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We study the statistical properties of the least squares estimator in unimodal sequence estimation. Although
closely related to isotonic regression, unimodal regression has not been as extensively studied. We show
that the unimodal least squares estimator is adaptive in the sense that the risk scales as a function of the
number of values in the true underlying sequence. Such adaptivity properties have been shown for isotonic
regression by Chatterjee et al. (Ann. Statist. 43 (2015) 1774-1800) and Bellec (Sharp oracle inequalities
for Least Squares estimators in shape restricted regression (2016)). A technical complication in unimodal
regression is the non-convexity of the underlying parameter space. We develop a general variational repre-
sentation of the risk that holds whenever the parameter space can be expressed as a finite union of convex
sets, using techniques that may be of interest in other settings.
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1. Introduction

In this paper, we investigate the statistical properties of the least squares estimator in unimodal
sequence estimation, where the sequence rises to a mode, and then decreases. Unimodal regres-
sion is a natural type of shape constrained inference problem. Although closely related to isotonic
regression, unimodal regression has not been as extensively studied. We analyze the least squares
estimator for unimodal regression, showing that the estimator is adaptive in the sense that the risk
scales as a function of the number of values in the true underlying sequence. When the sequence
has a relatively small number of values, the estimator achieves essentially parametric rates of
convergence. Such adaptivity properties have been shown for isotonic regression in the recent
literature ([5,14]). However, existing proof techniques for isotonic regression do not directly ex-
tend to the unimodal setting — a technical complication is the non-convexity of the underlying
parameter space. We develop a general variational representation of the risk that holds whenever
the parameter space can be expressed as a finite union of convex sets, and employ empirical pro-
cess techniques that give good upper bounds. These techniques enable us to show that the least
squares estimator for unimodal regression, to a considerable extent, enjoys similar adaptivity
properties as the least squares estimator for isotonic regression.

In more detail, we consider the problem of unimodal regression where for design points x| <
xp <--- <Xx, we observe

yi=fx)+z, fori=1,...,n,
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where f :R — R is a unimodal function and the random errors z; are assumed to be indepen-
dently distributed as N (0, 02), with the variance o2 unknown. Our analysis also carries over to
the case when z is a mean zero error vector with independent entries and absolute value bounded
by a constant o > 0. We consider the design points to be fixed but arbitrary, and hence the prob-
lem of estimating the unimodal function f reduces to the problem of estimating an unknown
vector 6* € R” from observations

yi =0 +zi, fori=1,...,n, (1.1)
where 0* is constrained to lie in
Uy:={0 €R":0] <Oy <+ <Op >0Opy1 = >0, forsome 1 <m <n}. (1.2)

We refer to any vector in U, as a unimodal sequence; such a sequence first increases and then
decreases.

In this paper, we are concerned with the statistical problem of estimating 6* € Uf,, from the
data y. This problem has interesting structure that we shall exploit. For any 1 <m < n, let us
define the set

Cn={0€R":01 <Or<---<Op>0ps1>--->06,}, (1.3)

thus using the index m to indicate the mode of the sequence. Each set C,, C R” is a closed convex
cone. When m = 1, the set C is the collection of decreasing sequences; when m = n, the set Cy,
is the collection of increasing sequences. Since U, = | J);,_; C,u, we see that the collection of
unimodal sequences can be written as a union of n closed convex cones, but is not itself a convex
set.

The least squares estimator (LSE) 9 is defined as the minimizer of the squared Euclidean norm,
lly — 6|2, over 6 € U,,

0 :=argmin|y — 6> (1.4)

6el,

Since U, is not a convex set, the LSE 5may not be uniquely defined. In case there are multiple
minima, the LSE  can be chosen arbitrarily over the set of minimizers. For each 1 <m <n
since C,, is a closed convex cone, we can define o™ as the unique projection of y onto C,,. Then
the LSE can also be written as

§:= argmin |y—06]°> (1.5)
0e(ol,....0}

The problem of computing a projection to the set of unimodal sequences has received con-
siderable attention ([10,11,30,31]). Stout [31] shows that by using variations of the well-known
pooled adjacent violators (PAVA) algorithm for isotonic regression ([3,21]), one can design an
O (n) algorithm to compute a unimodal projection, and hence the LSE. Thus, there is effectively
no computational price to pay when fitting unimodal sequences rather than monotone sequences.
At a high level, the contribution of the current paper is to show that there is also essentially no
statistical price to pay.
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Compared with monotone or isotonic regression, the unimodal regression problem has re-
ceived relatively little attention in the statistics literature. Frisén [19] presents several applica-
tions of unimodal regression and introduces the least squares estimator, without analyzing its
risk properties. Shoung and Zhang [29] study the convergence of the mode of the LSE as an
estimator of the true mode of a unimodal function. For classes of unimodal functions indexed by
a smoothness parameter, the authors prove rates of convergence of the mode of the LSE and also
show that the rates are minimax optimal up to logarithmic factors, for a given smoothness class.
Kollmann et al. [23] propose the use of a penalized estimator based on splines to estimate the
underlying unimodal function, but without studying the risk properties of their estimator. Hence,
apparently little is known about the behavior of the LSE 6 as an estimator of 6*. The problem
of unimodal density estimation is actually more well studied than its regression counterpart ([6,
7,17,27]). A recent work worth mentioning here is [2] where the authors study the estimation of
discrete unimodal probability mass functions.

The isotonic regression problem is closely related, except that the underlying sequence is
assumed to be nondecreasing instead of unimodal. As is clear, with the mode known, fitting a
least squares unimodal sequence reduces to fitting an increasing sequence to the first part and a
decreasing sequence to the second part. The risk properties of the LSE in the isotonic regression
problem are fairly well understood, having been intensively studied by a number of authors
([8,14,16,26,32,33,35,36]). In particular, Zhang [36] shows the existence of a universal positive
constant C such that

2 #y\ 2/3 2
R(@*,@:%Ene*—é‘”"’gc{(%@)) + 2 l:g”} (1.6)

with V(6*) := 6; —0}". This result shows that the risk of 0 scales as n=2/3 in the sequence length,
provided V (6*) is bounded from above by a constant. It can be proved that n /3 is the minimax
rate of estimation in this problem, see [14].

