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We develop a new and general notion of parametric measure models and statistical models on an arbitrary
sample space � which does not assume that all measures of the model have the same null sets. This is
given by a differentiable map from the parameter manifold M into the set of finite measures or probability
measures on �, respectively, which is differentiable when regarded as a map into the Banach space of
all signed measures on �. Furthermore, we also give a rigorous definition of roots of measures and give
a natural characterization of the Fisher metric and the Amari–Chentsov tensor as the pullback of tensors
defined on the space of roots of measures. We show that many features such as the preservation of this
tensor under sufficient statistics and the monotonicity formula hold even in this very general set-up.
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1. Introduction

Information geometry is concerned with the use of differential geometric methods in probability
theory. An important object of investigation are families of probability measures or, more gener-
ally, of finite measures on a given sample space � which depend differentiably on a finite num-
ber of parameters. Associated to such a family there are two symmetric tensors on the parameter
space M . The first is a quadratic form (i.e., a Riemannian metric), called the Fisher metric gF ,
and the second is a 3-tensor, called the Amari–Chentsov tensor TAC. The Fisher metric was first
suggested by Rao [27], followed by Jeffreys [16], Efron [13] and then systematically developed
by Chentsov and Morozova [10,12] and [20]; the Amari–Chentsov tensor and its significance
was discovered by Amari [1,2] and Chentsov [11].

These tensors are of interest from the differential geometric point of view as they do not depend
on the particular choice of parametrization of the family, but they are also natural objects from
the point of view of statistics, as they are unchanged under sufficient statistics and are in fact
characterized by this property; this was shown in the case of finite sample spaces by Chentsov
in [12] and more recently for general sample spaces in [5]. In fact, Chentsov not only showed
the invariance of these tensors under sufficient statistics, but also under what he called congruent
embeddings of probability measures. These are Markov kernels between finite sample spaces
which are right inverses of a statistic. We use this property to give a definition of congruent
embeddings between arbitrary sample spaces (cf. Definition 3.1). As it turns out, every Markov
kernel induces a congruent embedding in this sense, but there are congruent embeddings which
are not induced by Markov kernels, cf. Theorem 3.1.
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The main conceptual difficulty in the investigation of families of probability measures is the
lack of a canonical manifold structure on the spaces M(�) and P(�) of finite measures and
probability measures on �. If � is finite, then a measure is given by finitely many nonnegative
parameters, allowing to identify M(�) with the closure of the positive orthant in R|�| and P(�)

with the intersection of this closure with an affine hyperplane in R|�|, so that both are (finite
dimensional) manifolds with corners. If one does not assume that all elements of � have posi-
tive mass for all measures in the family, that is, allowing the model to contain elements of the
boundary of M(�) or P(�), then technical difficulties arise for example, when describing the
Fisher metric and the Amari–Chentsov tensor. If � is infinite, then there is a priori not even a
differentiable structure on M(�) and P(�).

Attempts have been made to provide P(�) and M(�) with a Banach manifold structure. For
instance, Pistone and Sempi [26] equipped these spaces with a topology, the so-called e-topology.
With this, P(�) and M(�) become Banach manifolds and have many remarkable features, see,
for example, [9,25]. On the other hand, the e-topology is very strong in the sense that many
families of measures on � fail to be continuous w.r.t. the e-topology, so it cannot be applied as
widely as one would wish.

Another approach was recently pursued by Bauer, Bruveris and Michor [7] under the assump-
tion that � is a manifold. In this case, the space of smooth densities also carries a natural topol-
ogy, and they were able to show that the invariance under diffeomorphisms already suffices to
characterize the Fisher metric of a family of such densities.

