n
i=1 HO2

®
1 2 1 2
rrE ) frg ) j=n+1 frg ) flg )

()
Now, let k = j — i. Also recall the definition r(") (k) := E[A g) %] Then, the single

scalar product equals:

1
- b

(24 (29
1 2 ? 1 2
W O

1/ArGY  ArGPD ArGPD ArGWY
— i 1 i 1
-

® + ® ,
D e e z(D

AGH  ANGD ATGD A;G<1>>
H®2

0 + b2
1 2 2 1
G T

1_[APGD ATGPY raArG@ A1GY
1 P 1 P
il J¢l ]

1 2 2 1
e L

1 [A;’G<2> A’}G@)} [A;’G(l) A’}.G“)]

+ —
4 .[’52) o) ‘L',El) ‘Erfl)

" ko) (k) + —r;’f (k)r{"3 (k).

Thus, we have that expression (26) becomes:

%Zk " (ors (k) + 3 (") (k)
k=1

2n—1 (27)

+— > @n— k) (r") Rory (k) + ) (Ryr) (K)).
k n+1
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By Cesaro’s theorem, if:
lim k(r}") (k)rsS (k) + 3" (oyr") (k) = 0, (28)
k— 00 ’ ’ ’ ’
then the first sum in (27) will converge to zero. Theorem 3.1 gives us:

My4s@ —
| Gy (k) + 13 () (k)| < 2k — 1)2CTH) 262 (29)

Hence, we have the limit in (28) provided that
260 +8P) 426 —2<-1 = ((V+89)+e-1< —%
= &< % — (8 +5@),
which, in order for ¢ > 0 to hold, implies that we must ask:
s 45@ < % (30)

Applying Theorem 3.1 again shows that the absolute value of the second sum in (27) can be
bounded by:

1 2n—1
Z Z n —k)2(k — 1)28“)+25(2)+2sz
n
k=n+1
2n—2 2 2n—2 2 2n—2
—4 Z ;280284262 _ £ Z ;280284261 _ £ Z ;280 +28@ 4262
k=n n k=n n k=n
2n—2 4 2n—2
<4 Z ;280 +28@ 4262 + 2 Z (280 +26@ 4261
k=n n k=n

The first sum goes to zero whenever the summand is summable, thus we get s 4 5@ <1,
which is clearly satisfied under condition (30). For the second sum, we have in particular that
k<2n <— % < %, SO we can write:

4 2n—2 i ) 2n—2 ) )
T Z (280 +28D 421 _ ¢ Z ;280 +280)+2e—2
n k=n k=n

Condition (30) again ensures convergence to zero.

6.3. Limiting variance

Now we consider the case when r = s in (4) in Theorem 2.21 in the supplemental article [26], as
we have to find the limiting variance. Again, take, by simplicity, r =s =1,a; =0,b; =1, and
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this time, k = |i — j|:

E[L(fin)L(fr.n)] =20 finlfe:
L n A?G(l) 5 A;’G(z) L n A;%G(l) 5 A;?GQ)
N e N 2 | 3

j=l1

1 & X
=3 w + r dor @),

i=1j=1

Now write r{") (k)33 (k) +ry") (k)r{") (k) = pa(li — j|) (note that, if j < i,r{")(j —i) =ri") i —
J)), so that:

n i—1

—Zan li—jl) = ZZPn(l—]H— anm)

1 1 1 1
i=1 j= i=1 j= 32)

n—1

k
=2I;<1— ;)pn(k)+pn(0).

Thanks to (14), we see that, for k > 1:

(n) ( ) (n) (n) 1D (2,2) (1,2) 2
pn(k) = rlnl (k)ry ¥ 5 (k) + ), ! (k)r . 5 (k) —> :02/3(1) (k)p2ﬁ(2) (k) + (pﬁ(l)_;’_ﬁ(Z) (k)) )

In the case when k£ = 0, we have

Pa(0) =1+

n

(1) A1 (2) Sn
—(Tél)Trgz))z(E[AlG AGP)) 140 (5 )

where ¢, and &, are defined as in (24). As above, using Assumption 2.2 and Lemma 2.10, ensures

that lim,— o0 £n /€x = H? and hence lim,_, o0 pp(0) = 1 + p2H2.
By the bound (12) in Theorem 3.1 and the bounded convergence theorem, (32) converges to

C1,1):= lim E[L(finh(fin)]

o (33)
=23 (P (055 ) + (05 oo (K))7) + (14 p2H?) < o0
k=1

6.4. Proof of Theorem 3.2

Since the proof of Theorem 3.2 is rather long, we have moved it to the supplemental material [26].
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6.5. Proof of Theorem 3.3

Proof of Theorem 3.3.