For a monotonic vector 8 € R” we define s(0) to be the cardinality of the set of values:

s(0) = [{01. ..., 6n}]. (1.7)

Also let us define M, = {0 e R" : ) <--- <6,} to be the set of monotonic sequences. A com-
plementary upper bound on R(6*,0) in the isotonic regression problem has been proved by
Chatterjee et al. [14] who show that (for n > 1)

6* — o2 N o2s(9) oz "
og—— 1.
" 1 250

R(6%,8) <6 inf

1.8
0eM, (1.8)

This risk bound has recently been further improved by Bellec [5], with the constant 6 being
improved to 1, and with a removal of the assumption that the true underlying sequence 6* is
isotonic, yielding

R(6%,8) < inf

0* — 0 2 2 0
(” I, 50 g ) (1.9)
feM,

n n RS
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The bounds (1.6) and (1.9) provide a nearly complete understanding of the global accuracy of
the LSE 6 in isotonic sequence estimation. In particular, the risk of the LSE can never be larger
than the minimax rate (¢2V (6*)/n)*/3, while it can be the parametric rate (up to log factors)
o2 /n, up to logarithmic multiplicative factors, if 6* can be well-approximated by 6 having small
s(0). In fact, the sharp oracle inequality (1.9) also implies parametric rates for 6 that is well
approximated by a piecewise constant sequence with not too many values. It also gives rates
of convergence for 0 to the projection of 6* in the cone M, in case 6* is not in M,. So,
in this sense, the LSE in the isotonic regression problem is automatically adaptive to piecewise
constant sequences. Such automatic adaptivity properties are also seen in other shape constrained
estimation problems such as convex regression ([14,22]) and monotone matrix estimation ([13]).
The goal of the research leading to the current paper was to extend the parameter space from
isotonic to unimodal sequences and investigate whether the risk bounds (1.6) and (1.9) continue
to hold. The following section summarizes our findings.

2. Results

Our first result establishes minimaxity of the least squares estimator for unimodal sequence esti-
mation.

Theorem 2.1. Fix any positive integer n and 0* € Uy. Let V (6*) = max|<;<, 6/ —minj<;<, 6.
There exists a universal constant C such that for any positive o > 0 we have the following upper
bound with probability not less than 1 —2n~%,

% [6—677 < Co*P(v(*) +0) "0+ (C + 24a)azlo$.

This is the analog of (1.6) in unimodal regression. It shows that the least squares estimator 0
converges to #* at the rate /3 in mean squared error loss, uniformly for all unimodal sequences
6* with V (6*) bounded. Since the minimax rate for the set of isotonic sequences with V (6*) < C
is O(n~%/3), and unimodal regression is concerned with a larger parameter space than isotonic
regression, this establishes that the least squares estimator is minimax rate optimal.

Our next theorem says that the least squares estimator is adaptive to sequences that are piece-
wise constant, in the sense that the risk scales according to the number of pieces of the true
sequence and has faster convergence rate than the worst case O (n~%/3) rate.

Theorem 2.2. Fix a positive integer n and 6* € Uy,. Let m* be a mode for 0*, that is 6* € Cpyx.
Let 51 equal the number of distinct values of (0], ...,0.) and sy equal the number of distinct

values of (6’;*“, ..., 0%). Fix any a > 0. Then the mean squared error satisfies

1~ 1
—||9—9*||2§1202<S1+S2>10g( en >+48(a+2)02(s1+s2)ﬂ @2.1)
n n s1+ 52 n

with probability at least 1 — 4/n®.
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This theorem says that the mean squared error of the LSE scales for a unimodal sequence
scales like (s1 + s2) logn/n where s is the number of constant pieces of the part of 6* which is
nondecreasing and s; is the number of constant pieces of the part of 8* which is nonincreasing.
Therefore, s; + s2 could be thought of as roughly the number of steps (going up and coming
down) in the sequence 6*.

As a consequence of the above theorem, when the true unimodal sequence has a bounded
number of steps, the risk of the least squares estimator will decay at the parametric rate of con-
vergence O(1/n) up to log factors. As an illustration, if 6* is the vector of evaluations of the
indicator function f(x) =Z{0 < x < 1} at n (sorted) points on the real line, the risk of 9 would
decrease at the parametric rate. The result shows that as long as 51 + s, = o(nl/ 3), rates of con-
vergence that are faster than the global minimax rate are obtained.

Remark 2.1. Both Theorems 2.1 and 2.2 hold when the error vector is Gaussian with indepen-
dent entries, mean zero and variance o2. They also hold when the error vector is composed of
mean zero independent entries with absolute value bounded by o > 0. An important ingredi-
ent in our proofs is the concentration result (Theorem 4.3) for Lipschitz functions of a Gaussian
random vector. The proof for bounded errors follow by using Ledoux’s concentration result (The-
orem 4.4) for convex Lipschitz functions of the error vector.

Remark 2.2. The same upper bound of Theorem 2.2 was obtained independently by Bellec [5]
and Flammarion et al. [18].

Remark 2.3. All our risk bounds are shown to hold with high probability. These bounds can
then be integrated to get bounds in expectation.

Remark 2.4. The rate of convergence in Theorem 2.1 scales with n in exactly the same way as
in isotonic regression, in spite of the fact that the parameter space is now a union of n convex
cones, each of which is comprised of at most two isotonic pieces. In particular, the risk bound in
Theorem 2.1 does not have a logarithmic factor of n.

Remark 2.5. No smoothness conditions are assumed of the underlying unimodal sequence. The
least squares estimator is fully automated and does not require any tuning parameters, as is often
the case for shape-constrained estimators.

Remark 2.6. Fitting the unimodal least squares estimator can provide a means of trading off
computational time for statistical risk accuracy in a concave regression problem. To explain,
note that the set of unimodal sequences contains the set of concave sequences. The latter has a
minimax rate of O (n~*/), which is naturally faster than the rate in unimodal regression. How-
ever, to the best of our knowledge, the running time for convex regression is at least quadratic,
O (n?), whereas runtime for unimodal regression is O (n). While the unimodal estimator will not
be concave in general, it will be close to the underlying concave sequence in an average £, sense,
for large n.

