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Among Monte Carlo techniques, the importance sampling requires fine tuning of a proposal distribution,
which is now fluently resolved through iterative schemes. Sequential adaptive algorithms have been pro-
posed to calibrate the sampling distribution. Cornuet et al. [Scand. J. Stat. 39 (2012) 798–812] provides
a significant improvement in stability and effective sample size by the introduction of a recycling proce-
dure. However, the consistency of such algorithms have been rarely tackled because of their complexity.
Moreover, the recycling strategy of the AMIS estimator adds another difficulty and its consistency remains
largely open. In this work, we prove the convergence of sequential adaptive sampling, with finite Monte
Carlo sample size at each iteration, and consistency of recycling procedures. Contrary to Douc et al. [Ann.
Statist. 35 (2007) 420–448], results are obtained here in the asymptotic regime where the number of iter-
ations is going to infinity while the number of drawings per iteration is a fixed, but growing sequence of
integers. Hence, some of the results shed new light on adaptive population Monte Carlo algorithms in that
last regime and give advices on how the sample sizes should be fixed.

Keywords: adaptive algorithms; importance sampling; Monte Carlo methods; population Monte Carlo;
sequential Monte Carlo; triangular arrays

1. Introduction

A customary aim of Monte Carlo techniques is to approximate a targeted distribution � on some
space X with a random sample. Popular examples of such schemes are Markov chain Monte
Carlo (MCMC, see, e.g., Robert and Casella [22]) as well as importance sampling (IS, see, for
example, Hesterberg [14,15], Ripley [21]). Both methods (MCMC and IS) target � by sampling
X with auxiliary distributions, either according to a Markov kernel whose stationary distribution
is � or according to another proposal distribution Q. If Q charges the support of the target, IS
corrects the discrepancy between Q and � by weighting the sample with the Radon-Nikodym
derivative of � with respect to Q (which can be computed as ratio of both densities according
a reference measure). The shortcomings of IS are well known: the distribution of the weights
generally deteriorates except if the proposal distribution Q is tuned properly, see, for example,
Owen and Zhou [20]. Adaptive importance sampling (AIS) as proposed by Douc et al. [9,10] or
Cappé et al. [6] is popular example of a sequential scheme that adapts the proposal distribution
gradually over time. These authors fit the proposals to the target among a given set of distribution,
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namely finite mixtures of kernels. And note that AIS can be seen as a particular case of the
Population Monte Carlo (PMC) of Cappé et al. [5] which borrows principles from both IS and
MCMC.

Moreover, as with MCMC, we can collect all the simulations along time in sequential schemes
such as AIS to built an approximation of the target. In many real problems where computing the
Radon-Nikodym derivates, that is, the density of the target according to the reference measure,
is time consuming, recycling the successive samples generated during the run of the algorithm is
crucial. In the particular case of AIS, we end up with samples drawn according to the successive
proposal distributions we have tried at each stage of the algorithm. But Veach and Guibas [28]
and Owen and Zhou [20] have shown that considering different samples drawn from different
proposals as a single sample drawn from the mixture of proposal and correcting the weights ac-
cording to this remark can stabilize IS approximation by reducing the variance of the weights.
Indeed, the Radon-Nikodym derivates of the target with respect to the mixture distribution be-
comes very large only on the part of the space which is of low probability for each component
of the mixture of proposals. He and Owen [13] extended this work and optimized the rates of the
mixture to gain further efficiency.

Cornuet et al. [7] relied on the clever recycling strategy of Owen and Zhou [20] to propose
adaptive multiple importance sampling (AMIS). The AMIS is a sequential scheme in the same
vein as Cappé et al. [6], combining multiple importance sampling methods and adaptive tech-
niques: the novelty of the AMIS is the update of the weights of all past simulations following
Veach and Guibas [28] and Owen and Zhou [20] which recycles all past samples to learn the new
proposal at the current iteration of the sequential scheme. On various numerical experiments
where the target is the posterior distribution of some population genetics data sets, Cornuet et
al. [7] show considerable improvements of the AMIS in effective sample size (denoted further
ESS, see Liu [16], Chapter 2), that is, AMIS manage to reduce the variance of the weights. In
another genetical example where the target is some posterior distribution, Sirén, Marttinen and
Corander [25] claim that the AMIS was efficient while other sequential importance sampling
scheme misses the target.

We study here the theoretical properties of a Modified version of AMIS (MAMIS), which in-
troduces a simpler recycling strategy than AMIS. The MAMIS strategy, that was proposed in
a previous version of this work, has been considered in various works such as Martino et al.
[18], Schuster [23,24], Bugallo, Martino and Corander [3], Cameron and Pettitt [4], Feroz et
al. [11]. And Martino et al. [17] rely on the same adaptive scheme as MAMIS to build their
Adaptive Population Importance Sampling, called APIS. Note also that Šmídl and Hofman [26]
consider the use of different Population Monte Carlo algorithms to estimate the parameter of a
highly nonlinear state space model for which the evaluation of the likelihood function requires
extensive numerical calculations, as an automated method of instantaneous radiation situation
assessment that does not underestimate its uncertainty. They found that both AMIS and MAMIS
algorithms have similar performances and give the best results among the set of considered al-
gorithms. Finally, for Gaussian processes with latent variables, Xiong, Šmídl and Filippone [29]
study the application of AMIS when the likelihood is explicit, and propose to rely on a Pseudo-
Marginal AMIS/MAMIS for non-Gaussian likelihoods, where the marginal likelihood is unbias-
edly estimated. The results suggest that the proposed framework, relying on AMIS and MAMIS,
outperforms MCMC-based inference of covariance parameters in a wide range of scenarios and
remains competitive for moderately large dimensional parameter spaces.
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However, no proof of convergence had yet been provided in the literature. It is worth not-
ing that the update of the weights at each iteration according to all learnt importance distribu-
tions introduces long memory dependence between the samples, and a bias which is not con-
trolled by theoretical results. Even in very simple settings where the target is Gaussian, while
the family of proposals are decentered Student t (3) distributions, asymptotic consistency of the
AMIS/MAMIS remains an open problem. The main purpose of this paper is to fill in this gap,
and to prove the consistency of the algorithm at the cost of a slight modification in the adaptive
process.

Sequential Monte Carlo scheme are presented in Section 2, including the algorithm we intend
to study in the present paper, namely MAMIS. We suggest running an adaptive importance sam-
pling algorithm that learns the new parameter of the proposal on the last simulated sample of size
Nt , weighted with the classical importance sampling weights. The only recycling procedure in
our algorithm is in the final stage that merges all the previously generated samples in the spirit
of Veach and Guibas [28], Owen and Zhou [20] or Cornuet et al. [7]. The final stage outputs a
weighted empirical distribution composed of �T = N1 + · · · + NT particles weighted as if they
were simulated from the mixture of learnt proposals.

