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Perpetual integrals via random time changes
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Let (Xt )t≥0 be a d-dimensional Feller process with symbol q, and let f : Rd → (0,∞) be a continuous
function. In this paper, we establish a growth condition in terms of q and f such that the perpetual integral∫ ∞

0
f (Xs) ds

is infinite almost surely. The result applies, in particular, if (Xt )t≥0 is a Lévy process. The key idea is to
approach perpetuals integrals via random time changes. As a by-product of the proof, a sufficient condition
for the non-explosion of solutions to martingale problems is obtained. Moreover, we establish a condition
which ensures that the random time change of a Feller process is a conservative Cb-Feller process.
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1. Introduction

Let (Xt )t≥0 be a d-dimensional Markov process and f :Rd → (0,∞) a Borel measurable func-
tion. We are interested in finding sufficient conditions such that the perpetual integral∫ ∞

0
f (Xs) ds (1)

is infinite almost surely. Perpetual integrals are particular examples of additive functionals and
appear naturally both in theory and applications, see, e.g., [4,15,19] for further discussion. In
this paper, we will take advantage of the fact that perpetual integrals are closely linked to random
time changes. As a by-product, we obtain a sufficient condition for a random time change to be
conservative which is an interesting result on its own.

For diffusion processes, (Xt )t≥0 the study of perpetual integrals has a long history, but for
jump processes there are only few results in the literature and these are concerned with the par-
ticular case that (Xt )t≥0 is a Lévy process. Let us give a brief overview on the existing literature.

(i) If Xt = Bt + μt for a one-dimensional Brownian motion (Bt )t≥0 and μ �= 0, then∫ ∞

0
f (Xs) ds < ∞ ⇐⇒

∫ ∞

0
f (x)dx < ∞ (2)

for any locally integrable function f > 0, cf. [3,16].
(ii) If (Xt )t≥0 is a one-dimensional Lévy process which is spectrally negative (that is, the

support of the Lévy measure is contained in (−∞,0)) and which drifts almost surely to
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infinity, then the 0–1 law (2) holds for any locally integrable function f > 0, cf. [8] and
[19], Example 3.8.

(iii) Döring and Kyprianou [2] showed that the equivalence (2) holds for any one-dimensional
Lévy processes (Xt )t≥0 which has local times, finite mean E(Xt ) ∈ (0,∞) and which is
not a compound Poisson process.

(iv) For non-increasing functions f : R → (0,∞) and one-dimensional Lévy processes
(Xt )t≥0 drifting almost surely to infinity, Erickson and Maller [4] obtained a necessary
and sufficient condition for the perpetual integral to be (in)finite almost surely.

Let us remark that the integral test (2) fails to hold if the Lévy process has infinite mean, cf.
[4] and Example 1.4(iii) below. Moreover, we would like to point out that all the above results
are restricted to the one-dimensional framework. It is far from obvious how to generalize the
statements to higher dimensions since the dimension of the state space plays an important role;
for instance, if (Bt )t≥0 is a one-dimensional Brownian motion, then (Bt )t≥0 is recurrent and so∫ ∞

0 f (Bs) ds = ∞ for any f > 0; in contrast, if (Bt )t≥0 is a 3-dimensional Brownian motion,
then (Bt )t≥0 is transient and therefore we cannot expect

∫ ∞
0 f (Bs) ds = ∞ a.s. without further

growth assumptions on f .
The idea of this paper is to approach perpetual integrals via random time changes. The key

observation is that ζ := ∫
(0,∞)

f (Xs) ds is the lifetime of a stochastic process (Yt )t≥0 which
is obtained from (Xt )t≥0 by a random time change (i.e., Yt = Xαt for some random map-
ping αt ). This means that (Yt )t≥0 does almost surely not explode in finite time if, and only
if,

∫
(0,∞)

f (Xs) ds = ∞ almost surely. If we can establish a condition which prevents the time-
changed process (Yt )t≥0 from exploding in finite time, this will allow us to deduce that the
perpetual integral is infinite almost surely.

It is known that the random time change (Yt )t≥0 of a strong Markov process (Xt )t≥0 is again
Markovian, cf. [20], but since there is no general criterion for the non-explosion of Markov
processes, this is not enough to give a sufficient condition for the non-explosion of (Yt )t≥0. It is
therefore necessary to study the process (Yt )t≥0 in more detail. We will first show that if (Xt )t≥0
is a “nice” Feller process, then the time-changed process (Yt )t≥0 satisfies Dynkin’s formula

E
xu(Yt∧τx

r
) − u(x) = E

x

(∫
(0,t∧τx

r )

Lu(Ys) ds

)
, u ∈ C∞

c

(
R

d
)
,

for a certain operator L where

τx
r := inf

{
t > 0; |Yt − x| > r

}
denotes the first exit time from the closed ball B(x, r). Using a similar reasoning as in [1] and
[21], this allows us to establish estimates for the first exit times from compact sets and then to
derive a sufficient condition for the non-explosion of (Yt )t≥0. As a by-product, we obtain a crite-
rion for the non-explosion of solutions to martingale problems, cf. Corollary 3.2. Moreover, we
will establish a sufficient condition which ensures that the random time change of a conservative
Feller process (Xt )t≥0 is a Cb-Feller process, cf. Theorem 4.3. Both results are of independent
interest.

