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This work examines a class of switching jump diffusion processes. The main effort is devoted to proving the
maximum principle and obtaining the Harnack inequalities. Compared with the diffusions and switching
diffusions, the associated operators for switching jump diffusions are non-local, resulting in more difficulty
in treating such systems. Our study is carried out by taking into consideration of the interplay of stochastic
processes and the associated systems of integro-differential equations.
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1. Introduction

In recent years, many different fields require the handling of dynamic systems in which there is
a component representing random environment and other factors that are not given as a solution
of the usual differential equations. Such systems have drawn new as well as resurgent attention
because of the urgent needs of systems modeling, analysis, and optimization in a wide variety of
applications. Not only do the applications arise from the traditional fields of mathematical model-
ing, but also they have appeared in emerging application areas such as wireless communications,
networked systems, autonomous systems, multi-agent systems, flexible manufacturing systems,
financial engineering, and biological and ecological systems, among others. Much effort has been
devoted to the so-called hybrid systems. Taking randomness into consideration, a class of such
systems known as switching diffusions has been investigated thoroughly; see, for example, [23,
32] and references therein. Continuing our investigation on regime-switching systems, this paper
focuses on a class switching jump diffusion processes. To work on such systems, it is necessary to
study a number of fundamental properties. Although we have a good understanding of switching
diffusions, switching jump diffusions are more difficult to deal with. One of the main difficulties
is the operator being non-local. When we study switching diffusions, it has been demonstrated
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that although they are similar to diffusion processes, switching diffusions have some distinct fea-
tures. With the non-local operator used, the distinctions are even more pronounced. Our primary
motivation stems from the study of a family of Markov processes in which continuous dynamics,
jump discontinuity, and discrete events coexist. Their interactions reflect the salient features of
the underlying systems. Specifically, we focus on regime-switching jump diffusion processes, in
which the switching process is not exogenous but depends on the jump diffusions. The distinct
features of the systems include the presence of non-local operators, the coupled systems of equa-
tions, and the tangled information due to the dependence of the switching process on the jump
diffusions.

To elaborate a little more on the systems, similar to [32], Section 1.3, pages 4-5, we begin
with the following description. Consider a two component process (X;, A;), where A; € {1, 2}.
We call A; the discrete event process with state space {1, 2}. Imagine that we have two parallel
planes. Initially, Ao = 1. It then sojourns in the state 1 for a random duration. During this period,
the diffusion with jump traces out a curve on plane 1 specified by the drift, diffusion, and jump
coefficients. Then a random switching takes place at a random time 71, and A switches to plane
2 and sojourns there for a random duration. During this period, the diffusion with jump traces out
a curve on plane 2 with different drift, diffusion, and jump coefficients. What we are interested
in is the case that A, itself is not Markov, but only the two-component process (X;, A;) is a
Markov process. Treating such systems, similar to the study of switching diffusions, we may
consider a number of questions: Under what conditions, will the processes be recurrent and
positive recurrent? Under what conditions, will the process be positive recurrent? Is it true that
positive recurrence implies the existence of an ergodic measure. To answer these questions, we
need to examine a number of issues of the switching jump diffusions and the associated systems
of integro-partial differential equations.

Switching jump diffusions models arise naturally in many applications. To illustrate, consider
the following motivational example — an optimal stopping problem. It is an extension of the
optimal stopping problem for switching diffusions with diffusion dependent switching in [22].
We assume that the dynamics are described by switching jump diffusions rather than switching
diffusions. Consider a two component Markov process (X;, A;) given by

dXI = b(Xt9 A[)dt +G(Xl’ Al)dW(t) +/ C(th, Al*s Z)ﬁo(dt9dz)’

Ro

where b(-), o (+), and c(-) are suitable real-valued functions, 1\70(') is a compensated real-valued
Poisson process, W (-) is a real-valued Brownian motion, and Rg = R — {0}. Because the example
is for motivation only, we defer the discussion of the precise setup, formulation, and conditions
needed for switching jump diffusions to the next section. We assume that A depends on the
dynamics of X. Denote the filtration by {F;},>0 and let T be the collection of F;-stopping times.
Then the treatment of the optimal stopping problem leads to the consideration of the following
value function

T ~ ~
V(x,i)=supE,; U [eP'L(X,, A dt +e PTG (X7, A;)]},
TeT 0
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where L(-) and 5(-) are suitable functions, and Xo = x and Ao = i. As an even more specific
example, consider an asset model

dX, =b(X,, A)dt +o(X,, A)dW (1) +/ c(Ar—, 2) X~ No(dt, dz).

Ro

Then the risk-neutral price of the perpetual American put option is given by

V(x,i)=sup E,;[K — Xz]".
TeT

One of the motivations for using jump-diffusion type models is that it has been observed empir-
ically that distributions of the returns often have heavier tails than that of normal distributions. In
particular, if we take N (7) to be a one-dimensional stationary Poisson process with EN (1) = At
for some A > 0, and take the compensated Poisson process to be N(¢) = N(¢) — At. The resulted
system is used widely in option pricing and mean-variance portfolio selections.

Next, consider a modification of a frequently used system in control theory. Let I" be a compact
subset of RY — {0} that is the range space of the impulsive jumps. For any subset B in I", N(z, B)
counts the number of impulses on [0, ¢] with values in B. Consider

dXt zb(Xt, A[)dl +O'(X[, A[)th +d‘lt9

t
Jy = / f c(Xs—, As—, ¥)N(ds,dy),
0 JT
with Xo =x, Ao = A, together with a transition probability specification of the form
P{Arar=jlA =i, (X5, Ay), s <t} =qij(X)) At + o(A1), i # ],

where b and o are suitable vector-valued and matrix-valued functions, respectively, and W is a
standard vector-valued Brownian motion. Assume that N (-, -) is independent of the Brownian
motion W (-) and the switching process A(-). Alternatively, we can write

dA; = f h(Xs—, As—, 2) N1 (dt, d2),
R

where h(x,i,z) = Zje/\/l (- i)l{ZEAl.j(x)} with A;;(x) being the consecutive left closed and
right open intervals of the real line, and N (t, B) being a compensated Poisson measure, which
is independent of the Brownian motion W (¢), A € (0, co) is known as the jump rate and 7 (B)
is the jump measure; N (dt, dz) is a Poisson measure with intensity dt x mj(dz), and m1(dz)
is the Lebesgue measure on R, N1(dt, dz) is independent of the Brownian motion W (¢) and the
Poisson measure N (-, -). Define a compensated or centered Poisson measure as

N(t,B) = N(t, B) — AMn(B), for BCT,

where 0 < A < 0o is known as the jump rate and 7 (-) is the jump distribution (a probability
measure). In the above, we used the setup similar to [21], page 37. With this centered Poisson
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measure, we can rewrite J; as

t t
Jz=/0 /g(Xs_,As_,y)N(ds,dy)Jrk/O /g(Xs_,As_,y)n(dJ/)ds.
r r

The related jump diffusion models without switching have been used in a wide range of applica-
tions in control systems; see [21] and references therein.

We devote our attention to the maximum principle and Harnack inequalities for the jump-
diffusion processes with regime-switching in this paper. Apart from being interesting in their
own right, they play very important roles in analyzing many properties such as recurrence, pos-
itive recurrence, and ergodicity of the underlying systems. There is growing interest in treating
switching jump systems; see [31] and many references therein. However, up to date, there seems
to be no results on maximum principles and Harnack inequality for jump-diffusion processes
with regime switching. As was alluded to in the previous paragraph, the main difficulty is that
the operators involved are non-local. Thus, the results obtained for the systems (known as weakly
coupled elliptic systems) corresponding to switching diffusions cannot be carried over. Thus new
approaches and ideas have to be used.

