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This paper defines an approximation scheme for a solution of the Poisson equation of a geometrically er-
godic Metropolis–Hastings chain �. The scheme is based on the idea of weak approximation and gives rise
to a natural sequence of control variates for the ergodic average Sk(F ) = (1/k)

∑k
i=1 F(�i), where F is

the force function in the Poisson equation. The main results show that the sequence of the asymptotic vari-
ances (in the CLTs for the control-variate estimators) converges to zero and give a rate of this convergence.
Numerical examples in the case of a double-well potential are discussed.
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1. Introduction

A Central Limit Theorem (CLT) for an ergodic average Sk(F ) = 1
k

∑k
i=1 F(�i) of a Markov

chain (�k)k∈N, evolving according to a transition kernel P on a general state space X , is well
known to be intimately linked with the solution F̂ of the Poisson equation

F̂ −PF̂ = F − π(F) (PE(P,F ))

with a force function F : X → R (see [20], Section 17.4). Here π is the invariant probability
measure of � on X , π(F) = ∫

X F(x)π(dx) and PG(x) = Ex[G(�1)] for any G : X → R. In
fact, the Poisson equation in (PE(P,F )) is of fundamental importance in many areas of prob-
ability, statistics and engineering (see [20], Section 17.7, p. 459). In this context, one of the
main motivations for constructing approximations to F̂ is to reduce the asymptotic variance
in (CLT(�, F )) for the Markov Chain Monte Carlo (MCMC) estimators, thus speeding up the
MCMC algorithms.

Assume that the random sequence (Sk(F ))k∈N satisfies the strong law of large numbers
(SLLN), limk→∞ Sk(F ) = π(F) a.s., and the CLT

√
k
(
Sk(F ) − π(F)

) d−→ σF · N(0,1) as k → ∞, (CLT(�, F ))

where N(0,1) is a standard normal distribution and the constant σ 2
F is the asymptotic variance.

Put differently, the variance of Sk(F ) is approximately equal to σ 2
F /k. It is hence intuitively clear
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2402 A. Mijatović and J. Vogrinc

that if σ 2
F is large, which occurs in applications particularly when F has super-linear growth (as

σ 2
F ∝ Varπ (F ), see, for example, [26], Section 5, and the references therein), the variance of

Sk(F ) will also be big, requiring a large number of steps k for convergence. In contrast, imagine
we knew the solution F̂ of the Poisson equation (PE(P,F )) and could evaluate the function
PF̂ − F̂ . Then the estimator given by the ergodic average Sk(F + PF̂ − F̂ ) (for any k ∈ N)
would be equal to the constant π(F) for any (not necessarily stationary) path of the chain � ,
i.e. its variance vanishes for π -a.e. starting point. However, solving Poisson’s equation for the
chains arising in most applications, even for very simple functions F , is for all practical purposes
impossible (see, e.g., relevant comments in [8]). Nevertheless, this line of reasoning suggests the
following heuristic:

a good approximation F̃ to a solution of (PE(P,F )) significantly reduces the asymptotic
variance in the (CLT(�,F +PF̃ − F̃ )), i.e. σ 2

F+PF̃−F̃
� σ 2

F .
This heuristic is well known and strongly substantiated with numerical evidence. As a method

of variance reduction, it has been developed in various Markovian settings [1,8–10]. Its appli-
cations in stochastic networks theory are described in [19], Chapter 11, while applications in
statistics for the random scan Gibbs sampler were developed in [3]. However, schemes for con-
structing F̃ found in the literature (a) depend strongly on the structure of the underlying model
and, to the best of our knowledge, (b) there are no theoretical results quantifying a priori the
amount of reduction in the asymptotic variance of CLT(�,F + PF̃ − F̃ ). This paper aims to
address both (a) and (b) by introducing a general Scheme (see below) for constructing an approx-
imate solution F̃ to (PE(P,F )), applicable to any discrete time Markov chain, and analysing the
corresponding asymptotic variance in the setting of Metropolis–Hastings chains.

Our main result (Theorem 2.6 below) states that, for an appropriately chosen allotment X, the
function F̃X can theoretically achieve an arbitrary reduction of the asymptotic variance for a class
of Metropolis–Hastings chains and force functions F that satisfy natural growth conditions. To
the best of our knowledge, this is the first systematic approach capable of reducing the asymptotic
variance arbitrarily for a general class of discrete-time Markov chains. The proof hinges on the
uniform convergence to stationarity of a sequence of approximating Markov chains, which in
turn crucially depends on the results in [2,21] (see Section 3.1 below for details). Step (II) in the

Scheme
Input: Transition kernel P , function F , allotment X = (J,X) consisting of a partition

J= {J0, J1, . . . , Jm} of X and representatives X = {aj ∈ Jj : j = 0,1, . . . ,m}.
begin

(I) Define pX ∈R(m+1)×(m+1) and fX : {a0, a1, . . . am} →R respectively by

(pX)ij := P(ai, Jj ) and fX(aj ) := F(aj ), where i, j ∈ {0,1, . . . ,m}.

(II) Find a solution f̂X of Poisson’s equation (PE(pX, fX)).
(III) Define F̃X := ∑m

j=1 f̂X(aj )1Jj
.

end
Output: Approximate solution F̃X :X → R to Poisson’s equation in (PE(P,F )).
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Scheme amounts to solving a linear system and can be carried out provided that the stochastic
matrix pX is irreducible. Moreover, Poisson’s equation (PE(pX, fX)) has a solution that is unique
up to the addition of a constant function (see [16], Theorem 9.3). Furthermore, the asymptotic
variance in CLT(�,F + PF̃X − F̃X) does not depend on the choice of f̂X in step (II) of the
Scheme.

The approximation Scheme exploits the stochastic evolution implicitly present in (PE(P,F )).
As in [9,10,19], we are using the true solution of the Poisson equation for a related Markov pro-
cess to construct F̃ . In our context, the approximation of F̂ is based on the weak approximation
of the chain � by a sequence of “simpler” finite state Markov chains (converging in law to �),
such that the solutions of the Poisson equations for the approximating chains can be characterised
algebraically. The approximating Markov chain underpinning the Scheme mimics the behaviour
of � as follows: its state space is a partition {J0, J1, . . . , Jm} of the state space X and its tran-
sition matrix consists of the probabilities of � jumping from a chosen element in Ji into the
set Jj . Analogous weak approximation ideas have been applied in continuous time to Brownian
motion [22], Lévy [24] and Feller [23] processes. A recent interesting approach for approximat-
ing the solution of Poisson’s equation in discrete time has been proposed in [4]. The idea is to
solve the equation obtained by differentiating both sides of (PE(P,F )) in the state variable. This
leads to a new approximation method for F̂ but appears to require smoothness properties of the
transition kernel, not afforded by the class of Metropolis–Hastings chains.

The approximation of a given Markov chain with a finite-state chain given by the Scheme
is akin to others previously mentioned in the literature that are also based on a partition or a
covering of the state space, see for instance [12,29,30] and [15]. These papers relate the speed of
convergence to equilibrium of the initial and of the approximating Markov chains. They do not
however address potential similarity of Poisson’s equations.

Theorem 2.6 is theoretical in nature as the partition in X that provably reduces the variance
below a prescribed level typically requires a large number of approximating states m. However,
Example 5.2.2 in Section 5.2 below demonstrates numerically that in the case of a Random walk
Metropolis chain converging to a double-well potential, the Scheme applied with only m = 6
points reduces the variance by approximately 10% (see Section 5 below for details).

A natural question arising from Theorem 2.6 is about the rate of the decay of the sequence of
asymptotic variances σ 2

n → 0. Theorem 4.1 shows that the decay is governed by the greater of
the two quantities: the mesh of the partition of the bounded set Rd \ Jn

0 and the π -average of the
squared drift function of the chain over J n

0 (see Section 2 for definitions). Furthermore, for the
chains studied in [13,27], Theorem 4.1 implies a bound on the rate of decay in terms of the target
density π alone (see Proposition 4.3 below). We hope this result is both of some practical value
(cf. Section 5.2.1) and independent interest.

The reminder of the paper is organised as follows. Section 2 formulates our main result (The-
orem 2.6). In Section 3, we prove Theorem 2.6. The structure of the proof is given in Section 3.1,
while Sections 3.2, 3.3 and 3.4 carry out the steps. In Section 4, we state and prove Theorem 4.1
and Proposition 4.3, bounding the rate of convergence to zero of the asymptotic variances. Sec-
tion 5 describes the implementation of the Scheme (Section 5.1) and gives numerical examples
(Section 5.2).
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2. Assumptions and the main result

Let π be a density function of a probability measure on Rd with respect to the Lebesgue measure
μLeb and let q : Rd × Rd → R be a transition density function, that is, for every x ∈ Rd , the
function y �→ q(x, y) is a density on Rd . The idea behind the dynamics of a Metropolis–Hastings
chain is to propose a move from a density q(x, ·) to a new location, say y, and accept it with
probability

α(x, y) :=
⎧⎨
⎩

min

(
1,

π(y)q(y, x)

π(x)q(x, y)

)
, π(x)q(x, y) > 0,

1, π(x)q(x, y) = 0.

The Markov transition kernel P(x, dy) for this dynamics is given by the formula

P(x, dy) := α(x, y)q(x, y) dy +
(

1 −
∫
Rd

α(x, z)q(x, z) dz

)
δx(dy), (MH(q, π))

where δx is Dirac’s measure centred at x, and the Markov chain (�k)k∈N generated by P is
known as the Metropolis–Hastings chain (see [7,18]). In this context, π is termed a target
density and q a proposal density. It is easy to see that the chain � is reversible (i.e. it sat-
isfies π(x)dxP (x, dy) = π(y)dyP (y, dx)) and hence stationary (i.e.,

∫
Rd P (x, dy)π(x)dx =

π(y)dy) with respect to π . The measure π(x)dx is also known as the invariant probability mea-
sure for the chain �. Throughout the paper, we assume that the kernel P in MH(q,π) satisfies
the following assumptions:

A1. Geometric drift condition: there exists a continuous function V : Rd → [1,∞), such that
π(V 2) < ∞, V has bounded sublevel sets (i.e., V −1([1, c]) is bounded for every c ≥ 1)
and

PV (x) ≤ λV V (x) + κV 1CV
(x), for all x ∈R

d,

for constants λV ∈ (0,1), κV > 0 and a compact set CV ⊂Rd .
A2. The target density π : Rd → (0,∞) is continuous and strictly positive.
A3. The proposal density q : Rd ×Rd → (0,∞) is continuous, strictly positive and bounded.