In [5], the authors of the present article proposed to define parametrized measure models as
a family (p(ξ))ξ∈M of finite measures on �, labelled by elements ξ of a finite dimensional
manifold M , such that for a measurable set A ⊂ �

p(ξ)(A) =
∫

A

dp(ξ) =
∫

A

p(ω; ξ) dμ(ω) (1.1)

for some reference measure μ and a positive function p on � × M which is differentiable in
ξ ∈ M . This closely follows the notion of Amari [1]. That is, for fixed ξ ∈ M , the function
p(·; ξ) on � is the Radon–Nikodym derivative of the measure p(ξ) w.r.t. μ, whence by a slight
abuse of notation (e.g., [6], Definition 17.2) we abbreviate (1.1) as

p(ξ) = p(·; ξ)μ. (1.2)

While this notion embraces many interesting families of measures, it is still restricted as it
requires the existence of a reference measure μ dominating all measures p(ξ), and on the other
hand, the positivity of the density function implies that all measures p(ξ) on � are equivalent,
that is, have the same null sets. While the existence of a measure μ dominating all measures p(ξ)

is satisfied for example, if M is a finite dimensional manifold, the condition that all measures p(ξ)

have the same null sets is a more severe restriction of the admissible families.
It is the aim of the present article to provide a yet more general definition of parametrized mea-

sure models which embraces all of the aforementioned definitions, but is more general and more
natural than these at the same time. Namely, in this article we define parametrized measure mod-
els and statistical models, respectively, as families (p(ξ))ξ∈M which are given by a map p from
M to M(�) and P(�), respectively, which is differentiable when regarded as a map between the
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(finite or infinite dimensional) manifold M and the Banach space S(�) of finite signed measures
on �, since evidently P(�) and M(�) are subsets of S(�). That is, the geometric structure on
M(�) and P(�) is given by the inclusions P(�) ↪→M(�) ↪→ S(�).

For the models defined in [5], the function p : � × M → R in (1.2) is differentiable into the
ξ -direction, and such a p is called a regular density function. Even if a parametrized measure
model in the sense of the present paper has a dominating measure μ and hence is given by (1.2),
the density function p is not necessarily regular, cf. Remark 4.2 and Example 4.2(2) below, and
p is not required to be positive μ-a.e., making this notion more general than that in [5]. We shall
show that most of the statements shown in [5] for parametrized measure models or statistical
models with a positive regular density function also hold in this more general setup.

The Fisher metric gF and the Amari–Chentsov tensor TAC associated to a parametrized mea-
sure model are the two symmetric tensors given by

gF (V,W) :=
∫

�

∂V logp(ω; ξ) ∂W logp(ω; ξ) dp(ξ),

TAC(V ,W,U) :=
∫

�

∂V logp(ω; ξ) ∂W logp(ω; ξ) ∂U logp(ω; ξ) dp(ξ).

The crucial observation is that even though the function logp(ω; ξ) is not defined every-
where if we drop the assumption that the density function p is positive, the partial derivatives
∂V logp(ω; ξ) still may be given sense for an arbitrary parametrized measure model. Thus, the
notion of k-integrability from [5] requiring that ∂V logp(ω; ξ) ∈ Lk(�,p(ξ)) for all V ∈ TξM

generalizes to parametrized measure models.
We also introduce the Banach space Sr (�) of r th powers of measures on � for r ∈ (0,1],

which has been discussed in [23], Ex. IV.1.4, for general � and generalizes the concept of half
densities on a manifold � in [22], Section 6.9.1. The elements of Sr (�) can be raised to the
1/r th power to become finite signed measures, and for each measure μ ∈ M(�) ⊂ S(�) there
is a well defined power μr ∈ Sr (�). Thus, for a parametrized measure model p : M → M(�)

the r th power defines a map pr : M → Sr (�), and if the model is k-integrable for k = 1/r ≥ 1,
then pr is differentiable, and for k = 2 or k = 3, gF and TAC are pull-backs of canonical tensors
on S1/2(�) under p1/2 and S1/3(�) under p1/3, respectively.