E[(z! - 2)’]

nt]=1ns] xn (1) ne@\ N\ 2
1 A'G A"G
—_ n 2 — 1 i
=E[(Z",) ]—E[;<12< Y. w5 )) :|
i=1 Tn Tn

Lnt)—|ns] 1 2y lnt)=lns] An (1) nGQ@
1< ATGYD  AMGO) ALG A'G >
H®2

® ) ®
D e (1) @

i=1 n n j=1 n n

|nt]—|ns]| |nt]— Lnsj(

1
L L (A i)+ =) )

Multiplying and dividing by |nt| — |ns] yields:

|nt]—|ns]—1
[nt] — |ns| 1 k
n <Lntj — |ns] Z (1_;)[7"(/()—{—;),1(0))’

k=1

thanks to the same arguments as in equation (32). We now know that the quantity in brackets is
convergent, hence bounded. Tightness now follows as in the proof of Theorem 7 in [19], invok-
ing the criterion of Theorem 13.5 in [17]. The criterion applies thanks to the hypercontractivity
property of multiple integrals: inside a fixed Wiener chaos, all L9 (£2) norms are equivalent (see
[32], Theorem 2.7.2). O

6.6. Proof of Theorem 3.4

Proof of Theorem 3.4. The fact that the finite dimensional distributions of the realised covari-
ation converge to those of Brownian motion is the content of Theorem 3.2: the limiting finite
dimensional distributions we had there coincide with those on the right hand side of (16). The
fact that the limiting Brownian motion B; is independent of G and G® follows from the fact
that

[nbi] n(D) An(2) ne() Anc©2)
1 ATGY ATG ATGY AMG
(G,SL)—G,S}{),G(Z) G®, — E < —]E[’—’—]))

ai > 1 2 1 2
VWP

neN

converges to a multivariate Gaussian, and, for all n € N the third component is orthogonal to the
first two, as it belongs to a different Wiener chaos. Given the tightness result in Theorem 3.3, an
application of Theorem 13.1 in [17] allows to conclude. (]
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7. Proofs for the Brownian semistationary process

7.1. Strategy and outline of the proof

In order to prove the central limit theorem for the bivariate Brownian semistationary process we
will introduce a blocking technique, see [16], whereby, alongside the original time-grid indexed
by n, we introduce a coarser grid with a new index [ < n, and we freeze the volatility processes
at the start of each /—interval. Heuristically, letting n go to infinity, for a fixed /, allows us
invoke the weak convergence of the Gaussian core we have proven in the previous section, as
the volatilities are “frozen”. A further limit in / gives us the final result where the volatilities are

integrated against the limiting Brownian motion.
Let us now show how the blocking technique will be introduced. We define

1 2

r(”)(O)—]E A’fG( ) A'I’G()

Hn -=1128) = NONEENON |
n n

which is bounded by 1, and also

o
i () = {z\;— ¢ (JT ﬂ}

We note here that #(I(,n)(j)) € {L7], L7 + 1}, so that we can write:

(I(l n)(J))__+e(n n(h), with e, y(j) € (—1,1], forall 1 <l <n,j>1. (34)
For any / < n we have the decomposition:
] any (1) any(2) t
1 ArY® Ay -
— ———\/E,U,”/ oM@ ds
VPSR 0o
LZ(A"Y“) AYD g o AIGU A;.’G@))
= — — 0 _—
Jn — ’52) (i-DA%G=DA, D E)
A}
[nt] 1) @ 1] 1) )
Z"m @, AGY ATG? Zo(l) o s 3 ATGY AlG
(i-DA%G-DA, (1) ) J-hHAa (J VA BOn ?2)
Tn Tn [ le[(l.u)(}) Tn Tn
A;"’]
|1t] [nt]
(2) (1)
/‘"Z% A°G-na T “nz(’o 1>An"<1 DA,

A;m'l
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[ n() aneQ2) /1]

1 ) @ AYGY AYG v ) @

=D 0 % D —n o St )0 AT A,

N . T 7 l .
Jj=1 i€l n () n n Jj=1

Cln,l

Lnt]
1 '
[eY) (2 D (2
+ Tun E TG a TG ) A —ﬁun/ CTS( )05( )ds.
n j:l 0

Dy

The term denoted by C;' L will give us the stable convergence to a nonzero limit, while the terms
A1 A= A Al D will converge to zero (in a way that will be made precise be-
low.)