Associated with the drift function V is the function space

L∞
V := {

G : Rd → R; G measurable and ‖G‖V < ∞}
,

(2.1)

where ‖G‖V := sup
x∈Rd

|G(x)|
V (x)

.

Note that L∞
V equipped with the norm ‖ · ‖V is a Banach space (see [11], Proposition 7.2.1).

Remark 2.1. (i) Assumptions A1–A3 are standard. Widely used classes of Random walk
Metropolis chains (i.e., q(x, y) = q∗(y − x)) satisfying A1–A3 are given in [13,17,27]. See
also [28] for examples of Metropolis Adjusted Langevin chains satisfying A1–A3.
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(ii) For Metropolis kernel P satisfying A1–A3 and F ∈ L∞
V there exists a solution F̂ to

PE(P,F ) that is an element of L∞
V . The solution F̂ is unique up to the addition of a constant

function (see [6], Proposition 1.1 and Theorem 2.3).
(iii) Assumptions A2 and A3 imply that Metropolis–Hastings chain � driven by P is π -

irreducible (i.e. μLeb-irreducible), strongly aperiodic and positive Harris recurrent (see [17],
Lemmas 1.1 and 1.2, [31], Theorem 1, Corollary 2, and monograph [20] as a general refer-
ence). In particular, the SLLN [20], Theorem 17.1.7, and the CLT [20], Theorem 17.4.4, hold for
F ∈ L∞

V .
(iv) If π(V ) < ∞ but π(V 2) = ∞, we may work with

√
V instead of V , as Jensen’s inequality

implies P(
√

V ) ≤ √
λV

√
V + √

κV 1CV
, thus restricting our results to force functions F ∈ L∞√

V
.

(v) Geometric drift condition A1 implies that for G ∈ L∞
V we have π(G2) < ∞, PG(x) is well

defined for any x ∈ Rd , PG ∈ L∞
V and π(PG − G) = 0. In particular, CLT(�,F + PG − G)

holds with mean π(F) and (possibly substantially reduced) asymptotic variance σ 2
F+PG−G.

Remark 2.1(v) motivates the following definition.

Definition 2.2. Let � be a Metropolis–Hastings chain driven by kernel P in MH(q,π). Let
(Gn)n∈N be a sequence in L∞

V with the asymptotic variance σ 2
n in the CLT(�,F + PGn − Gn).

We say that (Gn)n∈N asymptotically solves Poisson’s equation PE(P,F ) if limn→∞ σ 2
n = 0.

Remark 2.3. (a) If (Gn)n∈N asymptotically solves Poisson’s equation PE(P,F ), so does (Gn +
cn)n∈N for any sequence (cn)n∈N of real numbers.

(b) Definition 2.2 does not require the Metropolis–Hastings structure on Rd and can be ex-
tended trivially to Markov chains on general state spaces satisfying an appropriate CLT.

We now define a sequence of functions that asymptotically solves Poisson’s equation
PE(P,F ).

Definition 2.4. (a) Let J be a partition of Rd into measurable sets J0, J1, . . . , Jm, such that⋃m
j=1 Jj is bounded and μLeb(Jj ) > 0 holds for all 0 ≤ j ≤ m. Let X = {a0, a1, . . . , am} be a set

of representatives: aj ∈ Jj for all 0 ≤ j ≤ m. The pair X := (J,X) is called an allotment and m

be the size of the allotment X.
(b) Let W : Rd → [1,∞) be a measurable function and X an allotment. W -radius and W -mesh

of the allotment X are defined by

rad(X,W) := inf
y∈J0

W(y), (2.2)

δ(X,W) := max

(
max

1≤j≤m
sup
y∈Jj

|y − aj |, max
0≤j≤m

sup
y∈Jj

(
W(aj )

W(y)
− 1

))
, (2.3)

respectively, where |x| denotes the Euclidean norm of any x ∈ Rd .
(c) A sequence of allotments (Xn)n∈N is exhaustive with respect to the function W in (b) if the

following holds: limn→∞ rad(Xn,W) = ∞ and limn→∞ δ(Xn,W) = 0.
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Remark 2.5. (i) For any continuous function W : Rd → [1,∞) with bounded sublevel sets,
there exists an exhaustive sequence of allotments (see the Appendix below).

(ii) Note that J0 is the only unbounded set in the partition of an allotment X. For the W -radius
of X to be large, the union

⋃m
j=1 Jj of all the bounded sets in the partition has to cover the part

of Rd where W is small.
(iii) The W -mesh is a maximum of two quantities: the first is a standard mesh of the partition

{J1, . . . , Jm} of the bounded set R \ J0 = ⋃m
j=1 Jj . The second quantity in (2.3) implies that for

the W -mesh to be small, representatives aj have to be chosen so that W(aj ) and infy∈Jj
W(y)

are close to each other, relative to size of W on Jj . Intuitively, if W(a0) is close to infy∈J0 W(y)

and W is continuously differentiable, then the second term in (2.3) is approximately equal to

max
1≤j≤m

sup
y∈Jj

((∇ logW(y)
)�

(y − aj )
)
.

Thus, if W does not exhibit super-exponential growth, the representatives a1, . . . , am can be
chosen arbitrarily.

We can now state our main result.

Theorem 2.6. Let the transition kernel P in MH(q,π) of a Metropolis–Hastings chain � satisfy
A1–A3 for a drift function V . Let F ∈ L∞

V be continuous π -a.e. and let (Xn = (Jn,Xn))n∈N be
an exhaustive sequence of allotments with respect to V , where Jn = {Jn

0 , . . . , J n
mn

} and Xn =
{an

j ∈ J n
j : j = 0,1, . . . ,mn}. For each n ∈ N, let F̃n be the output of the Scheme with input P , F

and Xn. Then the sequence (F̃n)n∈N asymptotically solves Poisson’s equation PE(P,F ), that is,
the asymptotic variance σ 2

n in CLT(�,F + P F̃n − F̃n) converges to zero as n → ∞.

Remark 2.7. Functions F̃n from Theorem 2.6 are well defined. This is because all the entries

(pn)ij := (pXn
)ij = P

(
an
i , J n

j

) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Jn
j

α
(
an
i , y

)
q
(
an
i , y

)
dy, if i �= j,

1 −
∫
Rd\Jn

i

α
(
an
i , y

)
q
(
an
i , y

)
dy, if i = j

(2.4)

of stochastic matrices pn, constructed by the Scheme with input P , F and Xn, are strictly positive
by Assumptions A2, A3 and Definition 2.4(a) (μLeb(J n

j ) > 0 for all 0 ≤ j ≤ mn, where mn

is the size of allotment Xn). Hence the chain on Xn, driven by pn, is irreducible, recurrent,
aperiodic and admits a unique invariant probability measure πn. Moreover, Poisson’s equation
for pn and any force function on Xn has a solution, unique up to addition of a constant (see [16],
Theorem 9.3).

Remark 2.8. The proof of Theorem 2.6 does not rely heavily on the structure of Metropolis–
Hastings kernels. Emulating the proof appears feasible at least for other specific T -chains (see
[20], Chapter 6, for the definition). More specifically, reversibility is needed in Proposition 3.2,
but an analogous result can be obtained without it. In the proof of Proposition 3.3(b), we use
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the fact that the non-Dirac component T (x, dy) of P(x, dy) has positive and continuous density
with respect to the Lebesgue measure. Finally, in proofs of Proposition 3.7 and Theorem 2.6 we
require T (x, dy) to exhibit the following form of continuity, limn→∞ ‖T (x, ·)−T (an(x), ·)‖V =
0 for π -a.e. x (here ‖ · ‖V is the V total variation norm and an(x) = ∑mn

j=0 an
j 1Jn

j
(x)).

3. Proof of Theorem 2.6

3.1. Overview of the proof

The central object in the proof of Theorem 2.6 is the function


(G) := PG − G + F − π(F), (3.1)

which measures the failure of a function G to be a solution of the Poisson equation PE(P,F ).
Intuitively, the closer 
(G) is to zero the better.

The proof is in two parts. In the first part (Section 3.2 below), we show that a se-
quence of functions (Gn)n∈N in L∞

V asymptotically solves Poisson’s equation PE(P,F ) if
limn→∞ π(
(Gn)

2) = 0. This is a simple consequence of the representation of the asymptotic
variance in terms of the spectral measure [14], equation (1.1), and the existence of a spectral gap
for geometrically ergodic Markov chains established [25], Proposition 1.1.

The second part of the proof is more involved. It consists of verifying that functions (F̃n)n∈N,
defined in Theorem 2.6, indeed satisfy limn→∞ π(
(F̃n)

2) = 0. The key underlying fact needed
for this purpose is that the family of the approximating finite state Markov chains driven by the
stochastic matrices (pn)n∈N converge to their respective stationary distributions (πn)n∈N uni-
formly in n ∈ N. This step is facilitated by the results in [21], Theorem 2.3 and [2], Theorem 1.1,
which show that the constants appearing in the geometric ergodicity estimate depend only and
explicitly on the constants in the drift, minorisation and strong aperiodicity conditions for that
chain. In Section 3.3, we show that these constants can be chosen independently of n ∈ N (Propo-
sition 3.3 below) and establish the uniform convergence to stationarity (Proposition 3.4 below).

In Section 3.4, we establish convergence in L2(π) of the sequence (
(F̃n))n∈N. In addition
to the uniform convergence to stationarity, the proof requires a further weak approximation by
a family of finite state Markov chains with stationary distributions that are explicit in the target
density π (see (3.11) below). Note that the stationary laws πn of the chains generated by the
stochastic matrices pn, defined in (2.4), cannot be expressed explicitly in terms of π .

Remark 3.1 (Auxiliary notation). In addition to the notation used in the statement of The-
orem 2.6 and Remark 2.7, throughout the remainder of the section we will use the following
objects:

• F̂ : solution of PE(P,F ) in L∞
V (cf. Remark 2.1(ii)).

