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The convex hull generated by the restriction to the unit ball of a stationary Poisson point process in the
d-dimensional Euclidean space is considered. By establishing sharp bounds on cumulants, exponential
estimates for large deviation probabilities are derived and the relative error in the central limit theorem on a
logarithmic scale is investigated for a large class of key geometric characteristics. This includes the number
of lower-dimensional faces and the intrinsic volumes of the random polytopes. Furthermore, moderate
deviation principles for the spatial empirical measures induced by these functionals are also established
using the method of cumulants. The results are applied to a class of zero cells associated with Poisson
hyperplane mosaics. As a special case, this comprises the typical Poisson–Voronoi cell conditioned on
having large inradius.
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1. Introduction

Random polytopes are among the most classical and popular models considered in geometric
probability, and their study has become a rapidly developing branch of mathematics at the border-
line between geometry and probability. One reason for the increasing interest are the numerous
connections and applications of random polytopes in algorithmic geometry, convex geometric
analysis, optimization, random matrix theory, set estimation or multivariate statistics; we di-
rect the reader to the surveys of Bárány [4], Hug [26], Reitzner [35] and to Chapter 11 of the
monograph of Brazitikos, Giannopoulos, Valettas and Vritsiou [10] for further information and
references.

A common method to construct a random polytope is to take the convex hull of a finite fam-
ily of random points that are uniformly distributed in the interior of a prescribed convex body
K ⊂ R

d with d ≥ 2. In their seminal paper, Rényi and Sulanke [36] considered the asymptotic
behaviour of the mean vertex number and the mean volume (area) of such random polytopes
if d = 2, as the number of points tends to infinity. Since then, first-order asymptotic properties
of geometric characteristics of random polytopes have been investigated for general space di-
mensions by Bárány [2,3], Böröczky, Hoffmann and Hug [9], Reitzner [32,33] or Schütt [42], to
name only a few. More recently, the focus has turned towards asymptotic second-order charac-
teristics like the variance of the number of vertices or the variance of the volume. The classical
Efron–Stein inequality has been used by Reitzner [31] to obtain upper bounds for these variances
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as well as laws of large numbers. Matching lower bounds together with related central limit the-
orems have been shown on different levels of generality by Bárány and Reitzner [5,6], Cabo and
Groeneboom [12], Groeneboom [21], Hueter [25], Pardon [30], Reitzner [34], Schreiber [39]
and Vu [43]. This line of research has been continued in a series of remarkable papers by Calka,
Schreiber and Yukich [16], Calka and Yukich [17] and Schreiber and Yukich [41].

In contrast to the typical or “normal” behaviour of random polytopes, much less is known
about their atypical or exceptional behaviour, or at scales in between. For random polytopes in
the unit ball, Calka and Schreiber [15] have obtained information on large deviations for the
vertex number and Schreiber [40] has computed certain moderate deviation probabilities for the
mean width. Moreover, the paper of Vu [44] deals in a general context with concentration in-
equalities for the volume and the vertex number. Besides such large deviation or concentration
inequalities, it is from a probabilistic point of view also natural to ask for the behaviour of ge-
ometric characteristics associated with random polytopes on intermediate scales “between” that
of the above-mentioned law of large numbers and that of a central limit theorem. The present
paper is an attempt to fill this gap and to prove a set of concentration inequalities in the case
where the underlying convex body K is the d-dimensional unit ball Bd and where the family of
random points is induced by a Poisson point process (Poisson polytopes). We refer to the papers
of Affentranger [1], Buchta and Müller [11], Calka and Schreiber [15], Hsing [24], Küfer [28],
Müller [29] and Schreiber [39,40] for distinguished results about random polytopes in B

d .
Consider a stationary Poisson point process in R

d with intensity λ > 0, let ηλ be its restriction
to Bd and let �λ be the convex hull of the points of ηλ. For simplicity and to facilitate access to
our results, we restrict for the rest of this introduction to the vertex number f0(�λ) of the random
polytopes �λ and refer to Section 3 for theorems dealing with other geometric characteristics of
�λ as well. Our first theorem is a concentration inequality for the vertex number of the random
polytopes �λ. In order to present it and also for later use, let us define the constant

β(d) := 4 + 2

d + 1
. (1)

Theorem 1.1. Let y ≥ 0. Then, for λ ≥ c1,

P
(∣∣f0(�λ) −Ef0(�λ)

∣∣≥ y
√

varf0(�λ)
)≤ 2 exp

(
−1

4
min

{
y2

2β(d)
, c2λ

d−1
2β(d)(d+1) y

1
β(d)

})

with constants c1, c2 ∈ (0,∞) only depending on d .

Theorem 1.1 should be compared with the only known result of this kind from the literature.
Provided that λ is sufficiently large, Theorem 2.11 in [44] says in our situation that

P
(∣∣f0(�λ) −Ef0(�λ)

∣∣≥ y
√

varf0(�λ)
)≤ 2 exp

(−b1y
2)+ pNT, (2)

for all 0 < y < b2λ
− (d+3)2

(d+1)(3d+5) with constants b1, b2 ∈ (0,∞) only depending on d , see also [35]
for a related version. Here, pNT is the probability of what is called a “non-typical event” in

[44] and satisfies the estimate pNT ≤ exp(−b3λ
d−1
3d+5 ), independently of y, with another constant
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b3 ∈ (0,∞) depending only on d . Our theorem basically recovers the exponential term in Vu’s
inequality. However, while Vu’s inequality involves the boundary term pNT, which does not
depend on y, such a term is not present in Theorem 1.1. Furthermore, our inequality yields an
exponential estimate for all y ≥ 0 and not only for values of y close to zero. We also emphasize
that the inequality in Theorem 1.1 remains valid for a wide class of geometric functionals, while
in [44] besides of f0(�λ) only the volume of �λ is treated. On the other hand, Theorem 1.1
deals with the case of a random polytope in the unit ball, whereas in [44] arbitrary underlying
convex bodies are permitted.

Our next result is an estimate for certain deviation probabilities on a logarithmic scale that
characterize the relative error in the central limit theorem for the normalized vertex number. To
state it, denote by �(·) the distribution function of a standard Gaussian random variable.

Theorem 1.2. For 0 ≤ y ≤ c3λ
d−1

2(d+1)(2β(d)−1) and λ ≥ c4 one has that∣∣∣∣log
P(f0(�λ) −Ef0(�λ) ≥ y

√
varf0(�λ))

1 − �(y)

∣∣∣∣≤ c5
(
1 + y3)λ− d−1

2(d+1)(2β(d)−1) and

∣∣∣∣log
P(f0(�λ) −Ef0(�λ) ≤ −y

√
varf0(�λ))

�(−y)

∣∣∣∣≤ c5
(
1 + y3)λ− d−1

2(d+1)(2β(d)−1)

with constants c3, c4, c5 ∈ (0,∞) only depending on d .

Our next theorem makes a statement about moderate deviations of the rescaled vertex number
of �λ, which can be regarded as a kind of refinement of a central limit theorem. We will see
in Theorem 3.5 below that the set B appearing in Theorem 1.3 can be replaced in a way by an
arbitrary measurable subset B ⊂ R and that the rescaled vertex number of the random polytope
�λ satisfies a so-called moderate deviation principle.

Theorem 1.3. Let (aλ)λ>0 be such that

lim
λ→∞aλ = ∞ and lim

λ→∞aλλ
− d−1

2(d+1)(2β(d)−1) = 0.

Then, for all y ∈ R, one has that

lim
λ→∞

1

a2
λ

logP

(
1

aλ

f0(�λ) −Ef0(�λ)√
varf0(�λ)

∈ B

)
= −y2

2
with B = [y,∞).

As anticipated above, we will see in Section 3 that Theorems 1.1, 1.2 and 1.3 continue to
hold for a large class of key geometric functionals of the random polytopes �λ (possibly under
different rescalings and with different exponents). In particular, this includes

− the number of j -dimensional faces of �λ for all j ∈ {0,1, . . . , d − 1},
− the missed volume of �λ in B

d ,
− the missed volume of the Voronoi-flower of �λ in B

d ,
− the mean width of �λ and, more generally,
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− the j th intrinsic volume of �λ for all j ∈ {1, . . . , d − 1}.
In addition, we will work on the level of empirical measures and thus take care also of the spatial
profile of the involved functionals. This in turn puts us in a position to present our announced
moderate deviation principle also on the level of measures. Let us emphasize at this point that
Theorem 1.2 and its generalization in Theorem 3.2 as well as the moderate deviation principles
in Theorems 3.5 and 3.6 seem to be the first results in this direction in the context of random
polytopes and that we were not able to locate counterparts in the existing literature.

Let us briefly comment on the technique we use to derive Theorems 1.1–1.3 and their generali-
zations stated in Section 3. It is based on precise estimates of the cumulants of the involved
random variables (see Proposition 5.1 below). The methodology to deduce fine probabilistic
estimates from bounds on cumulants goes back to the large deviation theory summarized in the
monograph of Saulis and Statulevičius [37]. In the context of geometric probability, this has
been used by Eichelsbacher, Raič and Schreiber [20] to deduce results similar to those presented
above for a class of so-called stabilizing functionals. However, the random polytope functionals
we consider behave quite differently and are not within the reach of the results in [20]. Instead,
we use the principal idea from [16,41] that connects �λ with a parabolic growth process in
the upper half-space. The key advantage of this connection lies in the fact that in the rescaled
parabolic picture spatial correlations are much easier to localize and to quantify. Even on the
level of the central limit theorem all “traditional” proofs, not using the scaling transformation,
rely on a conditioning argument, see [34], page 499, or [6], Section 7. However, it is not clear
(to us) how such an argument can be used for our purposes. Against this background, the scaling
transformation is an indispensable tool for us. We then adapt the methods from [7] and [20]
and develop them further to make the cumulant approach available in the context of the random
polytopes �λ (see Remarks 5.4 and 5.6 below for a more detailed discussion). Our probabilistic
estimates then follow from the main “lemmas” in [37] and the moderate deviations from the work
of Döring and Eichelsbacher [19]. The main technical difficulty in carrying out this approach is
that only the points of the Poisson point process ηλ close to the boundary of Bd contribute to
the geometry of �λ, an effect that cannot be handled within the framework of [20], but which is
typical for random polytopes.