The worst case rate of convergence (Theorem 2.1) of the LSE for unimodal regression matches
that of isotonic regression, and the adaptive risk bound (Theorem 2.2) is almost as strong as
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the adaptive risk bound (1.9) for isotonic regression. We say almost because Theorem 2.2 is
useful for 6* which is exactly piecewise constant with a few pieces but may not be useful when
0* is very well approximatable by a piecewise constant with a few pieces. Risk bounds which
provide such “continuity” of risk are often referred to as oracle inequalities. Previous proofs for
oracle risk bounds in shape constrained problems appear to rely heavily on the convexity of the
parameter space; thus these techniques do not readily apply to unimodal regression, where U, is
nonconvex. In particular, existing proof techniques first bound the statistical dimension (see [1])
for a closed convex cone when 6* belongs to the lineality space of the cone (see [14]), and then
derive risk bounds for Gaussian widths of the tangent cone at 6* (see Proposition 1 in [5] and
Lemma 4.1 in [13]). Such techniques rely on the convexity of the parameter space and exploit the
KKT conditions for the projection onto closed convex sets. Our parameter space is not convex
and hence we are unable to directly use these results to prove oracle risk bounds.

The main complication in this problem is to handle the unknown mode location. Our analysis
reveals that even with the unknown mode, it is still possible to derive adaptive risk bounds for
piecewise constant unimodal sequences, when the number of steps is not too large. At a high
level, the main idea here is to show first that the risk depends on a local Gaussian width like
term. This fact is now known when the parameter space is convex and we are able to extend this
observation to our nonconvex parameter space. We analyze this local Gaussian width like term
and by various steps of refinement we show that this term scales like the mean squared error in
isotonic regression plus logarithmic terms.

3. LSE slicing lemma

In this section, we show that the loss I|5— 0*| has a variational representation whenever the
underlying vector 6* is known to belong to a parameter space C that can be expressed as a finite
union of convex “slices.” The lemma is a deterministic identity that generalizes Proposition 1.3
in [12]. For us, this lemma is directly applied in the proof of Theorem 2.2. This technique may
be of use in other contexts; for example the set of permutations arising in the analysis of pairwise
comparisons has this structure, see [15,28].

Lemma 3.1. Let C = U%:l C,, where each C,;, C R" is a closed convex set. Fix some 6* € C,
and let y = 0* + 7. Define the function fg~ : Ry — R as

2
t
for@)= sup (2,60 —60%)— —. 3.1)
0eC:|10—0%||<t 2
If@\e argming.c [ly — 6 |2 is a least squares estimator over C then

16— 0% € arg max fp«(1). (3.2)
=

Moreover, if t* satisfies fg«(t) <O for all t > t*, then

16 —6%| <*. (3.3)
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Relations (3.2) and (3.3) are deterministic, and do not depend on any distributional properties
of the error vector z.

Proof. To prove (3.2), first note that we can write

6 e argmin(||zl|> + |6 — 0*||* — 2(z, 6 — 6%)) (3.4)
feC

= argmax((z, 6 — 6*) — |6 — 0*]*/2). (3.5)
0eC

It follows from the second equation that
2

”5— 0*| € argmax sup (2,0 —0%)— —
>0 0eC:|0—0%|=t 2

2
t
= argmax( max sup (z.6 —0%)— —)
>0 \l=m=Mgec,|0—6%|=t 2

=argmax max h, (1), 3.6)

>0 l=m=M

where we have defined the functions £, : Ry — R as

I (1) = sup (z.0 —0%)— —. (3.7)
0€Cp:1|0—0%||=t 2

Now for each 1 <m < M define the functions g,, : R — R as

gn)=  sup (2,0 -0 (3.8)
0eCp:||0—6%| <t

If d,, = infyc,, 160" — v|| is positive, then we define g, (f) = —oo whenever ¢t < d,,. Since the set
Cy, is closed convex, it can be shown that g;, is a concave function of ¢. Such a calculation has
been done in the proof of Theorem 1 in [12] but for sake of completeness we prove the concavity
of g, in Lemma A.4 in the Appendix. Next, define functions f,, : R; — R according to

[2
fm(t):gm(t)_z- 3.9

Then f,, is strictly concave as a function of r whenever ¢ > d,,,. An application of the Cauchy—
Schwarz inequality shows that f;,(¢) decays to —oo as t — o0. These facts establish that f, (¢)
has a unique maximizer.
Let #,, be the unique maximizer of f,,,. We now show that #,, is a unique maximizer of %,,. It
is clear from the definitions that for all # > O we have h,, () < f;,(¢). Recall that
£2
Jn(tm) = sup <z, 60— 9*) -, (3.10)
0EC,:10—0%|| <t 2
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and let 6 e {6 € Cp : |10 —0%|| <1y} be a point where f, () is achieved. If it were the case
that ||6 — 0*|| =ty < ty, then we would have f, (t9) > f (t), contradicting the definition of 7,,.
Hence ||6 — 6*|| = t,,, implying that f,,, (¢,;,) = hy, (¢,). Therefore,

b (x) < fn(X) < fin (tm) = hm () (.11

for any x # t,,. This shows that #,, is a unique maximizer of 4, as well. Therefore we have
shown that

||/9\— 9*” € argmax max /(1) (3.12)
>0 1=m=M
=argmax max f,,(?) 3.13)
=0 1=m=M
= argmax fy« (1), (3.14)
t>0

thus proving (3.2).

It remains to prove (3.3). Since 6* € C there exists 1 < m* < M such that 6* € Cp,=. Now it
is easy to see that f;,,x(0) = 0 and hence max;>¢ f,+(t) > 0. Because of this fact and fp=(f) =
maxi<m<m fm(t) we have

masc fox(t) = 0. (3.15)
1>

This inequality combined with the representation formula (3.2) proves (3.3), finishing the proof
of the lemma. 0

4. Global risk bound

The goal of this section is to prove Theorem 2.1. We prove both Theorem 2.1 in this section
and Theorem 2.2 in the next section assuming Gaussian errors. The case of bounded errors will
also follow from our proofs. See Remark 4.1 for more details. Recall that for a subset F C R”
and ¢ > 0, the e-covering number N (g, F) is the minimum number of balls of radius ¢ required
to cover IF in the Euclidean norm. Throughout the following, C will represent a universal con-
stant, whose particular value might change from calculation to calculation. The following result
follows from the metric entropy results of monotone functions ([20]); a proof can be found in
Lemma 4.20 in [12]. By symmetry, the same covering number bound holds for nonincreasing
sequences.