The following statement is one of our main results; the required definitions will be explained
in Section 2.
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Theorem 1.1. Let (Xt )t≥0 be a d-dimensional Feller process such that the smooth functions
with compact support C∞

c (Rd) are contained in the domain of the infinitesimal generator of
(Xt )t≥0. Denote by q the symbol of the Feller process (Xt )t≥0 and assume that q(·,0) = 0. If
f :Rd → (0,∞) is a continuous mapping and

lim inf
R→∞ sup

|y|≤4R

sup
|ξ |≤R−1

(
1

f (y)
+ 1

)∣∣q(y, ξ)
∣∣ < ∞, (3)

then ∫
(0,∞)

f (Xs) ds = ∞ P
x -a.s. for all x ∈R

d . (4)

Any Lévy process is a Feller process with a rich domain, and therefore we obtain the following
corollary.

Corollary 1.2. Let (Xt )t≥0 be a d-dimensional Lévy process with characteristic exponent
ψ : Rd → C such that ψ(0) = 0, and let f : Rd → (0,∞) be a continuous function. If either
Spitzer’s condition ∫

|ξ |<1
Re

(
1

ψ(ξ)

)
dξ = ∞ (5)

is satisfied or

lim inf
R→∞

(
sup

|y|≤4R

1

f (y)
sup

|ξ |≤R−1

∣∣ψ(ξ)
∣∣) < ∞, (6)

then ∫
(0,∞)

f (x + Xs)ds = ∞ P-a.s. for any x ∈ R
d . (7)

Since (5) is equivalent to saying that (Lt )t≥0 is recurrent, cf. [17], Section 37, it is clear that
(5) implies (7); the implication (6) =⇒ (7) follows from Theorem 1.1. In contrast to the results
mentioned at the very beginning of this paper, Corollary 1.2 is not restricted to dimension d = 1.
Let us illustrate Corollary 1.2 with some examples.

Example 1.3 (Brownian motion with drift). For a d-dimensional Brownian motion (Bt )t≥0
and μ ∈R

d denote by Xt := Bt + μt the Brownian motion with drift. Let f : Rd → (0,∞) be a
continuous function. We consider the cases μ �= 0 and μ = 0 separately.

(i) μ �= 0: Corollary 1.2 gives
∫
(0,∞)

f (x + Xs)ds = ∞ almost surely for any f such that

f (y) ≥ c/(1 + |y|), y ∈R
d , for some c > 0.

Discussion: In dimension d = 1, it is known (see [3,16]) that∫
(0,∞)

f (x + Xs)ds = ∞ a.s. ⇐⇒
∫

(0,∞)

f (x) dx = ∞,
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which shows that our growth condition on f is not sharp but not much stronger than the
optimal one.

(ii) μ = 0: Corollary 1.2 shows
∫
(0,∞)

f (x + Xs)ds = ∞ almost surely if either d ∈ {1,2} or

d ≥ 3 and f (y) ≥ c/(1 + |y|2), y ∈ R
d , for some constant c > 0.

Example 1.4 (Lévy jump process). (i) For a Poisson process (Nt )t≥0 Corollary 1.2 gives{
∀n ≥ 1 : f (n) ≥ c

1 + n

}
=⇒

∫ ∞

0
f (Ns) ds = ∞ a.s. (8)

On the other hand, it is not difficult to see from elementary considerations that

∑
n≥1

f (n) = ∞ ⇐⇒
∫ ∞

0
f (Ns) ds = ∞ a.s.

for any function f > 0 which shows that (8) is close to the optimal condition.
(ii) Let (Lt )t≥0 be an isotropic α-stable Lévy process, α ∈ (0,2), and set Xt := Lt + μt for

some μ ∈ R
d . Applying Corollary 1.2 we find that

∫
(0,∞)

f (x + Xs)ds is almost surely

infinite for any x ∈R
d in each of the following cases:

(a) d = 1, γ = 0, α ≥ 1,
(b) γ = 0, f (y) ≥ c/(1 + |y|α) for some absolute constant c > 0,
(c) γ �= 0, f (y) ≥ c/(1 + |y|min{α,1}) for some absolute constant c > 0.
Discussion: Condition (a) corresponds to (Xt )t≥0 being recurrent. For the particular case
that d = 1, α > 1 and γ �= 0 it follows from the 0–1 law by Döring and Kyprianou [2] that∫ ∞

0
f (x + Xs)ds = ∞ a.s. ⇐⇒

∫
f (x)dx = ∞;

our growth condition (c) reads in this special case f (y) ≥ c/(1 + |y|) which is slightly
stronger than

∫
f (x)dx = ∞.