We also discuss the behavior of the Fisher metric under statistics, i.e., under measurable maps
κ : � → �′ or, more general, under Markov kernels K : � → P(�′). These transitions can be
interpreted as data processing in statistical decision theory, which can be deterministic (given by
a measurable map, i.e., a statistic) or randomized (i.e., given by a Markov kernel). The earliest
occurrence of this point of view appears to be [11].

Given a parametrized measure model p : M → M(�), it induces a map p′(ξ) := κ∗p(ξ) or
p′(ξ) := K∗p(ξ), respectively. We show that this process preserves k-integrability, i.e., if p is
k-integrable, then so is p′ (cf. Theorem 5.1). Moreover, in Theorem 5.2 we show in this general
setup the estimate∥∥∂V logp(·; ξ)

∥∥
k
≥ ∥∥∂V logp′(·; ξ)

∥∥
k
, whence gF (V,V ) ≥ g′F (V,V ), (1.3)

where the second estimate is called the monotonicity formula and follows form the first for k = 2.
The difference ‖∂V logp(·; ξ)‖k

k − ‖∂V logp′(·; ξ)‖k
k ≥ 0 is called the kth order information loss
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under κ (or K) in direction V . If the information loss in any direction vanishes, then we call the
statistic sufficient for the model.

There is a remarkable difference between parametrized measure models with positive regu-
lar density functions, that is, those considered in [5], and the more general notion establishes in
this paper. Namely, in case of a positive regular density function the vanishing of the informa-
tion loss for a statistic κ : � → �′ implies that the statistic admits a Fisher-Neyman factoriza-
tion, cf. Proposition 5.1. Remarkably, this is no longer true in our setting. That is, if we admit
parametrized measure models with inequivalent measures, then there are statistics which have
vanishing information loss, but do not admit a Fisher-Neyman factorization, cf. Example 5.2.

This paper is structured as follows. In Section 2, we give the formal definition of the spaces of
r th powers of measures. In Section 3, we provide a precise definition of congruent embeddings
for arbitrary sample spaces � and discuss their relations with Markov kernels and the existence
of transverse measures. In the following Section 4, we establish the notion of k-integrability,
which is applied in the final Section 5 to the discussion of sufficient statistics and the proof of
the monotonicity formula.

2. The spaces of measures and their powers

2.1. The space of (signed) finite measures

Let (�,�) be a measurable space, that is an arbitrary set � together with a sigma algebra � of
subsets of �. Regarding the sigma algebra � on � as fixed, we let

P(�) := {μ : μ a probability measure on �},
M(�) := {μ : μ a finite measure on �},
S(�) := {μ : μ a signed finite measure on �},

S0(�) :=
{
μ ∈ S(�) :

∫
�

dμ = 0

}
.

Clearly, P(�) ⊂M(�) ⊂ S(�), and S0(�),S(�) are real vector spaces. In fact, both S0(�)

and S(�) are Banach spaces whose norm is given by the total variation of a signed measure,
defined as

‖μ‖TV := sup
n∑

i=1

∣∣μ(Ai)
∣∣,

where the supremum is taken over all finite partitions � = A1 ∪̇ · · · ∪̇An with disjoint sets
Ai ∈ �. Here, the symbol ∪̇ stands for the disjoint union of sets.

For a measurable function φ : � → [−∞,∞], we define φ+ := max(φ,0) and φ− :=
max(−φ,0), so that φ± ≥ 0 are measurable with disjoint support, and

φ = φ+ − φ−, |φ| = φ+ + φ−. (2.1)
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By the Jordan decomposition theorem, each measure μ ∈ S(�) can be decomposed uniquely as

μ = μ+ − μ− with μ± ∈M(�),μ+ ⊥ μ−. (2.2)

That is, there is a decomposition � = P ∪̇N with μ+(N) = μ−(P ) = 0. Thus, if we define

|μ| := μ+ + μ− ∈M(�),

then (2.2) implies ∣∣μ(A)
∣∣ ≤ |μ|(A) for all μ ∈ S(�) and A ∈ �, (2.3)

so that

‖μ‖TV = ∥∥|μ|∥∥TV = |μ|(�).