Theorem 4.1 (Gao-Wellner). Let M, 51 ={veR" :a <v; <-.- <wv, < b} denote the set of
monotone sequences of length n taking values between a and b. Also recall that || - || denotes the
standard Euclidean norm. Then for any ¢ > 0,

Cynb—a) wn
S .

log N (e, Mapp, |- 1) <

where C is a universal constant.
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Throughout this section, z ~ N (0, 021,,) will denote a Gaussian random variable. We will
require the following chaining bound (see, e.g., [34]).

Theorem 4.2 (Chaining). For every 6* € M and t > 0,

t
E( sup (1,9—9*)>§l20/ Jlog N(e. B(6%.1)) de. 4.2)
6eB(6*,1) 0

where B(0*,t) denotes the standard Euclidean ball around 6% of radius t.

We will also require a standard Gaussian concentration inequality; the proof of the following
can be found in the argument after equation (2.35) in [25].

Theorem 4.3 (Gaussian concentration). Ler f : R" — R be a function that is L-Lipschitz, so
that | f(x) — f(y)| < L||lx — y|| for all x and y. Then for any t > 0,

2
P(f(2) <Ef(2) +0t) < exp(—zt?). 4.3)

Remark 4.1. Our entire analysis can be done when z is a mean zero error vector of independent
entries with absolute value bounded by a constant o > 0. This is done by invoking the following
concentration result whenever we have used the Gaussian concentration theorem for Lipschitz
functions. We have used the Gaussian concentration theorem for random variables which can
be seen as a supremum of linear functions of the error vector z and hence are convex functions
of z. This fact enables the application of Ledoux’s concentration result wherever we have applied
Theorem 4.3.

A proof of the following theorem can be found in [9].

Theorem 4.4 (Ledoux). If f :[—o,0]" — R is a convex Lipschitz function with Lipschitz
constant L and € is a mean zero random vector with independent entries in [—o, o], then we
have

P(f(e) > u) <exp(~u®/807L?). 4.4)

Recall that C,, = {# e R" : 0 <6 <--- <6 > Opyy1 > --- > 0} is the collection of
unimodal sequences with a mode at m. We now prove a key lemma controlling the term
E(supgec,,:jo—p+ < {2, € — 67)) as a function of ¢ whenever the underlying 6* is monotonic.
This will be crucial in finally proving Theorem 2.1.

The idea of the proof is as follows. The standard technique in empirical process theory of upper
bounding the expected Gaussian term E(supyec,,:jg—g+< (2,0 — 0%)) is to use the Dudley’s
entropy integral bound, as given in Theorem 4.2. This requires tight upper bounds on the covering
number for the set {6 € C,, : |0 — 6*|| < t}. Now, upper bounds can be derived for the log-
covering number of bounded sequences in C,, using Theorem 4.1. However, a direct application
of Theorem 4.1 to cover the set {6 € Cy, : |6 — 6*| <t} would give us loose bounds, as ¢ can
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grow with n. Instead, we carry out an extra peeling step. In particular, for any 6 belonging to
{0 € Cpy, : 1|10 — 0*|| <1}, we define a truncated version 8’ belonging to the same set that is also
bounded by a constant factor L = C(V (6*) 4+ o). Note that one can write

E( sup (z, 60— 9*)) < IE( sup (z, 6 — 9’))
0eCpy:||0—0%|| <t 0eCpy:||0—0%|<t (4 5)

-HE( sup (1,9/—9*)).

0'€Cp:||0"—0* || <t,max; |6'; | <L

The truncation is defined in such a way that the first term on the right side of the above inequality
is small enough for our purposes. The second term can be controlled by a direct application of
Dudley’s entropy integral inequality. This extra peeling step helps us to derive a tight risk bound.

The definition of these truncations forms a key part of our argument. We actually form a trun-
cation 6’ of an arbitrary unimodal sequence 6 € C,, with respect to a fixed monotone sequence
6*. The tails of § are raised to 6] — L over SlL U SlR =81 ={i :6; <6 — L}. In the interval
S» ={i :6; > 0 + L} around the mode m, the sequence is lowered to the level 6 + L. It is crucial
that we are able to choose L to be a constant factor while still maintaining the fact that the first
term on the right side of (4.5) is sufficiently small. Figure 1 shows a schematic of the construction
of our truncation 6’ of 8; the figure may be helpful in understanding the steps of the proof.

Lemma 4.1. Fix any nondecreasing sequence 6* € M,, and let 1 <m < n. Then for all t > 0,

2
]E( sup (2.0 — 9*)) < Co(1 2 (v (%) +0)) + = (4.6)
0eCp:|0—6%||<t 8

where V (0*) = max|<;<, 6 — min|<;<, 0. The bound also holds, by symmetry, for any nonin-
creasing sequence 6* € M.

_SlL_é _52_ E—Sﬁ—

Figure 1. The proof of Lemma 4.1 is based on a truncation #’ of an arbitrary unimodal sequence
0 € Cy, with respect to a fixed monotone sequence 6*. The tails of 6 are raised to 91* — L over
SlL U SlR =81={i:6 < 6;‘ — L}. In the interval Sp = {i : 6; > 6, + L} around the mode m, the sequence
is lowered to the level 6,f + L.
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Proof. Let K ={0 € C), : |0 — 6*|| <1}, and define K’ C K as

K’:{@eK: max ¢; <60; + L, min 6,-291*—L}, 4.7

1<i<n <i<n

where L is a fixed positive number to be chosen later. For any 6 € K we will define a truncated
version of § belonging to K’ which will be denoted by 8’. Then we will have the inequality

E sup(z,0 —6*) <Esup(z,6 —0')+E sup (z,0" — 6%). (4.8)
feK 0ek 0'eK’

Fix an arbitrary 6 € K. Consider the sets S| ={i :0; <60 — L} and S ={i : 6; > 6; + L} and
define 0’ according to
0r—L  ifies),
0/ =16 +1L ifi €8,, 4.9)
0; otherwise.
As indicated in Figure 1, S is the union of a left prefix SF of {1, ..., n} and a right suffix S¥.

