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In this paper, we derive minimax rates for estimating both parametric and nonparametric components in
partially linear additive models with high dimensional sparse vectors and smooth functional components.
The minimax lower bound for Euclidean components is the typical sparse estimation rate that is inde-
pendent of nonparametric smoothness indices. However, the minimax lower bound for each component
function exhibits an interplay between the dimensionality and sparsity of the parametric component and the
smoothness of the relevant nonparametric component. Indeed, the minimax risk for smooth nonparametric
estimation can be slowed down to the sparse estimation rate whenever the smoothness of the nonparametric
component or dimensionality of the parametric component is sufficiently large. In the above setting, we
demonstrate that penalized least square estimators can nearly achieve minimax lower bounds.
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1. Introduction

In this paper, we consider high dimensional partially linear additive models:

J
Y=X"Bo+ ) fi(Z))+e, (1.1)

j=1

where the Euclidean vector 8y € R” is sparse with p > n and f; : R +— R are nonparametric

functions with possibly different smoothness. Assume J is fixed while sparsity and smoothness

parameters are known. Under this setting, minimax risks of estimation for both components are

derived. As a side note, we mention that the choice of model structure, that is, which covariate is

linear or nonlinear, can be determined by the method developed in Zhang, Cheng and Liu [27].
Without loss of generality, we assume J = 2 in this paper:

Y =X"Bo+ fo(Z) + go(U) +e. (1.2)

where Bp € R? has at most so nonzero elements, and fo and gg belong to the «th and yth or-
der Sobolev balls, respectively. The orth order Sobolev ball over [0, 1], denoted as W%?(Ly), is
defined as { f : [0, 1] — R[J2(f) < L3} for a constant L; > 0, where J2(f) = fol(f(“)(z))zdz
with (@ being the ath derivative of f. When the dimension of fy is fixed or slowly increasing

(p < n), the above model has been extensively studied in the semiparametric literature, for ex-
ample, Hirdle, Liang and Gao [5], Xie and Huang [23], Cheng, Zhang and Shang [3], while the
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high dimensional extension with p > n has been further considered in Miiller and van de Geer
[10], Ma and Huang [8], Zhu [28]. Despite these literature, the minimax rates in estimating Sy,
fo and go remain unclear as far as we are aware.

First, we establish the minimax lower bound for estimating Sy as

50 p
Rg,(so, o0, ¥) 2 ;mg(%), (1.3)

up to a universal constant, based on i.i.d. observations {Y;, X;, Z;, U;}'_,. It is worth noting
that the lower bound does not depend on nonparametric smoothness indices, say « and y, and
coincides with the classical sparse estimation rate in the high dimensional linear models (Ye and
Zhang [24], Raskutti, Wainwright and Yu [14], Verzelen [22]). This result is similar in spirit to
the classical low dimensional result where the Euclidean part can be estimated at 1/n-rate even
in the presence of nuisance functions with slower rates; see Bickel et al. [1].

A somewhat surprising result is that the lower bounds for estimating f and g¢ turn out to be
affected by the existence of fo:

Ry, (s0,0,7) 2 max(nza/(zaﬂ), 50 10g<£)), (1.4)
’ n S0
and
Ry, (50, ¢, %) zmax(n”/w*”, s—°log<£>>. (1.5)
n S0

Such one-way interaction can be intuitively explained by the orthogonal decomposition (2.6).
An interesting consequence of (1.4) and (1.5) is that the best possible estimation of fy and
go could be slowed down to the well known sparse estimation rate. To demonstrate this rate-
switching phenomenon, we plot a two regime dichotomy in Figure 1: (i) in the sparse regime
where fy is sufficiently smooth or p is sufficiently high, the minimax risk lower bound becomes
solog(p/so)/n; (ii) in the smooth regime where fy is very rough or p is low, the lower bound
becomes the classical nonparametric rate n—2¢/Qa+1) (pingker [13], Stone [16]). Note that a
similar phase transition phenomenon occurs in high dimensional additive nonparametric mod-
els but due to very different reasons; see Koltchinskii and Yuan [7], Raskutti, Wainwright and
Yu [15], Suzuki and Sugiyama [17], Yuan and Zhou [26]. We also note that the lower bound of
estimating fj or go does not depend on the smoothness of the other nonparametric component.
This result essentially generalizes Horowitz, Klemeld and Mammen [6] who showed that, in an
additive nonparametric regression model, each component can be estimated (up to the first order
asymptotics) as well as if all the rest were known.

In contrast with the literature on sparse parametric or nonparametric estimation such as
Koltchinskii and Yuan [7], Ye and Zhang [24], Raskutti, Wainwright and Yu [14], Raskutti,
Wainwright and Yu [15], Suzuki and Sugiyama [17], Yuan and Zhou [26], we are not interested
in estimating the conditional mean function E (Y |X, Z1, ..., Z;) as a whole, but rather separate
minimax risk for each model component: 8y, fo, go. Note that our results are not directly implied
by the above papers where additive components are always assumed to share the same linear or
nonlinear structure with the same smoothness.
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Figure 1. The minimax lower bound is n~20/Qetl) yhen @, P, so and n fall into smooth regime. Other-
wise, the minimax lower bound is sglog(p/sg)/n in the sparse regime.

In the end, we demonstrate that the penalized least square estimate for (8, fo, go) can almost
achieve the lower bounds established above. To obtain such estimation rates, we develop a series
of oracle inequalities that give more and more refined estimation errors for each model compo-
nent in the order of g, f and B (under the assumption that f is smoother than g), and then derive
the risk upper bounds by strengthening these oracle inequalities to their moment versions.

Notations. For any vector v € R", we write its £{, Euclidean and ¢, norm as |v|| =

il vl =/ >0, vi2 and [|v||co = maxj<;<y |v;|, respectively, and also ||v||% =vTv/n.

With a bit abuse of notation, we define for any function f : Z — R that | f| = VEf2(2),
| flloo = sup,epo.17 1/ (2)| and ||f||,21 =>r, f2(Z;)/n. Let Sy be the set of all non-zero compo-
nents of By and so = |Sp|. Define B, such that (8s,); = B;1{Bo; # 0} and /356 =B — Bs,, for
any B € RP. Thus, ||Bll1 = lIBs, It + lIBsgll1- For any x € R, [x] is the smallest integer that is
strictly greater than x. For real sequences a,, by, if a, < b, (a, = by), then limsupa, /b, < C
(¢ < limsupay,/b,), for some constant C (constant c¢). If a, < b,, then ¢ < liminfa, /b, <
limsupay, /b, < C for some constant ¢, C. Also, we write a, = O (b,) if |a,| < C|b,| for some
constant C > 0. In the sequel, ¢, ¢/, C, C’, ... denote a generic constant which may differ at each

appearance.

2. Main results

2.1. Minimax lower bounds

In this section, we assume X is a mean zero Gaussian vector with variance matrix X, and the
errors {g;}_, are i.i.d. standard Gaussian random variables independent of {X;, Z;, U;};_,. For
simplicity, we standardize X such that the diagonal of ¥ consist of 1’s. Under this setting, we es-
tablish separate lower bounds on the minimax risk of estimating By, fo and go. For identifiability
purpose, we assume E fo(Z) = 0.
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We are ready to define the risk for estimating Sy as

Rpy(s0, @, . X) := inf sup E[ll8o — BII*]. 2.1)
B BoeBlso, pl, foeW*2(Ly),
g0EW?2(Ly)

where Blsp, p] and S, denote a set of p-dimensional vectors with at most so non-zero coordi-
nates and a set of p x p covariance matrices with 1’s on the diagonal, respectively. Since the
supremum of minimax risks with respect to all covariance matrices X is +oo, it only makes
sense to consider the infimum of minimax risks with respect to random designs:

Rg, (50, a, y) := inf Rg (so,a,y, X),
zeS),

as indicated by Verzelen [22]. Similarly, we define the risk of estimating fj as

Ry (so,a,y) ;== inf Ry (so, o, y, X),
zeS),

where

1
. =~ 2
Ry, (s0,a, y, X) = inf sup E/ |f() = fo)| dz.
T BoeBlso, pl, foe W2 (L), 0
g0eW?2(Ly)

Rg, (50, o, y) is defined similarly.

Our main result in this paper is on the minimax lower bound presented below. We start with
a version of the Fano’s lemma, that is, Corollary 2.19 in Massart [9], to be used in the proof.
Suppose that s = (B, f)’ € S where S = R? x F. The induced probability measure is written
as P;. A finite subset of F is denoted as C; and a finite subset of R” is denoted as C;. Their
Cartesian product is denoted as C with the obvious cardinality |C| = |C;||Ca|.