(iii) Let (Lt )t≥0 be a one-dimensional pure-jump Lévy process with Lévy measure ν(dy) :=
|y|−1−α1(0,∞)(y) dy for some α ∈ (0,1). By Erickson and Maller [4], the equivalence∫ ∞

0
xαf (x)

dx

x
= ∞ ⇐⇒

∫ ∞

0
f (Ls) ds = ∞ a.s.

holds for any non-increasing function f > 0. If we apply Corollary 1.2, we obtain

f (x) ≥ c

1 + |x|α =⇒
∫ ∞

0
f (Ls) ds = ∞ a.s.

for any continuous function f > 0; this is close to the optimal condition.

Examples 1.3 and 1.4 show that the conditions presented in Corollary 1.2 are not sharp, but
close to the necessary ones. Let us close this section with an application of Theorem 1.1.
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Example 1.5 (Lévy-driven SDE). Let (Lt )t≥0 be an isotropic α-stable Lévy process, α ∈ (0,2),
and let σ : Rk → R

k×d be a continuous function which is at most of linear growth (i.e., there ex-
ists M > 0 such that |σ(x)| ≤ M(1+|x|) for all x ∈R

k). Assume that the Lévy-driven stochastic
differential equation (SDE)

dXt = σ(Xt−) dLt , X0 = x,

gives rise to a Feller process (Xt )t≥0 and that the domain of the infinitesimal generator of (Xt )t≥0

contains the smooth functions with compact support, see [10] for sufficient and necessary condi-
tions. If f :Rk → (0,∞) is a continuous function such that

f (y) ≥ c
|σ(y)|α
1 + |y|α , y ∈R

k,

for some constant c > 0, then∫ ∞

0
f (Xs) ds = ∞ P

x -a.s. for any x ∈R
k .

This is a direct consequence of Theorem 1.5 and the fact that the symbol of (Xt )t≥0 is given by
q(x, ξ) = |σ(x)T ξ |α|, x, ξ ∈ R

d , cf. [10]; here σ(x)T denotes the transpose of the matrix σ(x).

The remaining part of the paper is organized as follows. Basic definitions and notation are in-
troduced in Section 2. In Section 3, we establish a sufficient condition for the conservativeness of
a class of stochastic processes, including Feller processes and solutions to martingale problems.
Section 4 is on random time changes of Feller processes. Using the results from Section 3, we
establish a sufficient condition which ensures that the random time change of a Feller process is a
conservative Cb-Feller process, cf. Theorem 4.3. At the end of Section 4, we prove Theorem 1.1
and Corollary 1.2, cf. p. 1767.

2. Preliminaries

We consider the Euclidean space R
d with its canonical scalar product x · y = ∑d

j=1 xjyj and

its Borel σ -algebra B(Rd). By B(x, r) we denote the open ball of radius r centered at x and
by B(x, r) its closure. We use R

d

 to denote the one-point compactification of Rd and extend

functions f : Rd → R to R
d

 by setting f (
) := 0. If τ : � → [0,∞] is a stopping time with

respect to a filtration (Ft )t≥0 on a measurable space (�,A), then we denote by

Fτ := {
A ∈F∞;∀t ≥ 0 : A ∩ {τ ≤ t} ∈ Ft

}
the σ -algebra associated with τ where F∞ := σ(Ft ; t ≥ 0) is the smallest σ -algebra containing
Ft , t ≥ 0. A stochastic process (Xt )t≥0 on a probability space (�,A,P) does almost surely not
explode in finite time if the life-time ζ := inf{t > 0;Xt = 
} is P-almost surely infinite.
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An E-valued Markov process (�,A,Px, x ∈ E,Xt , t ≥ 0) with càdlàg (right-continuous with
left-hand limits) sample paths is called a Feller process if the associated semigroup (Tt )t≥0 de-
fined by

Ttf (x) := E
xf (Xt ), x ∈ E,f ∈ Bb(E) := {f : E →R;f bounded, Borel measurable}

has the Feller property and (Tt )t≥0 is strongly continuous at t = 0, i.e. Ttf ∈ C∞(E) for all