In particular,

P(�) = {
μ ∈ M(�) : ‖μ‖TV = 1

}
.

Moreover, fixing a measure μ0 ∈M(�), we let

P(�,μ0) := {
μ ∈ P(�) : μ is dominated by μ0

}
,

M(�,μ0) := {
μ ∈ M(�) : μ is dominated by μ0

}
,

P+(�,μ0) := {
μ ∈ P(�,μ0) : μ is equivalent to μ0

}
,

M+(�,μ0) := {
μ ∈ M(�,μ0) : μ is equivalent to μ0

}
,

S(�,μ0) := {
μ ∈ S(�) : μ is dominated by μ0

}
,

S0(�,μ0) := S(�,μ0) ∩ S0(�),

(2.4)

where we say that μ0 dominates μ if every μ0-null set is also a |μ|-null set and where we call
two measures equivalent if they dominate each other and hence have the same null sets. The
spaces in (2.4) do not change when replacing μ0 by an equivalent measure.

We may canonically identify S(�,μ0) with L1(�,μ0) by the correspondence

ıcan : L1(�,μ0) −→ S(�,μ0), φ �−→ φμ0.

By the Radon–Nikodym theorem, this is an isomorphism whose inverse is given by the Radon–
Nikodym derivative μ �→ dμ

dμ0
. With this, M(�,μ0) = {φμ0 : φ ≥ 0} and M+(�,μ0) = {φμ0 :

φ > 0} and the corresponding descriptions apply to P(�,μ0) and P+(�,μ0), respectively. Ob-
serve that ıcan is an isomorphism of Banach spaces, since evidently

‖φ‖L1(�,μ0)
=

∫
�

|φ|dμ0 = ‖φμ0‖TV.
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2.2. Differential maps between Banach manifolds and tangent double cone
fibrations

In this section, we shall recall some basic notions of maps between Banach manifolds. For sim-
plicity, we shall restrict ourselves to maps between open subsets of Banach spaces, even though
this notion can be generalized to general Banach manifolds, see, for example, [17].

Let V and W be Banach spaces and U ⊂ V an open subset. A map φ : U → W is called
differentiable at x ∈ U , if there is a bounded linear operator dxφ ∈ Lin(V ,W) such that

lim
h→0

‖φ(x + h) − φ(x) − dxφ(h)‖W

‖h‖V

= 0. (2.5)

In this case, dxφ is called the (total) differential of φ at x. Moreover, φ is called continuously
differentiable or shortly a C1-map, if it is differentiable at every x ∈ U , and the map dφ : U →
Lin(V ,W), x �→ dxφ is continuous. Furthermore, a differentiable map c : (−ε, ε) → W is called
a curve in W .

Definition 2.1. Let X ⊂ V be an arbitrary subset and let x0 ∈ X. Then v ∈ V is called a tangent
vector of X at x0, if there is a curve c : (−ε, ε) → X ⊂ V such that c(0) = x0 and ċ(0) :=
d0c(1) = v.

The set of all tangent vectors at x0 is called the tangent double cone of X at x0 and is denoted
by Tx0X.

Since reparametrization of the curve c easily implies that Tx0X is invariant under multiplica-
tion by positive or negative scalars, it is a double cone in V . However, for general subsets X ⊂ V ,
Tx0X may fail to be a vector subspace, and for x0 �= x1, the tangent cones Tx0X and Tx1X need
not be homeomorphic. We also let

T X :=
⋃̇

x0∈X

Tx0X ⊂ X × V ⊂ V × V,

equipped with the induced topology. Again,
⋃̇

stands for the disjoint union of sets. Then T X

together with the map T X → X mapping Tx0X to x0 is a topological fibration, called the tangent
double cone fibration of X. Since this is a rather bulky terminology, we shall simply refer to
T X → X as the tangent fibration, but the reader should be aware that, unlike in some texts, this
is not the a synonym for the tangent bundle, as X needs not be a manifold in general.