Instead of taking the convex hull of random points, it is also natural to consider random sets
that arise as intersections of random half-spaces, see the surveys of Hug [26] and Reitzner [35].
To understand the geometric and the combinatorial structure of such random polyhedra is of im-
portance, for example, in linear optimization. In particular, the performance of the well-known
simplex algorithm depends on the number of edges of the polyhedron that is defined as the in-
tersection of the set of half-space determined by a system of linear inequalities. One way to
obtain a deeper insight into the generic combinatorial complexity that arises in such situations is
to consider random polyhedral sets as argued in Borgwardt’s monograph [8]. By a duality argu-
ment borrowed from the works of Calka and Schreiber [13,14] we transfer our results for random
polytopes to combinatorial parameters of a certain class of random polyhedra that are associated
with Poisson hyperplanes (Poisson polyhedra). In particular, this includes the prominent typical
cell of a stationary Poisson–Voronoi tessellation of Rd conditioned on having a large inradius.
In this context, we also contribute to the results around D.G. Kendall’s conjecture asking for the
asymptotic geometry of “large” tessellation cells and for which we refer in particular to the paper
of Hug and Schneider [27] as well as to the references cited therein.
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The remaining parts of the paper are organized as follows. In Section 2, we introduce the
formal framework and recall the necessary results from [16] in order to keep the presentation
sufficiently self-contained. Our main theorems for Poisson polytopes are presented in full gener-
ality in Section 3, while the final Section 5 contains their proofs. In Section 4, we apply our main
results to a parametric class of random polyhedra that arise from Poisson hyperplanes.

2. Framework and background

2.1. Basic notions and notation

In this paper, we write Vd(·) for the d-dimensional volume (Lebesgue measure) of the argument
set. We denote the Euclidean scalar product by (·, ·), the norm induced by it by ‖ · ‖ and put
B

d := {x ∈ R
d : ‖x‖ ≤ 1} and S

d−1 := {x ∈ R
d : ‖x‖ = 1}. We further indicate by B

d(x, r) the
ball centered at x ∈R

d with radius r > 0 and define the constant κk := Vk(B
k), k ∈ {0,1,2, . . .}.

We denote by Hd−1
Sd−1 the (d − 1)-dimensional Hausdorff measure on S

d−1.
Let � be a Polish space. By B(�) we denote the space of bounded measurable functions

f : � → R and we write M(�) for the space of finite signed measures on �. For f ∈ B(�) and
ν ∈ M(�) we introduce the abbreviation 〈f, ν〉 := ∫

dνf for the integral of f with respect to ν.
We will further use the symbol C(�) for the space of continuous functions on �.

By a convex body we understand a compact convex subset K ⊂ R
d with non-empty interior.

For a convex body K we denote by Vj (K) the j th intrinsic volume of K , j ∈ {0,1, . . . , d − 1}.
In particular, 2Vd−1(K) is the surface area and V1(K) is a constant multiple of the mean width
of K , while V0(K) = 1. We further write ext(K) for the set of extreme points of K and by the
extreme points of a finite point set we understand the extreme points of its convex hull. For a
polytope P ⊂ R

d and j ∈ {0,1, . . . , d − 1}, we write fj (P ) for the number of j -dimensional
faces of P .

One says that a family (νλ)λ>0 of probability measures on a Polish space � fulfils a large
deviation principle (LDP) with speed sλ and (good) rate function I : � → [0,∞], as λ → ∞, if
limλ→∞ sλ = ∞, I is lower semi-continuous with compact level sets, and if

− inf
y∈int(B)

I (y) ≤ lim inf
λ→∞

1

sλ
logνλ(B) ≤ lim sup

λ→∞
1

sλ
logνλ(B) ≤ − inf

y∈cl(B)
I (y)

for every measurable subset B of � with interior int(B) and closure cl(B), cf. [18]. A family
(Xλ)λ>0 of �-valued (and usually rescaled) random variables is said to satisfy a LDP with speed
sλ and rate function I if the family of their distributions does. One usually speaks about a moder-
ate deviation principle (MDP) instead of a LDP if the rescaling of the involved random variables
is between that of a law of large numbers and that of a central limit theorem.

2.2. Key geometric functionals and their rescaled versions

From now on, let ηλ be the restriction to B
d of a stationary Poisson point process with intensity

λ > 0 and denote by �λ the random convex hull generated by the points of ηλ. We recall from
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Figure 1. Illustration of the scaling transformation Tλ.

[16] that each of the geometric characteristics Vj (B
d)−Vj (�λ) with j ∈ {1, . . . , d} and fj (�λ)

with j ∈ {0, . . . , d − 1} is representable as

∑
x∈ηλ

ξ(x, ηλ) (3)

with certain explicitly known functionals ξ (also called score functions) that we abbreviate by ξVj

and ξfj
, respectively. Moreover, we recall that the Voronoi-flower VF(ηλ) of ηλ (or �λ) is given

by VF(ηλ) :=⋃
x∈ηλ

B
d( x

2 ,
‖x‖

2 ). The Voronoi-flower of a random polytope is of interest because
of the following observation. Writing hK(u) := max{(u, v) : v ∈ K} for the support function of
a convex body K in direction u ∈ S

d−1, one has that the defect support function 1 − h�λ(u) of
�λ is precisely the distance between Sd−1 and VF(ηλ) in direction u. It has been demonstrated
in [16] that also the random variable Vd(Bd) − Vd(VF(ηλ)) has a representation as in (3) with a
suitable function ξ there that we denote by ξVF. The Voronoi-flower of �λ is also a crucial object
in Section 4. Moreover, we define � := {ξVF, ξV1, . . . , ξVd

, ξf0 , . . . , ξfd−1} to be the set of all key
geometric functionals associated with �λ.

Let n := (0,0, . . . ,1) be the north pole of Sd−1 and identify the tangent space Tan(Sd−1, n)

of Sd−1 at n with the (d − 1)-dimensional Euclidean space R
d−1. The exponential map exp :

Tan(Sd−1, n) → S
d−1 transforms a vector u ∈ Tan(Sd−1, n) into a point exp(u) ∈ S

d−1 such
that exp(u) lies at the end of a geodesic ray of length ‖u‖ and direction u emanating from n,
see Figure 1. In particular, exp(n) = 0. (The exponential map should not be confused with the
exponential function which is denoted by the same symbol, but the meaning will always be clear
from the context.) Although the exponential map is well defined on the whole tangent space, its
injectivity region is Bd−1(0,π) := {u ∈ Tan(Sd−1, n) : ‖u‖ < π}, the centred (open) ball in R

d−1

with radius π . Let us further denote by exp−1 the inverse of the exponential map, which is well
defined on S

d−1 \ {−n}.
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Following [16], we define the scaling transformation Tλ mapping B
d to R

d−1 ×R+ by

Tλ(x) :=
(

λ
1

d+1 exp−1
(

x

‖x‖
)

, λ
2

d+1
(
1 − ‖x‖)), x ∈ B

d \ {0}. (4)

In particular, we notice that, by the well-known mapping properties of Poisson point processes,
Tλ maps the Poisson point process ηλ to another Poisson point process ηT

λ in the region

Rλ := λ1/(d+1)
B

d−1(0,π) × [
0, λ2/(d+1)

)⊂R
d−1 ×R+

(note that with probability one, neither −n nor 0 is a point of ηλ, meaning that the definition
of exp and exp−1 at these points is irrelevant). In what follows, we parametrize the points of
R

d−1 × R+ as pairs (v,h) with v ∈ R
d−1 and h ∈ R+. Using this parametrization, it is known

from equation (2.14) in [16] that the intensity measure of ηT
λ has density

(v,h) �→ sind−2(λ−1/(d+1)‖v‖)
‖λ−1/(d+1)v‖d−2

(
1 − λ−2/(d+1)h

)d−1 (5)

with respect to the Lebesgue measure on Rλ. In particular, this implies that the limit process of
ηT

λ , as λ → ∞, is a Poisson point process η on the whole half-space Rd−1 ×R+ whose intensity
measure coincides with the Lebesgue measure on that space.

Using the scaling transformation Tλ we define the collection of rescaled key geometric func-
tionals. Let ξ ∈ � and put

ξ (λ)(x,X ) := ξ
(
T −1

λ (x),T −1
λ (X )

)
for a locally finite point set X in the region Rλ and x ∈ X . We define �(λ) := {ξ (λ) : ξ ∈ �} as
the set of rescaled functionals.

One of the crucial features of the above scaling transformation is that the rescaled functionals
ξ (λ) exhibit a weak spatial dependence property in the following sense. A random variable R :=
R(ξ, x,λ) is called a radius of localization for ξ (λ) if, with probability one,

ξ (λ)
(
x,ηT

λ

)= ξ (λ)
(
x,ηT

λ ∩ Cyl(x, r)
)

for all r ≥ R. Here, for a point x = (v,h), Cyl(x, r) stands for the cylinder Bd−1(v, r) × R+.
Thus, the radius of localization does not depend on the height coordinate h of the underlying
point x. It has been shown in [16] that the infimum over all such R, which we also denote by
R to simplify the notation, has super-exponentially decaying tails uniformly in x and λ. More
formally, one can find constants c1, c2 ∈ (0,∞) only depending on ξ such that

P(R ≥ u) ≤ c1 exp
(−c−1

1 ud+1), u > 0, (6)

for all λ ≥ c2, uniformly in x and λ.