Lemma 2.1. We consider a set of statistical models {Ps,s € S} where (S,d) is a pseudo-
metric space. Let k be the absolute constant suggested in Corollary 2.18 of Massart [9].
Choose an arbitrary estimator’s = (E, f) of s and a finite subset C = Cy x Cy of S, such that
max; rec K (P, Pr) <k log|C|. Then, setting § = ming ;cc d(s, t), we have for any r > 1

s#t

supE[d" (s,5)] = 2'7"8"(1 — x).
seC

Now, we always consider that sparsity so = nf with 0 < 8 < 1. The dimensionality p can
either be a power of n, that is, p = nk for some k > 1, or be a subexponential case whereby
n =exp(n’) where 0 < y < 1. In the second case, it is necessary to require that y + 8 < 1 to
ensure that Sn—" log(ﬁ) — 0 as n — o0. In both cases, the following result is true.
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Theorem 2.2. Given n i.i.d. samples from (1.2), the minimax risk for estimating Bo can be
bounded from below as

50
Rpy (s0. 0. 1) > glog<§>; 2.2)

the minimax risk for estimating fy can be bounded from below as

Ry, (50,0, 7) 2 max(n‘2“/2“+l, 20 1og<£)); (2.3)
n S0

moreover, the analogous result is also true for Rg)(so, «, v), namely

Rgy(s0,0,7) 2 max(n_zy/zyH, 50 log<£)), (2.4)
n S0

respectively.

As is common in the literature, minimax lower bounds are obtained under the Gaussianity
assumption on both errors ¢ and the design matrix X. Such assumptions are meant to use known
results on functional distances between normal density functions; for example, Verzelen [22].

As discussed previously, these lower bound results indicate (i) the best possible estimation of
Bo is not affected by the existence of nonparametric components, and coincides with the sparse
estimation rate in high dimensional linear models; (ii) (the first order) minimax risk for estimating
one nonparametric component does not depend on the smoothness of another component, but on
the dimensionality and sparsity of the Euclidean parameter; see Figure 1. A similar lower bound
has been discovered in nonparametric additive models (Raskutti, Wainwright and Yu [15]) for the
entire conditional mean function ;¢ /1 jo(W;), but with rather different interpretation: the term
solog(p/so)/n reflects the difficulty of selecting the sample size needed to perform the subset
selection. Rather, this term here reflects the difficulty of selecting the p-dimensional vector B
with sg sparsity.

2.2. Nearly optimal estimators

In this section, we demonstrate that the penalized least square estimate for (By, fo, go) can al-
most achieve the lower bounds established in Theorem 2.2. To show such a result, we develop
a series of oracle inequalities that give more and more refined estimation errors for each model
component in the order of g, f and 8 (under the assumption that f is smoother than g), and then
derive the risk upper bounds by strengthening these oracle inequalities to their moment versions.
Similar proof strategy was adopted in Miiller and van de Geer [10] and van de Geer and Muro
[20] to show oracle rates for parameters under partial linear models and nonparametric addi-
tive models, respectively. In comparison with Miiller and van de Geer [10], our nonparametric
part possess an additive structure, and the linear covariates are relaxed from being bounded to
sub-Gaussian.
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Let (B\, f, 2) be an estimator of (B, fo, go) as follows:

(B\,ﬁ@= arg min {||Y_XT,3_f_g”i
BERP, feW*2(L),geWY2(Ly) (2.5)

+ MBI+ 02 I () + 1T ()

Without loss of generality, we assume that o > y.

Assumption A.1. The covariates X is a sub-Gaussian vector such that for any vector v € R?,
vT X is sub-Gaussian. And it satisfies for some constant Kx > 1,

sup ||vTX||q, <Ky,
veRP:|v||=1

where || - [y :=inf{L > 0: EW (/L) < 1} with W (¢) = exp(tz) — 1 is the Orlicz norm.

Assumption A.2. The error term ¢ is independent of (X, Z, U), and satisfies for some constant
K. >1,

lellw < Ke.

Let H = W%2(L{) ® W?-%(L,) be a space of additive functions. For each 1 < j < p, define
the projection of X; onto H as IT(X;|H)(Z,U) = argmingsepy | X; — h*||%. For simplicity,
we write (IT(X1|H)(Z,U), ..., (II(X,|H)(Z, UNT as x|z ,u. Note that mx 7z v € R? can be
written as a sum of fx(Z) + gx(U) where fx; € W%2(L;) and 8x; € W?-2(Ly) for 1 < j < p.
Further, we have the following useful decomposition:

2

|XT8+ 1 +g| = X8| + |7k 7B+ 1 +5| 2.6)

where X = X — x|z v is arandom vector in R”.

2

Assumption A.3. The smallest eigenvalue A: . of EXXT is positive, and the largest eigenvalue

Arznax of E{nX\Z’Uﬂ§|Z,U} is finite.
Assumption A.3 is common in semiparametric literature, for example, Yu, Mammen and Park
[25], Miiller and van de Geer [10]. It guarantees that
185013 < (BTEXT X B)s0/ A
Our next assumption implies separate rates for f and g from that for f + g. This is due
to | f +gl?>= 1 =) fIl+llgh? given Efo(Z) =0, see Lemma 5.1 of van de Geer and
Muro [20]. Here, yy is related to the minimal angle between two Hilbert spaces W""Z(Ll) and
WY2(L,), see A.4 of Bickel et al. [1], and formally defined as follows

V= / r —1)’pzpy dv,
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where p = dPzy/dv is the density of Pzy w.r.t. v = vz x vy with marginal densities pz and
pu,andr(z,u) = p(z,u)/(pz(z) pu W)).

Assumption A.4. It holds that yy < 1.
We assume the projection fp(U) =E(f(Z)|U) to be smooth.

Assumption A.5. For some constant I" > 0, it holds that, for any function f € W%2(L),
Jy(fp) =TI 1l

Remark. Assumptions A.1 requires X being sub-Gaussian, which relaxes the assumption that
the entries of X are uniformly bounded (say, by M > 0) in Miiller and van de Geer [10]. In Miiller
and van de Geer [10], the authors derive an upper bound on supg ; |(P, —P)X TBf| in terms of
M, and no other distributional information of X is needed in this upper bound (as far as we are
aware of). Our approach is more refined in that we bound supg ¢ |(P, — P)X TBf| in terms of
the Orlicz norm of the entries of X (see Assumption A.1), which in general can be much smaller
than M even when X is bounded. The relaxation of X from being bounded to sub-Gaussian also
leads to a more refined upper bound for supg |P,¢ X TB|. Such a relaxation on X is also needed
in proving the minimax lower bound. Assumption A.2 relaxes the errors from being standard
normal to sub-Gaussian, compared to Miiller and van de Geer [10]. Condition 2.2 of van de Geer
and Muro [20] is not assumed as it holds up to a constant under our setting, see Lemma A.3 in
the Appendix.

Before presenting our second main theorem, we need a set of oracle inequalities that hold in
probability. Define the norm

(B, £ R) = ”’3”‘ WX B 4 gl 4 kD + o0,

(B fiR) =4 ”ﬁ”‘ +||X Bl+ 1 f4 B+ I+ pJu(f),

for some constant 5o > 0.

Lemma 2.3. Suppose Assumptions A.1-A.5 hold. Let

1 o 2
A2 ng, pzxrf%ﬂ, ,uzxnfﬁ and p* < p’.
n
If there exist R and R satisfying
4x%s §2R?

— <RI<R*<ir<1, p* < 5
AZ =204 T+ L1+ Ja(fo)

8R?
W= =204 T 1 Lo+ 4y (502
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then it holds that

P(c(B — Bo, f — fo. & — g0: R) < R, 71 (B — Bo, f — fo; R1) < R1) = 1 — Cexp(—np?/c)

for some constants C, ¢ > 0.

In particular, we can take R> < u” 4 A%sp and R2 = ,0 + kzso Then the first oracle inequality
gives an upper bound for the overall estimating rate of (ﬂ f 2):

Op (max(n =2/ *D s51og p/n)),

which implies the desirable estimation rate for 2. And the second one provides a tighter bound
for the estimating rate of (8, f):

Op (max(n_z"/(Z“H), solog p/n)),

which in turn implies the rate for f R
We need a separate lemma to improve the rate of |8 — Bo|| to (nearly) minimax optimal level
solog(p)/n. This new Lemma 2.4 requires us to project X onto the additive space H.

Lemma 2.4. Assume conditions of Lemma 2.3 hold. Then there exists constants C', ¢’ > 0 such
that with probability at least 1 — 7/(2p) — C' exp(—c'np?),

4S())»2
A2

min

| X7 B = Bo)|> + /2B - Bolli <

Lemma 2.4 has two important implications (i) prediction error: ||)? T(//B\ - Bol? <
4s0A2/ Amm, (i1) £; error: ||B — Poll1 < 8soXr/ Amln We note that these two rates are in the
same order as those standard lasso rates (as if fy and go were known); see Biithlmann and
van de Geer [2]. However, the probability that these rates hold is comparatively smaller as re-
flected by an additional term exp(—c'np?). This is the price to pay for estimating two unknown
nonparametric functions in the model.

We are now ready to prove that (//3\, f, ) nearly achieve the minimax lower bounds established
in Theorem 2.2.

Theorem 2.5. Assume conditions of Lemma 2.3 hold. Then

sologp
ElB - ol S =——+ -

LD 1
IE/ \f(z)—fo(z)\zdz§max(n_2“/(2“+l)’w)’
0

n

and

1
I
]E/ |go(u) — go(u)izdu < max(n_zy/(z’/+l), 022P ng).
0 n
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Appendix

In this section, we present all the technical details. Proofs for main lemmas, theorems and corol-
laries in Sections 2.1, 2.2 are presented in Sections A.1, A.2, respectively. Results from empirical
process theory are presented in Section A.3.