Looking into the literature, in [15], Evans proved the maximum principle for uniformly ellip-
tic equations. In the classical book [27], Protter and Weinberger treated maximum principle for
elliptic equations as well as Harnack inequalities and generalized maximum principle together
with a number of other topics. For switching diffusion processes, several papers studied Harnack
inequality for the weakly coupled systems of elliptic equations. In [14], Chen and Zhao assumed
Holder continuous coefficients, and established Harnack inequality and full Harnack inequal-
ity based on the representations and estimates of the Green function and harmonic measures of
the operators in small balls. In [1], Arapostathis, Ghosh, and Marcus assumed only measurabil-
ity of the coefficients to prove the desired results; their proofs were based on the approach of
Krylov [20] for estimating the oscillation of a harmonic function on bounded sets. There have
been much interest in treating jump processes and associated non-local operators. In a series of
papers, Bass and Kassmann [3], Bass, Kassmann, and Kumagai [4], Bass and Levin [5], Chen
and Kumagai [9-11], Foondun [16], Song and Vondracek [29] examined Harnack inequalities
for Markov processes with discontinuous sample paths; see also Chen, Hu, Xie, and Zhang [8]
for a related work and a maximum principle. In [6], Caffarelli and Silvestre considered nonlinear
integro-differential equations arising from stochastic control problems with pure jump Lévy pro-
cesses (without a Brownian motion) using a purely analytic approach. Nonlocal version of ABP
(Alexandrov—Bakelman—Pucci) estimate, Harnack inequality, and regularity were obtained. Most
recently, Harnack inequality for solutions to the Schrodinger operator were dealt with in [2] by
Athreya and Ramachandran for jump diffusions on R? with d > 3 whose associate operator is
an integro-differential operator includes the pure jump part as well as elliptic part. Their ap-
proach is based on the comparability of Green functions and Poisson kernels using conditional
gauge function and strong regularity is assumed on the coefficients of the diffusion and jumping
components.

In this paper, we focus on stochastic processes that have a switching component in addition to
the jump diffusion component. The switching in fact is “jump diffusion dependent”’; more precise
notion will be given in the formulation section. When the switching component is missing, it re-
duces to the jump diffusion processes; when the continuous disturbance due to Brownian motion
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is also missing, it reduces to the case of pure jump processes. If only the jump process is missing,
it reduces to the case of switching diffusions. Compared to the case of switching diffusion pro-
cesses, in lieu of systems of elliptic partial differential equations, we have to deal with systems of
integro-differential equations. Using mainly a probabilistic approach, we establish the maximum
principles. Because local analysis alone is not adequate, the approach treating Harnack inequality
for switching diffusion processes cannot be used in the current case. We adopt the probabilistic
approach via Krylov type estimates from [5], which was further extended in [3,16,29], to derive
the Harnack inequality for the nonnegative solution of the system of integro-differential equa-
tions.

We remark that since in this paper we are concerned with regime-switching jump-diffusions,
we assume the regime-switching component m > 2. However, the results and their proofs of this
paper hold for the case of m = 1 but are much easier as there would be no regime-switching.
In particular, as a byproduct we have Harnack inequality for non-negative harmonic functions
for Schrodinger operator £ + ¢, where L is an integro-differential operator of (3.1) and g <0
is bounded and measurable. Although in this case our potential g is non-positive and bounded
while in [2] the potential g can be a function in a suitable Kato class, our integro-differential
operator L of (3.1) has very general non-local operator component and the diffusion coefficients
and the jumping measure are much less regular than that in [2].

The rest of the paper is arranged as follows. Section 2 presents the formulation of the problem.
In Section 3, we develop the maximum principle for regime-switching jump-diffusions, using
a probabilistic approach that allows us to work under a quite general context. We obtain the
Harnack inequality for the regime-switching jump-diffusions processes in Section 4. Finally, the
paper is concluded with further remarks.

2. Formulation

Throughout the paper, we use z’ to denote the transpose of z € R/'*2 with [}, I, > 1, and R¥*! is
simply written as R?. If x € R?, the norm of x is denoted by |x|. For xg € R? and r > 0, B(xo,r)
denotes the open ball in R? centered at x( with radius r > 0. If D is a Borel set in R?, D and

=R?\ D denote the closure and the complement of D, respectively. The space C 2(D) refers
to the class of functions whose partial derivatives up to order 2 exist and are continuous in D,
and C2(D) is the subspace of C%(D) consisting of those functions whose partial derivatives up
to order 2 are bounded. The indicator function of a set A is denoted 14. Let Y; = (X;, A;) be
a two component Markov process such that X is an R¢-valued process, and A is a switching
process taking values in a finite set M = {1, 2, ..., m}. Throughout this paper, d > 1 and m > 2.
Let b(-,) :RY x M > R?, o(-,-) : R? x M > R? x RY, and for each x € R?, 7;(x,dz) is a
o -finite measure on RY satisfying

/ (1 A lz*)7; (x, dz) < 0.
R4
Let Q(x) = (gij(x)) be an m x m matrix depending on x such that

qij(x)=0  fori#j, Y qij(x)<0.
jeM
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Define

Q) f(x, ) =D qij(x) f(x, j).
jeM

The generator G of the process (X;, A;) is given as follows. For a function f : R? x M - R
and f(-,i) € C*(R?) for each i € M, define

Gf(x,i)=Lif(x,i)+ Q) f(x,)@), (x,i) eR? x M, (2.1)
where
Lif (x.i) = Zakz(x z) +Zb< 3f(x )
k=1 (2.2)

+ /Rd (f(x+2z,0) = f(x,i) = Vf(x,i) - 2liz<ny)mi(x, d2),

where a(x,i) := (ax (x,i)) = o (x,i)o’(x,i), Vf(-,i) denotes the gradient of f(-,i).

Let Q = D([0, 00), RY x M) denote the space of all right continuous functions mapping
[0, 00) to RY x M, having finite left limits. Define (X;, A;) = w(¢) for w € Q and let {F;} be
the right continuous filtration generated by the process (X;, A;). A probability measure Py ; on
€2 is a solution to the martingale problem for (G, C,f (R?)) started at (x, i) if

@ Pyi(Xo=x,Ao=i)=1,
(b) if £(-,i) € C}(RY) for each i € M, then

t
f(Xz,Az)—f(Xo,Ao)—/o Gf(Xy, Ay)ds,

is a P, ; martingale.
If for each (x, i), there is only one such P, ;, we say that the martingale problem for
(G, CZ(RY)) is well-posed.

Definition 2.1. Let U = D x M with D C R? being a bounded connected open set. A bounded
and Borel measurable function f : R? x M > R? is said to be G-harmonic in U if for any
relatively compact open subset V of U,

f, ) =E.i[f(X(tv), A(xy))]  forall (x,i) €V,
where Ty = inf{t > 0: (X (t), A(t)) ¢ V} is the first exit time from V.

Throughout the paper, we assume conditions (A1)—(A3) hold until further notice.

(A1) The functions o (-, i) and b(-, i) are bounded continuous on R?, and qij(-) is bounded
Borel measurable on RY for every i, j € M.
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(A2) There exists a constant kg € (0, 1] such that
Kol? <&a(x,E <y 'lel*  forallé eRY, x eR?,ie M,

and |b(x,i)| <k, "' forallx e RY and i € M.
(A3) There exists a o-finite measure I1(dz) so that 7; (x, dz) < I1(dz) for every x € R¢ and
i €M and

/d(l/\lzlz)l'l(dz)flﬂ < o0.
R

(A4) For any i € M and x € R?, 7;(x, dz) = 7i(x, z) dz. Moreover, for any r € (0, 1], any
xp € R4, any x, y € B(xp,r/2) and z € B(xp, r)¢, we have

Ti(x,z—x) <o (y,z— ),

where «, satisfies 1 < «, < kor —? with «, and B being positive constants.

Remark 2.2. (a) Under Assumptions (A1)-(A3), for each i € M, the martingale problem for
(L;, Ci(Rd)) is well-posed for every starting point x € R¢ (see [19], Theorem 5.2). Then the
switched Markov process (X;, A;) can be constructed from jump diffusions having infinitesimal
generators £;, 1 <i < m, as follows. Let X’ be the strong Markov process whose distribution
is the unique solution to the martingale problem (Z;, le (R%)). Suppose we start the process at
(x0, ip), Tun a subprocess X0 of X0 that got killed with rate —g;;,(x); that is, via Feynman—
Kac transform exp( f(; Gioio (X:%)ds). Note that this subprocess X0 has infinitesimal generator
Li, + qigip- At the lifetime 71 of the killed process Xio, jump to plane j # iy with probabil-
ity q,o,(X’0 (t1-))/Giyig (X'0(r;—)) and run an independent copy of a subprocess X/ of X/
with killing rate —¢;(x) from position X i (7)—). Repeat this procedure. The resulting process
(X, A;) is a strong Markov process with lifetime ¢ by [17,24]. For each x € R, we say that the
matrix Q(x) is Markovian if Zje./\/l gij(x)=0a.e.on R for every i € M, and sub-Markovian
if Zje/\/l gij(x) <0ae.on R? for every i € M. When Q(x) is Markovian, the lifetime ¢ = oo,
and when Q(x) is just sub-Markovian, { can be finite. We use the convention that (X;, A;) =0
for t > ¢, where 9 is a cemetery point, and any function is extended to d by taking value zero
there. It is easy to check that the law of (X;, A;) solves the martingale problem for (G, le (R%Y)
so it is the desired switched jump-diffusion. This way of constructing switched diffusion has
been utilized in [13], page 296. It follows from [30] that law of (X;, A;) is the unique solution
to the martingale problem for (G, C,f (R?)).