2818 J. Grote and C. Thäle

Figure 2. The generalized growth process (λ) associated with the random polytope �λ.

2.3. A generalized growth process

With the rescaled Poisson point process ηT
λ defined in the previous section one can associate

what has been called a generalized growth process in [16,41]. We denote by ds the usual geodesic
distance on S

d−1 and for x = (v,h) ∈ ηT
λ we define the set

�
up
x,λ := {(

v′, h′) ∈R
d−1 ×R+ : h′ ≥ λ

2
d+1

(
1 − cosω

(
v′, v

))+ h cosω
(
v′, v

)}
,

where ω(v′, v) := ds(exp(λ− 1
d+1 v), exp(λ− 1

d+1 v′)). Following [16,41], the generalized growth
process (λ) is now given by

(λ) :=
⋃

x∈ηT
λ

�
up
x,λ.

We say that a particle of (λ) is extreme if it is not completely covered by other particles and
we denote the set of extreme points of the extreme particles of (λ) by ext((λ)). In particular,
we notice that the image under the scaling transformation Tλ of the set of extreme points of the
random polytope �λ coincides with ext((λ)), see Figure 2, where all the sets �

up
x,λ associated

with the vertices of �λ cover the ones that correspond to the inner points of �λ. Let us recall
from [41], Lemma 3.2, that the probability that a point x = (v,h) ∈ Rλ belongs to ext((λ))

decays exponentially with the height h of x. More precisely, we have that there are universal
constants c1, c2 ∈ (0,∞) such that

P
(
x ∈ ext

(
(λ)

))≤ c1 exp
(−c−1

1 h(d+1)/2) (7)

for all λ ≥ c2, uniformly in x.
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3. Main results for Poisson polytopes

Let ηλ be the restriction to Bd of a stationary Poisson point process in Rd with intensity
λ > 0 and let �λ be the convex hull of ηλ. For a key geometric functional ξ ∈ � and its
rescaled version ξ (λ) as considered in Section 2.2, we introduce the spatial empirical mea-
sure

μ
ξ
λ :=

∑
x∈ηλ

ξ(x, ηλ)δx

(8)
=

∑
x′∈ηT

λ

ξ (λ)
(
x′, ηT

λ

)
δT −1

λ (x′),

where δx stands for the Dirac measure at x. The centered version of μ
ξ
λ is throughout denoted

by μ̄
ξ
λ := μ

ξ
λ − Eμ

ξ
λ. In order to ensure non-trivial scaling behaviors, we define the individual

scaling exponents

e[ξ ] :=
{

1, ξ ∈ {ξV1, . . . , ξVd
, ξVF},

0, ξ = ξfj
for some j ∈ {0, . . . , d − 1}. (9)

The reason behind this is that for each of the “volume functionals” the scaling transformation
involves a dilation of order λ1/d+1 in the spatial region and of order λ2/d+1 in the height coor-

dinate, which gives λ
d−1
d+1 λ

2
d+1 = λ1 in total. Since the number of j -faces is not influenced by the

scaling transformation, no further scaling exponent is needed here. Further, for f ∈ B(Bd) we
define the quantity σ

ξ
λ [f ] := (var〈f,μ

ξ
λ〉)1/2 and emphasize that for each of the key geometric

functionals ξ we consider, there exists a constant c > 0 only depending on d and ξ such that for
all λ ≥ c one has that

λe[ξ ]σ ξ
λ [f ] ≥ C

〈
f 2,Hd−1

Sd−1

〉 1
2 λ

d−1
2(d+1) (10)

if f ∈ C(Bd) with another constant C ∈ (0,∞) that depends only on d and on ξ . This follows
from the variance considerations in [5,16,34] and we point out that the continuity of f has essen-
tially been used there to derive the lower variance bound (10). For this reason, we also assume
continuity of f in our results.

Our first result is a general concentration inequality for integrals with respect to the empirical
measure induced by our key geometric functionals; proofs are postponed to Section 5. To present
it, we define the individual weights

w[ξ ] :=
{

2, ξ ∈ {ξV1, . . . , ξVd
, ξVF},

3j, ξ = ξfj
for some j ∈ {0, . . . , d − 1}, (11)

of the key geometric functionals that originate from the moment condition in Lemma 5.2 below
and that appear in all our findings. Moreover, recall the definition of β(d) in (1).
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Theorem 3.1. Let f ∈ C(Bd), ξ ∈ � and y ≥ 0. Suppose that 〈f 2,Hd−1
Sd−1〉 �= 0. Then, for λ ≥ c1,

P
(∣∣〈f, μ̄

ξ
λ

〉∣∣≥ yσ
ξ
λ [f ])≤ 2 exp

(
−1

4
min

{
y2

2w[ξ ]+β(d)
, c2λ

d−1
2(d+1)(w[ξ ]+β(d)) y

1
w[ξ ]+β(d)

})
(12)

with constants c1, c2 ∈ (0,∞) only depending on d and ξ , or on d , ξ and f , respectively.

Theorem 3.1 should be related to the existing results in the literature. In case that ξ = ξf0 ,

〈1, μ̄
ξ
λ〉 is the centred vertex number and a detailed discussion has already been presented in the

Introduction. The only other result in the literature we are aware of is a concentration inequality
in [44] for the volume (and its closely related version in [35]). Its structure is basically the same
as that of the corresponding inequality (2) for the vertex number. In particular, this estimate
contains a boundary term pNT which does not depend on y and is valid only for arguments y in
a certain range around zero that depends on λ.

In contrast to Theorem 3.1, for the next results we could not locate counterparts in the existing
literature. To the best of our knowledge, Theorem 3.2 as well as the moderate deviation principles
in Theorems 3.5 and 3.6 seem to be the first results in this direction in the context of random
polytopes. We start with the asymptotic behaviour of deviation probabilities related to the relative
error in the central limit theorem. It is readily seen that Theorem 1.2 presented in the Introduction
is a special case of the next theorem.

Theorem 3.2. Let f ∈ C(Bd) with 〈f 2,Hd−1
Sd−1〉 �= 0 and ξ ∈ �. For 0 ≤ y ≤ c3λ

d−1
2(d+1)(2w[ξ ]+2β(d)−1)

and λ ≥ c4 one has that∣∣∣∣log
P(〈f, μ̄

ξ
λ〉 ≥ σ

ξ
λ [f ]y)

1 − �(y)

∣∣∣∣≤ c5
(
1 + y3)λ− d−1

2(d+1)(2w[ξ ]+2β(d)−1) and

∣∣∣∣log
P(〈f, μ̄

ξ
λ〉 ≤ −σ

ξ
λ [f ]y)

�(−y)

∣∣∣∣≤ c5
(
1 + y3)λ− d−1

2(d+1)(2w[ξ ]+2β(d)−1)

with constants c3, c4, c5 ∈ (0,∞) only depending on d , on ξ and on f .

Remark 3.3. Our methods also allow to derive precise estimates for the relative error considered
in the previous theorem, which involve the so-called Cramér–Petrov series, cf. [37]. To keep the
result simple and to avoid heavy notation, we decided to state it here in a form which suppresses
higher-order terms of the asymptotic exponential expansion.

Remark 3.4. One can also derive the following Berry–Esseen estimate. For ξ ∈ �, f ∈ C(Bd)

with 〈f 2,Hd−1
Sd−1〉 �= 0 and a standard Gaussian random variable Z ∼N (0,1) one has that

sup
y∈R

∣∣∣∣P
( 〈f, μ̄

ξ
λ〉

σ
ξ
λ [f ] ≤ y

)
− P(Z ≤ y)

∣∣∣∣≤ c6λ
− d−1

2(d+1)(2w[ξ ]+2β(d)−1)

with a constant c6 ∈ (0,∞) only depending on ξ , on d and on f . However, the rate of conver-
gence we get is weaker than that obtained in [16,34] using Stein’s method.
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After having investigated deviation probabilities, we turn now to a moderate deviation prin-
ciple in a partial intermediate regime of rescalings between that of a central limit theorem and
a law of large numbers. It is clear that Theorem 1.3 in the Introduction is a special case of this
result.

Theorem 3.5. Let f ∈ C(Bd) with 〈f 2,Hd−1
Sd−1〉 �= 0 and ξ ∈ �. Further, let (aλ)λ>0 be such that

lim
λ→∞aλ = ∞ and lim

λ→∞aλλ
− d−1

2(d+1)(2w[ξ ]+2β(d)−1) = 0. (13)

Then ( 1
aλ

〈f,μ̄
ξ
λ〉

σ
ξ
λ [f ] )λ>0 satisfies a moderate deviation principle on R with speed a2

λ and rate function

I (y) = y2

2 .

Our final aim is to lift the result of Theorem 3.5 to a moderate deviation principle on the level of
measures (a so-called level-2 MDP). To do so, we first need to introduce the necessary topological
notions. The weak topology on M(Sd−1) is generated by the sets Uf,x,δ := {ν ∈ M(Sd−1) :
|〈f, ν〉−x| < ε} with x ∈R, ε > 0 and f ∈ C(Sd−1), see [18], Chapter 6.2. It is also known from
[18] that M(Sd−1) supplied with the weak topology is a locally convex, Hausdorff topological
vector space whose topological dual is identified with the collection of linear functionals ν �→
〈f, ν〉, f ∈ C(Sd−1).