We will divide the proof into four parts, each one dealing separately with one of the terms.

7.2. Convergence of the term A}

Proposition 7.1. Assume that the assumptions of Theorem 4.2 hold. Then A} given by

1 Aty Any@ 0 2 ATGD ATGP

L]
A} =— (———04 o’ 77>
! ﬁ P T,fl) TrEZ) (=DA, " (=DA, T;gl) 'L’,Sz)

converges to zero uniformly on compacts in probability (u.c.p.).

Proof of Proposition 7.1. Let us call:
] <A;’y<1> ATY@ ) @  ArG® A;’G@))
=—\|\—F7F——FF——0, " o, -

tT o n r,gl) r’§2) (i=DA, " (=D A, tél) T}gz)

For the claim of the proposition to be true, it is sufficient to prove that, for all # € [0, T'], we have:
limy,— 00 ]E[Z[.LitlJ |J{'|] = 0. Indeed, this implies that convergence also holds in probability. For
each n, ZZLZIJ |J[] is increasing with ¢, and O (the limit in probability) is also increasing and it is
continuous. This means that we get convergence to O u.c.p. in [0, T'] (see, for example, (2.2.16)
in [28]). This easily implies the required convergence.

Let us use the following notation, for k € {1, 2}:

Alg® = g® A, —5)—g®(( — DA, —s).
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We write:

Aty ARy @)
_r
T,gl) _L_’EZ)

1 iAn (i—1)A,
e (f g(l)(iAn—s)os(l)dWs(l)—i-/ A;’ggno;“dW;“) (35)
( —

r,, T i-DA, 00
iA, (i-DA,
x ( / §?A, —5)oPdwW® + / A?g§2>a§2>dws(2>>.
(i—=DA, -0
. A'GD ATGD .
We also have the corresponding 4 terms for ——— ——. We start by showing that:
T}’l ‘[)1

|nt]

iAp
gVia —s)o(l)dW(l)/ §PiA, —5)0P dw?

A, Al

ol 5@ l O —s1aw® [

%i-1)a, %=1, g (A —s)dWy
(i_l)An (i—l)An

(36)
gPA, — s)dW§2)]

goes to zero.
Adding and subtracting

iA, iAy
((tl)l)A / gVin, - S)dWs(l)/ gPiA, —5)0PdW?,
(i_l)An (i_l)An

we get:

Lnt]
(1) e Zf g? Ay =)0 aw?
n

—DA,

iAy
. 1
X |:/ g(l)(zAn - s)(as(l) — o((ll DA, )dW(l):|
(iil)An
(37)
1 lnt]

iA,
oD / ) (: )
g A, —s5)dW,
f#” D & Tli-1)A, A, n 5

iA,
X |:/ g(z)(iAn _ s)( @ _ ( )dW(Z):|
(i=DaA,

We can now start to prove the L' convergence that we need. To prove it, we will invoke some
results as appearing in [4]. In particular, we will use by-products of the proof of Theorem 4 of
that paper. Before we can apply the conclusions of the theorem, we need to verify that we satisfy
its assumption called CLT, as stated on pages 1167-1168. This is easily done by combining
Theorem 3.1 with Assumption 4.2.
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If we take the first term of (37), we need to show convergence of:

Lnt] iA,
@) (; 2) (2)
g (A, —s)o, 7 dW,
(1) (2) Z ‘/(il)A,, n s $

Tn o =1

iA,
1
><|:/ ()(zA —s)( (l)—a((l)l) )dWs(l):H.
(

i—1)A,

By Cauchy-Schwarz E[| X Y|] < v E[X2]y/E[Y?2]. Now:

iAn
\// (g(z)(iAn—s))z @ ds—\// g(z)(s) E[ (o2 (2) ) ]ds,
(i=DA,

since o is cadlag, it is bounded on compact intervals, so we get the bound:

[ [Bn 0@ (s))2 d
P fo (89 (s))=ds

no
- o (D 1 (D ?
M — —
gWEA, —s)(os o’ ) dWs ) i|
r,f” 121: |:</(l DA, ( s (i—DA, s) s

for some constant K. Now, the first term is bounded by K, and the second one goes to zero since
o1 is Holder continuous in mean square, as implied by Assumption 4.2.
We can repeat the reasoning for the second term of (37). Let’s take another term now:

1 e ei-Da, W0 w® [T o @ e
N (2)2[/ 00 Algs os dWs / Ao,
i=1 - -

e8]

(38)

PO Re) (i=DA, W o) (i—1)Ay oo
n n
%i-1)A,%i-1)A, /OO A gy dW /_Oo Alg? dW }

Adding and subtracting o(l)l)An fﬁ;lm" A;’gs(l)dWS(l) ff:}lm” A?gs(z)os(z)dWs(z), we get as
the first term:
[nt] f(l DA, Ang(2) (2)dW(2)
«/_ Z L@
n
(1)
i—1)An H_a 1 1 i—1)A, 1 1
0% Ao awd oD D8 pr ) gy h)

(i—DA, J—
=

(@)
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We can use the same arguments as above. The only difference is the expectation of (1) over the
infinite interval:

VEIGES a1gPo® aw®21 [ 6D + A — gD ) Bl ), ,)21ds

2 2
0 o

Assumption 4.1 allows to conclude that this quantity is bounded. The remaining term (2) is equal
(1) () G+1)
to the sum B/"* + Y. j=1C;" % from the proof of Theorem 4 in [4] and goes to zero in

L? by the same arguments.
Now we consider the cross term

|nt]

n (i—-DA,
W Z(/( VA, — 5o dWS“)/ AP g

i—1A, —00
(39)
H L@ B ‘A dw®d (=ha An @ qw® ).
—0ana,Ci-na, | 8 ({AAn—s5)dWy 8!
(i—1)A, —o0
We add and subtract: o(l DA, fl Da, & DG A, s)dW(l)f Al'gy D@ aw®,
R WAL o ool [ 0 M _ 5 (1)
— Alga? dW ([ gV iN, —s) o, —0o, dw; )
ﬁ;/—oo er * \icna, ! (0 i-na,)
|nt] A
1 .
Z"((z )1>An/ gV, —s)dwV “40)
i—1)Ap
(=D @ (@ _ ;@ )
n
X (/_OO Algg ( o, oG 1)A,,)dWS )
We can proceed exactly as above, and convergence to zero is proved. (|

7.3. Convergence of the term A, = A" 4+ /™!

It is worth mentioning at this point that proofs that terms similar to the one we called AW" ok

converge to zero in the univariate case have had a tormented history in the literature. Indeed,
a mistake appeared in the proof of a similar result in [22] in the context of power variation
for integral processes. The application of the mean value theorem on page 724 of that paper is
invalid.

The mistake was not simple to correct. Years later, the paper [21] was published, which high-
lighted the techniques from fractional integration that were needed to correct the proof. As it
turns out, in our multivariate setting it is sufficient to invoke that univariate result to obtain the
required convergence. This section contains the details of the proof.
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Proposition 7.2. Assume that the assumptions of Theorem 4.2 hold. Then

P — lim limsup sup |A;"'| =0.

[=00 n—so0 t€[0,T]

Proof of Proposition 7.2. We need to set the following notation:

1 (ArPGD ATG? A"GD ATG?
)

Vm r,(,,l) t,(,,z) 1,1(11) 1,512)

and f(#;) = G((il—)l)An 0((1'2—)1)An" We will be using Remark 1.1 in the paper [21]. We know that:
[mt]

Z Ei,m = \/BWI-
i=l1

Convergence (4) in the paper reads:

|nt]
P— lim limsup sup |y Y (f(t) = f(uj-1)&m| =0, 1)
n—00 ;_ 560 te[0,T] j=liel,(j)

which in our setting and with our notation becomes:

[t]+1
) ) ) %)
Z (06218, 1A, _“(j—lml“(j—l)m)

J=1 ielgn()

P — lim limsup sup
=00 n—oo0 t€[0,T]

=0.