C∞(E) and ‖Ttf − f ‖∞
t→0−−→ 0 for any f ∈ C∞(E). Here, C∞(E) denotes the space of con-

tinuous functions vanishing at infinity. Following [18] we call a Markov process (Xt )t≥0 with
càdlàg sample paths a Cb-Feller process if Tt (Cb(E)) ⊆ Cb(E) for all t ≥ 0. We will always con-
sider E =Rd or E =R

d

. An R

d

-valued Markov process with semigroup (Tt )t≥0 is conservative

if Tt1Rd = 1Rd for all t ≥ 0.
If the smooth functions with compact support C∞

c (Rd) are contained in the domain of the
generator (L,D(L)) of the C∞-semigroup of a Feller process (Xt )t≥0, then we speak of a rich
Feller process. A result due to von Waldenfels and Courrège, cf. [1], Theorem 2.21, states that
the generator L of an R

d -valued rich Feller process is, when restricted to C∞
c (Rd), a pseudo-

differential operator with negative definite symbol:

Lf (x) = −
∫
Rd

eix·ξ q(x, ξ)f̂ (ξ) dξ, f ∈ C∞
c

(
R

d
)
, x ∈ R

d,

where f̂ (ξ) := Ff (ξ) := (2π)−d
∫
Rd e−ixξ f (x) dx denotes the Fourier transform of f and

q(x, ξ) = q(x,0) − ib(x) · ξ + 1

2
ξ · Q(x)ξ +

∫
Rd\{0}

(
1 − eiy·ξ + iy · ξ1(0,1)

(|y|))ν(x, dy). (9)

We call q the symbol of the rich Feller process (Xt )t≥0 and −q the symbol of the pseudo-
differential operator; (b,Q,ν) are the characteristics of the symbol q . For each fixed x ∈ R

d ,
(b(x),Q(x), ν(x, dy)) is a Lévy triplet, i.e. b(x) ∈ R

d , Q(x) ∈ R
d×d is a symmetric posi-

tive semidefinite matrix and ν(x, dy) a σ -finite measure on (Rd\{0},B(Rd\{0})) satisfying∫
y �=0 min{|y|2,1}ν(x, dy) < ∞. We say that a rich Feller process with symbol q has bounded

coefficients if

sup
x∈Rd

(∣∣q(x,0)
∣∣ + ∣∣b(x)

∣∣ + ∣∣Q(x)
∣∣ +

∫
Rd\{0}

|y|2 ∧ 1ν(x, dy)

)
< ∞.

Let us remark that Feller processes are sometimes also called Lévy-type processes.
A Lévy process (Lt )t≥0 is a rich Feller process whose symbol q does not depend on x. This is

equivalent to saying that (Lt )t≥0 has stationary and independent increments and càdlàg sample
paths. The symbol q = q(ξ) (also called characteristic exponent) and the Lévy process (Lt )t≥0
are related through the Lévy–Khintchine formula:

E
xeiξ ·(Lt−x) = e−tq(ξ) for all t ≥ 0, x, ξ ∈ R

d .

Following [17], we call a Lévy process (Lt )t≥0 recurrent if lim inft→∞ |Lt | = 0 almost surely
and transient if limt→∞ |Lt | = ∞ almost surely. It is known that any Lévy process is either
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recurrent or transient, cf. [17], Theorem 35.4. A result by Spitzer shows that a Lévy process with
characteristic exponent q is transient if, and only if,∫

B(0,1)

Re

(
1

q(ξ)

)
dξ < ∞,

cf. [17], Section 37. Our standard reference for Lévy processes is the monograph [17] by Sato.
Let (A,D) be a linear operator with domain D ⊆ Bb(R

d) and μ a probability measure on
(Rd,B(Rd)). An R

d

-valued stochastic process (Xt )t≥0 with càdlàg sample paths is a solution to

the (A,D)-martingale problem with initial distribution μ if X0 ∼ μ and

M
f
t := f (Xt ) − f (X0) −

∫ t

0
Af (Xs) ds, t ≥ 0,

is a martingale with respect to the canonical filtration of (Xt )t≥0 for any f ∈ D. (Here we use
again the convention that g(
) := 0 for any mapping g :Rd → R.) The (A,D)-martingale prob-
lem is well-posed if for any initial distribution μ there exists a unique (in law) solution to the
(A,D)-martingale problem with initial distribution μ. For a comprehensive study of martingale
problems see [5], Chapter 4.

3. Non-explosion of Feller processes and solutions to martingale
problems

In this section, we establish a sufficient condition for the non-explosion of a class of stochastic
processes, including Feller processes and solutions of martingale problems. It will be used in
the next section to prove that the random time change of a conservative Feller process does not
explode in finite time, see Theorem 4.2 for the precise statement. We start with the following
auxiliary result.