A.l. Proofs for Section 2.1
A.1.1. Proof of Theorem 2.2

Proof. It is easy to see that the minimax lower bound for estimating By trivially follows from
that for high dimensional linear models derived in Verzelen [22], that is, Rg,(s0, ¥, o, y) >
infz supg gy, p1 ElllBo — BlI?] (fixing f and g at their true values).

In what follows, we concentrate on the lower bound of the minimax risk for estimators of the
nonparametric component. Without loss of generality, we choose fy for our discussion. To make
this proof easier, we start from partial linear models

Y = X7 Bo+ fo(Z) +e, (A.1)

where Bo € Blso, p] and fy € W""Z(Ll), and will show the minimax risk for fy is bounded from
below by

max (nz"‘/(z"‘“), Sl 10g<£)) (A.2)

n S0

up to a universal constant, based on i.i.d. observations {Y;, X;, Z,-};‘: I
In the model (A.1), define the minimax estimation risk for fj as

1
Rjy(s0,@) = inf inf sup sup IE/ |7 = folx)| dz.
ZeSp | poeBlso.pl fpeWa2(Ly) JO

The first part of lower bound, that is, n 2%+ trivially follows from the following inequality
(assuming B taking its true value)

1
Ry (so, ) > inf inf  sup E/ }f(z)—fo(z)}zdz
Z€Sp [ ppewer(Ly) JO

and the classical nonparametric minimax rate.

Our method of obtaining minimax lower bounds on rates of convergence for estimators of the
nonparametric component is somewhat different from typical ones. It is based on the the Corol-
lary 2.19 from Massart [9], that represents a version of the classical Fano’s lemma. Specifically,
Massart [9] specifies that values of the unknown parameter are viewed as points in a pseudomet-
ric space (S, d) where d is the corresponding pseudometric. Note that both the coefficient 8 and
the function f are not known yet it is only the function f that is currently a quantity of interest.
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To help us handle this situation, we define a “real” pseudometric (the one that is not a metric)
between the two points of interest and use it to establish the lower bound. In this situation, defin-
ing the pseudometric between pairs (81, f1) and (82, f2) as the L,-distance between f1 and f>
works out well.

Now we need to establish the second part of the minimax lower bound, that is, sg log(p/so)/n.
Using the approach just described, we note that for two vectors s; = (81, f1)" and 53 = (B2, f2)’
we can define a pseudometric d(s1, 52) := d1(f1, f2). It is easy to verify that all of the metric
properties are satisfied for d(s, sp) except that, of course, it is possible to have d(sq,s2) =0
while 51 # s7; this, clearly, qualifies d as a pseudometric. Choosing » = 2 reduces the search for
the lower bound of sup, ¢ E[d*(s,5)] to that of sup.c E[d?(, NI

Our first step is, thus, to find

8= mincdl(fl,fz)

§1,82€

S1782
for an appropriate C. To define the set C, we start with selecting a set of test functions f;, and fi,
(note that they depend on n). To do so, first define a kernel function Ko (u#) = exp(— ﬁ)[ (Jul <
1) and take K (u) = aKo(2u) for a sufficiently small constant a > 0. For an integer m > 1,
and k =1,...,m, select a set of points z; = k_miz that belong in [0, 1]. For convenience, we
will also use the following notation: Ag = [0, 1/m] and Ay = [(k — 1)/m, k/m], where k =
2, ..., m. The choice of m will depend on n, sg, p and «. For brevity, we introduce the notation
8n = Llog % where 8, — 0 as n — 0o. Now we can define the cardinality of the partition of

n
[0, 1] as m = n2e+1/@atD g2/ @t D ype corresponding optimal bandwidth is defined as /), =

(%) 1/2¢+1 Note that the choices of h,, and m that we made are sensible since one can easily show
that m — oo as n — oo while the bandwidth 4,, goes to zero as n — oo as well. This is true both
in the polynomial setting where p = n* and in subexponential setting where p = exp(n"). With
all of the elements in place, we can now define a function ¢y (z) = L1h% K (%).

Second, consider a set of binary sequences Q2 = {w = (w1, ..., wn), w; € {0, 1}}, and define
a set of functions F = {f,(z) = Y j_ wx$k(z), » € Q}. First of all, we note that any function
fo € F belongs, by construction, to W""Z(Ll). Second, we need to select test functions from
the set F; however, in practice, in order to ensure that any two functions thus selected are sep-
arated by at least the required amount, a certain subset of the set F has to be used. Due to the
Varshamov—Gilbert lemma (see, e.g., Gilbert [4]) we can, indeed, find a subset of F, that is,
{fjn, 7 =0,..., M}, such that any two distinct functions in it are sufficiently well separated and
whose cardinality M is sufficiently large. More specifically, for any 0 < j < k < M, we have
fin and fi, such that the squared L? distance between the two functions is d12( fins fin) < 0y
as long as log M > %m. This is done using a standard construction one can find in, for exam-
ple, Tsybakov [18]. To show that this is true, denote the binary sequences corresponding to fj,
and f, as /) and @1/2¥ | respectively, while the Hamming distance between them is denoted
,o(w(f ), w1/ 20‘)). By the Varshamov—Gilbert lemma, we have

. m
I fin — fenll3 = L2 THIK 30 (0, 01/2) > Lip2eH! ”K”iﬁ > C§,.
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Define a finite set C that consists of s = (8, f j,,)’ where B is arbitrary while 0 < j < M; in
other words, the set C consists of all vectors with an arbitrary parametric first coordinate and
one of the test functions we constructed as a second coordinate. The vectors thus constructed
are all distinct so, by Fano’s lemma, and using the pseudometric d, we immediately obtain that
supscc Es [d2(s,5)] = supscc Es [dlz( £, f)] > C§, as needed. Now it only remains to verify that
max; sec K(Ps, Pr) <k log|C|. To do so, we first note that the cardinality of C, as defined, is M;
using calculations very similar to those in Tsybakov [18] (pp. 115-116) we find that, for fixed
data points Z1, ..., Z,, we have max, ;cc K (Py, P) < Cnh,%“ < m for the h, we defined above.
By Varshamov—Gilbert inequality, it follows that m < % log M and so the condition on the
Kullback-Leibler distance is satisfied as well. Thus, the statement has been proved for the partial
linear model.

Note that an interesting feature of our proof is the subtle way in which the bandwidth of the
test functions ¢ (z) and the cardinality of the set of these functions m depend on each other. The
bandwidth A, = (8,/m)"/2*+! and m = p2e+1/@GatD) g2/ Gt where 5, = (so/n) log(p/so)
guarantees the existence of the non-trivial lower bound due to Varshamov—Gilbert lemma. More-
over, it works for a wide range of dimensionalities p that includes both the polynomial setting
p = n* and subexponential p = exp(n") with k, y > 0. The precise selection of the relationship
between m and h,, is what enables us to obtain the correct lower bound of the risk.

To carry these results over to the partial linear additive model (1.2), we need to consider a
nonparametric model without the linear component

Yi =A+ fo(Z;) + go(U;) + &, (A3)

where A is a constant, E fy(Z) = Ego(U) = 0 for identifiability purposes, (Z,U) € [0, 1] x
[0,1], and fy € W%2(L) and go € W?"?(L,). For the model (A.3), it is known (see, e.g.,
Horowitz, Klemeld and Mammen [6]) that the minimax risk of estimating fj is n—2e/Qatl)

which does not depend on y . Specifically, this means that

1
nf sp s B[ [F@) - ol dez cn 0
I goeW?2(Ly) foeWe2(Ly) YO

for a generic constant C that does not depend on n. By the definition of R 7, (so, «, y), this im-
mediately suggests that one lower bound of R 7, (so, c, ¥) is n—2¢/Ce+1) On the other hand, it is
also clear that (assuming g at its true value)

1

. ~ 2

Ry, (s0, @, y) >inf  sup sup IE/ |f(@) = fo@| dz.
f Bo€BIso,pl foeW2(L;) O

Then, by the lower bound result for partial linear models, we know that (A.2) is another lower
bound for estimating f in partial linear additive models. This concludes our proof. (]
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A.2. Proof for Section 2.2

A.2.1. Proof of Lemma 2.3

Before proving the lemma, we first present the following necessary notations.