In Douc et al. [9], for instance, the consistency of the adaptive population Monte Carlo
schemes is proven assuming that the number of iterations, say T , is fixed and that the num-
ber of simulations within each iteration, N = N1 = N2 = · · · = NT , goes to infinity. We decided
to adopt a more realistic asymptotic setting in this paper. Contrary to these last results, the con-
vergence of Theorem 3.5 holds when N1, . . . ,NT is a growing, but fixed sequence and T goes
to infinity. Hence, the proofs of Theorem 3.2 provide new insights on adaptive PMC in that last
asymptotic regime.

The strong convergence of the learnt parameters to the suitable parameter θ∗ one seeks is given
in Theorem 3.2. Its proof relies on a clever application of the Chebyshev inequality to obtain the
almost sure consistency. To identify the main ideas of the proof clearly, we assumed that the
tuning parameter is a (generalized) moment of the targeted distribution �, see the discussion in
Section 2.2. Interestingly Theorem 3.2 assumes that the sample size grows fast enough to infinity
so that

∑
t 1/Nt is finite, a condition that occurred sometimes in the literature studying sequential

Monte Carlo schemes, see e.g. Forbes and Fort [12].
The final merging of our algorithm updates the weights as if all simulations were drawn from

a mixture of all learnt proposals. The consistency of this final output is given in Theorem 3.5,
proven in Section 4. The result is not a straightforward consequence of asymptotic theorems and
requires the introduction of a new weighting according to a given proposal distribution that is
more simple to study, although biased and non explicitly computable (because the suitable value
θ∗ of the parameter is unknown). Under the set of assumptions given below, this last weighting
scheme is consistent (see Proposition 4.4) and is comparable to the clever weighting as mixture
of all learnt proposals, which yields the consistency proven in Theorem 3.5.

To sum up, Section 2 presents the algorithms, including AMIS/MAMIS in details and intro-
duces the main notations of the paper. The main results of the paper are given in Section 3. Their
proofs are given in Section 4. The paper ends with a conclusion and a discussion in Section 5.
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2. Adaptive importance sampling

Simulating according to a target distribution � whose probability density is known, up to a
normalizing constant, is an important issue of Monte Carlo methods, in the field of stochastic
modeling. Specifically, when conducting a Bayesian analysis, these algorithms serve to sample
the parameter space X with respect to the posterior distribution. In this case, the posterior dis-
tribution is the target distribution � and is known up to a normalizing constant. Simulating with
a simple algorithm from � is impossible in most situations. Different strategies exist and can
be divided into two large families of algorithms: Markov chain Monte Carlo (MCMC) methods
and importance sampling (IS) methods. These days, a new generation of hydrid algorithms have
emerged, such as particle MCMC (Andrieu, Doucet and Holenstein [1]). The hybrid algorithms
bypass the issue of MCMC methods of assessing the convergence to the stationary distribution
by relying on IS and correct the use of the wrong distribution at each iteration by weighting the
samples.

Here we focus on importance sampling and its theoretical properties. Such importance sam-
pling methods rely on the definition of an instrumental (or importance sampling) distribution, that
serves as sampling distribution to cover the support of the target. The discrepancy between the
sampling and the target distribution is corrected by weighting each simulation. But the efficiency
of the method depends heavily on the choice of the instrumental distribution, whose choice is
known to be difficult. To solve the issue, iterative and adaptive algorithms have been proposed in
the literature. These algorithms build the instrumental distribution gradually by learning features
of the target at each stage.

More formally, we wish to simulate according to the target and approximate integrals �(ψ) =∫
ψ(x)�(dx) for a large class of function ψ : polynomial functions to obtain approximations of

the moments of the target, but also indicator functions to approximate probabilities of certain
events, . . . If � is absolutely continuous with respect to the instrumental distribution Q, and if
both of them have densities π(x) and q(x) with respect to a common reference measure dx, then

�(ψ) =
∫

ψ(x)π(x)dx =
∫

ψ(x)
π(x)

q(x)
q(x)dx =

∫
ψ(x)

π(x)

q(x)
Q(dx) = Q

(
ψ

π

q

)
.

Note that the ratio π(x)/q(x) does not depend on the reference measure and is actually the
Radon-Nikodym derivative of � with respect to Q. It serves as a weight in importance sampling
(IS) algorithm: if X1, . . . ,XN are N i.i.d. particles simulated according to Q, IS algorithms
approximate the integral �(ψ) with the weighted average

�̂IS
N (ψ) = 1

N

N∑
i=1

π(Xi)

q(Xi)
ψ(Xi).

Obtaining a good sampling distribution Q is not an easy task, since the distribution Q must
have queues as large as the target � (otherwise the weights degenerate). A strategy is to set a
well-chosen parametric family of distributions and to gradually learn which distribution is the
best sampling distribution Q from that family. This leads to algorithms with a time dimension
over standard IS methods, that is, iterative algorithms. The first algorithm that has been proposed
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Algorithm 1 Adaptive importance sampling
1: for t = 1 → T do
2: select the importance distribution Qt = Q(θ̂t ) by learning θ̂t from past weighted samples
3: for i = 1 → Nt do
4: draw Xt

i from Qt

5: set ωt
i = (d�/dQt)(Xt

i )

6: end for
7: end for
8: return the sample (XT

1 , . . . ,XT
NT

) with weights (ωT
1 , . . . ,ωT

NT
)

in this direction is Adaptive Importance Sampling (AIS, Douc et al. [9], Cappé et al. [6]), that can
be seen as a particular case of Population Monte Carlo (PMC, Cappé et al. [5], Douc et al. [10]).
But PMC is a larger family of algorithms since the instrumental distributions can be Markov
kernels. Note also that PMC can be seen as a particular case of Sequential Monte Carlo (SMC,
Del Moral, Doucet and Jasra [8]). But the target of PMC can be a distributions of much larger
dimension on a much larger product space.

Formally, at stage t of the AIS algorithm, see Algorithm 1, the Xt
i ’s are drawn independently

from a common distribution Qt . This distribution might be selected from a parametric family
Q(θ) of distributions as Qt = Q(θ̂t ) where θ̂t depends on past samples. Each Xt

i is weighted with
the Radon-Nikodym derivative d�/dQt . This is the classical weight of importance sampling,
see, for example, Robert and Casella [22]. Moreover, the weights do not need to be normalised
if we can compute exactly the Radon-Nikodym derivatives d�/dQt . Note that the number Nt

of simulations Xt
i may vary from stage to stage. The resulting algorithm has been considered by

Douc et al. [9] and Cappé et al. [6] and is exposed in Algorithm 1.
Here, whatever the value of N1, . . . ,NT , we can easily see that the empirical distribution

�̂AIS
T := 1

NT

NT∑
i=1

ωT
i δXT

i

is an unbiased approximation of the target � provided that � is absolutely continuous with
respect to each Q(θ). Indeed, conditionally on the past simulations, that is, on the σ -field FT :=
σ(Xt

i ; t < T , i < Nt),

E

(∫
ψ(x)�̂AIS

T (dx)

∣∣∣ FT

)
= 1

NT

NT∑
i=1

E

(
ψ

(
XT

i

) d�

dQ(θ̂T )

(
XT

i

) ∣∣∣ FT

)

= 1

NT

NT∑
i=1

∫
ψ(x)

d�

dQ(θ̂T )
(x)Q(θ̂T ,dx)

= 1

NT

NT∑
i=1

∫
ψ(x)�(dx) =

∫
ψ(x)�(dx).
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The above cited papers (Douc et al. [9,10], Cappé et al. [6]) only consider the important case
where the sampling distribution Qt as to be adapted from a parametric family of finite mixture
distributions but the framework is more general. It might be tempting to minimise the Kullback-
Leibler divergence between the target � and the sampling distribution Qt at each iteration of
the algorithm. Indeed, with the above reasoning, each weighted empirical distribution �AIS

t is an
unbiased approximation of the target � and

KL
(
Q(θ) | �) =

∫
log

(
d�

dQ
(x)

)
�(dx)

≈
∫

log

(
d�

dQ(θ)
(x)

)
�̂AIS

t (dx) (2.1)

≈ 1

Nt

Nt∑
i=1

ωt
i log

(
d�

dQ(θ)

(
Xt

i

))
.