• fn and vn: restrictions of F and V to the set Xn, respectively.
• f̂n: solution of PE(pn,fn) constructed within the Scheme (cf. Remark 2.7).
• δn := δ(Xn,V ): the V -mesh of the allotment Xn defined in (2.3).
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3.2. Controlling the asymptotic variance

The following proposition gives a sufficient conditions for a sequence of functions (Gn)n∈N to
solve asymptotically the Poisson equation.

Proposition 3.2. Let the sequence (Gn)n∈N in L∞
V satisfy limn→∞ π(
(Gn)

2) = 0. Then
(Gn)n∈N asymptotically solves PE(P,F ) in the sense of Definition 2.2.

Proof. The kernel P is reversible and hence a bounded self-adjoint operator on the Hilbert space
L2(π). Furthermore, the Hilbert subspace H := {G ∈ L2(π) : π(G) = 0} is invariant for P (i.e.
π(PG) = 0 for any G ∈ H). By (3.1) and Remark 2.1(v) it follows that 
(Gn) ∈ H for all
n ∈ N. The asymptotic variance σ 2

n in the CLT(�,F + PGn − Gn) can be represented in terms
of a positive (spectral) measure E
(Gn)(dλ) on the spectrum σ(P |H) ⊂ R associated with the
function 
(Gn), as follows (see [14] and [5], Theorem 2.1, for details):

σ 2
n =

∫
σ(P |H)

1 + λ

1 − λ
E
(Gn)(dλ). (3.2)

Since the chain generated by P is geometrically ergodic by A1, [25], Proposition 1, implies
that the spectral radius ρ of P |H satisfies ρ < 1. Hence, the inclusion σ(P |H) ⊆ [−ρ,ρ], the
equality E
(Gn)(σ (P |H)) = π(
(Gn)

2) (see e.g. [5], equation (2.2)) and the formula in (3.2)
imply

σ 2
n ≤ 1 + ρ

1 − ρ
·
∫

σ(P |H)

E
(Gn)(dλ) = 1 + ρ

1 − ρ
· π(


(Gn)
2) −→ 0 as n → ∞.

This proves the proposition. �

3.3. Uniform convergence to stationarity

Fix an exhaustive sequence of allotments (Xn)n∈N and stochastic matrices pn, n ∈N, as in Theo-
rem 2.6. The main aim of this section is to prove that the corresponding chains are geometrically
ergodic uniformly in n ∈ N. This is achieved as follows: first, the uniform drift, minorisation and
strong aperiodicity conditions in (3.6), (3.7) and (3.8), respectively, are established. Then, the
uniform convergence to stationarity follows from [2], Theorem 1.1 (cf. [21], Theorem 2.3).

For each n ∈ N, let an : Rd →Rd map x ∈Rd to its representative in Xn. More precisely, let

an(x) :=
mn∑
j=0

an
j 1Jn

j
(x) for every x ∈R

d , (3.3)

where {J n
0 , . . . , J n

mn
} is the partition and Xn = {an

0 , . . . , an
mn

} are the representatives in the allot-
ment Xn. Since the sequence of allotments is exhaustive, the following limit holds:

lim
n→∞an(x) = x for every x ∈R

d . (3.4)
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Note that the definition of a V -mesh (see (2.3) in Definition 2.4) implies the inequality

V
(
an(x)

) = V
(
an(x)

) − V (x) + V (x) ≤ (1 + δn)V (x) for all n ∈N and x ∈ R
d . (3.5)

Proposition 3.3 (Uniform drift, minorisation and strong aperiodicity conditions). There ex-
ists a compact set C ⊂Rd such that the following statements hold.

(a) There exist positive constants λ < 1, κ , such that the uniform drift condition holds:

pnvn

(
an
j

) ≤ λvn

(
an
j

) + κ1C

(
an
j

)
for all n ∈ N, and an

j ∈ Xn. (3.6)

(b) Define Cn := Xn ∩ C, for each n ∈ N. There exist constants γ, γ̃ ∈ (0,∞) and a measure
νn, concentrated on Xn, such that the uniform minorisation condition,

(pn)ij ≥ γ νn

({
an
j

})
for all n ∈N, and i, j ∈ {0,1, . . . ,mn} satisfying an

i ∈ Cn, (3.7)

and the uniform strong aperiodicity condition,

γ νn(Cn) ≥ γ̃ for all n ∈N, (3.8)

hold.

Proof. (a) Fix an arbitrary n ∈N and j ∈ {0, . . . ,mn}. By definition of the function an(·) in (3.3),
we find

pnvn

(
an
j

) − vn

(
an
j

) =
∫
Rd

(
V

(
an(y)

) − V
(
an
j

))
α
(
an
j , y

)
q
(
an
j , y

)
dy.

By (3.5) we get V (an(y)) − V (an
j ) ≤ V (y) − V (an

j ) + δnV (y) for every y ∈ Rd . The form of
kernel P in (MH(q, π)) and this inequality imply

pnvn

(
an
j

) − vn

(
an
j

) ≤ PV
(
an
j

) − V
(
an
j

) + δn

∫
Rd

V (y)α
(
an
j , y

)
q
(
an
j , y

)
dy

≤ PV
(
an
j

) − V
(
an
j

) + δnPV
(
an
j

) = (1 + δn)PV
(
an
j

) − V
(
an
j

)
.

Since by definition V (an
j ) = vn(a

n
j ), the geometric drift condition in A1 implies

pnvn

(
an
j

) ≤ (1 + δn)λV vn

(
an
j

) + (1 + δn)κV 1CV

(
an
j

)
.

Since limn→∞ δn = 0, if we define C := CV , λ := 1+λV

2 and κ := κV (1+ supn∈N δn), there exists
N0 ∈ N such that the drift condition in (3.6) holds for all n ≥ N0. Note that if we enlarge C and
increase κ , the uniform drift condition in (3.6) remains valid for all n it was valid for before
the modification. Finally, if N0 > 1, we enlarge C by all the representatives of the allotments
X1, . . . ,XN0 (finitely many points) and increase κ sufficiently, so that (3.6) also holds for all
n ∈ {1, . . . ,N0 − 1}.

(b) Recall that by Definition 2.4(c), the sequence (rn := rad(Xn,V ))n∈N tends to infinity,
though perhaps not monotonically. Let D be an open ball of radius rD > 2 supn∈N δn in Rd .
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Since D is a bounded set, by the definition of V -radius (see (2.2)) and Assumption A1, there ex-
ists n0 ∈ N such that D ⊆ ⋂

n≥n0
V −1([1, rn)). We now enlarge the compact set C, constructed

in part (a) of this proof, to contain the bounded set

( ⋃
n<n0

R
d \ J n

0

)
∪

⋂
n≥n0

V −1([1, rn)
)
. (3.9)

We may assume the set C is still compact, since the set in (3.9) is bounded, and hence the uniform
drift condition in (3.6) still holds.

Define a measure ν on the Borel σ -algebra of Rd by ν(B) := μLeb(B∩C)

μLeb(C)
for any measurable

set B . For each n ∈ N, define a measure on the set of representatives Xn by νn({an
j }) := ν(J n

j ).

Define the constant γ := μLeb(C) infy,x∈C×C α(x, y)q(x, y) and note that it is strictly positive
by Assumptions A2 and A3 and Definition 2.4(a). For every n ∈ N and every 0 ≤ i, j ≤ mn, such
that an

i ∈ Cn, the form of the kernel P in (MH(q, π)) implies the minorisation condition in (3.7):

(pn)ij = P
(
an
i , J n

j

) ≥
∫

Jn
j ∩C

α
(
an
i , y

)
q
(
an
i , y

)
dy ≥ γ ν

(
J n

j

) = γ νn

({
an
j

})
.

We now establish the strong aperiodicity condition in (3.8). First assume that n ≥ n0, let D′ be
an open ball of radius rD

2 , with the same centre as D, and pick y ∈ D′. The definition of the V -
radius rn = rad(Xn,V ) in (2.2) implies D ∩ Jn

0 ⊆ V −1([1, rn)) ∩ V −1([rn,∞)) and hence D ∩
Jn

0 = ∅. Since the radius rD of the ball D is strictly greater than 2 supn∈N δn and the inequality
|y −an(y)| ≤ supn∈N δn holds, it follows that an(y) ∈ D ⊆ C. Hence, by definition (3.3), it holds
that D′ ⊆ ⋃

{j ;an
j ∈C} Jn

j and

νn(Cn) = νn(Xn ∩ C) = ν
( ⋃

{j ;an
j ∈C}

Jn
j

)
≥ ν

(
D′) = μLeb(D′)

μLeb(C)
> 0.

If n < n0, then it holds that Cn = Xn ∩ C ⊃ {an
j : j = 1, . . . ,mn}, since C contains the set

in (3.9) and hence Rd \ Jn
0 . Therefore, we find νn(Cn) ≥ μLeb(R\Jn

0 )

μLeb(C)
> 0. Hence, (3.8) holds for

the positive constant

γ̃ := 1

γ
min

{
μLeb(D′)
μLeb(C)

, min
n<n0

μLeb(R \ J n
0 )

μLeb(C)

}
.

This concludes the proof of the proposition. �

Proposition 3.3 allows us to control the convergence to stationarity of the approximating chains
uniformly in n ∈ N. In the notation of Theorem 2.6 and Remarks 2.7 and 3.1, the following
statement holds.
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Proposition 3.4. There exist positive constants ζ and θ < 1, such that the inequality

sup
‖g‖vn≤1

∣∣(pk
ng

)
(b) − πn(g)

∣∣ ≤ ζθkvn(b) holds for all b ∈ Xn, k ∈ N∪ {0} and n ∈N,

where the vn-norm of a function g : Xn →R is ‖g‖vn := supb∈Xn
|g(b)|/vn(b) and πn(g) denotes

the integral (i.e., weighted sum) of g with respect to πn.