To present our result, we recall from Theorem 7.1 in [16] that for all ξ ∈ � there exists a
constant σ

ξ∞ ∈ (0,∞) such that

lim
λ→∞λ− d−1

d+1 +2e[ξ ] var
〈
f,μ

ξ
λ

〉= (
σ

ξ∞
)2〈

f 2,Hd−1
Sd−1

〉

if f ∈ C(Bd) (the strict positivity of σ
ξ∞ follows from [16], Corollary 7.1, and from [34],

Lemma 8).

Theorem 3.6. Let ξ ∈ � and let (aλ)λ>0 be such that (13) is satisfied. Then the family

( 1
aλ

λe[ξ ]μ̄ξ
λ

σ
ξ∞λ(d−1)/(2(d+1))

)λ>0 satisfies a moderate deviation principle on M(Sd−1), supplied with the

weak topology, with speed a2
λ and rate function

I (ν) =

⎧⎪⎨
⎪⎩

1

2

〈
�2,Hd−1

Sd−1

〉
, ν �Hd−1

Sd−1 with density � = dν

dHd−1
Sd−1

,

∞, otherwise.

Remark 3.7. In Theorems 3.5 and 3.6, we have seen partial MDPs, covering a part of the regime
of scalings between the central limit theorem and the law of large numbers; the full range would
correspond to all scalings aλ with aλ → ∞ and aλλ

−(d−1)/(2(d+1)) → 0, as λ → ∞. However,
following the discussion in [20], we may argue that there are examples of weakly dependent
spatial random systems known in the literature that satisfy a MDP with a Gaussian rate function
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only up to some critical regime of rescalings beyond that of the central limit theorem. For this
reason, it might well be the case that for at least some of the key geometric functionals of the
random polytopes we consider there is no full-range Gaussian MDP.

Remark 3.8. We do not claim that our results are optimal. To improve them using our methods,
one would have to optimize the exponent w[ξ ] + β(d) at k! appearing in Proposition 5.1 below.
However, for us it is not clear, which (optimal) exponent should be expected, even not in special
cases.

Remark 3.9. It is a natural question whether our results presented above continue to hold for
underlying convex bodies different from Bd . The paper [16] establishes variance asymptotics and
central limit theorems for the aforementioned key geometric functionals of �λ. In a later paper
[17], the authors show that for some of these functionals the variance asymptotics and central
limit theorems can be transferred to the situation in which the unit ball is replaced by a convex
body with sufficiently smooth boundary. The proof is involved and highly technical. It seems
likely that also some of our results could – with presumably much effort – be transferred using
the methods established in [17]. However, to keep the length of the paper within bounds, we
have decided to restrict to the prototypical case of the unit ball, which is also needed in the next
section.

4. Applications to Poisson polyhedra

We are now going to apply the results obtained in the previous section to a class of Poisson
polyhedra that arise as cells of a Poisson hyperplane mosaic. To define them, fix a parameter
α ≥ 1 and let να be the measure on R

d that is given by the relation∫
Rd

να(dx)f (x) =
∫
Rd\Bd

dx‖x‖α−df (x),

where f ∈ B(Rd) is non-negative. Now, let ζλ be a Poisson point process on Rd with intensity
measure λνα and notice that ζλ(B

d) = 0 with probability one. We associate with ζλ a family ζH
λ

of random hyperplanes in R
d as follows. For x ∈ ζλ let Hx be the hyperplane with unit normal

vector x/‖x‖ and distance ‖x‖/2 to the origin. By the mapping properties of Poisson point pro-
cesses, ζH

λ is a Poisson point process on the space of hyperplanes in R
d . The random hyperplanes

of ζH
λ dissect the space into random polyhedra and the principal object of our investigations is

the almost surely bounded random polyhedron Zλ = Zλ(α) which contains the origin, i.e.,

Zλ :=
⋂
x∈ζλ

H+
x ,

where H+
x denotes the half-space bounded by Hx that contains the origin. This parametric family

of random polyhedra has attracted considerable interest in recent years because of its connections
to high-dimensional convex geometry and to a version of the famous problem of D.G. Kendall
asking for the asymptotic geometry of “large” mosaic cells, see [13,14,22,23,27,38].
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The model includes the following special case that has received particular attention and is well
known in the literature, cf. [38], Chapter 10.2. It is concerned with a stationary Poisson–Voronoi
mosaic. To define it, let η be a stationary Poisson point process in R

d with unit intensity. For
each x ∈ η we define the Voronoi cell v(x, η) := {z ∈ R

d : ‖z−x‖ ≤ ‖z−x′‖ for all x′ ∈ η}. The
collection of all Voronoi cells forms the Poisson–Voronoi mosaic. Its typical cell can intuitively
be understood as randomly chosen (and then shifted to the origin) from the set of all Voronoi
cells, where each cell has the same chance of being selected, independently of size and shape.
As a consequence of Slivnyak’s theorem for Poisson point processes, it can be identified with

ZPV := {
z ∈ R

d : ‖z‖ ≤ ‖z − x‖ for all x ∈ η
}
,

that is, as the Voronoi cell of the origin, see [38]. By the inradius Rin(Z
PV) of ZPV we understand

the radius of the largest ball centred at the origin that is contained in ZPV and we denote by ZPV
r

the typical Poisson–Voronoi cell conditioned on the event that Rin(Z
PV) ≥ r for some r ≥ 1,

rescaled by a factor r−1. It is remarkable that its distribution coincides with that of the random
polyhedron Zλ under the particular choice α = d and λ = (2r)d , cf. [13,14]. It is known from
these works that

Efj

(
ZPV

r

)∼ mjr
d(d−1)
d+1 and varfj

(
ZPV

r

)∼ v2
j r

d(d−1)
d+1 , j ∈ {0, . . . , d − 1}, (14)

with constants mj ,vj ∈ (0,∞) depending only on d and on j , where we write f (r) ∼ g(r) for
two functions f,g : R→ R if f (r)/g(r) → 1, as r → ∞. These relations describe the first- and
second-order asymptotic combinatorial complexity of typical Poisson–Voronoi cells with large
inradius. Furthermore, qualitative asymptotic normality of fj (Z

PV
r ) has also been obtained in

[13,14]. (The results in these papers are formulated only for the case j = d − 1 and in [14] even
for d = 2, but the extension to arbitrary j ∈ {0, . . . , d − 1} and d is straight forward.)

We are also interested in the combinatorial structure of the random polyhedra Zλ and use the
duality between Zλ and the random polytopes �λ developed in [13,14] to derive a concentration
inequality, explicit bounds for the relative error in the central limit theorem, a Berry–Esseen
bound as well as a moderate deviation principle for fj (Z

PV
λ ). This adds to the various known

contributions around Kendall’s problem, see [13,14,27] and the references cited therein. Since the
results we obtain are formally the same as in Section 3 with 〈f, μ̄

ξ
λ〉 there replaced by fj (Z

PV
λ ),

we state them here for the particularly attractive Poisson–Voronoi case α = d and λ = (2r)d only.

Theorem 4.1. Let j ∈ {0, . . . , d − 1}.
(i) There are constants c1, c2 ∈ (0,∞) only depending on d and j , such that, for r ≥

max{c1,1},

P
(∣∣r− d(d−1)

d+1 fj

(
ZPV

r

)− mj

∣∣≥ yvj

)
≤ 2 exp

(
−1

4
min

{
y2

23j+β(d)
, c2r

d(d−1)
2(d+1)(3j+β(d)) y

1
3j+β(d)

})

for all y ≥ 0.
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(ii) For 0 ≤ y ≤ c3r
d(d−1)

2(d+1)(6j+2β(d)−1) and r ≥ max{c4,1} one has that

∣∣∣∣log
P(r− d(d−1)

d+1 fj (Z
PV
r ) − mj ≥ yvj )

1 − �(y)

∣∣∣∣≤ c5
(
1 + y3)r− d(d−1)

2(d+1)(6j+2β(d)−1) and

∣∣∣∣log
P(r− d(d−1)

d+1 fj (Z
PV
r ) − mj ≤ −yvj )

�(−y)

∣∣∣∣≤ c5
(
1 + y3)r− d(d−1)

2(d+1)(6j+2β(d)−1)

with constants c3, c4, c5 ∈ (0,∞) only depending on d and on j .
(iii) One can find a constant c6 ∈ (0,∞) only depending on d and j such that

sup
y∈R

∣∣∣∣P
(

fj (Z
PV
r ) − mjr

d(d−1)
d+1

vj rd(d−1)/(2(d+1))
≤ y

)
− P(Z ≤ y)

∣∣∣∣≤ c6r
− d(d−1)

2(d+1)(6j+2β(d)−1)

for all sufficiently large r , where Z ∼N (0,1) is a standard Gaussian random variable.
(iv) Suppose that (ar )r≥1 satisfies

lim
r→∞ar = ∞ and lim

r→∞arr
− d(d−1)

2(d+1)(6j+2β(d)−1) .

Then (
1

ar

fj (Z
PV
r ) − mjr

d(d−1)
d+1

vj rd(d−1)/(2(d+1))

)
r≥1

satisfies a moderate deviation principle on R with speed a2
r and rate function I (y) = y2

2 .