(b) Conditions (A1) and (A2) presents the uniform ellipticity of a(x, i) and the uniform bound-
edness of b(x,7) and g;;(x). The measure 7;(x, dz) can be thought of as the intensity of the
number of jumps from x to x + z (see [3,5]). Condition (A4) tells us that ; (x, dy) is absolutely
continuous with respect to the Lebesgue measure dx on R?, and the intensities of jumps from
x and y to a point z are comparable if x, y are relatively far from z but relatively close to each
other. If 7; (x, z) is such that

—1

¢
|Z|d+l3’ l( ’Z)_| |d+ﬂ1
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for some ¢; > 1 and B; € (0, 2), then condition (A4) is satisfied with 1 < o, < k7, independent of
r € (0, 1). Condition (A4) is an essential hypothesis in the proof of the Harnack inequality.

Throughout the paper, we use capital letters C1, Ca, ... for constants appearing in the state-
ments of the results, and lowercase letters cy, ¢, ... for constants appearing in proofs. The num-
bering of the latter constants afresh in every new proof.

3. Maximum principle

In this section, we establish maximum principle for the coupled system under conditions (A1)—
(A3). We emphasize that we do not assume condition (A4) for the maximum principle. In Sec-
tion 3.1, we prepare three propositions for general diffusions with jumps that will be used several
times in the sequel.

3.1. Jump diffusions and strict positivity

Consider
d 2f ) | & of (x)
LI =) au()5=m 4 Y b)) =
k, =1 Xk0X1 k=1 Xk (3.1)
+ /Rd(f(x +2)— f(x) = Vf@x) - 2ljzj<y)m(x, d2),
where (ag;(x)) is a continuous matrix-valued function and b(x) = (by(x), ..., bs(x)) is a R4-

valued function on R? such that
A gva < (a(x)) < Maxa and |bllo <A onR? (3.2)

for some A > 1, and 7 (x, dz) is a o-finite measure on R? satisfying
K :=/ (1 Alzl?) sup 7 (x,dz) < oo. (3.3)
R¢ xeRd

Here 14 denotes the d x d-identity matrix. By [19], Theorem 5.2, there is a unique conservative
strong Markov process X = {X;, 1 > 0; P, x € R} that is the unique solution to the martingale
problem (L, Cg (R%)). Suppose g > 0 is a bounded function on R¥. One can kill the sample path
of X with rate ¢. For this, let n be an independent exponential random variable with mean 1. Let

t
¢ =inf{t >O:/ q(Xy)ds > 77}
0

and define Z; = X, fort < ¢ and Z, = 9 for t > ¢, where 9 is a cemetery point. It is easy to see
that for any x € R4 and ¢ >0on R,

Ex[@(Z);t <] =Ex[ego(Xn]., >0, (3.4)
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t
eq(t) = exp(—/o q(Xs)ds>.

The process Z is called the subprocess of X killed at rate ¢, and ¢ the lifetime of Z. For A C R¢,
we define its hitting time and exit time of Z by

where

of=inf{t>0:Z,€A} and t%=inf{t>0:Z ¢A),

with the convention that inf @ = co. Note that t f < ¢. The following two propositions are based
on the support theorem for diffusions with jumps in [16].

Proposition 3.1. There is a positive constant Cy depending only on A and K in (3.2)—(3.3) and
an upper bound on ||q||so such that for any R € (0,11, r € (0, R/4), xo € R?, x € B(xo,3R/2)
and y € B(xg,2R),

Py (05 < Thwo2my) = C1r°.
Proof. Note that Z; = X, for ¢ € [0, ¢), where ¢ is the lifetime of Z. Define
OB(x,r) = inf{t >0:X; € B(x, r)}, TB(x0,2R) = inf{t >0: X; ¢ B(xo, 2R)}.
Define a function ¢ : [0, 8] — R4 as follows

X—y
lx — ¥l

o) =y+ t, t €[0,8].

By [16], Theorem 4.2 and [16], Remark 4.3, there exists a constant ¢; > 0 so that
IPy<sup|X[ —qb(t)| <r> > 179, 3.5)
<8

for any x € B(xg,3R/2) and r € (0, R/4). Moreover, ¢ depends only on A and an upper bound
on ||b]|e and [|gllcc- Since |¢'(1)| =1 and ¢ (Ix — y[) = x, on {sup,g|X; — ¢ (1)| <}, we have
Xjx—y € B(x,r), X; € B(x0,2R) for 0 <t < |x — y|, and | Xgg — x0| > [ Xgr — ¥| — |y — xo| >
3R. Asaresult, 0p(x,r) <X — y| < TB(xo,2r) <8R <8 on {sup,.g|X; — ¢(t)| <r}. Then (3.5)
leads to

Py (0Bx,r) < TB(xy,2R) < 8) = crr’.
It follows from (3.4) that
z z z z
Py (UB(x,r) < TB(x0,2R)) > Py (UB(x,r) < Thxp2R) <8< C)
> exp(—6l¢lloc) Py (0B(x,r) < TB(p.2R) < 8)
> exp(—6/1¢loc)c17®.

This proves the proposition. (]
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Proposition 3.2. (i) For any 0 < r < 1/2 and xo € R?, if A C B(xo, r) has positive Lebesgue

measure, then Py (af < Tg(xo,Zr)) > 0 for every x € B(xg, ).

(i1) Let p € (0, 1) be a constant. There exist a nondecreasing function ® : (0, 00) — (0, c0)
and rg € (0, 1/2], depending only on A and K in (3.2)—(3.3) and an upper bound on ||q || 0o, Such
that for any xg € RY, any r € (0, rg), and any Borel subset A of B(xg,r) with |A|/rd > p, we
have

1
Pr(0f < Thipom) = §¢(|A|/rd), x € B(xq,1). (3.6)

Proof. As in the proof of Proposition 3.1, define
oa=inf{t >0: X, € A} and g2 =inf{r >0: X, ¢ B(xo,2r)}.

By [16], Corollary 4.9, there is a nondecreasing function @ : (0, co) — (0, 00) such that if A C
B(xgp,r), |A| > 0,7 € (0,1/2] and x € B(xg, r), then

Py(0a < TB(xg2n) = P(IAl/rY). (3.7)

Using test function and Itd’s formula, it is easy to derive (see [16], Proposition 3.4(b), or Propo-
sition 4.4 below) that there is a constant ¢; > 0 independent of xo and r € (0, 1/2] so that

ExtB(x,2r) < cr? for any x € B(xq, 2r). 3.8)

(1) Suppose 0 <r <1/2 and A C B(xg, r) has positive Lebesgue measure. Then by (3.7),
Py (04 < TB(x,2r)) > 0. Hence in view of (3.8), we have for every x € B(xo, r),

Po(0F < Thu02n) = Pr(0a < TBGxp.20) < §) = Ex[eq (tB(x9.20) Liog <ty )] > O-
(i1) Observe that
Pe(0f < T iry2r) = Px(04 < TB(x0.21): TB(x0.2r) < {) 39)

> Py(0a < TB(xp,2r)) — Px(TB(x,2r) = ).

For A C B(xg, r) with |A| > pr?, we have P, (04 < TB(x,2r)) = P (p). On the other hand,

t
Py (¢ >t)=]Ex|:eXp(_/0 ‘Z(Xs)ds>:| ECXP(—H!]Hoot)-

This combined with (3.8) yields that

Py (& > tB(xg,2r)) = Px (& > 7 > TB(x.2r))
>Py(&>r)— PX(TB(X(),ZI’) >r)

E B 2
> exp(—lglloor) — ——200:21)

> exp(—lgllcor) —c1r.
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Since lim, o (exp(—|lgllcor) — c17) = 1, there is a constant rg € (0, 1/2] such that
1
Pr(tB(xg.2r) 2 ¢) < ECD(,O) for all r € (0, ro). (3.10)
The desired conclusion follows from (3.9), (3.7), and (3.10). [l

For a connected open subset D C R4 and a Borel measurable function f >0on D, define
A
Ghf () =Edfy” £(Zy)ds].