Proof. Pick an arbitrary n ∈ N. According to Proposition 3.3, the transition matrix pn satisfies
the drift condition in (3.6), the minorisation condition in (3.7) and the strong aperiodicity con-
dition (3.8) with the constants κ,λ, γ, γ̃ , which are independent of the choice of n. Hence, [2],
Theorem 1.1 (see also [21], Theorem 2.3) applied to the transition kernel pn on the state space
Xn, yields

sup
‖g‖vn≤1

∣∣(pk
ng

)(
an
j

) − πn(g)
∣∣ ≤ ζ(n)vn

(
an
j

)
θ(n)k

for every k ∈ N∪ {0}, an
j ∈ Xn and constants ζ(n) ∈ (0,∞) and θ(n) ∈ (0,1). Furthermore, [2],

Theorem 1.1, implies that the constants ζ(n), θ(n) are only a (chain independent) function of
κ,λ, γ, γ̃ in Proposition 3.3 and hence do not depend on n. This concludes the proof. �

3.4. Functions that asymptotically solve Poisson’s equation PE(P,F)

In this section, we complete the proof of Theorem 2.6. By the Dominated Convergence Theorem
(DCT), Proposition 3.2 implies that (F̃n)n∈N asymptotically solves PE(P,F ) if the following
conditions hold:

sup
n∈N

∥∥
(F̃n)
∥∥

V
< ∞ and lim

n→∞
(F̃n)(x) = 0 for π -a.e. x ∈R
d . (3.10)

The inequality in (3.10) follows from (3.1) and Proposition 3.5 below, which states that the
V -norm F̃n, shifted by an appropriate constant, is bounded uniformly in n ∈N. The existence of
these constants rests on the uniform convergence to stationarity in Proposition 3.4 above.

The limit in (3.10) is established by bounding |
(F̃n)| by a sum of three non-negative
terms (see Lemma 3.8 below) and controlling each one separately. The first, given by |F(x) −
F(an(x))|, tends to zero by (3.4) since the force function F is assumed to be continuous π -a.e.
The second term |U(x)−U(an(x))|, where U := P F̃n − F̃n, is controlled by Proposition 3.5 and
the DCT. Controlling the third term |πn(fn) − π(F)| is more involved. It requires constructing
a further approximating chain (based on the transition kernel P ) with state space Xn and a tran-
sient matrix p∗

n, whose invariant distribution can be described analytically in terms of the density
π (see (3.11) below). Proposition 3.7, whose proof also depends on the uniform convergence
to stationarity in Proposition 3.4, establishes the desired limit. We now give the details of the
outlined proof.

Proposition 3.5. There exists a constant ξ > 0 and a sequence of real numbers (cn)n∈N, such
that the following inequality holds for all n ∈N:

‖F̃n + cn‖V ≤ ξ.
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Proof. Pick an arbitrary n ∈ N. Since F ∈ L∞
V by assumption, its restriction fn : Xn → R sat-

isfies ‖fn‖vn ≤ ‖F‖V (see Proposition 3.4 for definition of vn-norm). By Proposition 3.4, the
function f̄n : Xn → R, given by

f̄n :=
∞∑

k=0

(
pk

nfn − πn(fn)
)
,

is well defined and satisfies the inequality ‖f̄n‖vn ≤ ζ
1−θ

‖fn‖vn ≤ ζ
1−θ

‖F‖V . Furthermore,

by [20], Theorem. 17.4.2, the function f̄n solves Poisson’s equation PE(pn,fn). Since f̂n : Xn →
R, in the definition of F̃n, also solves PE(pn,fn), by Remark 2.7 there exists a constant cn ∈ R

such that f̂n + cn = f̄n.
Recall that F̃n = ∑mn

j=0 f̂n(a
n
j )1Jn

j
, pick an arbitrary x ∈ Rd and note that definition (3.3)

implies F̃n(x) = f̂n(a
n(x)). Hence, we obtain

∣∣F̃n(x) + cn

∣∣ = ∣∣f̄n

(
an(x)

)∣∣ ≤ ζ

1 − θ
‖F‖V vn

(
an(x)

) = ζ

1 − θ
‖F‖V V

(
an(x)

)

≤ ξV (x), where ξ := ζ

1 − θ

(
1 + sup

k∈N
δk

)
‖F‖V

and the last inequality follows from (3.5). Since both x ∈ Rd and n ∈ N were arbitrary, this
implies the proposition. �

In order to analyse the behaviour of the limit in (3.10), we need to define a further approxi-
mating Markov chain on Xn with the transition matrix p∗

n and the invariant measure π∗
n , given

by

(
p∗

n

)
ij

:=
∫

Jn
i

π(x)

π(J n
i )

P
(
x,J n

j

)
dx and

(3.11)
π∗

n

({
an
j

}) := π
(
Jn

j

)
, for i, j ∈ {0, . . . ,mn},

respectively. Note that (p∗
n)ij = Pπ [�1 ∈ J n

i |�0 ∈ J n
j ], where � is the Metropolis–Hastings

chain we are analysing. It is clear from the definition in (3.11) that the equality π∗
np∗

n = π∗
n

holds. Furthermore, if we define a function hn : Xn → R by

hn

(
an
j

) :=
∫

Jn
j

π(x)

π(J n
j )

F (x) dx for an
j ∈ Xn, it holds that π∗

n (hn) = π(F). (3.12)

Remark 3.6. (i) Let μ be a signed measure on Xn and ‖μ‖vn := sup‖g‖vn≤1 |μ(g)| its vn-norm,
where the norm ‖g‖vn was defined in Proposition 3.4 and μ(g) denotes the integral (i.e. weighted
sum) of g : Xn → R with respect to μ. Furthermore, it is natural to define the dual normed vector
spaces (L∞

vn
,‖ · ‖vn) (analogous to L∞

V in (2.1)) and (M∞
vn

,‖ · ‖vn) of functions on Xn and signed
measures on Xn, respectively. Since Xn is finite, the vector spaces L∞

vn
and M∞

vn
are isomorphic to
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R1+mn . Furthermore, any linear function B : L∞
vn

→ L∞
vn

, mapping g �→ Bg, induces a linear map
on the dual B∗ : M∞

vn
→ M∞

vn
, given by μ �→ B∗μ := μB (in this definition we interpret μ as a

row vector and B as a matrix). It is well known that the operator norms coincide ‖B‖vn = ‖B∗‖vn .
This fact, which holds in a much more general setting (see [11], Section 7), plays an important
role in the proof of Proposition 3.7.

(ii) The following estimate holds for any point x ∈Rd and all n ∈ N, y ∈Rd :

α
(
an(x), y

)
q
(
an(x), y

) ≤ q(y, an(x))

π(an(x))
π(y)

(3.13)

≤ ηxπ(y), where ηx := supz,y∈Rd q(z, y)

infn∈N π(an(x))
.

By (3.4) and A2 we have 0 < inf{π(z) : |z − x| ≤ supk∈N δk} ≤ π(an(x)), where δk = δ(Xk,V )

(see Definition 2.4), for all sufficiently large n ∈N. Thus, by A2 and A3, we have ηx ∈ (0,∞) and
the inequalities in (3.13), which will be used in the proofs of Proposition 3.7 and Theorem 2.6,
hold.

Proposition 3.7. The following inequalities hold for the measure π∗
n defined in (3.11):

∣∣(π∗
n − πn

)
(fn)

∣∣ ≤ ζ‖F‖V

1 − θ

∥∥π∗
n − π∗

npn

∥∥
vn

, (3.14)

where the constants θ ∈ (0,1) and ζ > 0 are as in Proposition 3.4, and

∥∥π∗
n − π∗

npn

∥∥
vn

≤
(

1 + sup
k∈N

δk

)∫
Rd×Rd

(
V (y) + V (x)

)
Zn(x, y) dy π(x)dx, (3.15)

where Zn(x, y) := |α(an(x), y)q(an(x), y) − α(x, y)q(x, y)| for any x, y ∈Rd and the function
an(·) is given in (3.3). Furthermore, the following limit holds: limn→∞ |πn(fn) − π(F)| = 0.

Proof. We estimate the difference |πn(fn) − π(F)| using the invariant distribution π∗
n of the

chain driven by p∗
n and the function hn, defined in (3.11) and (3.12) respectively, as follows
∣∣πn(fn) − π(F)

∣∣ = ∣∣πn(fn) − π∗
n (fn) + π∗

n (fn) − π∗
n (hn)

∣∣
(3.16)

≤ ∣∣(πn − π∗
n

)
(fn)

∣∣ + ∣∣π∗
n (fn − hn)

∣∣.
We will prove that both terms on the right-hand side converge to zero as n → ∞. The definitions
of π∗

n and hn (in (3.11) and (3.12) above) and the function an(·) (see (3.3)) imply that the second
term on the right-hand side of (3.16) takes the form

π∗
n (fn − hn) =

mn∑
j=0

π
(
Jn

j

)(
F

(
an
j

) −
∫

Jn
j

π(x)

π(J n
j )

F (x) dx

)

=
∫
Rd

(
F

(
an(x)

) − F(x)
)
π(x)dx.
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Since F is continuous π -a.e., the integrand converges to zero π -a.e. by (3.4). Furthermore, for
any x ∈ Rd it holds that∣∣F (

an(x)
) − F(x)

∣∣ ≤ ∣∣F (
an(x)

)∣∣ + ∣∣F(x)
∣∣ ≤ ‖F‖V

(
V

(
an(x)

) + V (x)
)

≤ ‖F‖V

(
2 + sup

k∈N
δk

)
V (x),

where the last inequality follows from (3.5). Therefore, by the DCT (recall that by the assumption
in A1 we have π(V ) < ∞), the second term in (3.16) indeed converges to zero.

Establishing the convergence of the first term on the right-hand side in (3.16) is more involved.
We start by establishing the following representation of the signed measure π∗

n − πn.

Claim. There exists a linear map Bn : L∞
vn

→ L∞
vn

, with the dual B∗
n : M∞

vn
→ M∞

vn
, satisfying

π∗
n − πn = B∗

n(π∗
n − π∗

npn) = (π∗
n − π∗

npn)Bn and ‖B∗
n‖vn = ‖Bn‖vn ≤ ζ/(1 − θ), where the

constants θ ∈ (0,1) and ζ > 0 are as in Proposition 3.4 (see Remark 3.6(I) for the definition of
L∞

vn
and M∞

vn
).