Thus, θ̂t+1 might be set as the minimizer (in θ ) of the above empirical criterion. This is not
what is proposed in Douc et al. [10] since fitting the parameter of a mixture distribution requires
complex algorithms such as the EM algorithm (see, e.g., McLachlan and Krishnan [19] and the
references therein). Instead, Douc et al. [10] learn the new value θ̂t+1 by resorting only to one
step of the EM algorithm.

Douc et al. [10] proved that, when N1 = N2 = · · · = NT = N , and when N → ∞, the ran-
dom sequence (θ̂1, . . . , θ̂T ) converges (in probability) to the deterministic sequence (θ1, . . . , θT )

where

θt+1 =
∫

h(x, θt )�(dx) (2.2)

for some explicit bivariate function h. Due to the update of θ with one step of an EM algorithm,
the sole guaranty we have is that the Kullback-Leibler divergence KL(Q(θ) | �) decreases along
the deterministic sequence (θ1, . . . , θT ). And, moreover, the limit of this deterministic sequence,
namely limT →∞ θT , is the minimiser of the Kullback-Leibler divergence KL(Q(θ) | �). The
major drawback of these asymptotical results is that they do not study how Monte Carlo errors
might propagate along the iterations of the scheme. Actually, in the above asymptotical regime
where each sample size Nt is sent to infinity, the Monte Carlo error of the previous iteration is
sent to zero, hence, θ̂t is sent to the deterministic θt before entering the t iteration.

2.1. Recycling strategies

Since the seminal paper of Cappé et al. [5], users were aware that one might built an approxi-
mation of the target relying on all the particles along the iterations of adaptative schemes such
as Algorithm 1. In settings where calculating the importance weights is time consuming, such
efficient recycling processes make sense. Indeed, each iteration provides an approximation �̂t of
the target � with a weighted empirical distribution. Thus, the mixture weighting each �̂t with
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the number of particles simulated during the t iteration, namely

1

�T

T∑
t=1

Nt�̂t ,

where �T = N1 + N2 + · · · + NT , is also an approximation of the target �. With Algorithm 1,
since each �AIS

t is unbiased, the resulting mixture, which is

1

�T

T∑
t=1

Nt∑
i=1

ωt
iδXt

i
, where ωt

i = d�

dQt

(
Xt

i

)
(2.3)

is also unbiased.
This is a naive recycling procedure of the T samples drawn from different importance distri-

butions:

X1
1, . . . ,X

1
N1

∼ Q1 = Q(θ̂1),

X2
1, . . . ,X

2
N2

∼ Q2 = Q(θ̂2),

...

XT
1 , . . . ,XT

NT
∼ QT = Q(θ̂T ).

Actually, if Q1, . . . ,QT are fixed before the first iteration of Algorithm 1, Veach and Guibas [28]
have shown that we can see the whole collection (Xt

i ; t ≤ T , i ≤ Nt) as drawn from the mixture

Qmixt :=
T∑

t=1

αtQ
t , where αt = Nt/�T

hence that we can replace ωt
i by the alternative weight

ω̃t
i := d�

dQmixt

(
Xt

i

)
in the Equation (2.3) and still obtain an unbiased approximation of the target �. This recycling
strategy is more clever and Veach and Guibas [28] have shown that this alternative weighting
strategy stabilises the approximation by reducing the variance of the weights, as also emphasized
by Owen and Zhou [20]. Indeed, the alternative weights, that is, the Radon-Nikodym derivate
d�/dQmixt(x) becomes very large only when x is in a part of space which is of low probability
for each component Qt of the mixture Qmixt := ∑T

t=1 αtQ
t .

The above stabilising strategy that recycles all past simulations can be used as well when the
importance distributions Qt are adapted as in the general Algorithm 1. But then we do not have
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any theoretical guarantee about

1

�T

T∑
t=1

Nt∑
i=1

d�

dQmixt

(
Xt

i

)
δXt

i
(2.4)

since the final weight of each particles depends on the whole collection (Xt
i ; t ≤ T − 1, i ≤

Nt). Nevertheless, Cornuet et al. [7] relied on the alternative recycling strategies (2.4) to update
θ at each stage t of the scheme. The resulting algorithm, called adaptive multiple importance
sampling or AMIS, was not proven consistent. But numerical examples given in the original
article or in Sirén, Marttinen and Corander [25], show considerable improvements in effective
sampling size (denoted further ESS, see Liu [16], Chapter 2), that is, AMIS manages to reduce
the variance of importance weights.

2.2. An adaptive algorithm ending with a multiple recycling scheme

We end up with a precise description of MAMIS, the algorithm we intend to study in the rest of
the paper. To avoid dealing with sequential M-estimators (see, e.g., van der Vaart [27], Chapter 5)
minimizing (2.1) at each stage of the algorithm, we rather assume that, whatever the criterion we
believe in (Kullback-Leibler divergence, or distances based on moment differences), the suitable
value of θ might be written as

θ∗ =
∫

h(x)�(dx), (2.5)

where h is an explicitly known function. For instance, one can easily show that, when the family
of proposals Q(θ) is composed of decentered Student t (3) distributions with means θ , then the
minimiser of the Kullback-Leibler divergence can be written as (2.5) with h(x) = x. Likewise
Cornuet et al. [7] discussed moment fitting at the end of Section 3 of their paper. The resulting
algorithm, which is Algorithm 1 complemented with a multiple recycling strategy, is given in
Algorithm 2. We hope improvements in the accuracy of the current update of θ against previous
estimations by requiring that the sample size Nt grows at each iteration.

To simplify notations, we assume that the target � and the proposal distributions Q(θ) have
density π(x) and q(x, θ) with respect to a common reference measure dx. In such settings, the
Radon-Nikodym derivates are simply ratio of densities.