Proof. The inversion technique introduced in [14] implies that fj (Z
PV
r ) = fd−j−1(�r) almost

surely for all j ∈ {0, . . . , d − 1}. This way, the result readily follows from Theorems 3.1, 3.2, 3.5
and Remark 3.4 in combination with (14). �

5. Proofs of the main results for Poisson polytopes

Within this section all constants λ0, c, c1, c2, . . . are strictly positive, finite and such that they
only depend on the space dimension d and the key geometric functional ξ belonging to the set
� = {ξVF, ξV1, . . . , ξVd

, ξf0, . . . , ξfd−1} we consider, unless otherwise specified. The constants
may change from line to line. Moreover, recall the definition of the individual scaling exponents
e[ξ ] given in (9).

5.1. Preparations

For k ∈N and λ > 0 we introduce the singular differential d̄λ by the relation∫
(Bd )k

d̄λ(x1, . . . , xk)g(x1, . . . , xk) = λ

∫
Bd

dxg(x, . . . , x), g ∈ B
((
B

d
)k)

.
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Furthermore, if �k denotes the set of unordered partitions of [k] := {1, . . . , k} and �k,p the subset
of partitions into precisely p ≤ k blocks, we put

d̃λx :=
∑
σ∈�k

∏
L∈σ

dλxL =
∑

p∈{1,...,k}
σ∈�k,p

∏
L∈σ

dλxL,

where x = (x1, . . . , xk) ∈ (Bd)k and xL = (x� : � ∈ L) ∈ (Bd)|L| with |L| being the number of
elements in block L. To enhance readability and to allow for an easier comparison with [20], we
abbreviate this by the shorthand notation

d̃λx =
∑

L1,...,Lp�[k]
d̄λxL1 · · · d̄λxLp .

Fix a key geometric functional ξ ∈ � associated with the random polytopes �λ and k ∈N. The
kth moment measure Mk

λ(dx) of the rescaled empirical measure λe[ξ ]μξ
λ (recall (8)) is defined

as the measure on (Bd)k which is absolutely continuous with respect to d̃λx and whose density
mλ(x) is given by

mλ(x) = mλ(x1, . . . , xk) = E

[
k∏

i=1

λe[ξ ]ξ
(
xi, ηλ ∪ {x1, . . . , xk}

)]

= E

[
k∏

i=1

λe[ξ ]ξ (λ)
(
Tλ(xi), η

T
λ ∪ {

Tλ(x1), . . . ,Tλ(xk)
})]

,

where again x = (x1, . . . , xk) ∈ (Bd)k . This is a consequence of [20], Proposition 3.1, which in
turn follows from the multivariate Mecke equation for Poisson point processes.

Closely related to the moment measures Mk
λ are the so-called cumulant measures associated

with λe[ξ ]μξ
λ. The sequence (ck

λ)k≥1 of these cumulant measures is defined via the well-known
relation between moments and cumulants as

ck
λ :=

∑
L1,...,Lp�[k]

(−1)p−1(p − 1)!M |L1|
λ ⊗ · · · ⊗ M

|Lp |
λ , (15)

where ⊗ denotes the operation that forms the product measure, see [20], equation (3.11). Note
that ck

λ is a signed measure on the product space (Bd)k .
Following [7,20], we finally define for non-empty disjoint sets S,T ⊆ N the (semi-) cluster

measure U
S,T
λ on (Bd)|S∪T | by

U
S,T
λ := M

|S∪T |
λ − M

|S|
λ ⊗ M

|T |
λ .
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These cluster measures appear in the following decomposition of ck
λ taken from [7,20]. Namely,

for a non-trivial partition {S,T } � [k] one has that

ck
λ =

∑
S′,T ′,K1,...,Km�[k]

c
(
S′, T ′,K1, . . . ,Km

)
U

S′,T ′
λ ⊗ M

|K1|
λ ⊗ · · · ⊗ M

|Km|
λ , (16)

where {S′, T ′,K1, . . . ,Km} is a partition of [k] with S′ ⊆ S and T ′ ⊆ T . The numerical coeffi-
cients c(S′, T ′,K1, . . . ,Km) in (16) are known to satisfy the estimate

∑
S′,T ′,K1,...,Km�[k]

∣∣c(S′, T ′,K1, . . . ,Km

)∣∣≤ 2kk! (17)

and this upper bound is best possible according to Corollary 3.1 and Lemma 3.2 in [20]. The
representation (16) together with the estimate (17) are the starting point for the proof of our main
results. We emphasize that although the starting point of our proof is the same as for the results
in [7] or [20], many of the further details differ significantly because of the different nature of
the functionals we consider (see Remarks 5.4 and 5.6 for more detailed explanations).

5.2. Cumulant estimates

This section contains the most technical part of the proof of our main theorems. The key result is
the following bound for the integrals of a test function with respect to the cumulant measures in-
troduced in the previous section. In fact, this result can somehow be seen as the main contribution
of the present text from which all the other theorems follow. Note that the continuity of the test
functions is not needed in this part of the proof. It will enter later when Proposition 5.1 is com-
bined with the variance lower bound (10). Recall the definition (11) of the individual weights
w[ξ ] of the key geometric functionals ξ ∈ � as well as that of the parameter β(d) from (1).
Moreover, for k ∈ N and f ∈ B(Bd) we let f ⊗k ∈ B((Bd)k) be the k-fold tensor product given
by f ⊗k(x1, . . . , xk) = f (x1) · · ·f (xk).

Proposition 5.1. Let ξ ∈ �, f ∈ B(Bd) and k ∈ {3,4, . . .}. Then, for λ ≥ c1,

∣∣〈f ⊗k, ck
λ

〉∣∣≤ c2c
k
3‖f ‖k∞λ

d−1
d+1 (k!)w[ξ ]+β(d)

with constants c1, c2, c3 ∈ (0,∞) only depending on ξ and on d .

We divide the proof of Proposition 5.1 into a couple of lemmas. To simplify the notation, for
the remainder of this section we fix k ∈ {3,4, . . .}.

We need the following lemma that considerably refines the moment condition from [16].

Lemma 5.2. Let p ≥ 1, x1 = (v1, h1), . . . , xp = (vp,hp) ∈ Rλ and put δ := mini,j=1,...,p ‖vi −
vj‖.
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(i) For sufficiently large λ one has that

E
∣∣λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

)∣∣p ≤ c1c
p

2 (p!)w[ξ ] exp
(−c3h

(d+1)/2
1

)
and

E

∣∣∣∣λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1} ∩ Cyl

(
x1,

δ

2

))∣∣∣∣
p

≤ c1c
p

2 (p!)w[ξ ] exp
(−c3h

(d+1)/2
1

)
.

(ii) Moreover, one has that

E1 := E

(
p∏

i=1

λe[ξ ]ξ (λ)

(
xi, η

T
λ ∪

p⋃
j=1

{xj }
))2

≤ c1c
p

2 (p!)2w[ξ ]
p∏

i=1

exp

(
−c3

h
(d+1)/2
i

p

)

and

E2 := E

(
p∏

i=1

λe[ξ ]ξ (λ)

(
xi,

(
ηT

λ ∪
p⋃

j=1

{xj }
)

∩ Cyl

(
xi,

δ

2

)))2

≤ c1c
p

2 (p!)2w[ξ ]
p∏

i=1

exp

(
−c3

h
(d+1)/2
i

p

)
,

again for sufficiently large λ.

Proof. We start with part (i) and we only proof the first inequality, the second one follows by
the same reasoning. Consider the missed-volume functional ξ = ξVd

. We can assume that x1 is
an extreme point of (λ), since otherwise ξ (λ)(x1, η

T
λ ∪ {x1}) is zero. Now, we notice that in

this case and for sufficiently large λ the random variable λe[ξ ]ξ (λ)(x1, η
T
λ ∪ {x1}) is bounded by

R(x1)
d−1S(x1), the volume of a cylinder with height S(x1) whose base is a (d − 1)-dimensional

ball with radius R(x1). Here, S(x1) = supw∈Bd−1(v1,R(x1))
∂(λ)(w) and R(x1) stands for the

radius of localization of ξ (λ) at x1. Using (6) and (a simplified version of) [16], equation (4.5),
we conclude that, for sufficiently large λ,

E
∣∣λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

)∣∣p
= p

∫ ∞

0
dssp−1

P
(
λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

)≥ s
)

= p

∫ ∞

0
dssp−1

P
(
S(x1) ≥ s/R(x1)

d−1)

≤ pc1

∫ ∞

0
dr

∫ ∞

0
dssp−1 exp

(−c2
(
s/rd−1)) exp

(−c3r
d+1)

≤ pc4c
p

5

∫ ∞

0
up−1 exp(−u)du

∫ ∞

0
v(p(d−1)−d)/(d+1) exp(−v)dv ≤ c6c

p
7 (p!)2.
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From the inequalities ξV1 , . . . , ξVd−1 ≤ ξVd
and ξVF ≤ ξVd

(see [16]), we obtain the result of
part (i), up to now without the exponential term, for ξV1, . . . , ξVd−1 and ξVF.

Now, let ξ = ξfj
for some j ∈ {0, . . . , d − 1} and x1 ∈ Rλ. Moreover, put R(x1) and S(x1) as

above. By N we denote the number of extreme points of (λ) in Cyl(x1,R(x1)) and observe that
the number of j -dimensional faces meeting at x1 is bounded by 1

j+1

(
N
j

)≤ Nj . So,

E
∣∣ξ (λ)

fj

(
x1, η

T
λ ∪ {x1}

)∣∣p ≤ ENjp.