Define a transition matrix 1 ⊗ πn on the state space Xn by (1 ⊗ πn)ij := πn(a
n
j ). The cor-

responding chain is a sequence of independent r.v.s. with the law given by πn (independently
of the starting distribution). The inequality in Proposition 3.4 can therefore be expressed as
‖pk

n − 1 ⊗ πn‖vn ≤ ζθk , for all k ∈ N ∪ {0}, implying that Bn := ∑∞
k=0(p

k
n − 1 ⊗ πn) is a

well defined linear map on the normed space L∞
vn

, such that ‖Bn‖vn ≤ ζ/(1 − θ). In order to
establish the first equality in the claim above, note that μ(1 ⊗ πn) = πn for any probability
measure μ ∈ M∞

vn
and, by Remark 3.6(I) and Proposition 3.4, the ‖ · ‖vn -norm of the linear

operator μ �→ μ(pk
n − 1 ⊗ πn) on M∞

vn
is bounded above by ζθk for all k ∈ N. In particular,

limk→∞ π∗
npk

n = πn in vn-norm since ‖π∗
npk

n − πn‖vn = ‖π∗
n (pk

n − 1 ⊗ πn)‖vn ≤ ζθk‖π∗
n‖vn for

all k ∈N. Consider the identity

(
π∗

n − π∗
npn

) �∑
k=0

(
pk

n − 1 ⊗ πn

) = π∗
n − π∗

np�+1
n for all � ∈N,

and note that both sides converge in the appropriate ‖ · ‖vn -norms as � → ∞. In the limit, the
left-hand side equals (π∗

n − π∗
npn)Bn and the right-hand side is π∗

n − πn. This concludes the
proof of the claim.

In order to establish the inequality in (3.14), note that ‖fn‖vn ≤ ‖F‖V and Remark 3.6(I)
imply |(π∗

n −πn)(fn)| ≤ ‖F‖V (π∗
n −πn)(fn/‖fn‖vn) ≤ ‖F‖V ‖π∗

n −πn‖vn . This inequality and
the claim imply (3.14).

The next task is to prove (3.15). Let g : Xn → R be a function satisfying ‖g‖vn ≤ 1. Recall
that mn + 1 is the cardinality of Xn and that the function an(·) is defined in (3.3). We apply the
definitions of the stochastic matrix p∗

n and its stationary law π∗
n , given in (3.11), to obtain

(
π∗

n − π∗
npn

)
g

= π∗
n

(
p∗

n − pn

)
g =

mn∑
j=0

mn∑
i=0

[
π

(
Jn

i

)((
p∗

n

)
ij

− (pn)ij
)]

g
(
an
j

)
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=
mn∑
j=0

[∫
Rd

(
P

(
x,J n

j

) − P
(
an(x), J n

j

))
π(x)dx

]
g
(
an
j

)

=
∫
Rd

(∫
Rd

g
(
an(y)

)[
α(x, y)q(x, y) − α

(
an(x), y

)
q
(
an(x), y

)]
dy

)
π(x)dx

+
∫
Rd

(∫
Rd

g
(
an(x)

)[
α
(
an(x), y

)
q
(
an(x), y

) − α(x, y)q(x, y)
]
dy

)
π(x)dx,

where the identity δx(J
n
j )g(an

j ) = δan(x)(J
n
j )g(an

j ) = δan(x)(J
n
j )g(an(x)), for any x ∈ Rd and

j ∈ {0, . . . ,mn + 1}, implies the final equality. Since the function g ∈ L∞
vn

, with ‖g‖vn ≤ 1, in the
calculation above was arbitrary and satisfies |g(an(x))| ≤ V (an(x)) for all x ∈ Rd , we find

∥∥π∗
n − π∗

npn

∥∥
vn

= sup
‖g‖vn≤1

∣∣(π∗
n − π∗

npn

)
g
∣∣

≤
∫
Rd×Rd

(
V

(
an(y)

) + V
(
an(x)

))
Zn(x, y)π(x)dy dx,

which, together with (3.5), implies (3.15).
We now apply the DCT to deduce that the right-hand side in (3.15) converges to zero as

n → ∞. The definition of Zn(x, y) in the proposition, the form of the transition kernel P

in (MH(q, π)), the drift condition in A1 and the inequality in (3.5) imply the estimates
∫
Rd

(
V (y) + V (x)

)
Zn(x, y) dy ≤ PV (x) + PV

(
an(x)

) + 2V (x)

≤
((

2 + sup
k∈N

δk

)
(λV + κV ) + 2

)
V (x)

for all x ∈ Rd . Since, by Assumption A1, we have π(V ) < ∞, by the DCT the right-hand side
in (3.15) tends to zero (as n → ∞) if

lim
n→∞

∫
Rd

(
V (y) + V (x)

)
Zn(x, y) dy = 0 for all x ∈R. (3.17)

To establish the limit in (3.17), pick an arbitrary x ∈ Rd and note that for every y ∈ R it
holds that limn→∞ Zn(x, y) = 0 by (3.4) and the assumptions in A2 and A3. Hence the inte-
grand in (3.17) converges to zero point-wise. By the estimate in (3.13), the integrand in (3.17) is
bounded above by the function

y �→ (
V (y) + V (x)

)(
ηxπ(y) + α(x, y)q(x, y)

)

which does not depend on n and is μLeb-integrable in y ∈Rd . Hence, the limit in (3.17) holds by
the DTC and, consequently, the right-hand side in (3.15) converges to zero as n → ∞. This fact
and the estimates in (3.14) and (3.15) imply that the first term on right-hand side of (3.16) tends
to zero as n → ∞ and the proposition follows. �
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In order to prove that the limit limn→∞ 
(F̃n) = 0 holds π -a.e. (i.e., the second condition
in (3.10)), we need the following elementary estimate.

Lemma 3.8. The function 
(F̃n) : Rd → R, can be bounded above as follows:
∣∣
(F̃n)(x)

∣∣ ≤ ∣∣F(x) − F
(
an(x)

)∣∣ + ∣∣πn(fn) − π(F)
∣∣

+ ∣∣(P F̃n − F̃n)(x) − (P F̃n − F̃n)
(
an(x)

)∣∣ for all x ∈R
d .

Proof. The form F̃n(x) = ∑mn

j=0 f̂n(a
n
j )1Jn

j
(x) implies P F̃n(x) = ∑mn

j=0 f̂n(a
n
j )P (x, J n

j ). The
following equalities hold


(F̃n)(b) = P(F̃n − F̂ )(b) − (F̃n − F̂ )(b) = πn(fn) − π(F) for any b ∈ Xn, (3.18)

since F̂ (resp. f̂n) solves the Poisson equation in PE(P,F ) (resp. PE(pn,fn)). Recall that the
function an(·) is defined in (3.3). Using the definition of 
(F̃n), the equalities in (3.18) and the
fact that F̂ solves PE(P,F ) yields


(F̃n)(x) = (F̂ − P F̂ )(x) − (F̂ − P F̂ )
(
an(x)

) + (F̂ − P F̂ )
(
an(x)

)
− (F̃n − P F̃n)

(
an(x)

) + (F̃n − P F̃n)
(
an(x)

) − (F̃n − P F̃n)(x)

= F(x) − F
(
an(x)

) + πn(fn) − π(F) + (P F̃n − F̃n)(x) − (P F̃n − F̃n)
(
an(x)

)

for all x ∈Rd . The triangle inequality implies the lemma. �

Proof of Theorem 2.6. By Proposition 3.2, it is sufficient to verify that the conditions in (3.10)
hold for the sequence of functions (
(F̃n))n∈N. By Proposition 3.5 there exists a constant ξ ′ and
a sequence (cn)n∈N such that the following estimate holds

∣∣F̃n(x) + cn − F̂ (x)
∣∣ ≤ ξ ′V (x) for all n ∈N and x ∈ R

d .

Note that we have 
(F̃n) = P(F̃n + cn − F̂ ) − (F̃n + cn − F̂ ). The structure of the transition
kernel P in (MH(q, π)) implies the following bounds for all n ∈ N and x ∈Rd :

∣∣
(F̃n)(x)
∣∣ ≤

∫
Rd

(∣∣F̃n(y) + cn − F̂ (y)
∣∣ + ∣∣F̃n(x) + cn − F̂ (x)

∣∣)α(x, y)q(x, y) dy

≤
∫
Rd

ξ ′V (y)α(x, y)q(x, y) dy + ξ ′V (x)

∫
Rd

α(x, y)q(x, y) dy

≤ ξ ′(PV (x) + V (x)
) ≤ (

ξ ′ + ξ ′λV + ξ ′κV

)
V (x),

where the last inequality is a consequence of the drift condition in A1. This inequality and the
definition of the V -norm in (2.1) imply that the first condition in (3.10) is satisfied.

We now establish the limit in (3.10). Fix an arbitrary x ∈ Rd , such that F is continuous at x.
The first term on the right-hand side of the inequality in Lemma 3.8 therefore converges to
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zero by (3.4). The second term, which is independent of x, tends to zero by Proposition 3.7. In
order to deal with the third term on the right-hand side of the inequality in Lemma 3.8, note
that, by the definition of F̃n in Theorem 2.6, it holds that F̃n(a

n(x)) = F̃n(x) for all n ∈ N.
Consequently, the structure of the transition kernel P in (MH(q, π)) implies that this term equals
| ∫

Rd (F̃n(y) − F̃n(x))[α(x, y)q(x, y) − α(an(x), y)q(an(x), y)]dy|. The integrand converges to
zero for every y ∈ Rd by (3.4) and Assumptions A2–A3. Furthermore, by Proposition 3.5, we
obtain the inequality
∣∣F̃n(y)− F̃n(x)

∣∣ = ∣∣F̃n(y)+ cn − F̃n(x)− cn

∣∣ ≤ ξ
(
V (y)+V (x)

)
for every y ∈R

d . (3.19)

The inequality in (3.13) yields an upper bound
∣∣α(x, y)q(x, y) − α

(
an(x), y

)
q
(
an(x), y

)∣∣ ≤ ηxπ(y) + α(x, y)q(x, y) for all y ∈R
d . (3.20)

The product of the right-hand sides in the inequalities (3.19) and (3.20) is integrable over Rd

with respect to μLeb(dy). Hence, the DCT implies that the third term on the right-hand side
of the inequality in Lemma 3.8 converges to zero. Therefore, limn→∞ 
(F̃n)(x) = 0 holds for
all x ∈ Rd at which F is continuous. It only remains to note that, by the assumption on F in
Theorem 2.6, this limit holds π -a.e. �

4. The rate of decay of asymptotic variances

Theorem 2.6 states that, under A1-A3, the asymptotic variance σ 2
n in CLT(�,F + P F̃n − F̃n)

converges to zero as n → ∞. This section investigates the speed of this convergence. We show
that, under suitable Lipschitz and integrability conditions, the rate of decay is bounded above by
the slower of the decay rates of the sequences π(V 21Jn

0
) and δ2

n = δ(Xn,V )2 (see Remark 2.1(i)
and equation (2.3), respectively). This result suggests that, when constructing an exhaustive se-
quence of allotments (see Definition 2.4 above) with respect to the drift function V , we can
guarantee fastest rate of decay of the asymptotic variance σ 2

n when the growth of the bounded
set Rd \ Jn

0 and the decay of the V -mesh of the partition of Rd \ Jn
0 are balanced appropriately

(δ2
n and π(V 21Jn

0
) must be comparable in size as n → ∞).