For any normed linear space F, let d be a metric on the space JF. For any ¢ > 0, de-
fine N(t, F,d) as covering number of F and H(t, F,d) = logN(¢t, F,d) as entropy num-
ber of F. Let A, be the set of all configurations A, of n points within the support
of the joint density Pxzy. For A, € Ay, | flla,, 00 := maxzea, | f(Z)|. Let Hoolt, F) =
supy, e, H(t, F, |l - lla,,00), see van de Geer [19]. Further, we write

1
T, F) = Co ;ng[u/ VHoo(tu/2, F)dt + ﬁ8u1|
> 5/4

For arbitrary constants Ry > 0 and My > 0, we denote WeZ(Rg, Mo) ={f € W*2(Ly) : || f]| <
Ro, Ju(f) < Mo} and W?*(Ro, Mo) = {g € W?*(L2) : ligll < Ro, J,(g) < Mo}. Therefore, it
holds that for Ry < M( and some constants A; >1and Ay > 1

Too(z, WE2(Ro, Mo)) < Ay M,/** 717172, (A4)
and
Too (2, W2 (Ro, Mo)) < Ay MY/? 211727
For some §y > 0 small enough, define
M@B)={(B. f.8):T(B. f.g; ) <R, BeR’, f e W**(L1),g € W"(Ly)},
TiR) = { sup ||XTB+F +gly—1X"B+ f+21°| <s3R?}.
M(R)
TRy ={ sup [Pa(e(XT B+ f +¢))| < 53R},
M(R)

and
T(R) =Ti(R) NT2(R). (A.5)

Let fxp() =E(fx(Z2)|U =) and fxa = fx — fxp. Forany f € W*2(Ly), write fp() =
E(f(2)|U =-) and f4 = f — fp. For §; sufficiently small, define

MIR)={B, f):t(B, f; R <R, BeR’, f e W"(Ly)},

Tan={ s IR+ a4l - ¥+ b+l <07R3)
(B, f)eM(Ry)

TiaRn={  sup  [B(e(XTB+ LB+ fa))] = 67RE).
B, freM(Ry)
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Tia(Rn = | sup [Ba(RTB+ fiaB+ £4) (£ pB+ 8kB+ fr+2)|
(B, /.9 eM(R).(B, HeM(R))

< 53R},
and

Ti(RD) =Ti1(R)NTr2(R) N T13(Rp). (A.6)

To prove Lemma 2.3, we first show in Lemma A.1 that r(ﬁ— Bo., f— fo.28 —80; R) <R
on T (R). The probability of T (R) is estimated in Lemma A.4. We next show t; (B\ — Bo, f—
fo; Rr) < Ry on the set T(R) NT;(R;) in Lemma A.5, whereas the probability of T;(R;) is
estimated in Lemma A.6. Lemmas A.2 and A.3 are technical Lemmas in order to show Lemmas
A.4 and A.6.

Lemma A.1. Under the conditions of Lemma 2.3, we have, on T (R),
t(B - Bo. [ — fo.& — 0; R) <R.

Proof. Take §p < 1/30. Under the conditions of Lemma 2.3, we can find p and w such that

P> I3 (fo) + 1T} (o) < 83 R?, (A7)
and
43250/ A2, < R7 < R>. (A.8)
Define
R

R+t(B—Po. f— fo.8 —go0: R)
Letﬁ—tﬁJr(l—t)ﬁo,f—thr(l—t)fo g=1g+(1-1)go. Notlcethatf(ﬂ Bo. f— fo.8—
g0: R) =17(B — fo. f Jfo. & — go: R) < R, which implies (B—Po. [~ fo. g — 80) € M(R).
In order to show t(ﬂ Bo, f fo. € — go; R) < R, it suffices to prove r(,B Bo, f f0.8 —
go: R) < R/2.

By the convexity, we have

|¥ = XTB = F =32+ 2Bl + 02 I2(P) + 1272®)
<Y = XTBo = fo — go||> + MlBolls + P2 I2(fo) + 12 T2 (0).
Together with (A.7), it further implies
| X7 (B~ Bo) + (F — fo) + @ — 80) |2 + MBIt + p2I2(F) + 12 I2(@)
< 2P, (e(XT (B — Bo) + (F — fo) + (& — £0))) + Al Boll1 + 83 R>.

(A.9)
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Therefore, by the definition of 7;(R) and 72(R),

| X" B = Bo)+ (F = fo) + @ — 80)|” + 21Bsc Ih + 02 I3 (P + 12 I} @)
< 82R% + 52R* + 283 R* + Al Bolli — Al Bs, 11 (A.10)

< 48%2R* + 1| Bos, — Bsy -

Note that
Ml Bos, — Bsyll1 < A/oll Bos, — Bsy |
<50l B — Aol
< Ay/50]| X7 (B = Bo) | / Amin (A.11)
<250/ A2+ | XT (B - o] /4
<3R4+ | XT (B - po)|* /4.

where the third inequality holds by Assumption A.3, the fourth inequality follows from uv <
u? + v2/4, and the last one is due to (A.8). Thus, substituting (A.11) into (A.10), we ob-
tain
@ G/HIXT (B~ o)+ (F— fo) + @ — g0)I? < (17/4)63 R2, by orthogonal decomposition
(2.6);
(b) p*Jg(f) = (17/4)85R*;
(© u?I2(®) < (17/4)85R?.

Now it follows from (a) that || X7 (8 — Bo) + (f — fo) + (Z — g0) | < (+/17/+/3)80R. In addi-
tion, (b), (¢) and (A.7) imply

~ ~ 17
pI(f = fo) = pJu(f) + pJu(fo) < §50R +280R < V1750R

and

ﬂ m
(%) " I2E - g0 = 5-00R +260R < V1T80R.
Adding 1| Bos, — Bs, ll1 on both sides of (A.10), we get [ XT (8 — o) + (f — fo) + (3 — go) > +
MB = Bolli + 02 I (f) + n?J2(R) < 485 R* + 21411 Bos, — Bsolli <485R* + I X7 (B — Bo)II* +
182R?, which further implies

= 17000
M = Pollr = -6 R".
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Invoking the definition of 7(-), we finally get
e~ o T~ 0.8~ 80 ) = TT/N3+ 20T+ 17/4)30R < 1550R < 3R,
by letting 69 < 1/30. g

Lemma A.2. Given &;,1 <i <n are i.i.d. random sub-Gaussian vectors with covariance ma-
trix &

T/1 <0 T
7 2_i=165iS; t 1 t 1
IP’( sup (,3 G 2;1155, B 1) - C< [t +solog p N + 50 ogp)) < exp().
BeB(s0,p) B ES n n

where C > 0 is a constant not depending on n.

This lemma follows the same reasoning as Lemma 1 of Nickl and van de Geer [11].

Lemma A.3 (Gagliardo-Nirenberg—Sobolev inequality). For o« > 1, there exists a constant
Cy > 1 such that

sup Il flloo < Co(Ro + Mo).
FeW®2(Ry, M)

Remark. The inequality above is standard for Sobolev spaces consisting of functions that
vanish at the endpoints 0 and 1, or of 1-periodic functions. In our paper, the Sobolev space
W™2(Ry, M) consists of functions that are (one-sided) differentiable at the endpoints (such as
splines), therefore differs slightly from the commonly used definition. For such Sobolev space,
we had not been able to locate a proof in the literature, therefore include here a proof for readers’
convenience.

Proof of Lemma A.3. Fix x € [0, 1]. Using Taylor’s theorem, we can write for any ¢ € [0, 1]

f(-x) = f(t) + Qa—l(-xs t) + R(X(-xs t)v

where
Qa_l(x,t)=f’(t)(x—t)+---+m(x—t)“*‘
(a — 1)!
and
Ry = [ f) (x — 5)% ' ds
. (a—1)!

is the Lagrange remainder. Averaging over ¢, we obtain

1 1 1
f(x):/ f(t)dt+/ Qa_l(x,t)dt+/ Ry (x,t)dt.
0 0 0
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It is easy to see that

1 1
V f@dt| < | fll < Ro. V Ru(x,tydt| < | ™| < Mo.
0 0
For the middle term, we have
/IQ e, nyde| < | £ +...+w
o BT =1 e m—1!

So it suffices to show

sup [ fP| <Cu(Ro+Mp), 1<k<m—1.
fewm2(Ro, Mo)

(A.12)

The proof of (A.12) is by inductiononm —k =1,...,m — 1. The base case is k =m — 1. By

averaging over suitable kth order finite differences of f, we have
min | f©@)] < Cull £11 < Cun Ro.
x€[0,1]
Suppose the minimum is attained at xo, that is,

| f®(xo)| = min Jlf(")(X)I-

Then, for any x € [0, 1], we can write
X
FO@ = O x) + / FE D@y ar.
X0

Thus,
[FO@] =[O0+ [P
Combining (A.13) and the bound on || f*+D ||, this implies

P, < Cm(Ro+ My).

(A.13)

By induction, the same bound holds for k < m — 1, with the same argument. This establishes

(A.12), and the proof of Lemma A.3 is complete.

O

Lemma A.4. Under the conditions of Lemma 2.3, we have for some constants C > 0,¢>0,

P(T(R)) > 1 — C exp(—cnp?).

Proof. We first introduce some necessary notations and preliminary results. Note that 7 (8, f, g;
R) < R implies that [ X" 8 + f + g||* < R* and [|Bll1 < 80R?/. Ju(f) < R/p. Jy(8) < R/ 1.
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By the orthogonal decomposition (2.6), we have [| X7 8| < R and || f{ 8+ f + 5B +gll < R.
Then Assumption A.3 implies

IXTB| < | X8| + |7%12.0B8] < R+ (Amax/Amin) | X7 B]| < (1 + Amax/Amin) R

Similar arguments and Assumption A.4 imply that both || f| and |/ g|| are bounded by (1 +
Amax/Amin) R/~/(1 — ), that is, R/+/1 — y1, for simplicity, we write it as R;. Define M, =
R/p, M3 = R/ . In particular, we can choose p2<l—yrand u2 <1 — 1y, where 1 —y; =
1 —=y/+ Amax/Amin)z. Then it follows from Lemma A.3 that SUP rewe(Ry, My) 1S lloo =
CyM> and SUPgewr-2(R;, M3) llglloo < C, M3, with the fact Ry < M; and Ry < M3. Further, we
find a constant L > 1 such that the following hold:

2a+1 2y+1

Vnp = =LA;,  np ¥ =LA;,  R=pu=>p,

pV/? <1/L, Vsologp/n<1/L.