It is then clear that minj<;<, 0] > 0} — L and max;<;<, 6] <6, + L Also, by construction of 6’
it is unimodal, and we have the contractive property

o7 —ef| <o ~ @.10)

for any 1 <i < n. These facts show that 8’ € K’.
‘We now proceed to control the first term on the right-hand side of the inequality in (4.8). Using
the definition of 8’, we have

Zzi(el‘—gl{)Z Zzi(Oi—Qi’)—l—Zzi(@i—Oi’) “4.11)
i=1

i€eS) i€S)
< D 1l (O = 0:) + Y 1zil (6 — 6]) (4.12)
i€eS) €Sy
o
=Y > lail(0) —6)Z{2/L <67 —6; <2/ L) 4.13)
ieS; j=0
o0
+ )0 il (6 —0)Z{2/ L <6, — 67 <271 LY (4.14)
ieS) j=0
o0
< DMLY GIZ{2/ L < 0f —6; <27 LY (4.15)
j=0 ieS
o
+ ) 2L {2/ L <6 — 0y <2/ L), (4.16)

j=0 ieS
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where Z denotes the indicator function and the last inequality follows from the inequalities
0 —6; <] — 0 fori e Sy, 4.17)
0 — 0 <6 —0F fori € Sp. (4.18)
We now note that for any 6 € K, since |0 — 0*| <¢,

2

|{i:2fL<|9i—9i*}}|5mEuj. (4.19)

Also note that if i € Sy then 0] —6; > 2/ L implies that 0F —0; > 27 L, since 6* is monotonic.
Therefore,

ieS8 2L <0F—6;} <v,. (4.20)
1 j j

Now observe that since 6 is unimodal, any set of the form {i : 6; < a} for some number a is
necessarily a union of at most two intervals; see Figure 2. Therefore,

lieSi:2/L <07 —0; <2 'Ly cliesi:2/L <67 -6} (4.21)
c{l,...,vj}jUn—vij+1Ln—v;+2,...,n}, (422)

since each interval must have size no greater than v;. Similarly, we have that
{ieS$:2/L <6, —6}| <v;. (4.23)

Since 6 € C,, is unimodal, any set of the form {i : 6; > a} for some number a is necessarily an
interval containing m, if it is nonempty. Therefore, we have that

lie$r:2/L<6;—0r <2/t L} clies,:2/L <6, —0;} (4.24)
Si{m—vj+1,....m+v;—1}. (4.25)

9*

S 2’[1]'

Figure 2. The set {i € S : 2L < 0{“ — 6;} is the union of at most two intervals. Each has size
no larger than v;. The figure on the left indicates the left interval. Similarly, by unimodality, the set

{ie$:2/L <6 — 6y} if it is nonempty, is an interval of length no greater than 2v;.
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We conclude that

n

m+vj—1 n
D (6 —6))z <Zz'+1L<Z|zl|+ Yo lal+ ) |z,-|>. (4.26)

i=1 i=m—v;j+1 i=n—v;+l

Note that this upper bound does not depend on 6, and that 6 was an arbitrary element of K. Thus,
using the fact E|z;| = 04/2/7 and (4.19), we arrive at

o
(supz 0; —9 ) <4Lo./2/m 22j+lvj
ek .

j=0

(4.27)
_ 410 2w izl_j _ 16t26«/2/7r.
L — L
We now set L = 1280 /2 /7 to finally obtain
t2
E(sup(z, 6 — 9’)) < (4.28)
ek 8

To control the second term on the right-hand side of (4.8) we set A= K’ and § = 0 in the
chaining result (4.2) to obtain

t
E(;gg/(z,@—@*)) <120 /0 Jlog N (e, K') de. (4.29)

By definition of K" we can now apply Theorem 4.1 with a =6 — L and b = 6,f + L to obtain

log N (e, k') < Cyn L0 F 2856“ v2/T) (4.30)

Using (4.29) and integrating the above expression gives us, for an appropriate constant C,

E( sup (z,6" = 6%)) = Con'/ 42 /(v (6%) + o). (4.31)
0'eK’
Combining the last equation with (4.28) and (4.8) finishes the proof of the lemma. U

We now prove a lemma that controls the expected Gaussian supremum where the supremum
is taken over all unimodal sequences.

Lemma 4.2. Fix a positive integer n and a nondecreasing or nonincreasing sequence 6*. For all
t>0,

2
E( sup (2.0 — 9*)) < Co(n 4112 [(v(0%) + o)+ 1y/logn) + = (4.32)
0ly:||6—0%||<t 8
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Proof. We prove the lemma when 6* € M,, is a nondecreasing sequence; the proof when 6* is
nonincreasing is analogous. For each 1 <m < n and ¢ > 0 define the random variables

Xm(t) = sup (z,0 —0%). (4.33)
0€Cn:||0—0*||<t

We first note that

sup (2,0 —60%)= max X, (1). (4.34)

9ely:|0—6% | <t l=m=n

Applying Lemma A.2 we see that the random variables X, () are Lipschitz functions of z with
Lipschitz constant 7. Hence, using the Gaussian concentration result given in Theorem 4.3 we
getforallx >0andall 1 <m <n,

2
P(Xpn (1) <EX,(t) + tox) < exp(—%). (4.35)

A standard argument involving maxima of random variables with sub-Gaussian tails is given in
Lemma A.1. Using this lemma and the last equation we get that, for a universal constant C,

E max X,,(t) < max EX, (t)+ Cot./logn. (4.36)
1<m=<n 1<m=<n
Applying Lemma 4.1 to the term max,, EX,, (t) completes the proof of the lemma. ]

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We start with the basic inequality ||§— 0*(12 < 2(z, 0 — 0*) and rewrite
it as

(2,6 —67%). (4.37)

Lg-e) < —
2 |

16— 6]
This pointwise inequality follows from the fact that 0, among all § € U, maximizes the expression
2
g(0)=(z,0 —6%)— |6 — 0| /2.