1 (A"GD ATGD
5 ( l Mn)

G\ O

1

Expanding the bracket in (1) above, the first term gives us exactly term A;"’l. The second term
from the bracket (1) is:

i [lt]+1 " [/t]+1

n ) ® n ) 6)

NG 2 2 oA, N 2 D %ilnaliina,
Jj=1 i€lgn(j) Jj=1 i€lyn(j)

Lt ]+1 Lnt]
Hn €] (@)

Mn . (N 2
= — #(Lqn(J))o, o - — o). o .
ﬁ ]2—; ( ) U=DA" (=D A, ﬁj:] G=DA" (=D A,
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If we use (34), we get:

" [t]+1 |nt]
n @ m Lo
o Z (, +eam, l>(1)> OG- G-1A, T~ f % DACG-DA,
j=1
u Lt]+1
7 [ n (2)
=A" o > cwn Dol na, o a,
j=1

We can then conclude that (41) implies:

[/t]+1

! ! 2
P — lim limsup sup |A;"" + A" +_ Z e, 1)(])0(/ a0 ((/)I)A

[=00 n—00 1€[0,T]

Now, we can write:

l l \_ltj-i—l (2)
m, m,
Ar T+ A Z e (NG 165G 1A,

iA;/mJ| —

thJ-i—l
(2)
_n Z e, z)(])U(j DA %G-DA,

[lt]+1
m,l m,l Hn (2)
<A+ A 4 f Z €(n, l)(])ff(, DAL= A,

[lt]+1
e

f Z €(n, 1)(])0(] DACG-DA,

but since |e(,,;)(j)| < 1, the last term goes to zero a.s. for any fixed /, uniformly for ¢ in [0, T'],
so we can conclude that:

mn,l ’

P — lim limsup sup }A

[=00 n—soo tef0,T]

O

7.4. Convergence of the term C:”l

The term C;' is the one that will give us the stable convergence we seek.
Proposition 7.3. Assume that the assumptions of Theorem 4.2 hold. Then

Lnt]
G G?, nZ<A”G<1> ATGD ., >
n
NG ORI

t€[0,T]
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converges weakly to
@O ~®
(Gi”. G VBB, 0.1y

Proof of Proposition 7.3. We split the proof into two parts: First, we prove tightness and then
convergence of the finite dimensional distributions.

Tightness: Theorem 13.2 in [17] gives two necessary and sufficient conditions for a sequence
of measures P, to be tight. Our probability measures P, live in D([0, T]; R3), the space of cadlag
functions with values in R3, equipped with the Skorokhod topology. The norm in this space is
defined as:

I fllpgo,rirsy = sup I flIgs,
te(0,7T]

and hence the two conditions in the theorem only depend on the norm in R>. It is then sufficient
to show them component-wise. The first two components trivially satisfy them, as the sequences
reduce to only one measure per component. The fact that the third component satisfies them both
is a consequence of Theorem 3.3.

Convergence of the finite dimensional distributions: We need to show that for any choice of
positive numbers ax < bi, k € {1, ..., D}, the sequence of matrix variables:

Lnbi ] nG() AnG®2
M () ~@ o L AiGY A
(o0-opop a3 3 (o,

Ak ? (D 2)
ﬁ i=|nar]+1 Tn Tn

converges in law, as n — 00, to:

(1) 1 2) 2
(Gbk - ng), Gbk — G((lk)’ \/E(Bbk — B“k))lsng’ (42)

This we know already, as pointed out in the proof of Theorem 3.4, as marginal convergence of
sequence of variables within fixed Wiener chaoses implies joint convergence. The first two com-
ponents lie in the first chaos, the third one lies in the second chaos. The statement of Theorem 3.4
allows to conclude. [

Proposition 7.4. Assume that the assumptions of Theorem 4.2 hold. Then C}' converges stably
in law to ﬁfé os(l)as(z) d By in the Skorokhod space DI|0, T], where B = C(1, 1), see equation
(15), and where first n — oo for fixed | and then | — o0. Also, B is Brownian motion, indepen-
dent of F and defined on an extension of the filtered probability space (2, ¥, ¥;, P).