Lemma 3.1. Let (Xt )t≥0 be an R
d

-valued stochastic process with càdlàg sample paths and

x ∈R
d such that

E
xu(Xt∧τx

r
) − u(x) = E

x

(∫
(0,t∧τx

r )

Au(Xs) ds

)
, t ≥ 0, r > 0 (10)

for all u ∈ C∞
c (Rd) where τx

r := inf{t ≥ 0; |Xt − x| > r} denotes the first exit time from the
closed ball B(x, r) and

Au(z) := −
∫
Rd

p(z, ξ)eiz·ξ û(ξ) dξ, z ∈ R
d

for a family of continuous negative definite functions (p(z, ·))z∈Rd . Suppose that p(·,0) = 0 and
that for any compact set K ⊆R

d there exists c > 0 such that |p(z, ξ)| ≤ c(1+|ξ |2) for all z ∈ K ,
ξ ∈R

d . If

lim inf
r→∞ sup

|z−x|≤2r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣ < ∞,
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then

lim
r→∞P

x
(

sup
s≤t

|Xs | ≥ r
)

= 0 for all t ≥ 0.

Proof. The first part of the proof is similar to the proof of the maximal inequality for Feller
processes, cf. [1], Corollary 5.2, or [11,12], Lemma 1.29. Pick χ ∈ C∞

c (Rd) such that suppχ ⊆
B(0,1) and 0 ≤ χ ≤ 1 = χ(1). Set χx

r (z) := χ((z − x)/r) for fixed x ∈ R
d and r > 0. Since

χx
r ∈ C∞

c (Rd), we have

1 −E
x
(
χx

r (Xt∧τx
r
)
) = E

x

(∫
(0,τ x

r )

Aχx
r (Xs) ds

)
.

Using that

P
x
(

sup
s≤t

|Xs − x| > r
)

≤ P
x
(
τx
r ≤ t

) ≤ E
x
(
1 − χx

r (Xt∧τx
r
)
)

and

Aχx
r (z) = −

∫
Rd

p(z, ξ)χ̂x
r (ξ)eiz·ξ dξ = −

∫
Rd

p(z, ξ)rd χ̂(rξ)ei(z−x)·ξ dξ

= −
∫
Rd

p(z, ξ/r)χ̂(ξ)ei(z−x)·ξ/r dξ

we find

P
x
(

sup
s≤t

|Xs − x| > r
)

≤
∣∣∣∣Ex

(∫
(0,τ x

r )

[
1|z−x|≤r

∫
Rd

p(z, ξ/r)χ̂(ξ)ei(z−x)·ξ/r dξ

]∣∣∣
z=Xs

ds

)∣∣∣∣ (11)

≤ E
x

(∫ t

0

[
1|z−x|≤r

∫
Rd

∣∣p(z, ξ/r)
∣∣ · ∣∣χ̂ (ξ)

∣∣dξ

]∣∣∣
z=Xs

ds

)
.

Pick a cut-off function κ ∈ C∞
c (Rd) such that 1B(0,1) ≤ κ ≤ 1B(0,2). If we set

gr(z) := κ
(
(z − x)/r

) ∫
Rd

∣∣p(z, ξ/r)
∣∣ · ∣∣χ̂ (ξ)

∣∣dξ,

then the above estimate shows

P
x
(

sup
s≤t

|Xs − x| > r
)

≤
∫ t

0
E

xgr(Xs) ds.
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As sup|z|≤2r |p(z, ξ)| ≤ c(1 + |ξ |2) an application of the dominated convergence theorem gives

gr(z)
r→∞−−−→ 0 for all z ∈R

d . Since

gr(z) ≤ c′ sup
|y−x|≤2r

sup
|η|≤r−1

∣∣p(y,η)
∣∣ ∫

Rd

(
1 + |ξ |2)∣∣χ̂ (ξ)

∣∣dξ,

cf. [1], Proposition 2.17d), there exists, by assumption, a sequence (rk)k∈N ⊆ (0,∞) such that
rk → ∞ and supk supz grk (z) < ∞. Applying the dominated convergence theorem yields

lim
k→∞P

x
(

sup
s≤t

|Xs − x| > rk

)
= 0. �

Lemma 3.1 applies, in particular, to solutions of martingale problems.

Corollary 3.2. Let A be a pseudo-differential operator with continuous negative definite symbol
p, i.e.

Af (x) = −
∫
Rd

eix·ξp(x, ξ)f̂ (ξ) dξ, f ∈ C∞
c

(
R

d
)
, x ∈R

d .

Suppose that p(·,0) = 0 and that for any compact set K ⊆R
d there exists a constant c > 0 such

that |p(z, ξ)| ≤ c(1 + |ξ |2) for all z ∈ K , ξ ∈ R
d . Let (Xt )t≥0 be an R

d

-valued solution to the

(A,C∞
c (Rd))-martingale problem with initial distribution μ = δx . If

lim inf
r→∞ sup

|z−x|≤2r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣ < ∞,

then (Xt )t≥0 does almost surely not explode in finite time.