Since 0* € U, we then have g(é\) > g(6*) = 0 which is equivalent to (4.37). Now, an application
of the Cauchy—Schwarz inequality to (4.37) implies

1y~ *
SIE—-o7] =zl (4.38)

Define the event A; = {||z]|> < 5n}. By a standard tail inequality for chi squared random vari-
ables ([24]), one can show that

P(A)) > 1 —exp(—n). (4.39)
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The following argument conditions on the event .4; throughout. For any 7 > 0, we can write

1~

_o| <L 1
e

M(z,?—e*ﬁ{t < |6 -6%| <5} (4.40)
(z,0 — 6%)

o —ox| -

IA

NSRS

+ sup 4.41)

0el:t<||0—0*|</5n

Hy

We will now control the random variable H; defined above for any ¢ > 1. Writing H; as

Z, 9 - 9*
H, < sup sup <—*)
0<l<log,(+/3n) 0€U:2' 1 <||0—0*[| <211 6 — 6%

we now claim that instead of dividing the inner product term by the variable factor |0 — 6%||, we
can instead divide by the constant factor 2/¢. An application of Lemma A.5, stated and proved in
the Appendix, makes this precise and we can thus write

,0 — 0%
H; < sup sup 7& ] ) (4.42)
0<l<log, (+/5n) 0eU:2 1< |6 —6%|| <2+t 2't
2 (z,6 —0%)
== sup sup Y R (4.43)
! 0<i<log, (v/5m) OU:|0—0% | <2'+11 2
2
=, sup sup  (z, wy — wy), (4.44)

0<i<log, (+/3n) wi€U:[lwy—wj || <t

where w} = 6*/(2/*1). The random variables W, = SUPy, et: |uy —wy | < (2> Wi — wy') are Lipschitz
functions of z with Lipschitz constant ¢ as can be seen by applying Lemma A.2. Therefore, for
each fixed integer 0 </ < logz(\/S_n) the Gaussian concentration result in Theorem 4.3 shows
for any x > 0,

P(W; <EW, +tox) > 1 —exp(—x?/2).

Now define the event

Ay = { max W, < max EW, + tax].
0<I<log,(~/5n) 0<i<log, (~/5n)

A union bound over 0 <! <log,(+/5n) then gives us
P(Ap) = 1 — (1 +logy(v/5n)) exp(—x?/2).

Now, for any 0 </ <log, (v/5n) we can break up Supy,, ez :}u; —wr|<¢ (2, W — w]’) into two parts;
the first part where w* is increasing and then the second part where w* is decreasing. We apply



16 S. Chatterjee and J. Lafferty

Lemma 4.2 to both the parts to obtain

2
B < Cou/ 412 (¥ (u7) +) + 1 Togm) + =

Note that since w;’ = 6* /2+1 we have V(wf) < V(6*) and hence we can write for all # > 0,

2
max  EW, < Co(n'4'2 /(v (6*) + ) + 1 /logn) + =
0<I<log, (+v/5n) 8

We thus conclude that conditioned on the event A,, for all # > 0,
2 12
H =~ (Cd(nl/4tl/2 (V(6%) +0) +t/logn) + = + tax) (4.45)

= Co (n'*t712 /(V(6*) + o) + Vlogn) + % +20x. (4.46)

Together with (4.41), we then obtain the upper bound

o0 <+ o2 7o) i) + 2o
for all 7 > 0. Optimizing over ¢ by setting
¢ max( (1 (6°) +.0) . 1

then gives us the desired bound on ||§— 6*||. This bound holds on the set .A; N A;. For any fixed
o >0, set

x= \/210g(1 + log, (v/5n)) + 2a logn

to conclude that P(Ay) > 1 — n~*. Also by (4.39) we then can conclude P(A; N Ay) > 1 —
n~% —exp(—n) > 1 —2n~%. Finally, one can use the standard inequality (a + b + 0)?<3@a*+
b% + ¢2) for nonnegative numbers a, b, ¢ to convert the bound on ||§— 6*|| into a bound on
||§— 6* ||, completing the proof of the theorem. ([l

5. Adaptive risk bound

The goal of this section is to prove Theorem 2.2. The main technical tool is Lemma 3.1, used to
show that the local Gaussian width term supycy, .g—o+ < (2, @ — 0) scales only logarithmically
with n when the true 6* is piecewise constant with few pieces. This is the content of our next
lemma when 6* is monotone increasing or decreasing.

Lemma 5.1. Let 6* € R" be a monotone nondecreasing sequence in My, with a constant number
of pieces s. Fix any o > 0. Then the following upper bound holds simultaneously for all t > 0
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with probability not less than 1 — 2n™%:

sip (2,0 —0%) <20 s 1og<ﬂ> 4 210/25(ar + 2) logn.
0y 10—0% <1 V s

Proof. Note that suppey,jo—g+| < (2, € — 0%) = maxi<m<n Xm (1) where Xy, (7) is defined as

X = sup (z.0 —0%).
0eCpy:||0—0%| <t

First, we control the term X, (¢) for each 1 <m < n. Fixing a mode location m we have

Xm(t) < sup <Zl:ma9_eik:m)+ sup (Z(m+])2n56_9(>km+l):n)v S.D

OeMp:ll0—07,, II<t —0eMy_m:110-6; =t

1:m (m+1):n

where it should be understood that the first term on the right-hand side of the above inequality
involves the first m coordinates of the relevant vectors and the last term involves the last n — m
coordinates of the relevant vectors. Both the terms on the right-hand side of the last inequality
can be controlled similarly so let us demonstrate how to control the first term. Let 6}, have sy
constant pieces. Let us denote the blocks where Gl*:m is constant by By, B, ..., Bs,. Note that
these blocks necessarily are intervals. For any vector a let ap; denote the | B;| dimensional vector
which is a restricted to the coordinates in block B;. Equipped with this notation we can now
write

s1
sup (z1m. 0 —0f,) < sup Z sup (x5 08, —63,)] (5.2)
BeMy: 1067, 1<t aeRY el <t \;Zj 0€Mp; 21105, — 0, | <e

=  sup (Z sup (zBl.,v)) (5.3)

aeRy:flall<t \;Z] veMp; vl <a;

= sup (Z o sup (zB;s v)), 54

aeRy <t \ ;2 veMg;:llvlI<1

where the middle equality is due to the fact that 6* is constant over the block B;, and the second
equality follows since the space of monotonic sequences is a cone.
For notational convenience we denote §;(z) = SUPye M, v <1 (zg;,v) for 1 <i < m. Now
define the event
S1
A1 =[{8iz) <E8i(2) + ox} (5.5)
i=1
for some x > 0 that will be determined below. Note that §;(z) is a Lipschitz function of z with
Lipschitz constant one, as can be seen by applying Lemma A.2. Therefore, using the Gaussian
concentration result in Theorem 4.3 and a union bound we can conclude