Proposition 3.3. For f > 0, either G%f(x) >0on D or G%f(x) =0 on D. Moreover, if
G%f > 0on D ifand only if {x € D : f(x) > 0} has positive Lebesgue measure.

Proof. Suppose that A:={x € D: G’II) f(x) > 0} has positive Lebesgue measure. We claim that
for any r € (0, 1] and B(xg,r) C D so that B(xg,r/2) N A has positive Lebesgue measure, then
B(xp,r/2) C A. This is because if B(xg,r/2) N A has positive Lebesgue measure, then there is
a compact subset K C B(xg, r/2) N A having positive Lebesgue measure. By Proposition 3.2(i),
we have P, (o,% < rg(xo’r)) > ( for every x € B(xg, r/2). Consequently,

177
Gf;)f(x)zﬂax/o f(Zs)ds
q Ry A4
> EX[GDf(ZO‘K)v Og < TB(X()J)] >0

for every x € B(xg,r/2). This proves the claim. Since B(xp,r/2) C A, by a chaining argu-
ment, the above reasoning shows that A = D if A has positive Lebesgue measure. Now as-
sume that G}, f =0 a.e. on D. Since G4, f(x) = Ex [;” e4(s) f(X;)ds, we have Gp f(x) :=
E, fOTD f(X5)ds =0a.e. on D. In particular, Gp(f An) =0 a.e. on D. By [16], Theorem 2.3,
bounded harmonic functions of X is Holder continuous. By the proof of [4], Proposition 3.3,
this together with (3.8) implies that G p(f A nr) is Holder continuous on D. Therefore we have
Gp(f An)(x) =0 for every x € D. Consequently, Gp f(x) = 0 for every x € D and so is
G% f(x). This proves the first part of the proposition.

For the second part of the proposition, suppose that f > 0 and f =0 a.e. on D. It follows
from [25], Corollary 2, that for every xo € R,

TB(xg.1)
IEXf ‘ (Ip ) X5)ds =0 for every x € B(xo, 1). 3.11)
0

We claim that E, fOTD f(Xs)ds =0 for every x € D. For this, we define a sequence of stopping
times: 79 :=0, 7y :=inf{t > 0:|X; — Xo| > 1} Atp,and forn > 2, 7, :=inf{t > 7,1 : | X; —
X+, ;1 =1} Atp. Note that on {lim,— o0 Ty < Tp}, limy— 00 X7, = Xlim,_, o, by the left-continuity
of X;. On the other hand, the sequence {X.,;n > 1} diverges on {lim,, 7, < 7p} as | X, —
X, ;| =1 by the definition of 7,. This contradiction implies that P, (lim, o 7, < 7p) = 0; in
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other words, lim,_, 5, T, = Tp Py-a.s. Consequently, we have by (3.11)

Tn

B [ raoas=e Y [ roas
0 n=1

Tn—1

° TB(Xr, | .HATD
-3 E, [Ex | FXy)dsi Ty < rD]
0
n=1

=0.

It follows then G'If)f(x) =E, fOTD eq(Xs) f(Xy)ds =0forevery x € D. This proves thatif f >0
and f =0a.e.on D, then G’II) f =0on D. Next suppose that f > 0 is a bounded function on R?
and {x € D : f(x) > 0} has positive Lebesgue measure, we will show that GqD (x) > 0 for every
x € D. Let ¢, > 0 be the constant in the Remark following Theorem 3.1 on page 282 of [19].
Using a localization argument if needed, we may assume that |a;; (x) — a;; (y)| < 1/cp for every
x,y € RY. Let K be a compact subset of D so that {x € K : f(x) > 0} has positive Lebesgue
measure. Then by Theorem 3.6 and the proof of Theorem 4.2 both in [19], for A > 0 large,
v(x) :=Ey [;° e (1 £)(X,)ds is non-trivial on RY. We define a sequence of stopping times
as follows. Let S := ok, T1 :=inf{t > ox : X; ¢ D}; forn > 2,define S, :=inf{t > T,,_1 : X; €
K} and T, :=inf{t > S, : X; ¢ D}. Then

00 T, o)
00 =3B [ e X ds = Y B Goade ) (Xs,)
n=1 Sn n=1
where Gpp(x) := E, [ e ™ @(X;)ds. Hence Gp,(1k f)(x) cannot be identically zero

on K. By the first part of this proof (by taking ¢ = 1), we have Gp ,(1x f)(x) > O for every
x € D. It follows that Gp f(x) > 0 and so G%f(x) > ( for every x € D. O

3.2. Maximum principle for switched Markov processes

Now we return to the setting of switched Markov process (X;, A;). Let D be a bounded open set
in R? and U = D x M. Then tp = inf{r > 0: X; ¢ D} is the same as 7y :=inf{t > 0:Y; :=
(X¢, Ay) ¢ U}. Suppose u is a G-harmonic function in U. Under some mild assumptions (for
example, when u is bounded and continuous up to D x M), we have

w(x,i) =By i[u(Xep, Arp)]  for (x,i) e U. (3.12)

It follows immediately that if # > 0 on U¢, then u >0 in U.

To proceed, we recall the notion of irreducibility of the generator G or the matrix function Q(-).
The operator G or the matrix function Q(-) is said to be irreducible on D if for any i, j € M,
there existn =n(i, j) > 1and Ag, ..., A, e Mwith Ap_1 # Arforl <k <n,Ao=i,A, =]
such that {x € D : ga,_,a, (x) > O} has positive Lebesgue measure fork =1, ..., n.

For each i € M, denote by X i the jump diffusion that solves the martingale problem
(L;, C,%(Rd)) and X' the subprocess of X' killed at rate —g;;(x). For a connected open set

DCR?, G"D denotes the Green operator of X! in D.
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Theorem 3.4. Assume that conditions (A1)—(A3) hold, that D is a bounded connected open set
in R?, and that Q is irreducible on D. Suppose that u is a G-harmonic function in U = D x M
given by

w(x, i) =By i[¢p(Xep, Arp)i tp <00]  for (x,i) €U
and ¢ >0 on D x M. Then either u(x,i) > 0 for every (x,i) e U oru=0o0nU.

Proof. Clearly # > 0 on U. Suppose that u is not a.e. zero on U. Without loss of generality, let
us assume that {x € D : u(x, 1) > 0} has positive Lebesgue measure. Denote by 71 :=inf{t > 0:
A; # Ao} the first switching time for Y; = (X;, A;). Let

vi(x) :=v(x,i) ::Ex,,-[qﬁ(iib, 1)] = IEXJ[¢(XQD, i); D < ‘L’]].

Then v; is a harmonic function of £; + ¢;; in D with v; = ¢ (-,i) on D€. For 1 <i < m, using
the strong Markov property 71, we have

u(x, i) =vi(x) + Y G (qijuc, j)) ). (3.13)
j=1
J#i

Under the above assumption, either {x € D : vi(x) >0} or {x € D : G})(Z';’:l qiju(-, j)x) >
J#

0} has positive Lebesgue measure. If the latter happens, then by Proposition 3.3, GID Q- gijude,
J#i

J))(x) > 0 and hence u(x, 1) > 0 for every x € D. Note that
vi(x) =Ey[e_y, (tp)p(X' (xp), )] < Ei[p (X' (xp), i)] =: i (x). (3.14)

Suppose |{x € D : vi(x) > 0}| > 0. Then so does A := {x € D : u;(x) > 0}. For any xo € D
and r € (0, 1) so that B(xg,r) C D and B(xg,r/2) N A has positive Lebesgue measure, let
K C B(xg,r/2) N A be a compact set having positive Lebesgue measure. By (3.7), P, (011( <
ré(xO’r)) > 0 for every x € B(xp,r/2), where crll( :=inf{t >0: th € K} and Tll?(xo,r) = inf{r >

0: X ¢ B(xo,r)}. Hence for every x € B(xo, r/2), by the strong Markov property of X' at a}<,
w1 (x) = E [ (Xé}(); op < ] >0.

Consequently, B(xp,7/2) C A. By the chaining argument, the same reasoning as above leads to
A = D;thatis, u(x) > 0 on D. By the probabilistic representation (3.14) of vy, we have v (x) >
0 on D and hence u(x, 1) > 0 on D. Thus we have shown that u(x,1) > 0 on D whenever
{x € D :u(x, 1) > 0} has positive Lebesgue measure.