The studied scheme is given in Algorithm 2. We name it modified adaptive multiple impor-
tance sampling or MAMIS. The learning process between lines 1 and 7 draws a sequence of
samples from which it calibrates gradually the parameter θ . The new value of the proposal’s
parameter we compute at line 6 depends only on the last sample we have drawn. This is the
only discrepancy from the AMIS algorithm of Cornuet et al. [7]: MAMIS updates the parame-
ter θ with the last sample, while AMIS updates the parameter θ by taking into account all past
simulations. More precisely, the formula replacing (2.6) in AMIS is

θ̂AMIS
t+1 = �−1

t

t∑
s=1

Ns∑
i=1

ω̃t
s,ih

(
Xs

i

)
, with ω̃t

s,i = π
(
Xs

i

)
/�−1

t

t∑
k=1

Nkq
(
Xs

i , θ̂k

)
.
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Algorithm 2 The studied scheme: MAMIS

Require: an initial parameter θ̂1 and increasing sample sizes N1, . . . ,NT .
1: for t = 1 → T do
2: for i = 1 → Nt do
3: draw Xt

i from Q(θ̂t )

4: compute ωt
i = π(Xt

i )/q(Xt
i , θ̂t ).

5: end for
6: compute

θ̂t+1 = N−1
t

Nt∑
i=1

ωt
ih

(
Xt

i

)
(2.6)

7: end for
8: set �T = N1 + · · · + NT

9: for t = 1 → T do
10: for i = 1 → Nt do
11: update ωt

i = π(Xt
i )/�−1

T

∑T
k=1 Nkq(Xt

i , θ̂k)

12: end for
13: end for
14: return the empirical distribution

�̂MAMIS
T := 1

�T

T∑
t=1

Nt∑
i=1

ωt
iδXt

i
(2.7)

In MAMIS, the only recycling process occurs during the final stage after line 9. Finally, we
should note that, if calculating π(x) is time consuming, the value computed at line 4 should be
stored in memory to perform more easily the update at line 11 during the recycling process.

Hence, the estimator of the integral �(ψ) = ∫
ψ(x)�(dx) is

�̂MAMIS
T (ψ) = 1

�T

T∑
t=1

Nt∑
i=1

[
π(Xt

i )

�−1
T

∑T
k=1 Nkq(Xt

i , θ̂k)

]
ψ

(
Xt

i

)
, (2.8)

based on the empirical distribution given in (2.7).
Finally, we define the σ -fields Ft = σ(X1

1, . . . ,X
1
N1

, . . . ,Xt−1
1 , . . . ,Xt−1

Nt−1
) which form a fil-

tration.

3. Consistency results

We state here our main results (on the learning process in Paragraph 3.2, and on the final output
in Paragraph 3.3). For the sake of clarity, technical parts of the proof of the second results are
postponed to Section 4. We begin with some hypothesis on the parametric family of proposals.
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3.1. Assumptions on the family of proposals

We assume that the space � is a subset of the space R
d endowed with the Euclidean norm ‖ · ‖.

The set X is a subset of a finite-dimensional vector space, equipped with a reference measure dx.
All Q(θ) for θ ∈ � and � are absolutely continuous with respect to the reference measure. They
have densities q(x, θ) and π(x) respectively. The minimal hypothesis for importance sampling
schemes to provide consistent estimates is that � is absolutely continuous with respect to all
proposals: ∀θ ∈ �, � � Q(θ). Hence, we assume that q(x, θ) = 0 implies π(x) = 0.

We can note that θ̂t+1 is defined in (2.6) as a linear combination of (random) values of h,
and the only fact we can safely affirm on the coefficients of this combination is that they are
positive. Therefore, to avoid any interruption of the algorithm, any positive linear combination
of elements of � should fall into �. In particular, this implies that � cannot be a bounded subset
of a Euclidean space.

We also impose some regularity conditions on the family of proposals {Q(θ)}θ∈� which will
ensure consistency of our procedure. For all x ∈ X, θ �→ q(x, θ) is continuous on �, and the
joint function (x, θ) �→ q(x, θ) is lower semicontinuous on X × �. Moreover, when θ → θ∗,
q(·, θ) converges to q(·, θ∗) uniformly over compact sets, that is, for any compact subset K of
X, ∥∥q(·, θ) − q

(·, θ∗)∥∥
K,∞ := sup

{∣∣q(x, θ) − q
(
x, θ∗)∣∣ : x ∈ K

}
converges to 0.

Finally, for all ε > 0 and all x ∈ X, set

mε(x) := inf
{
q(x, θ),

∥∥θ − θ∗∥∥ ≤ ε
}
. (3.1)

We assume that, for all ε small enough, and all x in the (possibly unknown) support of �, the
function mε(x) > 0.

3.2. Consistency of the learning process

We focus here on the learnt parameters θ̂t defined in (2.6) and show convergence to the suitable
value θ∗ = ∫

h(x)π(x)dx. The MAMIS weight of a particle, see (2.8), is an average over the
path θ̂1, . . . , θ̂T in the parameter space �. Weak consistency, that is, convergence in probability,
is not enough to control such averages, as there exists no Cesàro lemma for the convergence
in probability, see, for instance, Billingsley [2], exercise 20.23, page 272. Thus, we decided to
rely on almost sure convergence. The challenge is to prove that the sequential algorithm do not
accumulate Monte Carlo errors over iterations. Let us introduce the following class of functions.

Definition 3.1. A function ψ : X → R
d belongs to the class G2(Rd) if and only if

∫
π2(x) ×

‖ψ(x)‖2/q(x, θ)dx is finite for all θ in � and depends continuously on θ .

We can interpret the integrability condition in the above definition as follow: the classical
importance sampling algorithm that estimates �(ψ) with the proposal Q(θ) have finite variance
whatever the value of θ ∈ �. With such assumptions on the function h used to learn the suitable
value of the parameter, and a condition on the sample sizes, we can show the following result.
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Theorem 3.2. (i) If h ∈ G2(Rd) and Nt → ∞, the estimate θ̂t tends to θ∗ in probability when
t → ∞. (ii) If, additionally,

∑
t 1/Nt < ∞, then θ̂t → θ∗ almost surely.

Proof of Theorem 3.2(i). Fix ε > 0 and z > 0. Recall that θ̂t is defined in (2.6). By conditional
independence, the trace of the conditional variance-covariance matrix of θ̂t+1 can be bounded by

tr Var(θ̂t+1 |Ft ) = tr Var(θ̂t+1 | θ̂t ) ≤ 1

Nt

v(θ̂t ), (3.2)

where v(θ) = ∫
π(x)2‖h(x)‖2/q(x, θ)dx. Thus, using conditional Chebyshev inequality,

P
(∥∥θ̂t+1 − θ∗∥∥ > ε | θ̂t = θ

) ≤ v(θ)

Ntε2
a.s.

using the fact that E‖θ̂t+1 − θ∗‖2 | θ̂t ) = tr Var(θ̂t+1 | θ̂t ). Multiplying by 1{‖θ‖ ≤ z} on both
sides of the above inequality and integrating over the distribution of θ̂t leads to

P
(∥∥θ̂t+1 − θ∗∥∥ > ε,‖θ̂t‖ ≤ z

) ≤ sup{v(θ),‖θ‖ ≤ z}
Ntε2

P
(‖θ̂t‖ ≤ z

)
≤ sup{v(θ),‖θ‖ ≤ z}

Ntε2
.