Theorem 4.1. Let the assumptions of Theorem 2.6 be satisfied and assume that the conditions

lim sup
n→∞

δ−2
n

∫
Rd\Jn

0

(∫
Rd

(
V (x) + V (y)

)
Zn(x, y) dy

)2

π(x)dx < ∞, (4.1)

lim sup
n→∞

δ−2
n

∫
Rd\Jn

0

∣∣F(x) − F
(
an(x)

)∣∣2
π(x)dx < ∞ (4.2)

hold, where Zn(x, y), for x, y ∈ Rd , is defined in Proposition 3.7 and the function an(·) is given
in (3.3). Then there exists a constant C0 > 0 such that

σ 2
n ≤ C0 max

{
π

(
V 21Jn

0

)
, δ2

n

}
for all n ∈N.
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Theorem 4.1, proved in Section 4.1 below, holds under general conditions that may be hard
to verify in specific examples as the functions in (4.1)–(4.2) depend on the drift function V ,
often not available in closed form. With this in mind we study a broad class of Metropolis–
Hastings chains with the property that V can be described in terms of the target density π and
conditions (4.1)–(4.2) can be deduced from certain geometric properties of the level sets of π

near infinity. Our approach builds on the results in [13,27].
Consider the class of Random walk Metropolis chains in Rd . Put differently, the proposal

density takes the form q(x, y) = q∗(y − x) for some density q∗ : Rd →R. Assume q∗ is contin-
uous, strictly positive and bounded. Assume also that the target π is continuously differentiable,
positive and satisfies:

lim|x|→∞
x

|x| · ∇(logπ)(x) = −∞ and lim sup
|x|→∞

x

|x| · ∇π(x)

|∇π(x)| < 0. (4.3)

Under these assumptions the kernel P in (MH(q,π)) satisfies A1–A3 with a drift function
Vγ := cγ π−γ (where cγ is a constant that ensures Vγ > 1) for any 0 < γ < 1

2 (see [13], The-
orems 4.1 and 4.3, and Remark 2.1(iv)). Then the Vγ -radius (see (2.2)) equals rad(Xn,Vγ ) =
infy∈Jn

0
cγ π−γ (y) and the Vγ -mesh δγ,n = δ(Xn,Vγ ), defined in (2.3), takes the form

δγ,n = max
(

sup
x /∈Jn

0

∣∣x − an(x)
∣∣, sup

x∈Rd

(
π(x)/π

(
an(x)

))γ − 1
)
. (4.4)

The main assumptions in Proposition 4.3 below are:
(i) there exists a function Kq : Rd → R and εq > 0 such that

∫
Rd

Kq(z) dz < ∞ and

(4.5)∣∣q∗(z) − q∗(z̃)
∣∣ ≤ |z − z̃|Kq(z) for all z, z̃ ∈R

d with |z − z̃| < εq ;

(ii) there exist constants β ∈ ( 1
2 ,1), cβ > 0 and επ > 0 such that

∣∣∇π(x̃)
∣∣ < cβπ(x)β for all x, x̃ ∈R

d with |x − x̃| < επ . (4.6)

Remark 4.2. Assumption (4.5) is a version of a local Lipschitz condition and holds for many
proposals q∗ used in practice, for example, normal densities. Assumption (4.6) and condi-
tion (4.3) hold for instance, when target density π is proportional to e−p(x), for a polynomial
p of degree k with leading order terms pk satisfying pk(x) → ∞ as |x| → ∞.

An application of Theorem 4.1 in this setting yields the following result.

Proposition 4.3. Assume that (4.5)–(4.6) hold and fix γ ∈ (0, β − 1
2 ). Let (Xn)n∈N be an ex-

haustive sequence of allotments with respect to Vγ defined above. Let F ∈ L∞
Vγ

be a continuously

differentiable function satisfying the inequality |∇F(x̃)| < cF πγ− 1
2 (x) for all x, x̃ ∈ Rd with

|x − x̃| < εF (for some constants cF , εF > 0). Then there exists a constant Cγ > 0 such that the
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asymptotic variance σ 2
n in the CLT(�,F + P F̃n − F̃n), where F̃n is constructed by the Scheme

with input P , F and Xn, satisfies

σ 2
n ≤ Cγ max

(
δ2
γ,n,

∫
Jn

0

π1−2γ (x) dx

)
for all n ∈N.

Remark 4.4. Any polynomial F , and in fact any function whose gradient grows no faster than
a polynomial, satisfies assumptions of Proposition 4.3 for any γ ∈ (0, β − 1

2 ).

4.1. Proofs

Proof of Theorem 4.1. Proposition 3.2 implies that there exists a constant C1 > 1 such that
σ 2

n ≤ C1 · π(
(F̃n)
2) for every n ∈ N. Thus, lim supn↑∞ σ 2

n /π(
(F̃n)
2) < ∞. Furthermore, the

inequality in (3.10) implies that lim supn↑∞ π(
(F̃n)
21Jn

0
)/π(V 21Jn

0
) < ∞.

Lemma 3.8 yields π(
(F̃n)
21Rd\Jn

0
) ≤ 3(T1(n) + T2(n) + T3(n)), where

T1(n) :=
∫
Rd\Jn

0

∣∣(P F̃n − F̃n)(x) − (P F̃n − F̃n)
(
an(x)

)∣∣2
π(x)dx,

T2(n) :=
∫
Rd\Jn

0

∣∣F(x) − F
(
an(x)

)∣∣2
π(x)dx and T3(n) := ∣∣πn(fn) − π(F)

∣∣2.

Assumption (4.2) implies lim supn↑∞ T2(n)/δ2
n < ∞. The form of the kernel P in MH(q,π) and

the fact that F̃n(x) = F̃n(a
n(x)) for all x ∈ Rd yield

T1(n) =
∫
Rd\Jn

0

∣∣∣∣
∫
Rd

(
F̃n(y) − F̃n(x)

)[
α(x, y)q(x, y) − α

(
an(x), y

)
q
(
an(x), y

)]
dy

∣∣∣∣
2

π(x)dx.

The inequality in (3.10) therefore yields

lim sup
n↑∞

T1(n)
/∫

Rd\Jn
0

(∫
Rd

(
V (x) + V (y)

)
Zn(x, y) dy

)2

π(x)dx < ∞.

Put differently we obtain lim supn↑∞ T1(n)/δ2
n < ∞.

Note that T3(n) = |πn(fn) − π(F)| ≤ 2|(πn − π∗
n )(fn)|2 + 2|π∗

n (fn − hn)|2 (recall (3.11)–
(3.12)). Since π∗

n (fn − hn) = ∫
Rd (F (x) − F(an(x)))π(x) dx, the inequality F ≤ ‖F‖V V

and (3.5) hold, we find

∣∣π∗
n (fn − hn)

∣∣2 ≤
∫
Rd

∣∣F(x) − F
(
an(x)

)∣∣2
π(x)dx

≤ ‖F‖2
V

(
2 + sup

n∈N
δn

)2
π

(
V 21Jn

0

) +
∫
Rd\Jn

0

∣∣F(x) − F
(
an(x)

)∣∣2
π(x)dx.
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Therefore, (4.2) yields lim supn↑∞ |π∗
n (fn −hn)|2/max(π(V 21Jn

0
), δ2

n) < ∞. Similarly, inequal-
ities (3.14) and (3.15) in Proposition 3.7 imply

lim sup
n↑∞

∣∣(πn − π∗
n

)
(fn)

∣∣2
/∫

Rd

(∫
Rd

(
V (y) + V (x)

)
Zn(x, y) dy

)2

π(x)dx < ∞.

Again, splitting the integral with respect to x into the parts over J n
0 and Rd \ Jn

0 and apply-
ing (4.1), A1 and (3.5) yields lim supn↑∞ |(πn − π∗

n )(fn)|2/max(π(V 21Jn
0
), δ2

n) < ∞. Hence,

lim supn↑∞ T3(n)/max(π(V 21Jn
0
), δ2

n) < ∞. This concludes the proof of the theorem. �

Proof of Proposition 4.3. Since P , F and Xn in Proposition 4.3 satisfy the assumptions of
Theorem 2.6, we need only to establish that conditions (4.1) and (4.2) in Theorem 4.1 hold
for V = Vγ and δn = δγ,n, defined just before Proposition 4.3 above. Then, since π(V 2

γ 1Jn
0
) =

c2
γ

∫
Rd π1−2γ (x) dx, the proposition will follow by Theorem 4.1.