P(Apn1) > 1 —sexp(—x?/2), (5.6)
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where we have used s; < s. On the event A, 1, by (5.4) we will then have
N
sup (ztm 0 —0f,,) < sup Zai(ESi(Z)-i-GX).
0eM,y,:10-65, <t aeR lall<t j

Applying the Cauchy—Schwarz inequality to the equation then gives us on the event A, |,

sup <Z1;m,9—9ik:m>§t
OeMy:)0-05,, <t

51
Z]Eéi (2)2 +tox/s1.
Lim i=1

It can now be shown that [E§; (z)2 equals o2 times the statistical dimension of the monotone cone
of dimension |B;|. This equality is shown in the Appendix in Lemma A.3. The statistical dimen-
sion of the monotone cone in dimension d is defined to be E||IT x4z |> where z is a d-dimensional
standard Gaussian vector with independent entries and IT 4 denotes the projection operator onto
the cone of nondecreasing sequences. Using known results (see [5]) for the statistical dimension
of the monotone cone then gives us

ES; (2)* < o log(e|Bil)

from which we conclude

S
Zlog(e|B,~ I) +tox\/s].

i=1

sup <Z1;m, 0 — Qim) <to
OeMy:0-65,, 1<t

I:m

Since log is a concave function we can upper bound the term inside the square root by Jensen’s
inequality to write

10g(e|B|) e — en
Zlog elBil) =s1 2} < s1log gZ|B,-| <slog( —),

i=1

where we have used m <, s1 < s and the fact that the function g(x) = x log(en/x) is increasing
for 1 < x < n. Therefore, conditioned on the event 4, 1 we have

sup (z1m. 0 —0f,,) <to /slog( )—}—tox\/—
0 Mi:10-65,, <t

It is crucial to note that since the event A, | does not depend on ¢, the above inequality holds
simultaneously for all ¢+ > 0. To control the second term in the right-hand side of (5.1) one can
define an analogous event .4,, » for which

P(An2) > 1 — sexp(—x?/2). (5.7)
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Therefore, by (5.1) we can conclude that on the event A, 1 N A, 2 we have for all r > 0,

Xn(t) <2to slog<ﬂ> +2toxA/s.
V s

Since the right-hand side of the above equation does not depend on m, we can now assert that on
the event (), (Am,1 N Ay, 2) we have for all 7 > 0,

sup (2,0 —0%)<2t0 slog(ﬂ) +2tox/s.
el :0—60% | <t \ s

Note that (5.5) and (5.6) imply, by a simple union bound argument, that

P(ﬂ (Am.1 ﬂ,Am,z)> >1—2ns exp(—x2/2) >1—2n? exp(—x2/2).

m=1

Setting x> = 2(« + 2) logn thus finishes the proof of the lemma. (]
Using the above lemma, we can now complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Just as in the proof of Theorem 2.1, the first step here also is to reduce
to the case when 6* is monotonic. To do this, again let 1 < m™* < n be such that 6* € C,+. Let
6* = (0f,05) where 6/ is an m* dimensional vector and 6 is an n — m* dimensional vector.
Break up z similarly. Then we can write

sup (z, 0 — 9*) < sup (zl,e — 91*) + sup (Zz, 0 — 95‘) (5.8)
9l |6—6%|| <t OUye:10—0 || <t Ol w110 -0 <t

Let us first bound the first term on the right-hand side; the second term can be bounded in exactly
the same way. Let us denote s; to be the number of constant pieces of 01* and s, to be the
number of constant pieces of 65. Since 0} is nondecreasing, we can use Lemma 5.1 to obtain
with probability not less than 1 — 2n~%, simultaneously for all > 0,

*
sup (21,6 —07) <201 s110g<em >+20t~/2s1(a+2)logn, (5.9)

OeM,,x:|0-67 | <t S1

where we also use the fact that (m*) < n. The second term in the right-hand side of (5.8) can be
upper bounded similarly. The last two displays then give us the upper bound, with probability
notlessthan 1 — 4n~%, forallt >0

* %
sup (z.0 —0%) <201 |51 10g<em ) +26t\/S2 log(w)
0 elly:116—0%|| <t \ 51 52

+ 201 (/51 + +/52)3/2(a +2) logn.
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Recall now the definition of the function fp+ : Ry — R as
12

for(t) = sup (2,0 —0%)— (5.10)
Oely:||0—0%| <t 2

Then on an event of probability not less than 1 — 4n ™%, for all + > 0 we have

for(t) <20t /sllog +20t\/szlog eln —m *))

+2v201/2(s1 + s2)(a + 2) logn — 3

where we have also used /s1 + /52 < V2./51 F 2. Since the right-hand side of the last display
is a quadratic in ¢, it can be verified that setting

k _ *
t* = 20\/s1 log(e:: ) + 20\/S2 log<$) + Zﬁa\/Z(sl +52)(a +2)logn

yields fg«(t) < O for all # > t* on an event of probability not less than 1 — 4n~%. A bound on
(*)? can then be obtained by using the elementary inequality (a + b + ¢)> < 3(a® + b> + ¢?).
The use of Lemma 3.1 and an applications of Jensen’s inequality in the form

* %
sllog<em )mlog(M) < (51 +s2>log( = )
S1 $2 s1+ 82

then finishes the proof of the theorem. ]

6. Discussion

We have presented results on adaptivity of the least squares estimator in unimodal sequence
estimation. Our results show that the risk is no worse than O (n=2/3) uniformly over all uni-
modal sequences. More interestingly, we have shown that for the same least squares estimator,
the risk decays no slower than O(s(6*)logn/n) where s(6*) is the number of “steps” in the
true sequence. Thus, the estimator achieves nearly parametric rates of convergence when the
true sequence is simple. Our proof techniques exploit the structure of the space of unimodal se-
quences as a union of n convex cones (Lemma 3.1), together with a peeling argument that bounds
the log-covering number of unimodal sequences in the neighborhood of a monotone sequence
(Lemma 4.1).