(3.3)

On the other hand, because E(‖θ̂t‖ | Ft ) ≤ �(‖h‖), we have P(‖θ̂t‖ > z) ≤ �(‖h‖)/z. Combin-
ing the last inequality with (3.3) gives

P
(∥∥θ̂t+1 − θ∗∥∥ > ε

) ≤ sup{v(θ),‖θ‖ ≤ z}
Ntε2

+ �(‖h‖)
z

.

By assumption of Theorem 3.2, h ∈ G2(Rd), hence v(θ) is finite and continuous. In particular,
its supremum over ‖θ‖ ≤ z is also finite. Thus,

lim sup
t→∞

P
(∥∥θ̂t+1 − θ∗∥∥ > ε

) ≤ �(‖h‖)
z

.

Since z can be arbitrarily large, we have proven that θ̂t+1 → θ∗ in probability. �

Proof of Theorem 3.2(ii). Set

Cε := sup
{
v(θ),

∥∥θ − θ∗∥∥ ≤ ε
}

which is finite because h ∈ G2(Rd). Using (3.2) as above, we obtain

P
(∥∥θ̂t+1 − θ∗∥∥ > ε | ∥∥θ̂t − θ∗∥∥ ≤ ε

) ≤ Cε

ε2Nt

. (3.4)
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Now, we recall that θ̂t forms a (time-inhomogeneous) Markov chain. Thus, using (3.4),

P

(
T ′⋂

t=T

∥∥θ̂t+1 − θ∗∥∥ ≤ ε

)
= P

(∥∥θ̂T +1 − θ∗∥∥ ≤ ε
) T ′−1∏

t=T +1

P
(∥∥θ̂t+1 − θ∗∥∥ ≤ ε | ∥∥θ̂t − θ∗∥∥ ≤ ε

)

≥ P
(∥∥θ̂T +1 − θ∗∥∥ ≤ ε

) T ′−1∏
t=T +1

(
1 − Cε

ε2Nt

)
.

And, when T ′ → ∞, we obtain

P

(⋂
t≥T

∥∥θ̂t+1 − θ∗∥∥ ≤ ε

)
≥ P

(∥∥θ̂T +1 − θ∗∥∥ ≤ ε
) ∏

t≥T +1

(
1 − Cε

ε2Nt

)
.

Applying the logarithm on the product and classical results on series, because
∑

t 1/Nt is finite,
the infinite product

∏
t (1 − Cε/ε

2Nt) converges (that is to say the limit is finite and strictly
positive). In particular, the remainder of the infinite product in the right hand side of the above
inequality tends to 1 when T → ∞. Furthermore, because of the convergence in probability
proven above, P(‖θ̂T +1 − θ∗‖ ≤ ε) tends also to 1 and thus

lim
T →∞P

(⋂
t≥T

∥∥θ̂t+1 − θ∗∥∥ ≤ ε

)
= 1.

And we have proven that lim supT →∞ ‖θ̂T − θ∗‖ ≤ ε almost surely. Since ε is arbitrary, the
desired almost sure convergence holds true. �

Remark. Looking carefully at both parts of the proof of Theorem 3.2, we deal with Monte
Carlo errors on θ∗ through a conditional Chebyshev inequality. This inequality is based on the
assumption that h ∈ G2(Rd), that is, a conditional L2 assumption which we consider as a minimal
assumption to have faith in the result of importance sampling schemes. The main drawback of
this assumption is that the concentration rate given by the Chebyshev inequality is the pessimistic
1/Nt , see, for example, Equation (3.4). To control how the Monte Carlo error propagates along
the iterations of the scheme, we added the additional assumption that the sum

∑
t 1/Nt is finite.

But we can replace h ∈ G2(Rd) with a stronger assumption and thus weaken the assumption
on Nt . For instance, if we assume that, for all θ , π(·)‖h(·)‖/q(·, θ) is bounded by some γ (θ)

and that γ is a continuous function of θ , then we can rely on the Hoeffding inequality instead of
(3.4) to obtain a sharper conditional concentration rate which is exponentially decreasing in Nt .
In this way, we can thus weaken the former assumption on Nt into

∑
t exp(−λNt) is finite for

all λ > 0 and still obtain the almost sure consistency of the learnt parameters.
Nevertheless, we believe that assumptions stronger than h ∈ G2(Rd) are difficult to check in

concrete cases. Even this mild L2 assumption might not hold in quite a few cases. Thus we have
preferred to leave Theorem 3.2 as it. It has the merit of providing practical guidance on how to
allocate the computational effort between iterations of the scheme under mild assumptions on
the family of proposals.
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3.3. Consistency of the final recycling scheme

The remaining part of our results deals with the final output that merges all the samples. More
precisely, Theorem 3.5 below says that the empirical sum of a function ψ on the merged,
reweighted sample given in (2.8) provides a consistent approximation of the integral �(ψ). The
class of integrands ψ ∈ L

1(�) for which the above holds is determined by the following class of
functions.

Definition 3.3. A function ψ : X → R belongs to the class H2(R) if and only if the integral∫ [π(x)ψ(x)/q(x, θ∗)]2q(x, θ)dx is finite for all θ ∈ � and is a function of θ that is continuous
at θ = θ∗.

Likewise, the above class of functions might be interpreted in terms of quadratic moments.
Note that, if ψ is in H2(R), then ψ is in L

1(�). Moreover, we have the following, which is a
straightforward consequence of Lemma 4.1.

Proposition 3.4. If ϕ is a measurable function, and if |ϕ| ≤ ψ for some function ψ ∈ H2(R),
then ϕ ∈ H2(R).

Finally, recall from (3.1) that, by assumption, see Paragraph 3.1, mε(x) := inf{q(x, θ) : ‖θ −
θ∗‖ ≤ ε} is positive on the support of �. We are now in a position to state the following strong
consistency.

Theorem 3.5. Assume that h ∈ G2(Rd) and
∑

t 1/Nt < ∞. Moreover, assume that, for some ε >

0, ψ(·)q(·, θ∗)/mε(·) is in H2(R). Then, the sum over the final weighted sample �̂MAMIS
T (ψ)

given in (2.8) tends almost surely to
∫

ψ(x)π(x)dx when T → ∞.

The proof of the above theorem is detailed in the next section: it is a straightforward con-
sequence of Propositions 4.4(iii) and 4.6. But note that the function q(·, θ∗)/mε(·) is larger
than 1 on X, and goes to 1 as ε → 0. Hence, because of Proposition 3.4, the assumption that
ψ(·)q(·, θ∗)/mε(·) is in H2(R) implies that ψ is in H2(R).