Writing νλ for the intensity measure of the rescaled Poisson point process ηT
λ , one easily obtains

from (5) that for all r ∈ [0,πλ1/(d+1)], � ∈ [0, λ2/(d+1)] and sufficiently large λ, νλ(Cyl(x1, r) ∩
(0, �)) ≤ c1r

d−1�, thus

E
[
Npj

]≤ E
∣∣ηT

λ ∩ Cyl
(
x1,R(x1)

)∩ (
0, S(x1)

)∣∣pj

≤
∞∑
i=0

∞∑
m=0

E
[
P
(
νλ

(
Cyl(x1, i + 1) ∩ (0,m + 1)

))pj

× 1
(
i ≤ R(x1) < i + 1,m ≤ S(x1) < m + 1

)]
≤

∞∑
i=0

∞∑
m=0

E
[
P
(
c1(i + 1)d−1(m + 1)

)pj 1
(
R(x1) ≥ i, S(x1) ≥ m

)]

≤
∞∑
i=0

∞∑
m=0

(
E
[
P
(
c1(i + 1)d−1(m + 1)

)3pj ])1/3

× P
(
R(x1) ≥ i

)1/3
P
(
S(x1) ≥ m

)1/3
,

where P(α) ∼ Po(α) denotes a Poisson random variable with mean α > 0. Well known moment
bounds for Poisson random variables and the fact that (3pj)! ≤ 9pj ((pj)!)3 imply

(
E
[
P
(
c1(i + 1)d−1(m + 1)

)3pj ])1/3 ≤ ((
c2(i + 1)d−1(m + 1)

)3pj
(3pj)!)1/3

≤ c
p

3 (i + 1)p(d−1)j (m + 1)pj (pj)!.
Using this together with (6) and [16], equation (4.5), shows that, for sufficiently large λ,

ENpj ≤ c1c
p

2 (pj)!
∞∑
i=0

(i + 1)p(d−1)j exp
(−c3i

d+1) ∞∑
m=0

(m + 1)pj exp(−c4m)

≤ c5c
p

6

(
(pj)!)3 ≤ c7c

p

8 (p!)3j ,

where we additionally used the elementary inequality (pj)! ≤ (j j )p(p!)j .
We now add the exponential term to the bounds. We notice that ξ (λ) is different from zero if

and only if x1 is an extreme point of (λ). Thus, using the Cauchy–Schwarz inequality and the
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exponential decay property (7) we find that, for ξ ∈ {ξV1, . . . , ξVd
, ξVF},

∣∣E(λe[ξ ]ξ (λ)
(
x1, η

T
λ ∪ {x1}

))k∣∣
= ∣∣E(λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

)
1
(
x1 ∈ ext

(
(λ)

)))k∣∣
≤ c1c

k
2(2k)! exp

(−c3h
(d+1)/2
1

)≤ c4c
k
5(k!)2 exp

(−c6h
(d+1)/2
1

)
for sufficiently large λ, since (2k)! ≤ 4k(k!)2. Here, h1 is the height coordinate of x1. Similarly,
using the first bound in the case of the face-numbers with ξ = ξfj

for some j ∈ {0, . . . , d − 1}
we find that ∣∣E(λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

))k∣∣≤ c1c
k
2(k!)3j exp

(−c3h
(d+1)/2
1

)
and thus ∣∣E(λe[ξ ]ξ (λ)

(
x1, η

T
λ ∪ {x1}

))k∣∣≤ c1c
k
2(k!)w[ξ ] exp

(−c3h
(d+1)/2
1

)
for all ξ ∈ �.

For part (ii), we first have from the proof of Lemma 3.2 in [41] and Hölder’s inequality that
E1 is bounded from above by

p∏
i=1

(
E
(
λe[ξ ]ξ (λ)

(
xi, η

T
λ ∪ {xi}

))2p)1/p
.

For sufficiently large λ this can now be estimated by means of part (i) and the result then follows
from the fact that (2p)! ≤ 4p(p!)2. The proof for E2 is similar by using the second inequality of
part (i). �

Our next result formalizes the intuition that the cluster measures U
S,T
λ capture the spatial cor-

relations of the rescaled key-geometric functionals. In particular, we show that these correlations
decay exponentially fast.

Lemma 5.3. Let {S,T } be a non-trivial partition of [k] and ξ ∈ � be a key geometric functional.
Then, for x1 = (v1, h1), . . . , xk = (vk, hk) ∈Rλ and λ ≥ c1 one has that

∣∣mλ(xS∪T ) − mλ(xS)mλ(xT )
∣∣≤ c2c

k
3k(k!)w[ξ ] exp

(−c3δ
d+1) k∏

i=1

exp

(
−c4

h
(d+1)/2
i

k

)
. (18)

Here, δ := mins∈S,t∈T ‖vs − vt‖ is the separation of the points in R
d−1, and

mλ(xS) := E

[∏
s∈S

λe[ξ ]ξ (λ)

(
xs, η

T
λ ∪

⋃
s′∈S

{xs′ }
)]

with mλ(xT ) and mλ(xS∪T ) defined similarly.
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Proof. Define the random variables

X :=
∏
s∈S

λe[ξ ]ξ (λ)

(
xs, η

T
λ ∪

⋃
s′∈S

{xs′ }
)

and

Xδ :=
∏
s∈S

λe[ξ ]ξ (λ)

(
xs,

(
ηT

λ ∪
⋃
s′∈S

{xs′ }
)

∩ Cyl

(
xs,

δ

2

))
,

where, recall, for a point x = (v,h), Cyl(x, r) stands for the cylinder Bd−1(v, r)×R+. Similarly,
the random variables Y,Yδ,Z and Zδ are defined, where instead of the set S the sets T and S ∪T

are used in the definition, respectively. Since for s ∈ S and t ∈ T , Cyl(xs,
δ
2 ) ∩ Cyl(xt ,

δ
2 ) = ∅

by definition of the separation δ we have, by independence, that EWδ = EXδEYδ and hence

mλ(xS∪T ) − mλ(xS)mλ(xT )

= EW −EXEY
(19)

= EWδ −EXδEYδ +E(W − Wδ) −EXδE(Y − Yδ) −EYE(X − Xδ)

= E(W − Wδ) −EXδE(Y − Yδ) −EYE(X − Xδ).

Let NS denote the event that the radius of localization of at least one xs with s ∈ S exceeds
δ/2. We obtain from Hölder’s inequality that

E|X − Xδ| = E|X − Xδ1Nc
S
− Xδ1NS

| = E|Xδ1NS
| ≤ (

EX2
δ

)1/2
P(NS)1/2

since on the complement of NS we clearly have that X coincides with Xδ . The moment in the
first factor is bounded by

c
|S|
1

((|S|)!)2w[ξ ]∏
s∈S

exp

(
−c2

h
(d+1)/2
s

|S|
)

by Lemma 5.2 and the probability is bounded by c1|S| exp(−c2δ
d+1) in view of the exponential

localization property (6). Thus,

E|X − Xδ| ≤ c1c
k
2

√|S|((|S|)!)w[ξ ] exp
(−c3δ

d+1)∏
s∈S

exp

(
−c4

h
(d+1)/2
s

|S|
)

≤ c5c
k
6k
((|S|)!)w[ξ ] exp

(−c7δ
d+1)∏

s∈S

exp

(
−c8

h
(d+1)/2
s

k

) (20)

with a similar estimate also for E|Y − Yδ| and E|W − Wδ|, since |S|, |T |, |S ∪ T | ≤ k.
On the other hand, Lemma 5.2 also yields that

E|Xδ| ≤ c1c
k
2

((|S|)!)w[ξ ]∏
s∈S

exp

(
−c3

h
(d+1)/2
s

k

)
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and

E|Y | ≤ c1c
k
2

((|T |)!)w[ξ ] ∏
t∈T

exp

(
−c3

h
(d+1)/2
t

k

)
.

Combining the above estimates with (|S|)!(|T |)! ≤ k! completes the proof. �

Remark 5.4. Lemma 5.3 is a modification of Lemma 5.2 in [7] or Lemma 3.3 in [20], which
exhibits a characteristic feature of random polytopes that is not present in the aforementioned
papers. In particular, Lemma 5.3 shows that, in the rescaled picture, only points close to the
(tangent) hyperplane R

d−1 contribute to μ
ξ
λ, while points with a large height coordinate can

asymptotically be neglected.

We define the diagonal � := {(x, . . . , x) ∈ (Bd)k : x ∈ B
d} and for x ∈ (Bd)k with x =

(x1, . . . , xk) and Tλ(x1) = (v1, h1), . . . ,Tλ(xk) = (vk, hk) ∈Rλ we put

δ(x) := δ(x1, . . . , xk) := max
{
d(vS, vT ) : {S,T } � [k]},

where d(vS, vT ) := min{‖vs − vt‖ : s ∈ S, t ∈ T }. We now observe that (Bd)k \� can be written
as a disjoint union of sets σ({S,T }) ⊆ (Bd)k with non-trivial partitions {S,T } � [k] in such a
way that δ(x) = d(vS, vT ) for all x ∈ σ({S,T }). Loosely speaking, this means that we choose for
each x ∈ (Bd)k \ � exactly that partition {S,T } that fulfils δ(x) = d(vS, vT ). As a consequence,
〈f ⊗k, ck

λ〉 can be decomposed as follows:

〈
f ⊗k, ck

λ

〉= ∫
�

dck
λf

⊗k +
∑

S,T �[k]

∫
σ({S,T })

dck
λf

⊗k. (21)

We consider both terms in (21) separately and start with the diagonal term.

Lemma 5.5. For ξ ∈ � and f ∈ B(Bd) one has that∣∣∣∣
∫

�

dck
λf

⊗k

∣∣∣∣≤ c1c
k
2(k!)w[ξ ]‖f ‖k∞λ

d−1
d+1

for all λ ≥ c3.