For i # 1, there is a self-avoiding path i =iy, ...,i, =i so that {x € D : g;,_,;, (x) > 0} has
positive Lebesgue measure for each k =1, ..., n. By (3.13) and its iteration, we have

n m
u(x,i)=v;(x)+ Z Z G (ain (Glzlﬂlllz (- (Glglqlk—llk v) ++))) (x)
k=1 Iyl =1

1,7&1,}217&11,.](..,1;(#11(71
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m
+ Z Gip(%‘ﬁ (Glll)qzllz (- (Glﬁflqzn,lznu(u ) -+)))x)
I,.., =1
117é1,12|7é11 ,,,,, In#F#ly—1

> Gi[)(‘]iil (GiDIQiliz (- (Gil'ﬁflqz‘,l,li,lu(u D)--))) ),

which is strictly positive in D by Proposition 3.3.
Next assume that ¥ =0 a.e. on U. We claim that ¥ =0 on U. In view of (3.13) and Proposi-
tion 3.3, it suffices to show that v; (x) =0 on D for every i € M. Since

vi0) =Eri[¢(X i) tp <11 =Erife") (tp)p(XE,.1)],

and v; (x) =0 a.e. on D, where

. t .
e(_lgm ) = exp(/o qii(Xé)ds>,

we have u; (x) .= Ex’i[qb(XiD, i)] vanishes a.e. on D. The function u; (x) is harmonic in D with
respect to X’ (or equivalently, with respect to the operator £; in D). By [16], Theorem 2.3, it
is Holder continuous in D. Hence u; (x) = 0 for every x € D, and so is v;(x). This proves that

u(x,i) =0 forevery x € D and every i € M. O

Theorem 3.5 (Strong Maximum Principle I). Assume conditions (A1)—-(A3) hold, D is a
bounded connected open set in R, and Q(x) is irreducible on D. Suppose u is a G-harmonic
function in U = D x M given by

w(x, i) =Eyi[¢(Xep, Ary)]  for (x,i)eU

for some ¢ with M .= SUP(y, j)eDex M d(y, j) €10, 00). If (xg, ip) € D x M and u(xg, ig) =M,
then u =M on D x M. If in addition M > Q, then the matrix Q(x) is Markovian.

Proof. (i) First, we assume that Q(x) is Markovian in the sense that »_ jemdij (x)=0a.e.on

R¢ for every i € M. In this case, by the construction of the switched Markov process (X;, A;)
outlined in Remark 2.2(a), (X;, A;) has infinite lifetime and so constant 1 is a G-harmonic func-
tion on R?. Hence,

M — u(x, l) = ]Ex,i[(M - ¢)(X‘[Da A‘[D); p < OO]

is a non-negative G-harmonic function in D x M. (Note that Tp < oo Py ;-a.s. in view of Propo-
sition 4.4 below.) Since u(xg, i9g) = M, we have by Theorem 3.4 that u(x,i) = M for every
(x,i)eU.

(i) We now consider the general case that Q(x) is a sub-Markovian matrix. Define a Marko-
vian matrix Q(x) = (g;j(x)) by taking g;;j(x) = g;;(x) and g;; (x) = —ZjEM\{i}q,-j (x). Let

(_)_( :» A;) be the conservative switched Markov process corresponding to G as in (2.1) but with
Q(x) in place of Q(x). The original switched Markov process (X;, A;) can be viewed as a
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subprocess of (X,, A,) killed at rate « (x, i) = g (x) — ¢ii (x); that is, for every ¥ (x,i) >0 on
RY x M,

Exi[¥(Xi. A)]=Exi[ec Oy (X Ap)].
where e, (1) = exp(— fot k(Xs, Ay)ds). We consider
v(x, i) 1= Ex i [(M = ) (Xep, Ary)i Tp < 0], (3.15)
which is a non-negative G-harmonic function in D x M. We can rewrite v(x, i) on U as
v(x,i) = Exi[ec(tp)(M = ) (Xep. Ary)]- (3.16)
Since u(xg, ig) =M >0,
0 < v(xo, i0) = MPx,i)(tp < 00) —u(xo,ip) =0,

that is, v(xo, io)_= 0. Thus by Theorem 3.4, v(x,i) =0 on D x M. This implies by (3.16) that
(M — ¢)(X+,, Arp) =0 Py ;-as. for every (x,i) € D x M. Consequently, we have

u(x,i)=MEy ;[éc(tp)] for (x,i) e D x M (3.17)
and so

u(x,iy =M+ ME, ;[2.(xp) — 1]

k7)) _ _ 7)) _ _
=M—Ex,,-|:/ K(XS,AS)exp<—/ K(Xr,A,)dr> dsi|
0 K
(9)) _ _
=M—MIEX,I-|:/ K(XS,AS)dS].
0

Let 71 :=inf{r > 0: A, # Ao} and denote by (_;’b be the Green function of £; 4+ g;; in D.
Since u(xg, ig) = M, we have by the strong Markov property and the construction of (X;, A;) in

Remark 2.2(a),
(9)) _ _
0:]Exo,i0|:/0 K(XS,AS)dS]

TPAT] _
= Exg.io U K (Xs, io) ds} (3.18)
0

=G} (-, i0)) (x0) = 0.

\%

Thus Gi[())(K(-, ip))(xp) = 0 and so by Proposition 3.3 we have «(x, ip) = 0 a.e. on D. Observe
that

u(xo,i0) = Exq io[c (1) Xz, Arp)]
=Expio[¢ Xep, Arp); o < 11|+ Exgig[ec D)@ X1y, Arp)s T < Tp].
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Hence using the strong Markov property, we have

0= (M —u)(xo, i) = Exy i, [(M — M (tp))]
= EXOJO[(M — Mey (TD))§ 71 =< TD]
= Exg.ig[(M — )Xz, Ar)); 11 < 7]

= > Buyig[(M = w)(Xe,—. ) @igj/Gioie) Xz, )i 11 < Tp]
jeM\fio}

= Y GY(gij(M — ) (xo).
jeM\{io}

By Proposition 3.3 again, we have ZjeM\{iO} Qigj (M — u) =0 ae. on D. Since Q is irre-
ducible on D, for any j # ip, there is a self-avoiding path {jo = io, j1,..., jn» = j} so that
{x € D:qj ., (x) > 0} having positive Lebesgue measure for k = 0.1, ..., n — 1. Thus we have
u(x, j1) =M on {x € D : g;;, (x) > 0}. By the argument above, this implies that « (x, j;) =0
a.e. on D. Continuing as this, we get « (x, jr) =0a.e.on D and {x € D : u(x, jx) = M} has pos-
itive Lebesgue measure for k =2, ..., n. This proves that x (x,i) = 0 a.e. on D for every i € M
and so u(x, i) = M for every x € D in view of (3.17). O

Before presenting the next version of strong maximum principle, we first prepare a lemma.
Lemma 3.6. Assume conditions (A1)~(A3) hold, D is a bounded connected open set in R?, and
Q(x) is irreducible on D. For any ¢ >0 on D x M, either E, ; OTD ¢ (X5, Ag)ds > 0 for every
(x,i)e Dx MorEy; [(° ¢(Xs, Ay)ds =0o0n D x M.

Proof. Denote by G"D the Green function of £; 4 g;; in D. Using the strong Markov property at

the first switching time 71 :=inf{t > 0: A; # A,_} in a similar way to that for (3.18), we have
for every (x,i) € D x M,

D
v(x,i) ::Ex,i/ ¢ (X5, As)ds
0

TpAT] TDAT]
= ]Ex,i‘/(; o (Xy, As)ds+]Ex,i|:/ o (X5, Ag)ds; Ty <TD:|
T

1

Gh(#C,))(x) +Exi[v(Xe, Ar)i T < D]

Gip(eC D)W+ Y Eei[v(Xe, k) (qi/qi) (Xr2): 11 < Tp]
ke M\{i}

GhH(¢C. D)@+ Y Ghquv(. b)), (3.19)
ke M\{i}

where the last identity is due to [28], page 286; see the proof of [13], Proposition 2.2.
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Suppose v(xg, ip) = 0 for some (xg,ig) € D x M. Then by Proposition 3.3, v(x,ip) =0
on D. For any j € M \ {ip}, since Q(x) is irreducible on D, there is a self-avoiding path
{jo =10, j1,..., ju=j} sothat {x € D : qj ., (x) > 0} having positive Lebesgue measure for
k=0,1,...,n— 1.1t follows from (3.19) and its iteration that

0= (0. i0) = G (qioji (Gpajnja (- (G (@juorjv 2 1)) ++))) (x0) = 0.