Start by establishing (4.2). We have |x − an(x)| < δγ,n for every x ∈Rd \ J n
0 by (4.4). Conse-

quently, Lagrange’s theorem applied to F along a line segment connecting x and an(x) yields a
point x̃n on this segment such that

δ−2
γ,n

∫
Rd\Jn

0

∣∣F(x) − F
(
an(x)

)∣∣2
π(x)dx ≤

∫
Rd\Jn

0

( |F(x) − F(an(x))|
|x − an(x)|

)2

π(x)dx

=
∫
Rd\Jn

0

∣∣∇F
(
x̃n

)∣∣2
π(x)dx

≤ cF

∫
Rd

π2γ−1(x)π(x) dx = cF

∫
Rd

π2γ (x) dx

holds for a sufficiently large n by assumptions on F . Target π decays supper-exponentially along
any ray from the origin and so does π2γ . Thus, the integral

∫
Rd π2γ (x) dx is finite and (4.2)

follows.
Next, we prove that (4.1) holds. In the setting of a symmetric Random walk Metropo-

lis we have α(x, y) = min(1,π(x)/π(y)). Let Ax := {y ∈ Rd ; π(x) ≤ π(y)} and note that
y ∈ Ax if and only if α(x, y) = 1 and Vγ (x) ≥ Vγ (y). Recall Zn(x, y) = |α(x, y)q∗(y − x) −
α(an(x), y)q∗(y − an(x))| and, for any B ⊆Rd and x ∈ Rd , denote

In(x,B) := δ−2
γ,n

(∫
B

(
Vγ (x) + Vγ (y)

)
Zn(x, y) dy

)2

.

Condition (4.1) is equivalent to lim supn→∞
∫
Rd\Jn

0
In(x,Rd)π(x) dx < ∞. With this in mind,

we split the integral in In(x,Rd) into two integrals, depending on which of the disjoint sets Ax

and Ac
x the point y belongs to (for any A ⊂Rd , Ac denotes Rd \ A).

Note that it holds

In

(
x,Rd

) ≤ 2In(x,Ax) + 2In

(
x,Ac

x

)
for all x ∈ R

d .
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For all sufficiently large n, Lagrange’s theorem, (4.4) and (4.6) imply that

|π(an(x)) − π(x)|
δγ,n

≤ |π(an(x)) − π(x)|
|x − an(x)|

(4.7)
≤ ∣∣∇π

(
x̃n

)∣∣ ≤ cβπβ(x) for all x ∈ R
d \ J n

0 .

The following holds for all x, y ∈ Rd :

Zn(x, y) ≤ α
(
an(x), y

)∣∣q∗(y −an(x)
)−q∗(y −x)

∣∣+q∗(y −x)
∣∣α(x, y)−α

(
an(x), y

)∣∣. (4.8)

If y ∈ Ax and n is large enough, then for every x ∈ Rd \ J n
0 , using (4.5) and (4.7), the right

hand side of (4.8) can be further bounded as follows (note that π(an(x)) ≥ π(y) ≥ π(x) is crucial
in the analysis of the right term):

Zn(x, y) ≤ δγ,nK
∗
q (y − x) + q∗(y − x)

|π(an(x)) − π(y)|
π(an(x))

1{π(an(x))>π(y)}(x, y)

≤ δγ,nK
∗
q (y − x) + δγ,ncβq∗(y − x)πβ−1(x).

Since the Lebesgue measure is translation invariant, there exists a constant cZ > 0 such that for
sufficiently large n ∈ N we have

δ−1
γ,n

∫
Ax

Zn(x, y) dy < cZπβ−1(x) for all x ∈ R
d \ Jn

0 . (4.9)

As y ∈Ax , we have Vγ (x) ≥ Vγ (y). Thus, (4.9) and 2β − 2γ − 1 > 0 imply the following:

∫
Rd\Jn

0

In(x,Ax)π(x) dx ≤
∫
Rd\Jn

0

4Vγ (x)2c2
Zπ2β−1(x) dx

(4.10)

= 4cγ c2
Z

∫
Rd\Jn

0

π2β−2γ−1(x) dx < ∞.

If y ∈ Ac
x and n is large enough, then for every x ∈ Rd \ Jn

0 , using (4.5) and (4.7), we differ-
ently bound the right hand side of (4.8) as follows:

Zn(x, y) ≤ π(y)

π(an(x))
δγ,nK

∗
q (y − x) + q∗(y − x)

π(y)

π(an(x))

|π(an(x)) − π(x)|
π(x)

≤ δγ,n

π(y)

π(an(x))

(
K∗

q (y − x) + cβq∗(y − x)πβ−1(x)
)

(4.11)

≤ δγ,ncπ

π(y)

π(x)

(
K∗

q (y − x) + cβq∗(y − x)πβ−1(x)
)
,
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where cπ := (1+ supn∈N δγ,n)
1/γ (note that supn∈N supx∈Rd

π(x)
π(an(x))

< cπ by (4.4)). Hence, sim-
ilarly to (4.9) there exists a constant c′

Z > 0 such that

δ−1
γ,n

∫
Ac

x

Zn(x, y) dy < c′
Zπβ−1(x) for all x ∈R

d \ J n
0 . (4.12)

Recall that Vγ (y) ≥ Vγ (x) for y ∈ Ac
x and apply the Cauchy–Schwarz inequality to obtain for

each x ∈ Rd \ J n
0 the bound:

In

(
x,Ac

x

) ≤ 4δ−2
γ,n

∫
Ac

x

Zn(x, y) dy ·
∫
Ac

x

Vγ (y)2Zn(x, y) dy

(4.13)

≤ 4c′
Zcππβ−1(x)

∫
Ac

x

Vγ (y)2 πβ(y)

πβ(x)

(
cβq∗(y − x)πβ−1(y) + Kq(y − x)

)
dy.

The second inequality follows by (4.11)–(4.12) and the inequalities π(y)/π(x) < 1 and
π(y)β−1 ≥ π(x)β−1 for y ∈ Ac

x (recall that β ∈ (1/2,1)). It is clear that if we substitute Ac
x

with Rd in (4.13), the inequality remains true. Hence, the Fubini theorem implies
∫
Rd\Jn

0

In

(
x,Ac

x

)
π(x)dx

≤ 4c′
Zcπ

∫
Rd

Vγ (y)2
(

cβπ(y)β−1
∫
Rd

q∗(y − x)dx

(4.14)

+
∫
Rd

Kq(y − x)dx

)
πβ(y)dy

≤ 4c′
Zcπc2

γ

(
cβ

∫
Rd

π2β−2γ−1(y) dy +
∫
Rd

πβ−2γ (y) dy

∫
Rd

Kq(z) dz

)
< ∞.

Account, that q∗ is a density and note that assumptions γ ∈ (0, β − 1/2) and β ∈ (1/2,1) imply
both β − 2γ,2β − 2γ − 1 ∈ (0,1) making the integrals in (4.14) finite. This together with (4.10)
implies the inequality lim supn→∞

∫
Rd\Jn

0
In(x,Rd)π(x) dx < ∞ and (4.1) follows. �

5. Applications of the Scheme

Any implementation of the Scheme has to tackle the following two issues: (a) the stochastic
matrix pX in step (I) of the Scheme cannot be computed analytically; (b) once the approximate
solution F̃X has been computed, the function P F̃X, and thus the control variate P F̃X − F̃X, are
again not accessible in closed form. In Section 5.1, we present an implementation of the Scheme,
feasible for general Metropolis–Hastings chains that addresses these issues. In Section 5.2, we
apply the method to the symmetric Random walk Metropolis chains with stationary distribution
given by a double-well potential (i.e., a mixture of normals). The examples below, satisfying our
assumptions, are chosen because they are well-known to converge very slowly in the case of the
classical ergodic estimator.
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Section 5.2 illustrates two points. First, Example 5.2.1 empirically confirms the arbitrary re-
duction of the asymptotic variance of the ergodic average in Theorem 2.6 as the partition of the
state space is refined sufficiently. Furthermore, the numerical results indicate that the rate of con-
vergence to zero of the asymptotic variance is of the order specified in Theorem 4.1. Second,
and perhaps more importantly for future practical applications, Example 5.2.2 demonstrates that
an asymptotic variance reduction can be achieved using a coarse partition with few states. This
suggests that a similar approach of constructing control variates could be used for reducing the
variance of MCMC algorithms in real-world applications and highlights the need for further re-
search on how to efficiently construct weak approximations to the chains of interest in higher
dimensions.

5.1. Implementation

Construct a partition {J0, . . . , Jm} with properties: (1) the probability π(J0) is small; (2) it is easy
to sample uniform random points from sets Jj for j �= 0. Let aj ∈ Jj , for j > 0, be arbitrary and
choose a0 on the boundary of J0. One may choose J0 such that Rd \ J0 contains (most of) the
simulated path of the chain. This works well in practice but does not guarantee (1) and makes the
partition dependent on the random output.

Given the allotment (X, {J0, . . . , Jm}), where X = {a0, . . . , am}, and the Metropolis–Hastings
kernel (MH(q, π)), we have the input required to construct the matrix pX (step (I) of the Scheme).
As the precise computation of its entries is not feasible in general, we construct an estimate p̂X

of pX via i.i.d. Monte Carlo. With this in mind, let i(x) be the unique index i ∈ {0, . . . ,m}, such
that x ∈ Ji(x), and define a random function P̂ :Rd × X → R+ by the formula

P̂ (x, aj ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n1

n1∑
l1=1

μLeb(Jj )α
(
x,Y

l1
j,x

)
q
(
x,Y

l1
j,x

)
, if j /∈ {

0, i(x)
}
,

1

n2

n2∑
l2=1

1J0

(
Zl2

x

)
α
(
x,Zl2

x

)
, if j = 0 �= i(x),

1 −
∑

k∈{0,...,m}\{j}
P̂ (x, ak), if i(x) = j,

(5.1)

where n1, n2 ∈ N, random vectors Y
l1
j,x , l1 = 1, . . . , n1, are i.i.d. uniform in the set Jj for any

j ∈ {1, . . . ,m} (subscript x indicates that Y
l1
j,x are simulated at the point x but does not influence

the distribution) and Z
l2
x , l2 = 1, . . . , n2, are i.i.d. random vectors, independent of all Y

l1
j,x and

distributed according to the proposal distribution q(x, z) dz in (MH(q, π)). We construct the
matrix p̂X with entries (p̂X)ij := P̂ (ai, aj ) and use it in the Scheme instead of pX.