4. Proof of Theorem 3.5

Recall that the MAMIS estimator of the integral of ψ with respect to the target � is given by

�̂MAMIS
T (ψ) = 1

�T

T∑
t=1

Nt∑
i=1

[
π(Xt

i )

DT (Xt
i )

]
ψ

(
Xt

i

)
,

where, for all x ∈ X,

DT (x) = �−1
T

T∑
k=1

Nkq
(
Xt

i , θ̂k

)
. (4.1)
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And let us introduce a simpler estimator (but which cannot be computed in practice because θ∗
is unknown), namely

�̂∗
T (ψ) := 1

�T

T∑
t=1

Nt∑
i=1

π(Xt
i )

q(Xt
i , θ

∗)
ψ

(
Xt

i

)
. (4.2)

It differs from �̂MAMIS
T (ψ) by the fact that we have replace DT (Xt

i ) by q(Xt
i , θ

∗). Note that the
auxiliary estimate defined in (4.2) is a (weighted) average of the random variables π̂∗

t (ψ) given
by

π̂∗
t (ψ) := 1

Nt

Nt∑
i=1

π(Xt
i )

q(Xt
i , θ

∗)
ψ

(
Xt

i

)
. (4.3)

Adapting the proof of Theorem 3.2, we can show that the random variables π̂∗
t (ψ) tends to �(ψ)

almost surely, see Proposition 4.4. Now, applying Cesàro lemma (Lemma 4.3 with bt = Nt )
yields to the convergence of �̂∗

T (ψ) = �−1
T

∑T
t=1 Nt π̂

∗
t (ψ).

To conclude the proof of Theorem 3.5, we show in Proposition 4.6 that the MAMIS estimator
�̂MAMIS

T (ψ) has the same asymptotic behavior as �̂∗
T (ψ), namely that �̂MAMIS

T (ψ)−�̂∗
T (ψ) →

0 almost surely.

4.1. On the functions of class H2(R)

Lemma 4.1. Assume that, for any θ ∈ �, the integral

wψ(θ) :=
∫

π2(x)ψ2(x)/q2(x, θ∗)q(x, θ)dx

is finite. These conditions are equivalent: (i) wψ is continuous at θ∗; and (ii) when θ → θ∗,∫
π2(x)ψ2(x)

q2(x, θ∗)
∣∣q(x, θ) − q

(
x, θ∗)∣∣dx → 0.

Proof. Clearly, (ii) implies (i) because

∣∣wψ(θ) − wψ

(
θ∗)∣∣ ≤

∫
π2(x)ψ2(x)

q2(x, θ∗)
∣∣q(x, θ) − q

(
x, θ∗)∣∣dx.

We now have to show that (i) implies (ii), that is to say, if θn is a sequence converging to θ , then
E|Zn − Z∗| → 0 where

Zn = π(X)ψ2(x)

q2(X, θn)
q(X, θn), and Z = π(X)ψ2(x)

q2(X, θ∗)
q
(
X,θ∗)

for some random variable X with distribution �. With the continuity assumptions on the family
Q(θ), Zn → Z almost surely. Because of (i), wψ(θn) = E(Zn) → wψ(θ∗) = E(Z). And note
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that Zn, Z are nonnegative. Now, fix r > 0. We have

E
(
Zn1{Zn ≥ r}) ≤ E

(
Zn − Zn ∧ (r − Zn)+

)
.

The last expected value goes to E(Z −Z ∧ (r −Z)+) since both E(Zn) → E(Z) (because of (i))
and E(Zn ∧ (r − Zn)+) → E(Z ∧ (r − Z)+) (by dominated convergence). Thus,

lim sup
n

E
(
Zn1{Zn ≥ r}) ≤ E

(
Z − Z ∧ (r − Z)

)
.

Moreover, |Z − Z ∧ (r − Z)+| ≤ Z and goes almost surely to 0 when r → ∞. The dominated
convergence theorem yields to

lim
r→∞ lim sup

n
E

(
Zn1{Zn ≥ r}) = 0,

that is to say the sequence {Zn}n is uniformly integrable. Hence |Zn − Z|, which is bounded by
Zn + Z, is also uniformly integrable and we get

lim
n

E|Zn − Z| = E lim
n

|Zn − Z| = 0. �

We also need the following to control the conditional expected value of π∗
t (ψ) knowing that

θ̂t = θ , which is

I ∗
ψ(θ) :=

∫ [
π(x)ψ(x)

q(x, θ∗)

]
q(x, θ)dx. (4.4)

Lemma 4.2. If ψ ∈ H2(R), then the integrals I ∗
ψ(θ) defined in (4.4) are well defined for all θ

and the map I ∗
ψ is continuous at θ = θ∗.

Proof. Fix any θ ∈ �. If Xθ is a random variable with distribution Q(θ), then Yθ =
π(Xθ)ψ(Xθ)/q(Xθ , θ

∗) is square integrable since ψ is in H2(R). Hence, Yθ is a L1-random
variable and its expected value, namely Iψ(θ) is well defined.

Now, set g(x) = π(x)ψ(x)/q(x, θ∗). We have |g(x)| ≤ max(1, g2(x)), thus∫ ∣∣g(x)
∣∣∣∣q(x, θ) − q

(
x, θ∗)∣∣dx ≤

∫ ∣∣q(x, θ) − q
(
x, θ∗)∣∣dx +

∫
g2(x)

∣∣q(x, θ) − q
(
x, θ∗)∣∣dx.

The first integral in this bound goes to 0 because of Scheffé’s theorem, see, for example, Billings-
ley [2], Theorem 16.12, page 215. The second integral goes also to 0, because ψ is in H2(R)

and because of Lemma 4.1. Whence

∣∣I ∗
ψ(θ) − I ∗

ψ

(
θ∗)∣∣ ≤

∫ ∣∣g(x)
∣∣∣∣q(x, θ) − q

(
x, θ∗)∣∣dx → 0. �
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4.2. Convergence of some auxiliary variables

Let us begin by recalling the following lemma, whose proof is obvious, using Cesàro Lemma on
sequence of (nonrandom) vectors.

Lemma 4.3. Let {Ut } be a sequence of random vectors and U another random vector. If {bt } is
a sequence of positive real numbers such that Bt = b1 + · · · + bt tends to infinity, then the event
{Ut → U} is included in the event {B−1

t

∑t
k=1 bkUk → U∞}.

Using the technic of proof of Theorem 3.2 as detailed below, we have the following.

Proposition 4.4. Assume that h ∈ G2(Rd),
∑

t 1/Nt is finite and ψ ∈ H2(R).

(i) When t → ∞, (π̂∗
t (ψ) − I ∗

ψ(θ̂t−1)) tends to 0 almost surely.

(ii) Moreover, under those assumptions, I ∗
ψ(θ̂t ) → I ∗

ψ(θ∗) = �(ψ) almost surely.

(iii) Finally, �̂∗
T (ψ) tends to �(ψ) almost surely when T → ∞

Proof. To prove (i), we first prove that (π̂∗
t (ψ) − I ∗

ψ(θ̂t−1)) → 0 in probability. To this aim, fix

ε > 0 and z > 0. We have E(π̂∗
t (ψ) | Ft ) = I ∗

ψ(θ̂t ) and, by conditional independence,

Var
(
π̂∗

t (ψ) | Ft

) ≤ wψ(θ̂t )/Nt .