Lemma 3.1 (the “LSE slicing lemma”) can potentially be used in any estimation problem
where the parameter space is a finite union of convex cones and the true mean vector has disjoint
pieces lying in the intersection of these cones. It is the key ingredient used in our proof of the
adaptive risk bound in Theorem 2.2 for piecewise constant unimodal sequences. Using an ap-
propriate approximation of any unimodal sequence by a piecewise constant unimodal sequence,
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Theorem 2.2 and the slicing lemma could actually have been used to prove Theorem 2.1, but
we would have suffered an extra multiplicative log factor. We instead used a more direct peeling
approach that resulted in tighter bounds.

A natural problem for further study is the multidimensional setting, observing that unimodality
generalizes as quasiconvexity in dimensions greater than one. It is also important to study oracle
inequalities, similar to those obtained for isotonic regression by Chatterjee et al. [13] and Bel-
lec [5]. As remarked in Section 2, however, existing proof techniques exploit convexity through
bounds on Gaussian widths and KKT conditions. Our Lemma 3.1 that exploits the structure as a
union of convex cones indicates such results may indeed be achievable, but we believe that new
proof techniques may be required. Before submitting the final version of this paper we became
aware of the fact that such oracle inequalities have recently appeared in [4] and [18].

Appendix

Lemma A.1. Let X1, X3, ..., X,, be random variables such that the following holds for every
l1<i<nanda >0,

2
P(X; >EX; +ax) < exp(—%) Vx >0. (A.1)

Then the following is true:

E max X; < max EX; +a(y/2logn + ~/2m).

1<i<n 1<i<n

Proof. Let m = max;<;<, EX;. Define ¥; = X; — m. Then by (A.1) we have sub-Gaussian tail
behaviour for every 1 <i <n,

2
PY;>x)< exp(—%) Vx > 0. (A.2)
a

Now by defining Z; = max{Y;, 0} we certainly have Emax Y; < Emax Z;. Also for any x > 0 we

have P(max Z; > x) = P(max Y; > x). Combining these two and using the tail integral formula
for the expectation of a non negative random variable we obtain

o
EmaxY; 5/ P(maxY; > x)dx.
0

Therefore, now we can write

00 00 x2
Emax Y; 5/ P(maxY; > x)dx 5/ min{n exp(— ), l}dx
0 0

2a%

ay/2logn 0o x2
:/ ldx—i—/ nexp(——z)dx,
0 ay2Togn 2a
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where the inequalities follow from the previous display along with (A.2). The rest follows from
simple integral calculus. Now a standard fact about Gaussian tails give us the following inequality

o x2 a
f exp(——2>dx§v2n—.
ay/2logn 2a n

The last two displays finish the proof of the lemma. ]

Lemma A.2. Let A CR" be a closed set. Fix any 0* € R" and t > 0. Define the function f :
R" — R as follows:

f@= sup (z,0-06%. (A.3)
OeA:||0—0%| <t

Then f is a Lipschitz function of z with Lipschitz constant t.

Proof. Since the function (z,6 — 6*) is a continuous function of z and the set {§ € A :
|6 —6*|| <t} is compact, the supremum is attained, at 6 say. Then we have

f@ =) ={e.0-0") = 1 () (A4)
<(z,6 —0%) - (/.6 — 0% (A.5)
=(z—7,6 6% (A.6)
<[z-Z|]6 -6 (A7)
<tfz=7|. (A8)

The first inequality is because we set 6 = 6 instead of taking supremum over 6. The second
inequality is just the Cauchy—Schwarz inequality, and the last inequality follows from the fact
that ||6 — 6*|| <t by the choice of 6. ([l

Lemma A.3. Let 7 be a standard d dimensional Gaussian vector with independent entries. Let
I1 A denote the projection operator onto the space M C RY. Then we have the following point-
wise equality:

Mm@ = sup  (z,0).
geM:[9]<1

Proof. We can use Lemma 3.1 to prove this equality. Here C = M and hence C is a convex
set. Take the zero vector in C. Then the least squares estimator 6 is the same as I1x4(z). Then
Lemma 3.1 says we have

2
H am(z) || :argmax( sup  (z,6) — t_>
120 \geM:|o| <t 2
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Now since the space M is a cone we can rewrite the last display as
12
[T || :argmax(t sup  (z,6) — _>.
>0 feM:|0]<1 2

The right-hand side of the last display is the maximizer of a quadratic in ¢t with a negative coef-
ficient of 72. Differentiating the quadratic in 7 to compute the maximizer then finishes the proof
of the lemma. (]

Lemma A4. Let g(t) : Ry — R be defined as

g(t) = sup (a,0),
feCn{veR:|v| <t}

where C C R" is a closed convex set and a is a fixed vector in R". Then g is a concave function.

Proof. We have to show that for any 71, > 0 and 0 <A < 1 we have
g(A1 4+ (1 =) = Ag(t) + (1 — Mg(t).

LetdeCN{veR":|v]|<ti}and 6, € CN{v e R": |v| <t} be where the values g(¢1) and
g(ty) are achieved. Such a 61 and 6, exist because C is closed and {v € R” : ||v]|| <t} is closed
and bounded. Now consider the point 83 = A8; + (1 — A)65. Since C is convex, 63 € C and since
the Euclidean squared norm is a convex function we also have ||63]| <. Now we have

rg(n) + (1 =0)g(r2) = (a,03) < g(krr + (1 = M)12),

where the first equality is because of linearity of the inner product function and the last inequality
is because of feasibility of 63. This finishes the proof of the lemma. (]

Lemma A.5. Suppose I is a set and {a; i € [} C R is a set of real numbers indexed by I. Let
{w; :i € I} be another set of positive real numbers such that for some positive number § we have

0<d <inff{w;:i e I} <sup{w; :i € [} <26.

Then the following is true:
sup{ﬂ:iel}fsup{ﬁ:iel}. (A9)
wj 1)

Proof. If any of the @; are non negative then (A.9) is easy to see. This is because we are dividing
by 2§ which is a bigger number than any of the w;. In case all the a; are negative, then one can

write
ai . L) ai . ) ai .
supy — :i €l = —inf el <—infy—:iel
wi wj 25
ai

= el . ai“e[
= sup 28'l —Zsup 5 iy . 0
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