Given a function F : Rd → R, we can execute steps (II)–(III) in the Scheme. Constructing the
ergodic average estimator Sk(F +P F̃X − F̃X) requires the evaluation of the function P F̃X along
the simulated path (�i)i=1,...,k of the Metropolis–Hastings chain. We use the form of F̃X and the
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formula in (5.1) to define

P̂ F̃X(x) :=
m∑

j=0

(f̂X)j P̂ (x, aj ) (5.2)

for any x ∈ Rd , where f̂X is the solution of the system in step (II) of the Scheme obtained by
solving Poisson’s equation PE(p̂X, fX). Moreover, the function P̂ F̃X is used in place of P F̃X

along the entire path of the chain. Put differently, to estimate π(F), we use a modified ergodic
estimator Sk(F + P̂ F̃X − F̃X) instead of the original one Sk(F + P F̃X − F̃X).

This choice of estimator can be justified as follows: since Y
l1
j,�i

and Z
l2
�i

, generated at each

time step i, in the construction of P̂ F̃X(�k) are independent of the past (�j )j=1,...,i−1, we can
construct a Markov chain �̂ with augmented state space Rd × (J1)

n1 × · · · × (Jm)n1 × (Rd)n2 ,
which keeps track of �i and the auxiliary variables Y

l1
j,�i

and Z
l2
�i

. It is not hard to see that the

chain �̂ has a unique invariant measure π̂ satisfying π̂(F + P̂ F̃X − F̃X) = π(F +P F̃X − F̃X) =
π(F). Furthermore, �̂ is positive Harris recurrent and hence (by [20], Theorem 17.1.7) the SLLN

Sk(F + P̂ F̃X − F̃X)
k↑∞−−−→ π(F) a.s. holds for any fixed n1, n2 ∈N.

Remark 5.1. The estimator Sk(F + P̂ F̃X − F̃X) is unbiased in the following sense: if the chain
�̂ is started from stationarity (i.e., �̂0 ∼ π̂ ) we have Eπ̂ [Sk(F + P̂ F̃X − F̃X)] = π(F) for any
k ∈ N. This should be contrasted with the general approach to variance reduction based on the
Poisson equation (PE(P,F )), where the estimator Sk(F ) of π(F) is essential in constructing
a guess for the solution of (PE(P,F )) and hence the control variate itself (see, e.g., [3] for
this approach applied to random scan Gibbs samplers and [4] for sufficiently smooth transition
kernels). The latter approach produces a consistent but biased estimator even if the chain is started
in stationarity.

In order to analyse numerically the level of improvement due to our implementation of
the Scheme, denote

rk,n(X) :=
∑n

i=1(S
i
k(F ) − π(F))2/n∑n

i=1(S
i
k(F + P̂ F̃X − F̃X) − π(F))2/n

, (5.3)

where n is the number of simulated paths of the chain (started in stationarity at independent
starting points) and k is the length of each path. The random vectors (Si

k(F ), Si
k(F +P̂ F̃X−F̃X)),

for i = 1, . . . , n, are i.i.d. samples of the pair of ergodic average estimators (Sk(F ), Sk(F +
P̂ F̃X − F̃X)) evaluated on the simulated paths. Put differently, rk,n is the ratio of mean square
errors of estimators Sk(F ) and Sk(F + P̂ F̃X − F̃X), numerically evaluated on the same random
collection of n independent simulated paths and will serve as an estimate of the improvement.

5.2. Examples

In both examples, we use the target law π := ρN(μ1, σ
2
1 ) + (1 − ρ)N(μ2, σ

2
2 ), where N(·, ·) is

a normal distribution of the appropriate dimension.
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Table 1. The ratios of improvement rk,n(Xm) with n = 1000 and varying path length k and partition size m

m \ k k = 5 · 103 k = 2 · 104 k = 5 · 104 k = 2 · 105

m = 30 5.93 8.56 9.37 9.62
m = 50 18.0 32.1 34.2 34.7
m = 70 39.1 75.5 96.8 97.1
m = 100 76.9 1.76 · 102 2.22 · 102 2.40 · 102

m = 300 6.96 · 102 1.75 · 103 2.13 · 103 2.36 · 103

m = 500 2.14 · 103 4.64 · 103 6.05 · 103 6.92 · 103

m = 700 3.77 · 103 8.90 · 103 1.16 · 104 1.32 · 104

5.2.1. One dimensional double-well potential

Let μ1 = −3, σ1 = 1, μ2 = 4, σ2 = 1/2, ρ = 2/5. The target density π(·) is a mixture of two
normal densities with the modes at −3 and 4 which takes values close to zero in the neighbour-
hood of the origin. Let F(x) := x3 be the force function and let the proposal density q(x, ·) be
N(x,1). The assumptions of Theorem 2.6 are satisfied in this example. However, the estimator
Sk(F ) struggles to converge as the chain tends to get “stuck” under one of the modes for a long
time, sampling values of F far away from π(F).

Let the allotment Xm be defined so that Jm
0 := R \ (−8,7] and Jm

j for j = 1,2, . . . ,m are
intervals of equal length partitioning (−8,7]. We take am

j for j > 0 to be the center of the interval
Jm

j and we take am
0 = −8. We construct p̂Xm

by the formula in (5.1) (using n1 = n2 = 1000) and

P̂ F̃Xm
−F̃Xm

by the formulae in (5.1)–(5.2) (using n1 = 1, n2 = 10) and then use (5.3) to estimate
the factor of improvement of the estimator Sk(F + P̂ F̃Xm

− F̃Xm
) in comparison to the estimator

Sk(F ).
Table 1 shows the ratios of improvement rk,n(Xm) as the length of the paths varies from k =

5 ·103 to 2 ·105 and the number of intervals the set (−8,7] is partitioned into varies from m = 30
to m = 700. Each entry was computed using an independent sample of n = 1000 independent
paths of the chain started in stationarity.

The numerical results support Theorem 2.6 as they demonstrate that the algorithm is capable
of reducing the asymptotic variance arbitrarily. Note that the rate of the decay of the asymptotic
variance (as the mesh of the allotment decreases) in Theorem 4.1 and Proposition 4.3 appears to
coincide with the growth of the entries in the columns of the table (as m increases). This suggests
that the bound in Theorem 4.1 (as a function of the mesh) is asymptotically sharp.

5.2.2. Two dimensional double-well potential

Let μ1 = (−3,0), σ 2
1 = I , μ2 = (4,0), σ 2

2 = 1/4 · I , ρ = 3/5 (I is a two dimensional identity
matrix). Let the force function be F(x, y) := x and let the proposal density q(x, ·) be N(x, I ).
Again, the assumptions of Theorem 2.6 are satisfied.

To specify the allotment, decompose B := (−7,6] × (−4,4] into 6 = 3 × 2 equally sized
rectangles and define them to be J1, J2, . . . , J6. Take J0 := R2 \B , a0 := (−7,0) and aj to be the
center of the box Jj for j > 0. Construct p̂Xm

by the formula in (5.1) (using n1 = n2 = 1000) and



2426 A. Mijatović and J. Vogrinc

P̂ F̃Xm
− F̃Xm

by the formulae in (5.1)–(5.2) (using n1 = 1, n2 = 10) and estimate the factor of
improvement rk,n in (5.3). We obtain approximately a 10% reduction in variance. More precisely,
we get

rk,n = 1.09 (resp. 1.08) for the path of length k = 2 · 105 (
resp. k = 5 · 104),

where n = 1000 sample paths were used. Moreover, πX(fX) is a poor estimator of π(F) as
(πX(fX) − π(F))2 = 1.52, while the mean square error of S2·105(F + P̂ F̃X − F̃X) is 0.85.

This indicates that a very fine discretisation need not be necessary to achieve variance reduc-
tion of MCMC estimators. Analogous implementations, using for example partitions of the state
space based on F and π , might lead to variance reduction in higher dimensional models.

Appendix: Existence of exhaustive allotments

Proposition A.1. Let W : Rd → [1,∞) be a continuous function with bounded sublevel sets,
that is, for every c ∈ R the pre-image W−1((−∞, c]) is bounded. Then an exhaustive sequence
of allotments with respect to W exists.

Proof. Let (rn)n∈N be an increasing unbounded sequence of positive numbers, such that r1 >

infx∈Rd W(x). For each n ∈N define sets Ln := W−1((−∞, rn)),

L̃n := {
x ∈ R

d; ∃y ∈ Ln, such that |x − y| < √
d
}
.

Set L̃n is bounded and non-empty by definitions of W and rn. So, W is uniformly continuous
on L̃n. There exists a positive sequence (εn)n∈N (satisfying limn→∞ εn = 0 and supn∈N εn < 1)
such that |x − y| < εn

√
d implies |W(x) − W(y)| < 1

n
for each n ∈N and all x, y ∈ L̃n.

Fix n ∈ N. For x = (x1, x2, . . . , xd) ∈ Rd denote Kn
x := [x1, x1 + εn) × · · · × [xd, xd + εn).

Clearly, it is possible to pick x1, x2, . . . , xmn ∈ Rd so that sets Kn
j := Kn

xj (for 1 ≤ j ≤ mn)
are disjoint and cover Ln (assume the cover is minimal). Finally, take Jn

0 to be the closure of
R \⋃mn

j=1 Kn
j and define Jn

j := Kn
j \J n

0 . Note that μLeb(J n
j ) > 0 for all 0 ≤ j ≤ mn. For 1 ≤ j ≤

mn pick arbitrary an
j ∈ J n

j and choose a0 ∈ J n
0 , so that W(an

0 ) = infx∈Jn
0

W(x) (possible since W

has bounded sublevel sets and Jn
0 is closed). Sets Jn

j together with representatives an
j define an

allotment Xn.
By Pythagoras theorem |x − y| < εn

√
d , for x, y from the same ∈ Jn

j . Since εn < 1 and

Kn
j ∩ Ln �=∅, we get Jn

j ⊂ Kn
j ⊂ L̃n for all 1 ≤ j ≤ mn. Hence,

max
1≤j≤mn

sup
y∈Jn

j

∣∣y − an
j

∣∣ ≤ εn

√
d

and by uniform continuity (recall W ≥ 1)

max
0≤j≤mn

sup
y∈Jn

j

W(an
j ) − W(y)

W(y)
≤ 1

n
.
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Doing the above for every n ∈ N shows limn→∞ δ(Xn,W) = 0 (by (2.3)). By (2.2) and defini-
tion of Ln, rad(Xn,W) ≥ rn for every n ∈N. So, limn→∞ rad(Xn,W) = ∞. �
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