Now, we are ready to apply empirical process theory stated in Section A.3 to show that with
probability at least 1 — 6exp(—np?/L), the event 71(R) holds. Without loss of generality, we
take C1 =1 in Theorem A.11; otherwise we can replace in L = LC| in the proof. Note that for

any (B, f, g), it holds

(A.14)

IXTB+f+g|>—I1XTB+ f+gl|

<|IXT B8] = | XTI+ 1£12 = 1F13] + g2 = Igl?] + [2B, — P)XT B |

+ 2@, —P)XT Bg| + |2(By — P) f3]

(A.15)

L2A+B+C+D+E+F.

We bound each of the terms over the set M (R) as follows.

A. Note that

sup (X7 B[, — | x" B[
(B.£:)MR)

= sup

1ZﬂTXiX,»Tﬂ —-p"zB

B.f.eM®B | T
1 < BTX:XTB
T 1
= sup (B Eﬂ)‘ZW—
(B.f.9)EM(R) e

1 < BTXX!IB
;ZW‘1‘~

i=1

<R}




1306 Z. Yu, M. Levine and G. Cheng

Note that

1| >

liﬁTXiXiT,B
n

t+sologp t+sologp
Pl|-) ——Z cl+f <exp(—t
( BT S ( " + . <exp(—1t)

for some constant C > 0. Therefore, by taking ¢t = np?/L?, we have

i=1

sup  ||XTB| - |XTB|?| <2CR (/L + 1/L). (A.16)
B.f.9)EM®B)

B. Replace R* and K* by Ry and Cy M>, and let t = np®/L? in Theorem A.11. Note that

Too(CaMa, W2(Ry, M2)) < Af(R/p)"/**(CoR/p)' /%
<C4A[R/p
< Co(v/np®* O /LY (R/p)
<+/nC4R/L,

(A.17)

where the first inequality follows from A.4, the third one and the last one follow from
(A.14)and L > 1.
Then we have with probability at least 1 — exp(—np?/L),

sup  [IFI2 =111
(B.f.9) e M(R)

_ 2R1Joo(CaMa. W*2(R1, M)

0
+R1(CaM2)Z

- v
4 2 C, Mo, Wot,2 R, M 2 (A.18)
n J5(CaM> L (R 2))+(C0,M2)2%

<(2Ri\R/L+ R\R/L+4(R/L)*+ (R/L)*)C2
<8C2R}/L,

where (A.18) follows from (A.17).
C. Replace R} and K by Ry and Cy, M3, and let t = np*/L? in Theorem A.11. By similar
arguments as (A.17), together with (A.14), it shows that

Joo(Cy M3, WA (R, M3)) < /nCy R/L. (A.19)
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Then we have with probability at least 1 — exp(—np2/L),

sup  |llgl? — gl
(B.f.9)e M(R)

_ 2R1Too(Cy M3, WY2(R1, M)

0
+R1(CVM3)Z

< NG
A.20)
472 (Cy M3, W2(R), M 2 (
n o(Cy M3 . (R, 3))+(C),M3)2%

<(2RIR/L + RiR/L+4(R/L)* + (R/L)*)C,
<8C>R}/L.

where (A.20) follow from (A.19) and (A.14).
D. Write W; = BT X;/||B]l, for 1 <i <n. Then we have

s

1 n
sup |, —P)Y(XTBf)|=  sup 1IBI|= Y Wif(Z)
(B, f,8)EM(R) (B, f.8)eM(R) 3

where || 8] < ||§,8||/Amin < R/Anjn on the set M(R). Note that {W;, 1 <i <n} arei.i.d.
sub-Gaussian with Orlicz norm bounded by K x. Then it follows from Theorem 3.2 of van
de Geer [19]

1X:Wif(zi)

n
i=1

>

2Joo(Kx CoMa, W*2(Ry, M2)) + Kx Co M2/t
(A2D)

P sup
FEWS2(R), My) n

<exp(—1).

By substituting ¢ = np?/L?, together with (A.17), we have D < (2K x +2)Cq R? /(L Amin)
with probability at least 1 — exp(—np?/L?).
E. Similarly as D, we have E < || Bl sup(g, /. ¢)em(r) |% Yo' Wig(U)|, where

lz Wig(Ui)

n -
i=1

>
n

p up KxJx(2C, M3, WY2(Ry, M3)) + KxCy M3/t
geWY2(R|,M3)

<exp(—t).

By substituting # = np?/L?, together with (A.19), we have E < (2K x +2)Cy R? /(L Amin)
with probability at least 1 — exp(—np?/L?).
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F. Replace R}, R}, K}, K} by Ri, Ri, Co M2, C,y M3, and let t = np?/L? in Theorem A.12.
Note that

Joo(Cy M3, W2 (R1, M2)) < Ar(R/p)'? (C, R/i)' />
< A1(R/p)/? (C, R/ p)' 1 (A.22)
</nC,R/L.
where the first inequality follows from (A.4), the second one and the last one are from
(A.14). Then we obtain with probability at least 1 — exp(—np?/L),
sup  |(P, —P)fg| (A.23)
(B, f.8)eM(R)
R1Jo(Cy M3, W2 (R1, M3)) | RiJoo(R1(Cy M3)/Ri, W*(R1, M2))
= +
- Jn Jn
RI(CyM3)p  CalrCyM3p?
L L?
<(RiR/L+ R\R/L+ RiR/L*+ R*/L*)C,C, (A.24)

<4C,C,R}/L,
where (A.24) is implied by (A.22) and (A.14).

Combining A to F' and with suitably chosen L, we obtain,

sup [ XTB+ S +gll—IXTB+ [ +gIP| <8R
(B, f.8)eM(R)

with probability at least 1 — 6exp(—np>/L).
Next, we are going to show with probability at least 1 — 3 exp(—np?/L), the event 7>(R) hold.
Note that |P,e(XTB + f + )| < |Poe(XT B)| + |Ppef| + |Pneg|. Note that

1
LS e
n-

i=1

Again, we notice that {W;, 1 <i <n} are i.i.d. sub-Gaussian and {g;, 1 <i < n} are i.i.d. sub-
Gaussian. It follows from Bernstein’s inequality that

1 n
]P( ; 21: Wisi
1=

By taking t = np®/L? and together with the fact that p < R, we have

sup  [Pae(XTB)[ < sup  [IBI
(B, f,.8)eM(R) B, /HeM(R)

. (A.25)

> C(/t/n+ t/n)) <exp(—1).

sup  [Pue(XTB)| < C(R/Amin)(20/L) < C(R/Amin) 2R/L),
(B, f.)eM(R)
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with probability at least 1 — exp(—np?/L). In addition, it follows from Theorem 5.2 of van de
Geer and Muro [20], A.4 and (A.14) that

KeJso(R1, W 2(Ry, M2)) + K. Ri /T

sup [Puef] <

(B.f.)eMR) Vn
K.A[R R?
= a7 T L
R? R? 2R?

<
L - 7/1)(1*1/20‘)/2 LJ1— L«/l —
and

KeJso(R1, WY2(Ry, M3)) + K R1\/1

sup  |Ppegl <

(B.£.9)eM(R) Vn
__KeA;MIR'"V N R?
T V(= y)S22 T =yl
R? R? 2R?

<
T L —y)d-l2/2 i Wi

Therefore, with a suitably chosen L, we have

sup  [Pue(XT B+ f+2)| <8R,
(B, f.8)eM(R)

with probability at least 1 — 3 exp(—np?/L). Recalhng the probability of 77 (R), we have shown
that for some constants C > 0,c>0,P(T(R)>1— C exp(— cn,oz) U

Lem/r\na A.5. Under the conditions of Lemma 2.3, it holds that on T (R) N T;(R;), 11 (ﬁ—
Bo, f — fos Rr) < Ry.

Proof. Under the conditions of Lemma 2.3, we can find some p and u such that
P25 (fo) + uPI2(g0) <83RE. p*JZ(fo) <87R7. (A.26)
2u* (T + LaSoR; /M) (280R /) <8/ R}, p(T + LadoRi /A <87 (A27)

for some d¢g, 67 > 0, Wthh Wlll be taken small enough later.
By the definition of (ﬂ f 2), we have

|¥ = XTB— F=2|2 + Bl + 212N + 2@
<Y =XTBo— fo— &+ fxr(B — o) + gx (B — Bo) + fr — for)|; + AllBoll:
+ 212 (fo) + u T2 (@ + fxp (B — Bo) + gx (B — Bo) + fr — for).
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which implies

| XB = Bo) + FEA(B — Bo) + Fa— foa + 02 I2()
< 2P, (((fxp +gx)T (B —Bo) + fr — for +8—20) (X + fxa)T (B — Bo) + fa — foa))
+ 2Py (e(X + f5 4B — Bo) + Fa — foa)) + Aol + 2 I2(fo) — n*T2(@)
+ 1212+ fxp(B— Po) + gx (B — Bo) + fp — for).
Let
= RI
" R; +T1(E—ﬁ0,f— foi R

Define B =18+ (1 —0)Bo. f =1F + (1 —1)fo, fa =1fa + (1 — 1) foa. Note that (B, f) €
T1(Ry). Similarly as the proof of Lemma A.1, it suffices to show that t; (E— Bo, f— fos Ry) <
R;/2.