For Feller processes a slightly stronger statement holds true.

Lemma 3.3. Let (Xt )t≥0 be a rich Feller process with generator (A,D(A)) and symbol p such
that p(·,0) = 0. Suppose that there exists a set U ⊆R

d such that

lim inf
r→∞ sup

|z−x|≤2r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣ < ∞ for all x ∈ U. (12)

If (xn)n∈N ⊆ U is a sequence such that xn → x ∈ U , then (Xt )t≥0 satisfies the compact contain-
ment condition

lim
r→∞ sup

n∈N
P

xn

(
sup
s≤t

|Xs | > r
)

= 0 for all t ≥ 0.

In particular, if U =Rd , then (Xt )t≥0 is conservative.

For the particular case that xn := x we recover a result by Wang [21], Theorem 2.1, which
states that a rich Feller process with symbol p is conservative if

lim inf
r→∞ sup

|z−x|≤r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣ < ∞ for all x ∈R

d .



1764 F. Kühn

Let us remark that the proof of Lemma 3.3 becomes much easier if we replace (12) by the
stronger assumption

lim inf
r→∞ sup

|z−x|≤2r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣ = 0 for all x ∈ R

d; (13)

in this case Lemma 3.3 is a direct consequence of the maximal inequality which states that

P
x
(

sup
s≤t

|Xs − x| > r
)

≤ ct sup
|z−x|≤r

sup
|ξ |≤r−1

∣∣p(z, ξ)
∣∣, x ∈R

d ,

for an absolute constant c > 0, cf. [1], Corollary 5.2, or [11,12], Lemma 1.29. If one considers,
for instance, solutions of SDEs driven by a one-dimensional isotropic α-stable Lévy process
(Lt )t≥0

dXt = σ(Xt−) dLt , X0 = x,

then the symbol of (Xt )t≥0 equals p(x, ξ) = |σ(x)|α|ξ |α , and therefore (12) allows us to consider
coefficients σ of linear growth whereas (13) would restrict us to functions σ of sublinear growth.

Proof of Lemma 3.3. Let (Xt )t≥0 be a rich Feller process with symbol p. Then the Dynkin
formula (10) holds, and it follows from [1], Theorem 2.31, that the other assumptions of
Lemma 3.1 are satisfied. Let (yn)n∈N ⊆ U be a sequence such that yn → y ∈ U . Clearly,
B(yn, r) ⊆ B(y,3r/2) for sufficiently large r > 0. Pick a cut-off function κ ∈ C∞

c (Rd) such
that 1B(0,3/2) ≤ κ ≤ 1B(0,2). If we set

gr(z) := κ
(
(z − y)/r

) ∫
Rd

∣∣p(z, ξ/r)
∣∣ · ∣∣χ̂ (ξ)

∣∣dξ

then (11) shows

P
yn

(
sup
s≤t

|Xs − yn| > r
)

≤
∫ t

0
E

yngr(Xs) ds for all n ∈N.

As p(·,0) = 0, we obtain from [1], Theorem 2.31, that p(·, ξ) is continuous for all ξ ∈ R
d .

Using that supz∈K |p(z, ξ)| ≤ c(1 + |ξ |2) for any compact set K ⊆R
d , it follows from the dom-

inated convergence theorem that gr ∈ Cb(R
d). Since (Xt )t≥0 is a conservative Feller process,

P
yn

Xt
:= P

yn(Xt ∈ ·) converges weakly to P
y
Xt

:= P
y(Xt ∈ ·). Combining this with the dominated

convergence theorem we obtain

lim sup
n→∞

P
yn

(
sup
s≤t

|Xs − yn| > r
)

≤ lim sup
n→∞

∫ t

0
E

yngr(Xs) ds =
∫ t

0
lim

n→∞E
yngr(Xs) ds

=
∫ t

0
E

ygr(Xs) ds.
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The proof of Lemma 3.1 shows that there exists a sequence (rk)k∈N ⊆ (0,∞) such that rk → ∞
and

lim sup
k→∞

lim
n→∞P

yn

(
sup
s≤t

|Xs − yn| > rk

)
≤ lim

k→∞

∫ t

0
E

ygrk (Xs) ds = 0.

Using the boundedness of the sequence (yn)n∈N, the assertion follows. �

4. Time changes of Feller processes

Definition 4.1. Let (Xt )t≥0 be an R
d -valued stochastic process and ϕ : Rd → (0,∞) a measur-

able mapping. We set

rn(ω) :=
∫

(0,n)

1

ϕ(Xs(ω))
ds, n ∈N∪ {∞}

and denote for t < r∞(ω) by αt (ω) the unique number such that

t =
∫ αt (ω)

0

1

ϕ(Xs(ω))
ds.