Thus, with a conditional Chebyshev inequality,

P
(∣∣π̂∗

t (ψ) − I ∗
ψ(θ̂t−1)

∣∣ ≥ ε | Ft

) ≤ wψ(θ̂t )/
(
Ntε

2).
By integrating over the event {‖θ − θ∗‖ ≤ z}, we obtain

P
(∣∣π̂∗

t (ψ) − I ∗
ψ(θ̂t−1)

∣∣ ≥ ε,
∥∥θ̂t − θ∗∥∥ ≤ z

) ≤ C′
z/

(
Ntε

2),
where C′

z = sup{wψ(θ),‖θ − θ∗‖ ≤ z} is finite because ψ ∈ H2(R). On the other hand,

P
(∥∥θ̂t − θ∗∥∥ > z

) ≤ 2�
(‖h‖)/z.

Combining the last two inequalities yields

P
(∣∣π̂∗

t (ψ) − I ∗
ψ(θ̂t−1)

∣∣ ≥ ε
) ≤ C′

z

Ntε2
+ 2�(‖h‖)

z
.

Thus,

lim sup
t

P
(∣∣π̂∗

t (ψ) − I ∗
ψ(θ̂t−1)

∣∣ ≥ ε
) ≤ 2�(‖h‖)

z
.

Finally, because z can be arbitrarily large, we have proven that |π̂∗
t (ψ) − I ∗

ψ(θ̂t−1)| → 0 in
probability.
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To obtain (i) it remains to show that the above convergence toward 0 is actually an almost sure
convergence. Fix ε > 0. Set �t+1 = π̂∗

t+1(ψ)− I ∗
ψ(θ̂t ), At+1 = {|�t+1| ≤ ε}∩{‖θ̂t+1 −θ∗‖ ≤ ε}

and Āt+1 the complementary event. We have

E
{
(�t+1)

2 | θ̂t = θ
} = 1

Nt

[∫ (
π(x)ψ(x)

q(x, θ∗)

)2

q(x, θ)dx − I ∗(θ)2
]
,

and the term between brackets is bounded from above by C′
ε = sup{wψ(θ),‖θ − θ∗‖ ≤ ε} for

any θ ∈ B̄(θ∗, ε), where B̄(θ∗, ε) = {θ ∈ � : ‖θ − θ∗‖ ≤ ε}. Thus, for all θ ∈ B̄(θ∗, ε),

P(Āt+1 | θ̂t = θ) ≤ P
(|�t+1| > ε | θ̂t = θ

) + P
(∥∥θ̂t+1 − θ∗∥∥ ≥ ε | θ̂t = θ

)
≤ C′

ε + Cε

ε2Nt

,

where we have used the Chebyshev inequality. The suprema

Cε = sup
{
v(θ),

∥∥θ − θ∗∥∥ ≤ ε
}
,

C′
ε = sup

{
wψ(θ),

∥∥θ − θ∗∥∥ ≤ ε
}

are both finite because h ∈ G2(Rd) and ψ ∈ H(R). Hence, P(Āt+1 | At) ≤ C′′
ε /Nt for some finite

C′′
ε . Now, since (�t , θ̂t ) is a (time-inhomogeneous) Markov chain, we have

P

( ∞⋂
t=T

At+1

)
≥ P(AT +1)

∞∏
T =t

(
1 − C′′

ε

Nt

)
.

The above infinite product tends to 1 since
∑

t 1/Nt is finite. And P(AT +1) → 1 because both
�T +1 and ‖θ̂T +1 − θ∗‖ tends to 0 in probability. Hence, Claim (i) is proven.

Claim (ii) follows from Theorem 3.2 and continuity of I ∗
ψ at θ∗ proven in Lemma 4.2. Com-

bining (i) and (ii), we obtain that π̂∗
t (ψ) tends to �(ψ) almost surely. Thus, �̂∗

T (ψ), which is
given by

�̂∗
T (ψ) = 1

�T

T∑
t=1

Nt π̂
∗
t (ψ),

tends also to �(ψ) almost surely because of Lemma 4.3. �

4.3. Controlling the discrepancy between the MAMIS estimator and the
auxiliary variable

The convergence of �̂MAMIS
T (ψ) − �̂∗

T (ψ) towards 0 almost surely is proven in Proposition 4.6
below, whose proof relies on some preliminary result given in Lemma 4.5. To this end, we define
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the function DT (·) : X �→ R+ by

DT (x) = �−1
T

T∑
k=1

Nkq(x, θ̂k)

which appears in the denominator of the MAMIS weights in (2.8). Because of the consistency
of the learning scheme proven in Theorem 3.2, we are able to show in the following lemma that
this denominator resembles the denominator of the classical importance sampling weight, when
the proposal distribution is Q(θ∗).

Lemma 4.5. Let K be a compact subset of �. The event {θ̂t → θ∗} is included in the event where

lim
T →+∞

∥∥∥∥q(·, θ∗)
DT (·) − 1

∥∥∥∥
K,∞

= 0.

Proof. Denote by mε,K the infimum of mε(x) on K , where mε(·) is the function defined in (3.1).
Actually, mε,K is the infimum of the function (x, θ) �→ q(x, θ) on the compact set K × B̄(θ∗, ε),
B̄(θ∗, ε) = {θ ∈ � : ‖θ − θ∗‖ ≤ ε}. By assumption, see Paragraph 3.1, this function is lower
semicontinuous. Since a lower semicontinuous function attains its lower bound on any compact
set, and q(x, θ) > 0 for all x and θ , the infimum mε,K is positive.

Now fix a point of the probability space in the event {θ̂t → θ∗}. There, there exists some tε
such that, for all t > tε , ‖θ̂t − θ∗‖ < ε. Hence, for all T > tε , and all x ∈ X,

DT (x) ≥ 1

�T

T∑
k=tε+1

Nkq(x, θk) ≥ �T − �ε

�T

mε(x), where �ε =
tε∑

k=1

Nk.

Therefore, ∣∣∣∣q(x, θ∗)
DT (x)

− 1

∣∣∣∣ ≤ �T

(�T − �ε)mε(x)

∣∣q(
x, θ∗) − DT (x)

∣∣
≤ �T

(�T − �ε)mε,K

�−1
T

T∑
t=1

Nk

∥∥q
(·, θ∗) − q(·, θ̂t )

∥∥
K,∞.

(4.5)

The bound in (4.5) is uniform on K and goes to 0 using Lemma 4.3, which leads to the desired
result. �

We can now state and prove the result controlling the difference between the MAMIS estimator
and the auxiliary variable �̂∗

T (ψ).

Proposition 4.6. Assume that h ∈ G2(Rd) and
∑

t 1/Nt < ∞. Moreover, assume that, for some
ε > 0, ψ(·)q(·, θ∗)/mε(·) is in H2(R). Then

lim
T →+∞ �̂MAMIS

T (ψ) − �̂∗
T (ψ) = 0 almost surely.
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Proof. Fix α > 0. The integral ∫ ∣∣ψ(x)
∣∣q(x, θ∗)

mε(x)
π(x)dx

is finite because |ψ(·)|q∗(·)/mε(·) ∈ H2(R). Therefore, we can find some compact subset K of
X such that ∫

X\K
∣∣ψ(x)

∣∣q(x, θ∗)
mε(x)

π(x)dx < α.