By convexity and the definition of 77 (R;), we have

| X B~ B0) + FEB — Bo) + Fa — foa|” + 1Bl + 02 I2(F)
<SR+ AlBoll + p° I3 (fo)
+ 12 I2(E + fxp(B—Bo) + gx(B— o)+ fr — for) — n2 I ().
Notice that
TX(E+ fxp(B—Bo) +gx(B—po)+ fr — for) — I}
=24, @y (f4p(B— Po)+8x (B —Bo) + fr — for)
+ (4 p(B = Po) + 8% (B — Bo) + fr — for)
<21, @) (Jy (8X (B — P0) + Iy (fxp(B — Po) + fr — fop))
+ (4 (65 B — Bo) + Iy (fEp(B — Bo) + Jr — for))’
<27, @ (| ()| LB = Bolli + T fx (B = Bo) + f — fo)
+ (|9 ex) | NB = Bolli + T fx (B = B+ F = fol)?

280R SoR? SoR? 2
<2 28N (1,20 rR ) 4+ (1,220 4 TR,
% A A
< 287R7/u’.
where the fourth inequality follows from J(g) < (26oR/u) on T (R), Assumptions A.4, A.5 and
the fact || fx (B — Bo) + f — foll < Ry on T;(Ry). The last step follows from (A.27).
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Hence, we have

IXTB = B0) | + | £E4B = Bo) + Fa — foa|” + 1Bl + p2I2(F)

(A.28)
<882R7 + AllBoll.
Subtracting k||/§50 I1 on both sides of (A.28), we get
|XTB = Bo)|” + | fxaB — Bo) + fa — foa| ™ + MBsg Il + p> Iz () A2

< 887R? + Al|Bs, — Bos, Il

where A[1Bs, — Bos, 1 < /50l Bos, = Bsylli < /501l B = Bolli < 2/50ll X7 (B = Bo)l/ Amin <
3250/4 055 + 1 XT (B — Bo)lI> < 87R7 + | XT (B — o)|*. Therefore,

min
~ ~ 2 ~ ~
| f£a(B = Bo) + fa — foa|” +lBsg Il + p* I3 (F) <987 R].
It holds
(a") ||f;A (E— Bo) + f~A — foall <3687 R; which further implies

| f£ B = Bo)+ f = fol| <381R1/\/(1—y2);

") pl(f— fo) < pl(f) + pI(fo) < (B34 1)8;R; <44; Ry together with equation (A.26).
Note that by using A[|Bs, — Bos, Il < A2s0/(2A2,) + 1 XT (B — Bo)I>/2, we can also obtain
() I1IXT (B — Bo)ll < /188, R;.
Now, adding )\||,[3~050 — Pos, 1 on both sides of (A.29), we get

IXTB = B0) | + | 4B — Bo) + Fa — foa|* + 11B = Bolli + p2I2(F)

> > 2
< 887R7 + 2|5, — Pos, Il < 887R? + A2so/ ALy, + | XT (B — Bo)|”.

min

which implies that
(d") MB = Bolli <987 R7.
Combining (a’) — (d’) and recalling the form of t; (E— Bo, ]7— fo; Rr), we obtain
~ ~ 1
— — fn: — 2 _
(B = Bo. = for RD) = (V18 +16)/\/ 1 = y?)81 R < SRy,
given that §; < /1 — ¥2/(2(+/18 + 16)). This completes the proof of the lemma. (]

Lemma A.6. Under the conditions of Lemma 2.3, there exist constants Cy and cy, such that

P(T1(R)) = 1 — Crexp(—cinp?).



1312 Z. Yu, M. Levine and G. Cheng

Proof. Note that on the set 7;(R;), we have || f|?> < (1 + Amax/Al) R%, I1(f) < R;/p,
||XT,3|| < R; and ||B|1 < 80R?/A, where A . is defined as the smallest eigenvalue of
E(fxf;) Also we have ||g[1> < (1 + Amax/Amin)R?/(1 — o) and J(g) < R/u. Now, we let
R? =R} = (1 4 Amax/Aly)RT £ R7/(1 — y1) and RY = (1 + Amax/Amin) R?/(1 — ) £
R?/(1 — o), M| = 81R2/X, 5 =R;/p and M = R/u. In particular, we can choose p? <
1 —y; and u? <1 — y,. Then Lemma A.3 yields that SUP fea2(R,, M) [ flloc < CoM), and
SUPgewe2(R,, M) lglloo < Cy M. Let L be the constant as in the proof of Lemma A.4. Further,
we restrict p, o, R and R; as follows

R; > RA;/(Vnw), Ry >p, R; > Rp/pu. (A.30)

This can be achieved under the assumptions that p?> < R% < R? and p? < R%. We take t =

np?*/L? throughout this proof.
We first look at 77 1 (Ry) and show that with probability at least 1 — 3 exp(—np?/L), the event
T1.1(Ry) holds. Note that

|X7B+ fEaB+ fal, = [X7B+ flaB+ fal®
<|IX7B+ £iaBln = 1X7 B+ a8’
+ | 1fal2 = U falP| + [ @ = PY(XT B+ £54B) fal
£A+B+C.
We bound A’, B’, C’ as follows, respectively.

A’. Recall that fxp(-) = E(fx(2)|U =) € WY 2(L2) and fxa = fx — fxp. We have
fx, fxa, fp being bounded, therefore sub-Gaussian. Also we have ||XT,B + fXA/SH2
2R 2. Applying Lemma A.2 and similar arguments as (A.16), we obtain

IX"B + fiaBla 1)

swp (|X7p+ FLp— 1K 6+ gl < 2rp (e E IRl
XA

(B, )eM(Ry)

which is smaller than 4C R/l2 /L for some absolute constant C > 0 with probability at least

1 —exp(—np?/L).
B’. Note that

sup N falloo=  sup  Nfpllct+  sup I fllec <2M
FeWa2(R,, M) FEWE2(R,, M) feWe2(Ry,M))

and sup reye2(gy py I fall < R). Replace R* and K* by R} and 2C,M} in Theo-
rem A.11. Note that
Toe(2Ca M [ € W (R}, M) ]) = o (26, M, WO (RS, M)

(A31)
<2J/nR)L
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Similarly as (A.18), we then have

/

_ 2R Tso(2Ca My, (fa < | € W2 (R), Mj)))
— \/ﬁ
2 . 2
4 ATRCCMy (i f e WER MY a0
; L2
2 2 2 2 2
<< 8R? 8R? 64R> 4131,)C2 84C, R?

VT Lyd—y 2 L) Laaom

+ 2R§CaM§%

where the second inequality follows from (A.31).
C’. Write W/ = BT (X + fxa)/IBl, 1 <i <n, which are i.i.d. sub-Gaussian with Orlicz norm
bounded by, say Ky > 1.

3

~ 1<
sup [Py —P)(XT B+ fxaB)fal|=  sup IIﬂII‘— > W] fa(Zi Uy
(B, )eM(Ry) (B, HeM(Rr) L

where [|8]| < I XBIl/Amin < R7/Amin on the set M;(R;). Similarly as (A.21), we have

1 n
= > W fa(Zi, Up)
n

i=1
2T 2Ky Cy M5, { fa s f € WH2(RS, My)}) + 2K, C, M/t

>

Jn

holds with probability < exp(—t). Substituting r = np? /L, together with (A.31), we have

sup
FEW2(R), My)

sup | Py —P)(XT B+ fLiB) fa] < Cy(Ri/Amin) (6K R1/L).  (A32)
B, reM(Ry)

Combining A’ to C’, with L large enough, we can have

sup  ||XTB+ FEB+ fall = |XTB+ 1EaB + fa]?| < 53R
B, freM(Ry)

with probability at least 1 — 3 exp(—np2/L).

Next, we show with probability at least 1 — 2exp(—n/o2 /L), the event T; 2(R;) holds. Notice
that [P, (e(XT B + fL B + fa))| < Pas(XT B+ fL,B)| + [Paefal, where for some absolute
constant C > 0,

n

~ 1
sup  [Pue(XTB+ f{aB)|=  sup  UIBI|= D W
(B./)eM(Ry) (B.f)eM(Ry) n

<2CR?/(AminL),

i=1
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follows from similar arguments as (A.25). Further, Theorem 5.2 of van de Geer and Muro [20],
A.4 and equation (A.30) shows

KeToo(RS, {fa: [ € WER(RY, MY)Y) + K R) N1
Jn

_ 2KeToo(Ry, W2 (R), MY)) + K Ryt
< 7

2K.A1R; R?
< + !
T/l = y)US1202p07200 T —y L

2R? R? 3R?

< + < .
T LA -y Ty L T JT=pL

|Pnefal <

Thus, we have for some suitably chosen L > 0,

sup  |Pue(XTB+ fLaB+ fa)| <8IR?
(B, f)eM(Ry)

with probability at least 1 — 2exp(—np>/L).
Finally, we show with probability at least 1 —4 exp(—np>/L), the event 77 3(R;) holds. Notice
that E(XT B+ fL,B+ fA(fEpB+ gk B+ fr+g) =0. Then we get

(B (XTB + faB + £2)(FpB +8XB + fr+38)]
<@y =P)(X"B+ faB) (fXpB +2xB))| + |Br =YX B+ fYaB)(fP + 8]
+ |y —P)((f4pB + 8xB) fa)| +|®r —P)(fa(fp +9))|
éA//+B//+C//+D//.
It is noted that |X78 + £ ,BIl < R|, IXTB + fiBllo < 2M{, | £5pB + 8%BI < R},

Ifp+ gl <IIfpll + llgll < Ry + Ry <2R3, J(fp+8) <J(fP) +J(®) <TIfIl+(R/pn) <
C'R; 4+ (R/u) < 4Mj. Then we apply Theorem A.12 for A”, B”, C", D", respectively. Each of

the following terms holds with probability at least 1 — exp(—np2/L).