If U ⊂ V is open and φ : U → W is a C1-map whose image is contained in X ⊂ W , then
dx0φ(V ) ⊂ Tφ(x0)X, whence φ induces a continuous map

dφ : T U = U × V −→ T X, (u, v) �−→ duφ(v).

Theorem 2.1. Let S(�) be the Banach space of signed finite measures on �. Then the tangent
cones of M(�) and P(�) at μ are TμM(�) = S(�,μ) and TμP(�) = S0(�,μ), respectively,
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so that the tangent fibrations are given as

TM(�) =
⋃̇

μ∈M(�)

S(�,μ) ⊂M(�) × S(�)

and

TP(�) =
⋃̇

μ∈P(�)

S0(�,μ) ⊂P(�) × S(�).

Proof. Let ν ∈ Tμ0M(�) and let (μt )t∈(−ε,ε) be a curve in M(�) with μ̇0 = ν. Let A ⊂ �

be such that μ0(A) = 0. Then as μt(A) ≥ 0, the function t �→ μt(A) has a minimum at t0 = 0,
whence

0 = d

dt

∣∣∣∣
t=0

μt(A) = μ̇0(A) = ν(A),

where the second equation is evident from (2.5). Thus, ν(A) = 0 whenever μ0(A) = 0, i.e., μ0

dominates ν, so that ν ∈ S(�,μ0). Thus, Tμ0M(�) ⊂ S(�,μ0).
Conversely, given ν = φμ0 ∈ S(�,μ0), define μt := p(ω; t)μ0 where

p(ω; t) :=
{

1 + tφ(ω) if tφ(ω) ≥ 0,

exp
(
tφ(ω)

)
if tφ(ω) < 0.

As p(ω; t) ≤ max(1 + tφ(ω),1), it follows that μt ∈ M(�), and as |∂tp(ω; t)| ≤ |φ(ω)| ∈
L1(�,μ0) for all t , it follows that t �→ μt is a C1-curve in M(�) with μ̇0 = φμ0 = ν, whence
ν ∈ Tμ0M(�) as claimed.

To show the statement for P(�), let (μt )t∈(−ε,ε) be a curve in P(�) with μ̇0 = ν. Then as μt

is a probability measure for all t , we conclude∣∣∣∣
∫

�

dν

∣∣∣∣ =
∣∣∣∣
∫

�

1

t
d(μt − μ0 − tν)

∣∣∣∣ ≤ ‖μt − μ0 − tν‖TV

|t |
t→0−−→ 0,

so that ν ∈ S0(�). Since P(�) ⊂ M(�), it follows that Tμ0P(�) ⊂ Tμ0M(�) ∩ S0(�) =
S0(�,μ0) for all μ0 ∈ P(�).

Conversely, given ν = φμ0 ∈ S0(�,μ0), define the curve λt := μt‖μt‖−1
TV ∈ P(�) with μt

from above, which is a C1-curve in P(�) as ‖μt‖TV > 0, and it is straightforward that λ0 = μ0

and λ̇0 = φμ0 = ν. �

Remark 2.1.

(1) Observe that the curves μt and λt in the proof of Theorem 2.1 are contained in
M+(�,μ0) and P+(�,μ0), respectively, whence

TμM+(�,μ0) = S(�,μ) and TμP+(�,μ) = S0(�,μ).
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But if μ ∈ M+(�,μ0), the μ and μ0 are equivalent measures so that S(�,μ) =
S(�,μ0) =: V and S0(�,μ) = S0(�,μ0) =: V0. Thus, the tangent space is the same
at all points.

That is, M+(�,μ0) ⊂ V has the property that TμM+(�,μ0) = V for all μ, but
M+(�,μ0) ⊂ V is not an open subset if � is infinite, and the corresponding statement
holds for P(�,μ0) ⊂ μ0 + V0. This is a rather unusual phenomenon.