Proof of Proposition 7.4. The joint weak convergence in (42) paired with the asymptotic in-
dependence of the limit B and G, G® and an application of Proposition 3.3 in [26] ensure
that:

Lnt] nA(1) anQ2)
LN (ARG ARG Yo VBB (mixing).
NN ’

i=

Tn
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Applying the continuous mapping Theorem 3.2 in [26] with the sigma-algebra g,
1 2 . A'GD ATGD
((]) ha,® ((]) 1ya, as the measurable variable o, ﬁ Ziel(m(j)(—’r(l) —;(2) — ) as Y, and

g(x,y) =xy, since ¥, I VB(Bja, — B(j—1)a,), we have the following §-stable convergence
for fixed / as n — oo:

1 2
PO Re) 3 ATG AIGR
OGi-1aG- 1>Azf Lo M
iclgm() ~ n

(D (2)
:>0(/ DA G- 1)A[\//§(BJ'A1_B(j*])AI)‘

(o}

Finally, we have that

L]
[¢)) @ 2
P—tim Y 0’500 16V B(Bja, — Bij- 1)A1)—f/ 'o® dB,

[—o0
j=1

I thJ+1 S Ie)
Z 93G-DA, (1 DA,

which goes to zero a.s. as n — 00, we have proven stable convergence of the term Ct in our
decomposition. ]

because the integrand is cadlag. Modulo another term of the form

7.5. Convergence of the term D/

Proposition 7.5. Assume that the assumptions of Theorem 4.2 hold. Then sup, (o 71| Df'| — 0
almost surely.

Proof of Proposition 7.5. Note that D} is given by
|nt] ¢
(Y] (2) D _(2
Mn ZG(I DACGEDA, ﬁun/() ax( )Us()ds.
Recall that o denotes the Holder continuity index of o ®). Rewriting the integral:

[nt]

t
/ m <2>ds—z / sV ® ds + / Ve ds,
(-DA, [nt]A,
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and using the mean value theorem, we get:

[nt]
S I H_@ 1 2
|D| < _Mn <Z|U(j DACG—1)A, Us(,-)as(,-) ) + ﬁ“ ”‘7(1) ( )H

Lnt]

1 ) @ 1
[Mn<Z|(]—1)A — |mm(oz o )| ((Jl) 1)AnJra;j?))Jr\/_M “0(1) (2)”

1 () (2) 1
< C—p, ATn@ Ny a<1> (2>
= \/ﬁﬂn n \/—M ” |

o0
in(@® ¢ 1 D@
:C\/EﬂnAnmln(a o )T+ﬁﬂn||0'3() ()H
Hence, sup, (.71 D}'| — 0 almost surely, since min(aV, ¢®) > 1. O

7.6. Proofs of Theorem 4.2 and Proposition 4.3

Proof of Theorem 4.2. The statement of Theorem 4.2 is a consequence of Propositions 7.1, 7.2,
7.4,7.5, noting that they imply that, for any ¢ > 0,

lim hmsupIP’( sup |A} +A/"I+A”"1+D"| >5) 0.

[=>00 nsoo  N\el0,T]

It is now sufficient to apply Theorem 3.2 in [17] to conclude. (I
Finally, we provide the proof of the weak law of large numbers.

Proof of Proposition 4.3. We note that, for each fixed ¢ € [0, T], (17) implies that:

] Any () Any() n() AnQR) '
12 Any ) Any ATGD ATG 0o
Vn ;Z D) _]E|: @) 5) /GS oy~ ds
Tn Tn Tn 0 neN

i=1 Tn

converges weakly, hence, by Prohorov’s theorem, it is a tight sequence. It then follows that:

P
oNo@ ds = 0.

s

1 & ArY D ArY® |:A'1’G“) A?G(Z)} /f
i i _
0

" 1 2 1 2
e r,i) r,g) r,g) 1’,5)



2276 A. Granelli and A.E.D. Veraart

Now:

|:AfllG(l) A?GQ) ]

‘C,El) _L_rE2)
Sy eV )@ )pds + [V (s + Aw) — gD ()P (s + Ay) — P (5)pds
_Elgl)tng)
=0 c(Ay) .
T’EI)T’§2)

Hence,

L)
S ATYDAIYD cay) (!

Ay - P
1 2 1 2
2

P
oVe@ds =0,

which is equivalent to

[nt] t
P
A,,E Ay DAy @ —pc(An)/ oMe@ds =0,
0

i=1
or indeed to

|nt] t
. ZA?Y“)A?Y@E,O/ oMo gs.
c(Ayp) o1 0 ’
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