A”. Note that

sup (@0 = P)(XT B+ fLaB) (f4pB +8%B))]
(B, f,.8)eM(R),(B. freM(R)

< sup 1812
(B.f,.9)eM(R),(B, f)eM(Ry)

3

BT (X + fxa) BT (fxp +gx))
81 Bl

(]P)n - P)(
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TV T
where both 2 ()ﬁ;”f x4) and 8 (fl)l(ﬂpu-kgx ) are sub-Gaussian. Therefore, by Bernstein’s in-

equality, we have for some constant C > 0.

Ty T
e

2

By taking t = np?/L and recalling that SUP(B, fye M, (R) 1811? < R%/Amin, we can have

with probability 1 — exp(—np?/L), that

sup (@0 —P)(XT B+ f44B) (f2pB+8%B))| <2CR}/(LAZ,).
(B, f,.8)e M(R), (B, f)eM(R})

B”. Recall the definition of W’. We have

sup [Py —P)(XT B+ fLAB)(fP + )|
(B.f,.9)eM(R),(B, /e M(Ry)

= sup IBII|(Pr —PYW'(fp + )|
(B £.OEMR), (B, My (Ry)

Note that on the set M;(R;) N M(R), we have fp + g€ WY2(2R%, 4My}). Further it
follows from A.4 and (A.30) that

Too (4C, M5, WY (2R}, 4M})) < A R/p < /nCy Ry /L

and Mg,o /L < Ry /L. Therefore, similarly as the proof of (A.32), we can have with prob-
ability at least 1 — exp(—np?/L), that

sup |y =) (XT B+ FEAB)(fp+8)| < Cy(R1/ Amin) (12K R /L).
(B, [,8)eM(R),(B, /e M (Ry)

C”. Write W' = (f;P,B + g}T(ﬁ)/HﬂH, which is sub-Gaussian with Orlicz norm bounded by
K ;/( Now we have

|y —P)((fipB+8%B) f4)| = 1BI|@r =YW f4].

Similarly to the proof of ((A.21)), (A.32), we can have with probability at least 1 —
exp(—np?/L),

sup 1B ®w —P)W” fa| < Ca(R1/Amin) (10K R;/L).
B.NEMIRD.(B. £.8) MR
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D”. Similar to the proof of (A.23), we have
v RoJoo(4C, M5, WY2Q2R;, 4M5))
< 7
| 2RI (RSACy MY /2R, < f € W (Ry, MY
Jn
N RL(4Cy M})p N (2Co Mb)(AC, M}) p?
L L2
< <7R’ Ry <—1 = w)l_l/zanga) AR/~ PRy p
“\Wi-n L NI Vi—y2  Jnpltle
R/ 4R 2R; 4(R /) p?
1 4R/Wp 2R AR/Wp )Cacy

D

+
V1= Y1 L 1% L2
- 18C,Cy R?
T VT (T=y)l2eL

Therefore, by choosing L large enough, we can have with probability at least 1 —
4exp(—np?/L),

sup |Pu(XT B+ fAaB+ fa)(FapB+ kB + fr+38)| <8R},
(B, f,.8)e M(R), (B, f)eM(R})

by letting L large enough. Now, we conclude that there exists constant C; and ¢y, such that
P(77(Rp)) = 1 — Crexp(—cinp?). O
Proof of Lemma 2.3. This proof simply follows from the following inequality
P(T(R)NTi(R)) = 1 —P(T(R)) — P(T (R)))
and Lemmas A.4 and A.6. U

A.2.2. Proof of Lemma 2.4

We start from the main proof of Lemma 2.4, followed by some necessary lemmas.
Proof. Recall that mx |z v = fx + gx. By the definition of (,4/3\, f, 2), we have
|¥ = XTB = F= 3|2 + 1Bl + 22D + 12 2@
<[¥ = x"Bo— (F+ £ B—B0) — @+exB—p)l,
+ ol + 02 I3 (F + £ (B — Bo))

+uI2 (8 + gk (B — Bo)).
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That implies

|XB = Bo) | + MBI + P2 12 (D) + 12 T2 @)
<2[Pue(XT (B — Bo))| +2|Pu(f — fo+ 2 — 20 X" (B — Bo)|
+2[Pu (£ (B — o)+ 2gx (B — B0)) X" (B — Bo)| + Al Bolls
+ 02 I2(F+ fL (B = B0) + 12 T2 (3 + g5 (B — Bo)).-

(A.33)

From Lemmas A.7-A.10, we know that with probability 1 —7/(2p) — c exp(—Cnp?) for some
constant ¢, C > 0, (A.33) can be further reduced to

| XB = o) + 1Bl < /2B — Boll + AllBoll1-

Hence, Noting that 8111 = | Bs, |l + 1Bs; 1 and [lolli = llfos, ll1. we get [X(B — po)ll* +
WilBsglh < 31Bsy — Boso 1 + 51Bsc — Bosg I + AlBosy I — A1Bsy I — 4 1Bsgh < 2 1Bs, —

Bos, ll1- This gives
2|XB — o)} + 1B~ ol
=2| X8 - o[, + 1B 1 + *1Bsg — Boss

4 ~ o~
2053 g

< 41Bs, — Bos, Il < 4r/50llB — Boll <

A
~ ~ 2 4)»2S0 ~ ~ 2 4)\2S() Ao~
<[XE—po) "+ -5 < IXB=po)ll; + =5 + 1B~ boll.
min min
Therefore,
~ 2 A~ 4225
| X(B = B0, + 3118 — Boll = o 0

min

Lemma A.7. With probability at least 1 — 1/ p,

log(2 ~ A o~
OCP)\ B Bolly = 1B = Bolls
n 10

2|P,e(XT (B — Bo))| < 4y/6KzKe
for some constant K5 > 1.

Proof. First, we have

Pae(X" (B - B0))| < |PueX” | IB— Boll1.
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Assumption A.2 that Eexp(aiz/ K 82) < 2 implies Eexp(te;) < exp(SKszt/Z), see Vershynin
[21]. Then we get

e ~ " t~ - 3 2
]Eexp(t(; ;eiX,-])) :HECXp(;X;’j&') < ﬂeXp(§K3<n_2Xi2j)>

3 12
=exp<51<§;||xj||,%>,

which implies given X fixed, for ¢ > 0 and all J,

l e ~ f o~ 3
E”{ ;;EiXij >\/;2”Xj”n\/;Ks} <exp(—1),
1=
[t +1
{ max + ngznx ||n\/7 } <exp( 1).
1<]<[7

see Vershynin [21]. Hence,

; Z Xij
n —_—

Note that wx z,y = fx(Z) + gx(U) with fx € W*?(L) and gx € W¥"?(Ly). Therefore,

we have X = X — myx|z v is sub-Gaussian. Then by Bernstein’s inequality, we have for some

constant K > 1 that

o~ < log(2p)
2 RIT 2] > e
P{lrinjagp!IIleln EIX;l;| = K .

} =1/@p),

which further implies

~ ~ log(2
P max |IX;|> >2K§}§]P>{ max | X112 > E|X; |2+ Ky £2p)
1<j<p n

1<j<p

} =1/2p), (A34)

Now take r =log(2p). With probability at least 1 — 1/p,

|P.eXT| <6 21(,;1@/@.

Noting that A 2 \/log p/n, we can have 2||IP’,18)~(T||OO < 4\/6K)~(Kg\/log(2p)/n <Ai/10. ]

Lemma A.8. With probability at least 1 —5/(2p) — C exp(—np?/c) for some constants ¢, C > 0,
2|Pu(f = fo+8 — g0) X" (B — Bo)| +2[Pu( % (B — o) + gx (B — b)) X" (B — Bo)|

<
< mllﬁ Boll1,

~ o~ ~ o~ A~
||lX<ﬁ—ﬁo)Hi—HX(ﬂ—ﬂo>H2|s§||ﬂ—ﬁo||1.
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Proof. On the set 7 (R), we have

|Ba(F— fo+&— 80X (B—Bo)| < (|Ba(F = fo+&—g0)XT | )IB — Bol

)nﬁ‘—ﬂonl.

l e ~ R -
D (F—fo+8—g0iXi
i=1

< max | |-
I=j=p\|n

Note that given X , we have foreach 1 < j < p,

|(f— fo+g— go)i)?ij| <2R/\1-— J/2|)~(ij|~

By Lemma 14.15 of Biihlmann and van de Geer [2], we have

P{ff,afp ;Z(f fo+8—20)iXij
QR/VT=y)2 Y1 X2, 1
> max \/ Lizi 1 2(t2+M> Sexp(_ntz).
I<j<p n n

Take 1% = 5%,02 for some &3 > 0. Again by (A.34) and noticing that §3p > /log p/n, we have
that with probability at least 1 — 1/(2p) — exp(—néd3p?),

max <V2Kx(2R/\/1T = y2)283.