(2) The sets P(�) and M(�) are not Banach submanifolds of S(�), and the tangent fi-
brations TP(�) → P(�) and TM(�) → M(�) are not vector bundles, even though
the fibers at each point are closed subspaces. This even fails in the case where
� = {ω1, . . . ,ωk} is finite. In this case, we may identify S(�) with Rk by the map∑k

i=1 xiδ
ωi ∼= (x1, . . . , xk), and with this,

TM(�) ∼=
{
(x1, . . . , xk;y1, . . . , yk) ∈ Rk ×Rk : xi ≥ 0,

xi = 0 ⇒ yi = 0

}
⊂ R2k,

and this is evidently not a submanifold of R2k . Indeed, in this case the dimension of
TμM(�) = S(�,μ) equals |{ω ∈ � | μ(ω) > 0}|, which varies with μ.

2.3. Powers of measures

Let us now give the formal definition of roots of measures. On the set M(�) we define the
preordering μ1 ≤ μ2 if μ2 dominates μ1. Then (M(�),≤) is a directed set, meaning that for any
pair μ1,μ2 ∈M(�) there is a μ0 ∈ M(�) dominating both of them (use e.g. μ0 := μ1 + μ2).

For fixed r ∈ (0,1] and measures μ1 ≤ μ2 on � we define the linear embedding

ıμ1
μ2

: L1/r (�,μ1) −→ L1/r (�,μ2), φ �−→ φ

(
dμ1

dμ2

)r

.

Observe that

∥∥ıμ1
μ2

(φ)
∥∥

L1/r (�,μ2)
=

∣∣∣∣
∫

�

∣∣ıμ1
μ2

(φ)
∣∣1/r

dμ2

∣∣∣∣
r

=
∣∣∣∣
∫

�

|φ|1/r dμ1

dμ2
dμ2

∣∣∣∣
r

=
∣∣∣∣
∫

�

|φ|1/r dμ1

∣∣∣∣
r

= ‖φ‖L1/r (�,μ1)
,

(2.6)

so that ı
μ1
μ2 is an isometry. Evidently ı

μ1
μ2 ı

μ2
μ3 = ı

μ1
μ3 whenever μ1 ≤ μ2 ≤ μ3. Then we define the

space of r th powers of measures on � to be the directed limit over the directed set (M(�),≤)

Sr (�) := lim−→ L1/r (�,μ). (2.7)
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Let us give a more concrete definition of Sr (�). On the disjoint union of the spaces L1/r (�,μ)

for μ ∈M(�) we define the equivalence relation

L1/r (�,μ1) � φ ∼ ψ ∈ L1/r (�,μ2) ⇐⇒ ıμ1
μ0

(φ) = ıμ2
μ0

(ψ)

⇐⇒ φ

(
dμ1

dμ0

)r

= ψ

(
dμ2

dμ0

)r

for some μ0 ≥ μ1,μ2. Then Sr (�) is the set of all equivalence classes of this relation.
Denote the equivalence class of φ ∈ L1/r (�,μ) by φμr , so that μr ∈ Sr (�) is the equivalence

class represented by 1 ∈ L1/r (�,μ). Then the equivalence relation yields

μr
1 =

(
dμ1

dμ2

)r

μr
2 as elements of Sr (�) (2.8)

whenever μ1 ≤ μ2, justifying this notation. In fact, from this description in the case r = 1 we
see that

S1(�) = S(�).

Observe that by (2.6) ‖φ‖L1/r (�,μ) is constant on equivalence classes, whence there is a norm on
Sr (�), denoted by ‖ · ‖1/r , for which the inclusions

L1/r (�,μ) −→ Sr (�), φ �−→ φμr

are isometries. For r = 1, we have ‖ · ‖1 = ‖ · ‖TV. Thus,

∥∥φμr
∥∥

1/r
= ‖φ‖L1/r (�,μ) =

∣∣∣∣
∫

�

|φ|1/r dμ

∣∣∣∣
r

for 0 < r ≤ 1. (2.9)

Note that the equivalence relation also preserves nonnegativity of functions, whence we may
define the subsets

Mr (�) := {
φμr : μ ∈ M(�),φ ≥ 0

}
,

Pr (�) := {
φμr : μ ∈ P(�),φ ≥ 0,

∥∥φμr
∥∥

1/r
= 1

}
.