We conclude from Proposition 3.3 that g, _,j(-)v(-, j) =0 a.e. on D. So there is some y € D so
that v(y, j) = 0. By (3.19) with (y, j) in place of (x, i) and Proposition 3.3, we have v(x, j) =0
for every x € D. (]

Theorem 3.7 (Strong Maximum Principle II). Suppose that conditions (A1)—(A3) hold, D is
a bounded connected open set in R? and Q(x) is irreducible on D. If f(-,i) € C*(D),
Suprdx A f =0, and

Gf(x,i)>0  for(x,i)e D x M,

then f(x,i) can not attain its maximum inside D x M unless

fx,i)= sup f(y,J)) on D x M.
R4 x M

Proof. Suppose f achieves its maximum at some (xg, ig) € D x M. Let D; be any relatively
compact connected open subset of D that contains xo and that Q(x) is irreducible on D;. Then
by It6’s formula, we have for every (x, j) € D1 x M,

™D,

F0 D) = B[ Xy Ay )] =B [ Gr 0K 2 as
0 (3.20)

SEx,j[f(X‘[D17ATDl] Z:h(-x7j)'

Let M = sup(, jyerdx pm f (¥, J), which is non-negative. In view of (3.20),

M= sup  f(y,))= f(x0,i0).
(y.))eD{xM

Clearly, h < M and h is G-harmonic in D; x M. We have by (3.19), h(xo, ip) = M and
‘L'Dl
Exo.i /0 Gf(Xy,As)ds =0.

Theorem 3.5 and Lemma 3.6 tell us that h = M on D; x M and E, ; fOTD‘ Gf(Xs,As)ds =0
for every (x,i) € D; x M. Consequently, f(x,i) = M on D; x M. Letting D increase to D
establishes the theorem. Il
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4. Harnack inequality

This section is devoted to the Harnack inequality for G-harmonic functions. For simplicity, we
introduce some notation as follows. Forany U = D x M C RY x M, recall that

tp =inf{t >0: X, ¢ D}.
We define

T}, :=inf{t >0: X, € D, A, =i}, ieM.

Proposition 4.1. Assume conditions (A1)-(A3) hold. There exists a constant C» not depending
on xo € R? such that for any r € (0, 1) and any i € M,

Pro.i (TB(xg.r) < Car?) < 1/2. 4.1

Proof. Let v(-,i) € C>(R?) be a nonnegative function independent of i and

2

fe=xl I —xol =2,
v(x,i)=
re, lx —xo| > r

such that v is bounded by c172, and its first and second order derivatives are bounded by c¢{r and
c1, respectively. Since P, ; solves the martingale problem, we have

IATB(xg,r)
Exo,iv(Xl/\TB(XO_r)’ AIA'L'B(XOJ)) = U(-x()v l) + Exo,l' / gU(st AS) ds'
0

Using the boundedness of the first and second derivatives of v(-, i) and Q(-), we have

t/\rB(xo.r)
/ Gu(X,, Ay)ds < .
0

It follows that
]EX(),iU(XI/\TB(XO,r)s At/\TB(xo.r)) - U()CO, l) < cat.

On the other hand, since v(Xcy, s A ) = r2, we obtain

2
Exo,iU(Xl‘/\TB(XOvr)s AtATB(xo,r)) Z r ]PX(),II(IB(X()J) S t)
Hence
2
r Pro,i (TB(xg,r) < 1) < C2t.

Taking Cr = %2 in the above formula and replacing 7 by Cor2, we obtain (4.1). ]
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Proposition 4.2. Assume conditions (A1)—-(A3) hold. For any constant ¢ € (0, 1), there exist
positive constants C3 and C4 depending only on & such that for any (xo,i) € R? x M and any
r € (0, 1), we have

(@) Py i(tB(xg.r) > C3r?) = 1/2 for (x,i) € B(xo, (1 —&)r) x M.
(b) Eyitp(y.r) = Car? for (x,i) € B(xp, (1 —&)r) x M.

Proof. By Proposition 4.1, there exists a constant ¢; depending only on ¢ such that for any
(x,i) € B(xg, (1 —&)r) x M, we have

Pr.i (8o < €17%) < Py i (Trer < c11?) < 1/2,
which implies (a). Hence,
Ex,iTB(xo,r) = 61F2Px,i(TB(x0,r) > Clr2) > c1r?)2.

Then (b) follows. O

For a measure 1 on R and y € RY, we use (dx — y) to denote the measure v(dx) defined by
v(A) := (A —y) for A € B(R?), where A — y := {x — y : x € A}. We know how the switched
Markov processes jumps at the switched times between different plates. The following describes
how the switched Markov process (X, Ag) jumps at non-switching times.

Proposition 4.3. Assume conditions (A1)—(A3) hold. Suppose A and B are two bounded open
subsets of R? having a positive distance apart and io € M. Then

t
" lixeaemacin = [ 1L (AT, (Xs, B = X0)ds (42)

s<t 0
is a Py ;-martingale for each (x,i) € RY x M.
Proof. Let A; be a bounded open subset of R? so that A C Aj C A; C BC. Let v(-, j) =0

for all j # io, and v(-,ip) € CZ(R?) so that v(x,ip) =0 on A; and v(x,ip) = | on B. Fix
(x,i) € R? x M. Note that

t
MY (1) = v(Xs, Ay) — v(Xo. Ag) — / Gu(Xy, Ay)ds
0

is a P, ;-martingale, so is fot 14(X5_)dMV(s). Define 1o =0, 11 = inf{t > 0: X, € A}, 1» =
inf{t >11: X, € Aj'}, and for k > 2,

Tok—1 = inf{t > 1o4—1) : Xr € A},

o =inf{t > t—1 : X; € AT}
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Note that v(X,, A;) =0for¢ € Ukzl[TZk—lv ) and 14 (X,_)=0forr € Ukzl [T23k—1)> T2k—1)-
Thus the Riemann sum approximation of stochastic integral yields that

t o0
f 1A (XS—)de(s) = Z IA(X‘Ezk/\t—)(v(szkAla AtzkAt) - U(X‘L'Zk/\t—v A‘rzkAt—))
0 k=1

t
_ / LA(X,)Gu(Xs, Ay) ds
0

= 1a(X)[v(Xy, Ay — v(Xs—, A)]

s<t
t
— / 14(X5)Gv(Xs, Ag)ds.
0

Since v(y, j) =0on A; x M, we have

Qv(y,j)=/ v(y +z, j)nj(y,dz)=/ v(z, iy, dz—y)
R4 R4
for every (y, j) € A1 x M. Therefore,

D 14X [v(Xs Ay) = v(Xs—, Ag)]

s<t

t
—/ lA(XS)/ v(z, Ag)ma, (Xs,dz — X)ds is a P, ;-martingale.
0 R4

Because A and B are a positive distance from each other, the sum on the left of the above formula
is in fact a finite sum. With these facts we can pass to the limit to conclude that

D 14X ) [1Bxig) (Xss Ae) = 1pctioh (X, Ay)]

s<t
t
— / 14(Xy) /d 1Bxtig) (2, As)ma, (X5, dz — X)) ds is a P, ;-martingale,
0 R

which implies

t
ZI{XS,GA,XSGB,ASm'O} —/ 14X A )=igyTA, (Xs, B — X) ds
0

s<t

is a Py ;-martingale. O

Proposition 4.4. There exist 7y € (0, 1/2] and Cs > 0, depending only on ko and k| in (A2)-
(A3) and an upper bound on kazl 1gkk |l 00> Such that for any xq € RY and any r € (0,79), we
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have

sup Ex,iTB(xo,r) < C5r2. (4.3)
(x,i)€B(xg,r)x M

Proof. Let u(x) € C2(R?) be a convex function in x with values in [0, 10] and increase with
respect to |x| such that
u) =x?  xl<2.