The process (Yt )t≥0 defined by

Yt (ω) :=
{

Xαt (ω)(ω), t < r∞(ω),


, t ≥ r∞(ω),
(14)

is called the time-changed process.

By the very definition,

r∞ =
∫ ∞

0

1

ϕ(Xs)
ds

is the life-time of (Yt )t≥0. This means that the perpetual integral
∫
(0,∞)

1/ϕ(Xs) ds is infinite
almost surely if, and only if, (Yt )t≥0 has infinite life-time with probability 1. If ϕ is bounded,
then ∫ u

0

1

ϕ(Xs(ω))
ds ≥ u

‖ϕ‖∞
for all u ≥ 0

implies r∞ = ∞, and so (Yt )t≥0 has infinite lifetime. This corresponds to the trivial statement
that ∫ ∞

0
f (Xs) ds = ∞

for any function f > 0 which is strictly bounded away from 0. We are therefore interested in find-
ing conditions for the non-explosion of (Yt )t≥0 for unbounded mappings ϕ. Lemma 3.1 allows
us to prove the following result on random time-changes of Feller processes:
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Theorem 4.2. Let (Xt )t≥0 be a rich Feller process with symbol q and generator (A,D(A)) such
that q(x,0) = 0 for all x ∈ R

d . Let ϕ :Rd → (0,∞) be a continuous mapping such that

lim inf
R→∞ sup

|y|≤4R

sup
|ξ |≤R−1

(
ϕ(y) + 1

)∣∣q(y, ξ)
∣∣ < ∞. (15)

(Note that (15) implies, by Lemma 3.3, that (Xt )t≥0 is conservative.) Then the time-changed
process (Yt )t≥0, defined in (14), does Px -almost surely not explode in finite time for any x ∈ R

d .

Proof. By (15) and Lemma 3.1 it suffices to show that

E
xu(Yt∧τx

r
) − u(x) = E

x

(∫
(0,t∧τx

r )

ϕ(Ys)Au(Ys) ds

)
, x ∈R

d , t ≥ 0,

for all u ∈ C∞
c (Rd); as usual τx

r := inf{t ≥ 0; |Yt − x| > r} denotes the first exit time from
B(x, r). Fix u ∈ C∞

c (Rd), and let (Ft )t≥0 be an admissible right-continuous filtration for
(Xt )t≥0, see [1], Theorem 1.20, for one possible choice. Since (Xt )t≥0 is a rich Feller process,
there exists a martingale (Mt)t≥0 with respect to (Ft )t≥0 such that

u(Xt) − u(x) − Mt =
∫ t

0
Au(Xs) ds.

By the very definition of the time change, this implies

u(Xα(t)∧n) − u(x) − Mα(t)∧n =
∫

(0,t∧rn)

ϕ(Ys)Au(Ys) ds;

see [1], proof of Corollary 4.2, for details (recall that rn := ∫ n

0 1/ϕ(Xs) ds). For n ∈ N ∪ {∞}
define

σ (n) := inf
{
t ≥ 0; sup

s≤αt∧n
|Xs − x| > r

}
;

note that the continuity of t �→ αt implies σ (∞) = τx
r . By the optional stopping theorem,

(Mα(t)∧n,Fα(t)∧n)t≥0 is a martingale. Since σ (n) is an Fα(t)∧n-stopping time, another appli-
cation of the optional stopping theorem yields

E
xu(Xα(σ (n)∧t)∧n) − u(x) = E

x

(∫
(0,σ (n)∧t∧r(n))

ϕ(Ys)Au(Ys) ds

)
.

It is not difficult to see that σ (n) ↓ σ (∞) = τx
r as n → ∞. Hence, by the dominated convergence

theorem,

E
xu(Yt∧τx

r
) − u(x) = E

x

(∫
(0,t∧τx

r )

ϕ(Ys)Au(Ys) ds

)
,

where we use the convention that f (
) := 0 for f : Rd → R. This shows that (10) holds with
p(x, ξ) := ϕ(x)q(x, ξ). Applying Lemma 3.1 finishes the proof. �
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We are now ready to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. If we set ϕ(y) := 1/f (y), then the assumptions of Theorem 4.2 are
satisfied, and therefore the time-changed process (Yt )t≥0 has infinite life-time Px -almost surely.
This means that

∞ = r∞ =
∫ ∞

0

1

ϕ(Xs)
ds =

∫ ∞

0
f (Xs) ds

P
x -almost surely for any x ∈R

d . �

Proof of Corollary 1.2. If (5) holds, then (Lt )t≥0 is recurrent, cf. [17], Section 37, and therefore
(7) is trivially satisfied. On the other hand, if (6) holds, then (7) follows from Theorem 1.1 and
the fact that any Lévy process is a rich Feller process. �

We close this section with a statement which follows from the results presented in Section 3
and which is of independent interest.