(2.10)

In analogy to (2.4) we define for a fixed measure μ0 ∈ M(�) and r ∈ (0,1] the spaces

Sr (�,μ0) := {
φμr

0 : φ ∈ L1/r (�,μ0)
}
,

Mr (�,μ0) := {
φμr

0 : φ ∈ L1/r (�,μ0),φ ≥ 0
}
,

Pr (�,μ0) := {
φμr

0 : φ ∈ L1/r (�,μ0),φ ≥ 0,
∥∥φμr

0

∥∥
1/r

= 1
}
,

Sr
0(�,μ0) :=

{
φμr

0 : φ ∈ L1/r (�,μ0),

∫
�

φ dμ = 0

}
.

The elements of Pr (�,μ0), Mr (�,μ0), Sr (�,μ0) are said to be dominated by μr
0.
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If {μn ∈ S(�) : n ∈ N} is a countable family of (signed) finite measures, then they are domi-
nated by the finite measure μ0 := ∑

n 2−n‖νn‖−1
TV|νn| (cf. e.g., [23], Ex. IV.1.3). Therefore, any

Cauchy sequence (μr;n)n∈N ∈ Sr (�) is contained in Sr (�,μ0) for some μ0. As the embedding
Sr (�,μ0) ↪→ Sr (�) is an isometry, (μr;n)n∈N ∈ Sr (�,μ0) ∼= L1/r (�,μ0) is also a Cauchy
sequence and hence convergent. Thus, (Sr (�),‖ · ‖1/r ) is a Banach space.

Remark 2.2. The concept of r th root of measures has been indicated in [23], Ex. IV.1.4. More-
over, if � is a manifold and r = 1/2, then S1/2(�) is even a Hilbert space which has been
considered in [22], Section 6.9.1. In this case, the diffeomorphism group of � acts by isometries
on S1/2(�) [15].

The product of powers of measures can now be defined for all r, s ∈ (0,1) with r + s ≤ 1 and
for measures φμr ∈ Sr (�,μ) and ψμs ∈ Ss(�,μ):(

φμr
) · (ψμs

) := φψμr+s .

By definition φ ∈ L1/r (�,μ) and ψ ∈ L1/s(�,μ), whence Hölder’s inequality implies that
‖φψ‖1/(r+s) ≤ ‖φ‖1/r‖ψ‖1/s < ∞, so that φψ ∈ L1/(r+s)(�,μ) and hence, φψμr+s ∈
Sr+s(�,μ). Since by (2.8) this definition of the product is independent of the choice of rep-
resentative μ, it follows that it induces a bilinear product

· : Sr (�) × Ss(�) −→ Sr+s(�), where r, s, r + s ∈ (0,1], (2.11)

satisfying the Hölder inequality

‖νr · νs‖1/(r+s) ≤ ‖νr‖1/r‖νs‖1/s,

so that the product in (2.11) is a bounded bilinear map.
In analogy to Theorem 2.1, we can also determine the tangent fibrations of the subsets

Pr (�) ⊂Mr (�) ⊂ Sr (�).

Proposition 2.1. For each μ ∈ M(�) (μ ∈ P(�), respectively), the tangent cones of Pr (�) ⊂
Mr (�) ⊂ Sr (�) at μr are TμrMr (�) = Sr (�,μ) and TμrPr (�) = Sr

0(�,μ), respectively, so
that the tangent fibrations are given as

TMr (�) =
⋃̇

μr∈Mr (�)

Sr (�,μ) ⊂Mr (�) × Sr (�)

and

TPr (�) =
⋃̇

μr∈Pr (�)

Sr
0(�,μ) ⊂Pr (�) × Sr (�).