Let 7y € (0, 1/2) be sufficiently small. For xo € R¢ and r € (0, 7), let v(x, i) = u(=*). Then
for any (x,i) € B(xg,r) x M, since v(-, -) is bounded between 0 and 10 and Q(-) is bounded,
there exists ¢; > 0 such that

Qv (x, (i) = —c1. 4.4)
Moreover,
o
LOV(x, i) = Z au(x, z) +Zb (x, ”(x )

k=1

d d 4.5)
=D 2a(x, i)r 2+ 2, 1) (v — xo.)r

k=1 k=1
>cor 2 —cyr > eqr

provided 7y is small enough. Define
LDv(x,i)= /d[f(x +2.0) = f(x, i) = V(x,i) - 2l an]mi(x, dz).
R

We break E(j)v(x, i) into two parts, |z] <1 and |z| > 1, respectively. For the first part, by the
convexity of u(x), we deduce

/ [v(x+z,i)—v(x,i)—Vv(x,i)-z]n,-(x,a’z)20. 4.6)
lz|=1

For the second part with |z| > 1, since r < % we know x + z ¢ B(xg, r) for any x € B(xq,r).
Then we have v(x +z,i) > 1 and v(x, i) < 1, it follows that

/ [v(x+z,i)—v(x,i)]r[i(x,dz)zo. 4.7)
lz|>1

Since Py ; solves the martingale problem, together with (4.4), (4.5), (4.6), and (4.7), we deduce
that

Ex,iU(Xt/\‘[B(XOJ))v At/\TB(xo,r))) - U(.X, l)

INTB(xg,r) ) (48)
— Ex,i / gv(XS1 Ag)ds > csr IE,\f,i(t N TB(xo,r))-
0
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By the definition of v(x, i),
B iv(Xintpigm)» Minatpeg,n) — v, i) < 10. (4.9)
It follows from (4.8) and (4.9) that
esr 2Ry i (f A TB(x.r)) < 10.
The conclusion follows by letting t — oo. O

In the remaining of this section, we assume that conditions (A1)—(A4) hold.

Definition 4.5. The generator G or the matrix function Q(-) is said to be strictly irreducible on
D if for any i, j € M and i # j, there exists q?/. > 0 such that infyep g (x) > ql.ol..

Proposition 4.6. Assume conditions (A1)~(A4) hold. Let xo € R? and r € (0,7y), where 7y is
the constant in Proposition 4.4. Suppose that the operator G is strictly irreducible on B(xg, ).
Let H : R? x M+ R be a bounded non-negative function supported in B(xq, 2r)¢ x M. Then
there exists a constant C¢ > 0, depending only on ko and «1 of (A2)—(A3), an upper bound on
Y i1 lgkklloo and on {ql.oj; i # j € M} in the definition of strict irreducibility of G, such that for
any x,y € B(xg,7/2) and anyi € M,

IEx,iI'I(X )< C6052rEy,iH(X A

TB(xo,r) ’ ATB(XO,r) TB(XO,r) ’ TB(xo,r))’

Here a; is the constant appeared in condition (A4).
Proof. Denote B = B(xq, r). Define
u(x,i)=Ey;H Xy, Ary) for (x,i) € B x M.

Since H =0 on B(xp, 2r) x M, we have by using the Lévy system formula of Y = (X, A) given
by Proposition 4.3 that

w(x, i) =Ey;i[H(Xcp, Ary); Xrp— € B; X1 € B(x0,2r)°]

. ) (4.10)
:Ex,i|:/ / H(Z,AS)nAS(Xs,Z—Xs)dzds].
0 B(xq,2r)¢

We deduce that

B m
wed <Bol [ S HGDF Xz - X dzds
0 B(xp,2r)¢ =1

m
< Z/ H(z, j)supTj(w,z —w)dz |Ey ;tp
=1 B(x¢,2r)c

weB
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m

§clr22/ H(z, j)sup Tj(w,z — w)dz
i=1 B(xq,2r)¢ weB

=c1r’M,

where the last inequality is a consequence of Proposition 4.4, and

M=) M Mj= H(z, j)sup Tj(w,z — w)dz.
B(xq,2r)¢ weB

j=1
Thus,
u(x,i)y<cir*M  for (x,i) € B x M.
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“4.11)

Let t; = inf{r > 0: A; # Ao} and denote the Green operator of £; + ¢;; in B by G’é. Define

hi(x) =Ex i[H(Xry. Arp); T8 <11, (x,i) € B x M.
By the strong Markov property of (X;, A;), we have
u@, i) =hi(x) + Y Gy (qie(u. b)) (x).
ki
By (4.11) and the fact that [|gixllcc = SUP,cga |gik (x)] < 00, we arrive at
Y Gl(qi(u ) @) < eir’ MlgicllooEx i s
ki ki

2 2 4
<> ar’Mlgillocir? = cxMr?.
ki

Combining above estimates, we obtain

u(x,i) <hj(x) +coMr*  for (x,i) € B x M.

4.12)

(4.13)

Next, we drive an lower bound for E, ; (tp A 11) for (x, i) € B(xp,r/2) x M. By Proposition 4.2,

there exists ¢3 > 0 such that

Px,i(rg > C3r2) >

N =

It follows that
. 2 _ 2 2
Pyi(ta AT1 = c3r”) = Py i(t > c3r” and 11 > c3r7)
> exp(—l|qukllsoc3r®)Py.i (5 > c3r7)

~2
z exp(_HQkk”oocl‘sro) =:c4.
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Then we obtain
E,i(tg A1) > c3cqr?  for (x,i) € B(xp, r/2) x M. (4.14)
By assumption (A4), for any z € B(xg, 2r)¢,

sup 77 (w, z — w) < ay, inf 7;(w,z —w).
weB weB

By this inequality and (4.14), we have by using Lévy system formula of ¥ = (X, A),

TBAT]
hi(x):Ex,i[/ / H(z, As)ﬁAX(Xs,Z_Xs)dst}
0 B(x0,2r)¢

TBAT]
>]E . H , . . f ~. i _ d d
- [/0 /B(xo,gr)c (z,0) tnf 7;(w, z = w)dz S} (4.15)

> 062_,1 MiEy i (tg A T1)
> csay Mir®  for x € B(xo,7/2).

On the other hand,

TBAT]
hi(x) = Exs [ / / H (o A)Fn, (X2 — Xy)ds ds}
0 B(xg,2r)¢

TBAT]
fEx,i[/ / H(z,i) sup %i(w,z_w)dzds} (4.16)
0 B(xg,2r)¢

weB

<ME, tp

§C6M,-r2 for x € B(xg,1/2).
Note that for i # k, inf, cpa gik (x) > g3 > 0. By (4.12) and (4.15), we have

D Gh(qin(uC k) x) =Y esay,! Mir® Gy (qin ()1 3r/4)()) (x)

ki ki
> Y esay,! Mir? g B i (Thesg 3r/) A T1)
ki
(4.17)
> chaz_rl Mkrzqi(}(mr2
ki
=cgay,'r*Y My forx € B(xo, r/2).

ki

In the above, we used the fact that Ey ; (tp(xy,3r/4) A T1) > c7r2. This can be derived in the same
way as that of (4.14). By (4.12), (4.13), (4.15), (4.16), and (4.17), for any x, y € B(xp, r/2) and
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i € M, we have

u(y. i) =hi(y)+ Y G(quul- k)
ki
> C5C¥2_rl M,-r2 + Cgaz_rlr4 Z M,
ki

> C90£2_rl <Ml-r2 + r Z Mk>

ki
> Cloolz_rl (M,‘I”2 +I’4M)
> crio5, u(x, i).

The proof of the proposition is complete. (|

Theorem 4.7. Assume conditions (A1)—~(A4) hold. Let D C RY be a bounded connected open
set and K be a compact set in D C R?. Suppose that G is strictly irreducible on D. Then there
exists C7 > 0 which depends only on D, KC and operator G such that if f(-,-) is a nonnegative,
bounded function in RY x M that is G-harmonic in D x M, we have

[, ) <Crf(y,Jj) forx,yeKandi, j € M. (4.18)

Proof. We first show that for each fixed ball B(xg,4R) C D with R < % ATo (where 7y is given
in Proposition 4.4), there exists a constant C > 0 that depends only on R A 1, k¢ and «; of
(A2)—(A3), an upper bound on ;" ||gxk |l and on {ql.ol.; i # j € M} in the definition of strict
irreducibility of G on B(0, 4R), such that for any nonnegative, bounded and G-harmonic function
f(, ) in B(xg,4R) x M, we have

fx,i)<Cf(y,j)  forx,ye B(xo, R)andi, j € M. (4.19)

By looking at f + ¢ and sending ¢ to 0, we may suppose that f is bounded below by a posi-
tive constant. By looking at af (x, ip) for a suitable constant a if needed, we may assume that
inf(y ieB(xo. R)x M f(x,0) =1/2.