Now, set ψ1(x) := ψ(x)1{x ∈ K}, ψ2(x) := ψ(x)1{x /∈ K} so that ψ(x) = ψ1(x) + ψ2(x). And
consider the event

E = {
θ̂t → θ∗} ∩ {

�̂∗
T

(|ψ1|
) → �

(|ψ1|
)} ∩ {

�̂∗
T

(|ψ2|
) → �

(|ψ2|
)} ∩ {

�̂∗
T (ϕ) → �(ϕ)

}
,

where ϕ(x) := |ψ2(x)|q(x, θ∗)/mε(x). With Theorem 3.2, Proposition 4.4(iii) and Proposi-
tion 3.4, this event is of probability 1. Moreover note that, because of (3.1), q(x, θ∗)/mε(x) ≥ 1
and thus

�
(|ψ2|

) ≤ �(ϕ) =
∫

X\K
∣∣ψ2(x)

∣∣q(x, θ∗)
mε(x)

π(x)dx < α. (4.6)

Then, using linearity of the operators �̂MAMIS
T and �̂∗

T , we have∣∣�̂MAMIS
T (ψ) − �̂∗

T (ψ)
∣∣ ≤ ∣∣�̂MAMIS

T (ψ1) − �̂∗
T (ψ1)

∣∣ + ∣∣�̂MAMIS
T (ψ2) − �̂∗

T (ψ2)
∣∣

≤ ∣∣�̂MAMIS
T (ψ1) − �̂∗

T (ψ1)
∣∣ + �̂MAMIS

T

(|ψ2|
) + �̂∗

T

(|ψ2|
)
.

(4.7)

The first term in the right-hand side of (4.7) can be controlled as follow:

�T := ∣∣�̂MAMIS
T (ψ1) − �̂∗

T (ψ1)
∣∣ ≤ 1

�T

T∑
t=1

Nt∑
i=1

π(Xt
i )|ψ1(X

t
i )|

q(Xt
i , θ

∗)

∥∥∥∥q(·, θ∗)
DT (·) − 1

∥∥∥∥
K,∞

≤
∥∥∥∥q(·, θ∗)

DT (·) − 1

∥∥∥∥
K,∞

�̂∗
T

(|ψ1|
)
.

On the event E, using Lemma 4.5, the first term of the last bound goes to 0, and �̂∗
T (|ψ1|) →

�(|ψ1|). Hence, limT �T = 0 on E.
On the event E, the second term of the right-hand side of (4.7) can be bounded by

�̂MAMIS
T

(|ψ2|
) ≤ 1

�T

T∑
t=1

Nt∑
i=1

π(Xt
i )|ψ2(X

t
i )|

q(Xt
i , θ

∗)
q(Xt

i , θ
∗)

DT (Xt
i )

≤ �T

�T − �ε

�̂∗
T

(∣∣ψ2(·)
∣∣q(·, θ∗)

mε(·)
)

= �T

�T − �ε

�̂∗
T (ϕ)

(4.8)
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using the fact that, on E, there exists a tε such that, for all t > tε , ‖θ̂t − θ∗‖ < ε. Hence, for all
T > tε , and all x ∈ X,

DT (x) ≥ 1

�T

T∑
k=tε+1

Nkq(x, θk) ≥ �T − �ε

�T

mε(x), where �ε =
tε∑

k=1

Nk.

On the event E, �̂∗
t (ϕ) converges to �(ϕ) which is smaller than α because of (4.6). Moreover,

(�T − �ε)/�T → 1. Hence, on the event E,

lim sup
T

�̂MAMIS
T

(|ψ2|
) ≤ α.

And, finally, on the event E, the third term of the right hand side of (4.7) converges to �(|ψ2|)
which is smaller than α using (4.6). Hence, on E,

lim sup
T

�̂∗
T

(|ψ2|
) ≤ α.

Reporting in (4.7), we obtain that, on the event E of probability 1,

lim sup
T

∣∣�̂MAMIS
T (ψ) − �̂∗

T (ψ)
∣∣ ≤ 2α.

Because α is arbitrary small, we have proven the desired result. �

5. Conclusion and discussion

For a certain class of functions, we derived strong consistency of Algorithm 2. Apart from the
restrictive assumption on θ∗, the algorithm encompasses many sequential adaptive importance
sampling schemes. And the main novelty of the above results is in the asymptotic design we have
considered: finite and fixed sample size at each iteration of the sequential scheme. The asymptotic
framework we have adopted is very different from the common framework on adaptive impor-
tance sampling scheme, namely the number of iterations is fixed and at each iteration, and the
sample size N1 = N2 = · · · = NT = N goes to infinity. Indeed, if we want to derive guidelines to
the user from the common, past results in the literature, we obtain the following, helpless advice:
if you are dissatisfied by the result of the algorithm, you should throw away all your simulations,
and restart the algorithm from the very first iteration with a larger sample size.

We proved a strong law of large numbers for a large class of integrands characterized by regu-
larity conditions and for a general family of proposals. One of the clear benefit of the asymptotic
regime we considered is that it reveals an important condition on the design of the algorithm in
terms of the sizes of the samples at each stage. Indeed, to prove the strong consistency of the
tuning parameter we assumed that Nt tend to infinity quickly enough with t so that

∑
t 1/Nt is

finite. This assumption is intriguing. It provides guidelines to set these sample sizes when run-
ning adaptive algorithms, namely that the major parts of the computational effort should lies in
the last iterations of the algorithm, when the sampling distribution Q(θ) has been tuned to the
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target. While this is not a surprising guideline, it should be offset by the initialization issues of
adaptive algorithms which have already been discussed in the literature. Very often, asymptotical
results do not provide guidelines on how to initialize a sequential scheme. The original paper
of Cornuet et al. [7] proposed an initialization of the AMIS based on a logistic sample when
nothing is known on the target. We stress here that the starting distribution is of great practical
consequence: for instance, if the first sample misses a mode of the target distribution, we have
almost no chance to see it during the whole process. That was summed up by Cornuet et al. [7]
as the “what-you-get-is-what-you-see” nature of the AMIS, but the advice is also true for any
adaptive importance sampling scheme.

At least theoretically the intriguing assumption on Nt might be alleviate. It is due to the fact
that we only assumed that π(X)‖h(X)‖/q(X, θ) has a finite quadratic moment when X ∼ Q(θ).
Assuming the above random variable has finite exponential moments, and using Chernoff in-
equalities instead of the Chebyshev bound might lead also to a strong law of large number on
tuned θ . But assuming that the above random variable has exponential moments is a very strong
assumption on the target and the family of sampling distributions used in the scheme. Hence we
have left this road since we were not convinced that finite exponential moments is a reasonable
assumption.

The present paper proposes a road to study adaptive, recycling scheme and prove their con-
sistency in a relevant asymptotic framework. Since it is the first paper in this direction, some
assumptions were limiting, in particular the assumption on θ∗ in Equation (2.5). The next step
is certainly to weaken the assumption, and maybe study algorithms relying on (2.2) where the
suitable tuning parameters are defined sequentially.
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