Proof. By definition (15) of the cumulant measures we have that∫
�

dck
λf

⊗k =
∑

L1,...,Lp�[k]
(−1)(p−1)(p − 1)!

∫
�

d
(
M

|L1|
λ ⊗ · · · ⊗ M

|Lp |
λ

)
f ⊗k

=
∑

L1,...,Lp�[k]
(−1)(p−1)(p − 1)!

∫
�

d̃λxL1 · · · d̃λxLpmλ(xL1) · · ·mλ(xLp)f ⊗k(x).
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Since we are integrating over the diagonal �, x is of the form (x, . . . , x) for some x ∈ B
d and

we can only have p = 1 in the above sum. We thus have that

∣∣∣∣
∫

�

dck
λf

⊗k

∣∣∣∣
≤ ‖f ‖k∞λ

∫
Bd

dx
∣∣E(λe[ξ ]ξ (λ)

(
Tλ(x), ηT

λ ∪ {
Tλ(x)

}))k∣∣
≤ c1c

k
2‖f ‖k∞λ(k!)w[ξ ]

∫
Bd

dx exp
(−c3h

(d+1)/2)
in view of Lemma 5.2, where again h is the height coordinate of x under the transformation Tλ.
Integrating this expression over Bd by introducing spherical coordinates and taking into account
the definition (4) of Tλ yields that

∣∣∣∣
∫

�

dck
λf

⊗k

∣∣∣∣≤ c1c
k
2(k!)w[ξ ]‖f ‖k∞λ

∫
Sd−1

Hd−1
Sd−1(du)

×
∫ λ

2
d+1

0
dh exp

(−c3h
(d+1)/2)λ− 2

d+1
(
1 − λ− 2

d+1 h
)d−1

≤ c4c
k
5(k!)w[ξ ]‖f ‖k∞λ1− 2

d+1

∫
Sd−1

Hd−1
Sd−1(du)

∫ ∞

0
dh exp

(−c6h
(d+1)/2).

Using now the fact that 1 − 2
d+1 = d−1

d+1 ,
∫
Sd−1 Hd−1

Sd−1(du) = dκd and that

∫ ∞

0
dh exp

(−c1h
(d+1)/2)= c2,

we conclude that ∣∣∣∣
∫

�

dck
λf

⊗k

∣∣∣∣≤ c1c
k
2(k!)w[ξ ]‖f ‖k∞λ

d−1
d+1

for sufficiently large λ. This completes the proof. �

Remark 5.6. We would like to point out that the proof for the diagonal term we presented is a
modification of that in [20]. It incorporates the moment bounds established in Lemma 5.2 and
carefully deals with the new effect that only points from ηλ close to the boundary of Bd contribute
to the geometry of the random polytopes as well as with the specific geometric situation induced
by the scaling transformation Tλ. Such a modification is no longer possible for large parts of the
proof dealing with the off-diagonal term we treat next.

In a next step, we derive a first upper bound of the off-diagonal term in (21).
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Lemma 5.7. Let ξ ∈ � and f ∈ B(Bd). Then, for λ ≥ c1,∣∣∣∣ ∑
S,T �[k]

∫
σ({S,T })

dck
λf

⊗k

∣∣∣∣
≤ c2c

k
3k(k!)w[ξ ]+1‖f ‖k∞λ

d−1
d+1

∑
L1,...,Lp�[k]

∫ ∞

0
dh1 · · ·

∫ ∞

0
dhp

×
∫

(Rd−1)p−1
dv exp

(−c4δ(0,v)d+1) p∏
i=1

exp

(
−c5

h
(d+1)/2
i

k

)
.

Proof. We combine (16) with the definition of the singular differential to see that∫
σ({S,T })

dck
λf

⊗k =
∑

S′,T ′,K1,...,Km�[k]
c
(
S′, T ′,K1, . . . ,Km

)∫
σ({S,T })

d̃λxf (x)

× (
mλ(xS′∪T ′) − mλ(xS′)mλ(xT ′)

)
mλ(xK1) · · ·mλ(xKm),

where we also used that for each set L ∈ {S′, T ′, S′ ∪ T ′,K1, . . . ,Km}, mλ(xL) is the density of
the moment measure M

|L|
λ . Now, Lemma 5.3 shows that∣∣mλ(xS′∪T ′) − mλ(xS′)mλ(xT ′)

∣∣
≤ c1c

k
2k
(∣∣S′ ∪ T ′∣∣!)w[ξ ]

exp
(−c3d(vS′ , vT ′)d+1) ∏

r∈S′∪T ′
exp

(
−c4

h
(d+1)/2
r

k

)
,

where, as usual, Tλ(x1) = (v1, h1), . . . ,Tλ(xk) = (vk, hk). Furthermore, we get from the mo-
ment bounds stated in Lemma 5.2 that

∣∣mλ(xKi
)
∣∣≤ c1c

|Ki |
2

(|Ki |!
)w[ξ ] ∏

i∈Ki

exp

(
−c3

h
(d+1)/2
i

k

)
.

Next, since S′ ⊆ S and T ′ ⊆ T , we necessarily have that d(vS′ , vT ′) ≥ d(vS, vT ) and thus∣∣(mλ(xS′∪T ′) − mλ(xS′)mλ(xT ′)
)
mλ(xK1) · · ·mλ(xKm)

∣∣
≤ c1c

k
2k
(∣∣S′ ∪ T ′∣∣!)w[ξ ](|K1|!

)w[ξ ] · · · (|Km|!)w[ξ ]

× exp
(−c3d(vS, vT )d+1) k∏

i=1

exp

(
−c4

h
(d+1)/2
i

k

)
.

Now, we use that

(∣∣S′ ∪ T ′∣∣!)w[ξ ](|K1|!
)w[ξ ] · · · (|Km|!)w[ξ ] ≤ (k!)w[ξ ],
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which leads to∣∣(mλ(xS′∪T ′) − mλ(xS′)mλ(xT ′)
)
mλ(xK1) · · ·mλ(xKm)

∣∣
≤ c1c

k
2k(k!)w[ξ ] exp

(−c3d(vS, vT )d+1) k∏
i=1

exp

(
−c4

h
(d+1)/2
i

k

)
.

Together with (17), we have that∣∣∣∣
∫

σ({S,T })
dck

λf
⊗k

∣∣∣∣
≤ c1c

k
2(k!)w[ξ ]+1‖f ‖k∞k

∫
(Bd )k

d̃λx exp
(−c3δ(x)d+1) k∏

i=1

exp

(
−c4

h
(d+1)/2
i

k

)
.

(22)

What is left is to bound the integral over (Bd)k appearing in the last expression. To evaluate it,
we can and will assume without loss of generality that the point x1 is mapped onto (0, h1) ∈ Rλ

under Tλ (this is possible after a suitable rotation of ηλ). Using this together with the definition
of the singular differential, we conclude that

∫
(Bd )k

d̃λx exp
(−c1δ(x)d+1) k∏

i=1

exp

(
−c2

h
(d+1)/2
i

k

)

=
∑

L1,...,Lp�[k]
λp

∫
(Bd )p

d(x1, . . . , xp) exp
(−c1δ(0, v2, . . . , vp)d+1)

×
p∏

i=1

exp

(
−c2

|Li |h(d+1)/2
i

k

)

≤
∑

L1,...,Lp�[k]
λp

∫
(Bd )p

d(x1, . . . , xp) exp
(−c1δ(0, v2, . . . , vp)d+1)

×
p∏

i=1

exp

(
−c2

h
(d+1)/2
i

k

)
.

We now introduce spherical coordinates for x1 and use the definition of the scaling transformation
Tλ for x2, . . . , xp . For the differential elements dx1, . . . ,dxp this means that

dx1 = (
1 − λ− 2

d+1 h1
)d−1

λ− 2
d+1 dh1Hd−1

Sd−1(du)

and that

dxi = (
λ− 1

d+1
)d−1

λ− 2
d+1 dhi dvi, i ∈ {2, . . . , p}.
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Together with the observation that p − 2p
d+1 − 1

d+1 (d − 1)(p − 1) = d−1
d+1 , we see that

λp

∫
(Bd )p

d(x1, . . . , xp) exp
(−c1δ(0, v2, . . . , vp)d+1) p∏

i=1

exp

(
−c2

h
(d+1)/2
i

k

)

= λp

∫
Sd−1

Hd−1
Sd−1(du)

∫ λ
2

d+1

0
dh1 · · ·

∫ λ
2

d+1

0
dhp

∫
Tλ(Sd−1)

dv2 · · ·
∫
Tλ(Sd−1)

dvp

× exp
(−c1δ(0, v2, . . . , vp)d+1)

×
p∏

i=1

exp

(
−c2

h
(d+1)/2
i

k

)(
1 − λ− 2

d+1 h1
)d−1

λ− 1
d+1 (d−1)(p−1)λ− 2p

d+1

≤ λ
d−1
d+1

∫
Sd−1

Hd−1
Sd−1(du)

∫ ∞

0
dh1 · · ·

∫ ∞

0
dhp

∫
(Rd−1)p−1

dv

× exp
(−c1δ(0,v)d+1) p∏

i=1

exp

(
−c2

h
(d+1)/2
i

k

)
.

Since
∫
Sd−1 Hd−1

Sd−1(du) = dκd , this yields the result. �

Fix from now on a partition {L1, . . . ,Lp} of [k] into p ≤ k blocks. Our next goal is to bound
the integral ∫

(Rd−1)p−1
dv exp

(−cδ(0,v)d+1)
that has shown up in Lemma 5.7, where c ∈ (0,∞) is a constant only depending on d and on ξ .