(a) Let us recall several results. Let r < 7y < 1/2. By Proposition 3.1, there exits a constant
c1 > 0 such that for any x € B(xp,3R/2) and any i € M,

Pfi,i(Tli?(x,r/Z) < TB(x0,4R)) > C17‘6. (4.20)

By Proposition 3.2, there exists a nondecreasing function @ : (0, co) — (0, co) such that if A is
a Borel subset of B(x,r) and |A|/rd > p for a given p, then for any (y,i) € B(x,r) x M and
r €(0,70),

Py (Th < tgeon) = = @(1Al/r9). 4.21)

M| —
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By Proposition 4.6 and H being a nonnegative function supported on B(x, 2r)¢, for any y, z €
B(x,r/2) and i € M,

]Ey,iH(X‘[B(X’,-) P AfB(x.r)) = CZ“ZrEz,iH(XrB(Xﬁ P A‘[B(X,,))- (422)
To proceed, we first consider the case that

inf  f(x,i)<1 for each i € M. (4.23)
xeB(xg,2R)

Thus, there exists {X;};c A such that
X; € B(x0,2R) and f(x;,i) <. 4.24)

(b) Forn > 1, let
rm=c3R/ n2,
where c3 is a positive number such that Y .2, r, < R/4 and r,, € (0, 7)) for all n, that is,

! A0 (4.25)
< ———5 N —. .
T4y 12 R
In particular, it implies r, < R/4. Let &, c4, c5 be positive constants to be chosen later. Once
these constants have been chosen, we can take N; large enough so that

ENyexp(can)esr®™? > 2y foralln=1,2,.... (4.26)

The constants «; and B are taken from assumption (A4). Such a choice is possible since ¢4 > 0
andr;, = C3R/}’l2. Suppose that there exists (x1, 1) € B(xg, R) X M with f(x1,i1) = N for N|
chosen above. We will show that in this case there exists a sequence {(xg, ix) : kK > 1} with

(Xk+1, ik+1) € B(xg, 2rg) x M C B(x0,3R/2) x M,

“4.27)
Nit1 = f k41, ig+1) = Niexp(ca(k + 1)).

(c) Suppose that we already have {(xx,ix); 1 < k < n} so that (4.27) is satisfied for k =
1,...,n — 1. Define

An=1{y € BGn,1n/2): f(y,in) = ENurl /2 ).

We claim that
[Anl 1
—_ < -, (4.28)
|B(xn,rn/2)| — 4

|A

Suppose on the contrary, an‘/z)l > 1/4. Let F be a compact subset of A, such that

ﬁ > 1/4. Then F C B(xo, 2R). By (4.20),

_ . in 6
]P)x,-n,l,, (TB(xn,r,,/2) < TB(xo,4R)) > Clry,
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where ¢ is independent of x,, and r,,. By the strong Markov property of (X, A;), we have

. (Tn _ . (Tin . in
]P)xi,,‘ln (TF < TB(XO»“-R)) = ]Ex,'n,l,l []P)XT;‘;,( /2),1,, (TF < TB(X,“V,,))7 TB(x,,,rn/Z) < TB(x0,4R)]
Xn,'n

1 _(2¢|F| .
z §(D< rd )Pximin (TI;(x,,,r,,/Z) <TB(x0,4R))

n

where a(d) is the volume of the unit ball in R?.
We take c5 = ®(a(d)/4)c1 /2. By the definition of G-harmonicity and the above estimates, we
obtain

1> f(Xi,.in) = Ex, i, [ f(X ); TE' < TB(x0.4R)

i A
TR Atg(xgaR)  TE ATB(xg,4R)

e

B
EN,r, i
K’; “Px, i (TF < TB(x0.4R))
4.29)
6
= ENnrr?+ cs
>

Z 27
which is a contradiction. Note that the last inequality follows from N, > Njexp(can) and~our

choice of N; given by (4.26). Thus, (4.28) is valid. Therefore, there is a compact subset F* of
B(xp,r,/2)\ A, such that |F| > %|B(x,,, rn/2)|. By the definition of F and A,,,

forx e F.

B
F i) < ENyry
K

Denote ., 1= TB(x,,r,)> Pn = IP’X,D,',,(TI? <1,,) and M, := SUD(y,, /)€ B(tn, 2r) x M f(y,Jj). Since
|F| > 1|B(xy,r,/2)], using (4.21), we obtain

1 d
mzf{%) ‘=g forn=1,2,.... (4.30)

By the definition of G-harmonic function and the right continuity of the sample paths of (X;, A;),
we have

Ny = f(xn,in)
= Exnvin [f(XTLn 5 ATﬂl) : Til; < trn]
F F

+ By, i, [ f(Xn,,, Ag,) s X(3,) € BCtn, 2), T, < TH ] 431)



1072 Chen, Chen, Tran and Yin
+ By, i, [f(Xe,, o Ag,) : X(T,) € B, 2r0), T, < T ]

B
N,r,
< SN (= p)
K2

+ By, i, [f (X, s Ay) : Xe, & BCoa, 2r), 7, < TH].

~ ]
Take a point y, € F. Then f(y,,i,) < % ‘We then deduce from (4.22) that

B
Ny,
5 Narn > f(Ynsin)
> Ey,.in[f (X, . Aq,,) 0 Xz, & B(xn,2ra)]
1
= —]Exn,in [f(Xt,n s Arr,,) : X‘[rn ¢ B(x,, 27’”)].
2002,

It follows that

B
N,
By i [ (X, Mg ): Xe, & By, 2r)] < S0/ 200
K2

C
<§2

= 2_ﬁNna

where the last inequality is obtained by noting that ay,, < k2(2r,)~#. Hence by (4.31),

Ny < (5 +§2>NH+M,,<1 — ). 4.32)
K2 28

Denote n =1 — (5—2 + ‘52%). Let £ > 0 be sufficiently small such that ﬁ > 3/2. By (4.30) and
(4.32), M,,/N,, > 3/2. Using the definition of M,,, there is (x,+1, in+1) € B(xp, 2r,) X M so
that

Nn+l = f(xn+ly in+1) > 3Nn/2

We take ¢4 = In(3/2). Then (4.27) holds for kK = n. By induction, we have constructed a sequence
of points {(xx, ix)} such that (4.27) holds for all k > 1. It can be seen that Ny — 0o as k — 00, a
contradiction to the assumption that f is bounded. Thus, for a positive constant N sufficiently
large such that (4.26) holds, we have

f(x,i) < N; for all (x,i) € B(xg, R) x M.
Since inf(x jyeB(xo, R)x M f(x,7) =1/2, we arrive at

f(x,i) <2Ni f(y,j),  x,y€B(xo,R)andi, je M. (4.33)
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For any compact set K C D, we use a standard finite ball covering argument. Since K is
compact, there exists a finite number of points z; € K, k=1, 2, ..., n such that

n
Kcl|JBG. R CD,
k=1

and |zx — zxk—1] < R/2. Letx,y € K and i, j € M. Applying Harnack inequality (4.33) at most
n + 1 times, we obtain f(x,i) < 2Nt £(y, j).

Now we suppose that (4.23) is invalid. Then there exists i € M such that f(x,i) > 1 for all
Xx € B(xg,2R). Set

Ki:= inf  f(x,i), K := sup K;, g(x,i):= f(x,i)/3K.
x€B(xp,2R) ieM

It follows that (4.23) holds with g in place of f. Moreover, if iy € M and K = Kj,, then
g(x,ip)>1/3 for x € B(xg,2R).
By the same argument as in Theorem 3.4, there is a constant ¢7 > 0 such that

8(x,1) = Gy 2y (iig (V8 i0)) (x)

> c7,

for all (x,i) € B(xg, R) x M, where GZ(XO 2R) is the Green operator of X' in B(xg,2R). Note

also that infyep i, (x) > qloio > 0. The Harnack inequalities for g, and for f can be established
similarly as in the previous case. (]

5. Further remarks

This paper has been devoted to switching jump diffusions. Important properties such as maxi-
mum principle and Harnack inequality have been obtained. The utility and applications of these
results will be given in a subsequent paper [7] for obtaining recurrence and ergodicity of switch-
ing jump diffusions. The ergodicity can be used in a wide variety of control and optimization
problems with average cost per unit time objective functions (see also various variants of the
long-run average cost problems in [18]), in which the instantaneous measures are replaced by the
corresponding ergodic measures.

We note that the references [9-12,26] are devoted to regularity for the parabolic functions of
non-local operators (on each of the parallel plane). The results obtained in this paper should be
useful when one considers regularity of the coupled systems or switched jump-diffusions.
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