It is a classical result that the time-changed process (Yt )t≥0 from Theorem 4.2 is Markovian,
cf. [20]. It is natural to ask whether the semigroup associated with (Yt )t≥0 inherits properties
from the Feller semigroup associated with (Xt )t≥0. There are several results in the literature
which give sufficient conditions which ensure that the random time change of a Cb-Feller process
(Xt )t≥0 is a Cb-Feller process; typically, they assume that (Xt )t≥0 is uniformly stochastically
continuous, that is,

lim
t→0

sup
x∈Rd

P
x
(

sup
s≤t

|Xs − x| > δ
)

= 0 for all δ > 0, (16)

see, for example, Lamperti [14] or Helland [6]. This condition fails, in general, to hold for
Feller processes with unbounded coefficients, and therefore it is too restrictive for our purpose.
Lemma 3.3 allows us to prove the following result.

Theorem 4.3. Under the assumptions of Theorem 4.2 the time-changed process (Yt )t≥0 is a
conservative Cb-Feller process.

Remark 4.4. If we assume additionally that C∞
c (Rd) is a core for the infinitesimal generator

A of (Xt )t≥0 (i.e., (A,D(A)) is the closure of (A,C∞
c (Rd)) with respect to the uniform norm),

then it can be shown that (Yt )t≥0 is a Feller process, cf. [13]. In this case, the symbol of (Yt )t≥0

equals p(x, ξ) := ϕ(x)q(x, ξ).

Proof of Theorem 4.3. We already know from Theorem 4.2 that (Yt )t≥0 has infinite life-time.
Since (Yt )t≥0 is a strong Markov process, see, for example, [20], with càdlàg sample paths, it
therefore suffices to prove the weak continuity:

P
xn

Yt

weakly−−−−→
n→∞ P

x
Yt

for all sequences xn → x, t ≥ 0. (17)
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(Here P
x
Yt

:= P
x(Yt ∈ ·) denotes the distribution of Yt under Px .) In the remaining part of the

proof, we use the canonical model, that is, we consider the processes (Xt )t≥0 and (Yt )t≥0 as
mappings X : D([0,∞),Rd) → Rd and Y : D([0,∞),Rd


) →R
d

 where D([0,∞),E) denotes

the space of càdlàg functions ω : [0,∞) → E. If we define

f : D([0,∞),Rd
) → D

([0,∞),Rd



)
, ω �→ f (ω)(t) :=

{
ω

(
αt (ω)

)
, t < r∞(ω),


, t ≥ r∞(ω),

then Yt = f (X)(t). In order to prove (17), we fix a sequence xn → x and denote by X(n) the
process started at xn and by X(0) the Feller process started at x. For each n ∈N0 the process X(n)

induces a probability measure P
(n) on D([0,∞),Rd). Clearly, (17) is equivalent to

f
(
X(n)

)
(t)

d−−−→
n→∞ f

(
X(0)

)
(t). (18)

Since (Xt )t≥0 is a Feller process, we have X(n)(t)
d−→ X(0)(t) for all t ≥ 0, and by the

Markov property this implies X(n) → X(0) in finite-dimensional distribution. On the other hand,
Lemma 3.3 shows

sup
n∈N0

P
(n)

(
sup
s≤t

∣∣X(n)
s

∣∣ > R
)

−−−→
R→∞ 0.

It follows from [9] that (X(n), T heorem 4.9.2)n∈N0 is tight, and this, in turn, implies by Pro-
horov’s theorem, cf. [5], Theorem 2.2, p. 104, relative compactness in D([0,∞),Rd). Applying
[5], Theorem 7.8, p. 131, we get X(n) → X(0) in D([0,∞),Rd). Since f is P(0)-a.s. continuous,
cf. [6], Theorem 2.7, the continuous mapping theorem yields

f
(
X(n)

) d−→ f
(
X(0)

)
.

As X is quasi-leftcontinuous, see [7], p. 127, and αt is a predictable stopping time, we have

P
(0)

({
f

(
X(0)

)
(t) = f

(
X(0)

)
(t−), t < r∞

(
X(0)

)}) = 1

for fixed t > 0. Since we already know that (Yt )t≥0 is conservative, that is, P(0)(r∞ = ∞) = 1,
we find that the mapping s �→ f (X(0))(s) is P

(0)-a.s. continuous at s = t . This means that the
projection y �→ y(t) is P

(0)-a.s. continuous at y = f (X(0)). Applying the continuous mapping
theorem another time, we conclude

f
(
X(n)

)
(t)

d−→ f
(
X(0)

)
(t) for all t ≥ 0. �
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