1<j<p

_Z(f fo+g— g())z ij

n

Therefore, by choosing 83 suitably small, we can have

max
I<j=p

—Z(f fo+3 - g0)iXij

n
=1

< 1/20.

Next, note that

l & ~ -
=D ((fx+20" (B— o), X
i=1

l e ~ =
< ;ZZ(fX +&x)ik(B — PodiXij| <

i=1 k=1

1 « ~
(; Z(fx + gX)ikXij> ’
i=1

R2
< 8p— max
A

< B— 1 max
18 — Boll max max

- Z(fX + gX)thlj

n

’

1o <
- Z(fx +8x)irXij
s
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where E( fx +gx),-k§,~j =0and |(fx +gx)ik)~(ij| < M0|3~(,-j| conditional on X. By Lemma 14.15
in Biihlmann and van de Geer [2], we obtain that given X,

M2 o1 X 210g2p
- >
P(m AP Dfx +enuky| 2 max | === / )
< exp(—ntz).

Similarly, letting > = log(2p)/n and revoking (A.34) gives

1
> V2K x Mo, | & p) 1/p.

Choose A > 2K x My,/log(2p)/n. We finally get with probability at least 1 — 1/p,

- Z(fX +gX)llej

n

P| max max
1<J<[71<k<p

2Py (fL (B~ Bo) + g% (B — Bn) X (B — Bo)| < 8oR*IIB — Boll1

which can be smaller than 2’\—0 ||,§— Boll1 by taking suitable choices of &p.
Now, we show the second part of the lemma. Similarly, we have on the set 7 (R),

1X@B - g, — [XB - po)’ |<So— max

Z(Xlkxjk IEXlkX]k)
1<k, j<p

1B = Bollr,

n

where X ik? jk— EX ,-k)~( jk is sub-exponential. By Bernstein’s inequality, we have for some con-

stant K5 that
log2
= KX,/H> <1/@p).
n

P| max
1<j.k<p

Therefore by choosing A > 260K 5+/log2p/n, we have |||X(ﬂ ﬂ())||2 — ||X(,3 Bo)lI?| <
A||/3 Boll1/2, with probability at least 1 — 1/(2p). Recalling the probability of 7 (R) from

Lemma A.4, this lemma is proved. O

Z(X,kX,k —EXuX jx)

n

Lemma A.9. Assume
3R>
p* <
2(L1 + Jo(fO) L1

Then on the set T (R),

|p2I2(F + fL B - Bo) — 2 J2(D)| < 1—0||ﬂ Boll1-
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Proof.
P2 I2(F+ £ (B = B0) — pPI2() = 02 [J2(f4 (B — B0)) +2Ju(F. 1 (B — Bo)]
<p 6TL2II;8 Bollt + 2o () Ja (f5 (B — Po)
< [&)sz% + 2&(% + Ja(f0)>L1} 1B = Bolh

1 V2 ~
< (55(3)R2 + 750R2 +5(2)R2) 1B = Bolh

<38R*|1B — Boll1,

where the first equality follows from definition of J,(-), the second inequality follows from

Assumption A.5 and ||E— Boll1 < % on 7 (R), and the third one is true due to triangular
inequality. Choosing 8 such that 360 R* < 1/10, we get the desired result. g
Lemma A.10. Assume
82R?
wr<—0 (A.35)

“ (L2 + Jy(g0)) L2
Then on the set T (R),

12T+ gk (B — o) — 12I2®)| < 1—Ollﬁ Bolli

Proof.
WILE+ g% (B—Po) — nI2®@) < n (2T @I (g% (B — Bo)) +272(sk (B — Bo)))

Note that J (g% (B — o)) < La2lIB — Boll1 by Assumption A.5 and [|B — foll < % on T(R).
We have

WIN(E+ gk (B—Po) - /ﬁff@ =u?[27, . gx (B — Bo) + I3 (s (B — Bo))]
1 (2(R/1+ Jy(80)) L2llB — Bolli + L31B — Boll?)
(280R2+280R2+50R2(8 L ))IIﬁ Polln

<58 R*|1B — Boll1,

where the first inequality follows from definition and the second one follows from the condition
(A.35). Choosing d¢ such that 550R2 < A/10, we get the desired result. O
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A.2.3. Proof of Theorem 2.5

Proof. Let » = 4./log p/n, p> =n=2/CetD 2 — p=2v/Cr+D  And recall that R? =< u” +
A2so and R% = ,02 + A2sg. It follows from the definition of (B, f,2) that

1Y —XB = f=2lls + MBI + p> T2 (F) + n> T} @) ]
(A.36)
< ||Y = XT Bo— fo—go|> + AllBolls + p2I2(fo) + 12 T2 (g0).

We first show the risk bound for E Triangle inequality and (A.36) imply
B = Boll < MBI+ MBolli < llell + 2411 Bolly + p 7 (fo) + 1> T (g0).

which further implies for any k& > 1,
=~ -~ k
ElB — Boll <ElIB = Boll} <E(llellz /A + 1Bollt + p> T3 (fo) /A + 1> T (g0)/2)"

Note that n||s||ﬁ follows chi-squared distribution with degree of freedom n. Thus, we have
E||£||,(11/2a) = O(1). Also we have that || foll1 = O(,/s0). Therefore, it follows that

EIB — Boll <EIB — Boll¥ < 01/x + /s0)*.

Define the set 7 = {||§(B\— Bo)lI?> < A%so}. Then it’s known from the proof of Lemma 2.4
that P(7,) < c/p* + cexp(—np?/c) for some constant ¢ > 0. Hence, we have

E|B — Boll> =EIB — Boll*17; +ElIB — Boll* 1 7
< 0(3s0) +yEIB - foll*/B(T})
O (r%s0) + O(1/2* + So)\/exp(—npz) +1/p
0 (x%s0).

The last inequality holds due to the following arguments,

(1) (1/23)exp(—n!/Ce+D) = 0(A2s), since n?exp(—n'/2@+tD) = O (solog? p);
(i) (1/2%)(1/p?) = O(A2sy), since 1 = O((p>solog? p)/n);
(iii) sov/exp(—n!/@e+Dy = 0(A%sg), since nexp(—n'/*+tD) = 0 (log p);
(iv) so(1/p?) = 0(2s0), since 1 = O((p*log p)/n).

We next show the estimation risk for f Define 7, = {t(,g— Bo, f— fo.2 —g0; R) <
R, (B — Bo. f — fo: Ri) < R;}. Note that f € W2®(L1), then together with (A.36), it im-
plies that, for some constant C > 0, sup,[o 1 If(z) — fo@)? < Clg(f— fo)=C fol (f\("‘)(z) -

IA

IA
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1322 dz < Cllel2/p? + 211 Boll1/p* + J2(fo) + 112 J2(80)/ p?). Therefore, we have

1 k
Elf - fol? < (E / (F ) — fo(“)(z))zdz>
0 (A.37)

k
< 0(1/p* + 150/ p* + 12 /0?)" = 0(1/p%),
for any k > 1. Hence, we have

E|f - fol2=Elf - fol217 + EI f — fol217¢

< 0(0* +3%50) +EIT — follty/B(T5)

< 0(p* +2%s0) + 0(1/p?)/exp(—ncp?)
< 0(p* +22s0),

where the second inequality follows from Lemma 2.3 and the last step is true since

/exp(_nl/(2a+l) — 0(n74/(2ot+])).
Now, we are going to show the risk bound for 2. Define 73 = {t(B — Bo. f — fo. 2 — g0; R) <
R}. By similar arguments as (A.37), we have E|g — g0||%k = 0(1/pu*). Then together with
Lemma 2.3, it shows

ElIg — golly =ElIZ — gl 17 + EIZ — goll 17 < O(1” + A%s0) + O(1/1%)Jexp(—ncp?)

< 01 +4%s0),

where the last step is true since y/exp(—n!/Ca+D) = O (n=4/Cr+D),
Finally it follows from Lemma 4.1 of Nussbaum [12] that E fol |f(u) — fo(u)l2 du = O(,Uv2 +

3250) and E [} [Go(u) — go(u) |2 du = O (p® + A2s0). 0

A.3. Results from empirical process theory

In this section, we include two theorems of empirical process theory, A.11 and A.12, which are
Theorems 2.1 and 3.1 from van de Geer [19], respectively.

Let RY = sup s || £ll, Ki = Sup pezv || £ lloos and R = sup,eg- llgll, K3 = supyeg g loc-
Theorem A.11. For all t > 0, with probability at least 1 — exp(—t),

2R Joo(K, F*) 4+ RIK /1 N 4I2(KF T+ K2t
Jn n

sup [IF1I2 =1 F1%]/C1 <
feF*

for some constant C1 > 0.
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Theorem A.12. Suppose that R} /R < K{/KJ. For any t > 4 and n such that

and

2R Joo (K, F*) 4+ RTK A/t N 4J2 (K5, F*) + K2t - R}?
Jn n - C

2R; Joo (K5, G*) + R3K5 /1 N 4J2 (K5, G*) + K32t - R_;Z
Jn n -G’

we have with probability at least 1 — 12exp(—t),

1
<~  sup |[(P,—P)fg
8C1 fef*’geg*} " |

- R T (K5, G*) + Ry Too(RY K5/ RY, F*) + RY K5/t n K{K3t
- N no
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