Lemma 5.8. We have that∫
(Rd−1)p−1

dv exp
(−cδ(0,v)d+1)≤ c1c

k
2k

k−2k!.

Proof. Using that ∫ ∞

δ(0,v)d+1
dt exp(−ct) = 1

c
exp

(−cδ(0,v)d+1)
together with Fubini’s theorem, we obtain∫

(Rd−1)p−1
dv exp

(−cδ(0,v)d+1)

= c

∫
(Rd−1)p−1

∫ ∞

δ(0,v)d+1
dt dv exp(−ct)
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= c

∫ ∞

0

∫
δ(0,v)d+1<t

dv dt exp(−ct)

= c

∫ ∞

0

∫
δ(0,v)<t

1
d+1

dv dt exp(−ct).

Now, suppose that δ(0,v) < t
1

d+1 . Then there is obviously no partition {S,T } of {0,v} such that

the corresponding separation d(vS, vT ) is bigger than t
1

d+1 . This implies that there exists a tree

T on {1, . . . , p} such that adjacent vertices vi, vj in T satisfy ‖vi − vj‖ < t
1

d+1 . We indicate this

property by writing (0,v) � (t
1

d+1 ,T ) and thus have∫
δ(0,v)<t

1
d+1

dv ≤
∑
T

∫
(0,v)�(t

1
d+1 ,T )

dv

=
∑
T

vol(p−1)(d−1)

({
v ∈ (

R
d−1)p−1} : (0,v) �

(
t

1
d+1 ,T

))
,

where the sum ranges over all trees T on the edges {1, . . . , p} and the (p−1)(d −1)-dimensional
volume of the considered set. By the geometry of these trees it follows that

vol(p−1)(d−1)

({
v ∈ (

R
d−1)p−1} : (0,v) �

(
t

1
d+1 ,T

))≤ (
t

d−1
d+1 κd−1

)p−1 = t
(d−1)(p−1)

d+1 κ
p−1
d−1 .

Moreover, by Caley’s theorem there are exactly pp−2 trees on {1, . . . , p}. This gives∫
δ(0,v)<t

1
d+1

dv ≤ pp−2κ
p−1
d−1 t

(d−1)(p−1)
d+1 . (23)

Furthermore, using the Gamma function we see that∫ ∞

0
dt t

(d−1)(p−1)
d+1 exp(−ct) ≤ c1c

p

2 p!

and this leads to∫
(Rd−1)p−1

dv exp
(−cδ(0,v)d+1)≤ c1p

p−2κ
p−1
d−1

∫ ∞

0
dt t

(d−1)(p−1)
d+1 exp(−c2t) ≤ c3c

k
4k

k−2k!.

This completes the proof. �

We get the following final upper bound for the off-diagonal term.

Lemma 5.9. For ξ ∈ � and f ∈ B(Bd) we have that∣∣∣∣ ∑
S,T �[k]

∫
σ({S,T })

dck
λf

⊗k

∣∣∣∣≤ c1c
k
2‖f ‖k∞(k!)w[ξ ]+3kk(1+ 2

d+1 )k!λd−1
d+1

for all λ ≥ c3.
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Proof. Combining Lemmas 5.7 and 5.8 with
∫∞

0 dhi exp(−c1
h

(d+1)/2
i

k
) = c2k

2
d+1 for all i ∈

{1, . . . , p}, we conclude that∣∣∣∣ ∑
S,T �[k]

∫
σ({S,T })

dck
λf

⊗k

∣∣∣∣
≤ c1c

k
2kkk−2k!k 2k

d+1 (k!)w[ξ ]+1‖f ‖k∞λ
d−1
d+1

∑
L1,...,Lp�[k]

1.

The number of terms in the sum is bounded by k!. Thus,∣∣∣∣ ∑
S,T �[k]

∫
σ({S,T })

dck
λf

⊗k

∣∣∣∣≤ c1c
k
2‖f ‖k∞(k!)w[ξ ]+3kk(1+ 2

d+1 )−1λ
d−1
d+1

≤ c1c
k
2‖f ‖k∞(k!)w[ξ ]+3kk(1+ 2

d+1 )λ
d−1
d+1

and this completes the argument. �

We are now prepared to show our crucial cumulant bound.

Proof of Proposition 5.1. From Lemmas 5.5 and 5.9 we conclude that

∣∣〈f ⊗k, ck
λ

〉∣∣≤ ∣∣∣∣
∫

�

dck
λf

⊗k

∣∣∣∣+
∣∣∣∣ ∑
S,T �[k]

∫
σ({S,T })

dck
λf

⊗k

∣∣∣∣
≤ c1c

k
2‖f ‖k∞(k!)w[ξ ]+3kk(1+ 2

d+1 )λ
d−1
d+1

for all sufficiently large λ. Now, the elementary inequality �� ≤ �!e3�, valid for � ∈ {3,4, . . .},
implies that

∣∣〈f ⊗k, ck
λ

〉∣∣≤ c1c
k
2‖f ‖k∞(k!)w[ξ ]+4+ 2

d+1 λ
d−1
d+1

= c1c
k
2‖f ‖k∞(k!)w[ξ ]+β(d)λ

d−1
d+1

for all λ ≥ c3, where the definition of the constant β(d) given in (1) was also used. The argument
is thus complete. �

5.3. Proof of the theorems

We are now prepared to establish our main results presented in Section 3. For this, we need
the following lemma, which is included to make the paper self-contained. By slight abuse of
notation, we denote by ck(X) the kth cumulant of a (real-valued) random variable X. It is well
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defined if E|X|k < ∞ and is given by

ck(X) := (−i)k
dk

dtk
logEeitX

∣∣∣
t=0

,

where i stands for the imaginary unit.

Lemma 5.10. Let (Xλ)λ>0 be a family of random variables with EXλ = 0 and varXλ = 1 for
all λ > 0, and suppose that, for all λ ≥ λ0,

∣∣ck(Xλ)
∣∣≤ (k!)1+γ �

−(k−2)
λ

for some λ0 > 0, γ ∈ [0,∞), �λ ∈ (0,∞) and all k ∈ {3,4, . . .}.
(i) There exists b1 ∈ (0,∞) only depending on γ such that

P
(|Xλ| ≥ y

)≤ 2 exp

(
−1

4
min

{
y2

21+γ
, (�λy)

1
1+γ

})

for all y ≥ 0 and λ ≥ b1.
(ii) There are constants b2, b3, b4 ∈ (0,∞) only depending on γ such that for �λ ≥ b2 and

0 ≤ y ≤ b3�
1/(1+2γ )
λ ,

∣∣∣∣log
P(Xλ ≥ y)

1 − �(y)

∣∣∣∣≤ b4
(
1 + y3)�−1/(1+2γ )

λ and

∣∣∣∣log
P(Xλ ≤ −y)

�(−y)

∣∣∣∣≤ b4
(
1 + y3)�−1/(1+2γ )

λ ,

where �(·) is the distribution function of a standard Gaussian random variable.
(iii) If (aλ)λ>0 is such that

lim
λ→∞aλ = ∞ and lim

λ→∞aλ�
−1/(1+2γ )
λ ,

then (a−1
λ Xλ)λ>0 satisfies a moderate deviation principle on R with speed a2

λ and rate

function I (y) = y2

2 .

Proof. Part (i) is a reformulation of Lemma 2.4 in [37] in a form taken from Lemma 3.9 in [20]
with H = 21+γ there. The statement in (ii) corresponds to Lemma 2.3 in [37] in a form that
we took from Corollary 3.2 in [20]. Finally, the MDP for the family (Xλ)λ>0 is Theorem 1.1
in [19]. �

We now combine the previous lemma with the cumulant bound established in Proposition 5.1
to give a proof of our main results for Poisson polytopes.
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Proof of Theorems 3.1, 3.2 and 3.5. We let ξ ∈ � be a key geometric functional and f ∈ C(Bd)

with 〈f 2,Hd−1
Sd−1〉 �= 0. Recalling from (10) that in this case σ

ξ
λ [f ] ≥ c1〈f 2,Hd−1

Sd−1〉 1
2 λ

d−1
2(d+1) , we

see in view of Proposition 5.1 that, for k ∈ {3,4, . . .},
|〈f ⊗k, ck

λ〉|
(σ

ξ
λ [f ])k ≤ c1c

k
2‖f ‖k∞λ

d−1
d+1 (k!)w[ξ ]+β(d)

(
c3
〈
f 2,Hd−1

Sd−1

〉 1
2 λ

d−1
2(d+1)

)−k

≤ (k!)w[ξ ]+β(d)c4λ
d−1
d+1

(
c5‖f ‖∞

c6〈f 2,Hd−1
Sd−1〉 1

2 λ
d−1

2(d+1)

)k

= (k!)w[ξ ]+β(d)
(
c9λ

d−1
2(d+1)

)−(k−2)
,

where c9 := c7(c5‖f ‖∞ max{1, c8})−1 with c7 := c6〈f 2,Hd−1
Sd−1〉 1

2 and c8 := c1c
2
2c

−2
7 ‖f ‖2∞ is a

constant depending only on d , ξ and f . Now, put

γ := w[ξ ] + β(d) − 1 and �λ := c9λ
d−1

2(d+1) (24)

and apply Lemma 5.10 to the random variables Xλ := (σ
ξ
λ [f ])−1〈f, μ̄

ξ
λ〉. The results then follow

and the proof is complete. �

Proof of Theorem 3.6. Theorem 3.6 follows by the same argument as Theorem 1.5 in [20]
follows from Theorem 1.4 ibidem with the class B(Bd) replaced by C(Sd−1). For this reason,
details are omitted. �
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