Proof. We have to adapt the proof of Theorem 2.1. The proof of the statements Sr (�,μ) ⊂
TμrMr (�) and Sr

0(�,μ) ⊂ TμrPr (�) is identical to that of the corresponding statement in The-
orem 2.1; just as in that case, one shows that for φ ∈ L1/r (�,μ0) the curves μr

t := p(ω; t)μr
0
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with p(ω; t) := 1 + tφ(ω) if tφ(ω) ≥ 0 and p(ω; ξ) = exp(tφ(ω)) if tφ(ω) < 0 is a differ-
entiable curve in Mr (�), and λr

t := μr
t /‖μr

t ‖1/r is a differentiable curve in Pr (�), and their
derivative is φμr

0 at t = 0.
In order to show the other direction, let (μr

t )t∈(−ε,ε) be a curve in Mr (�). Since there is
a measure μ̂ dominating the countable family (μr

t )t∈Q∩(−ε,ε) and since Sr (�, μ̂) ⊂ Sr (�) is
closed, it follows that μr

t ∈ M(�, μ̂) for all t . Now we can apply the argument from the proof
of Theorem 2.1 to the curve t �→ (μr

t · μ̂1−r )(A) for A ⊂ �. �

Besides multiplication of roots of measures, we also wish to take their powers. Here, we have
two possibilities to deal with signs. For 0 < k ≤ r−1 and νr = φμr ∈ Sr (�) we define

|νr |k := |φ|kμrk and ν̃k
r := sign(φ)|φ|kμrk.

Since φ ∈ L1/r (�,μ), it follows that |φ|k ∈ L1/rk(�,μ), so that |νr |k, ν̃k
r ∈ Srk(�). By (2.8)

these powers are well defined, independent of the choice of the measure μ, and, moreover,∥∥|νr |k
∥∥

1/(rk)
= ∥∥ν̃k

r

∥∥
1/(rk)

= ‖νr‖k
1/r . (2.12)

Proposition 2.2. Let r ∈ (0,1] and 0 < k ≤ 1/r , and consider the maps

πk, π̃k : Sr (�) −→ Srk(�),
πk(ν) := |ν|k,
π̃k(ν) := ν̃k.

Then πk , π̃ k are continuous maps. Moreover, for 1 < k ≤ 1/r they are C1-maps between Banach
spaces, and their derivatives are given as

dνr π̃
k(ρr) = k|νr |k−1 · ρr and dνr π

k(ρr) = kν̃k−1
r · ρr . (2.13)

Observe that for k = 1, π1(νr ) = |νr | fails to be C1, whereas π̃1(νr ) = νr , so that π̃1 is the
identity and hence a C1-map.

Proof of Proposition 2.2. Let us first assume that 0 < k ≤ 1. We assert that in this case, there
are constants Ck , C̃k > 0 such that for all x, y ∈ R∣∣|x + y|k − |x|k∣∣ ≤ Ck|y|k and∣∣sign(x + y)|x + y|k − sign(x)|x|k∣∣ ≤ C̃k|y|k.

(2.14)

Namely, by homogeneity it suffices to show this for y = 1, and since the functions

x �−→ |x + 1|k − |x|k and x �−→ sign(x + 1)|x + 1|k − sign(x)|x|k

are continuous and have finite limits for x → ±∞, it follows that they are bounded, showing
(2.14).
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Let ν1, ν2 ∈ Sr (�), and choose μ0 ∈M(�) such that ν1, ν2 ∈ Sr (�,μ0), i.e., νi = φiμ
r
0 with

φi ∈ L1/r (�,μ0). Then∥∥πk(ν1 + ν2) − πk(ν1)
∥∥

1/(rk)
= ∥∥|φ1 + φ2|k − |φ1|k

∥∥
1/(rk)

≤ Ck

∥∥|φ2|k
∥∥

1/rk
by (2.14)

= Ck‖ν2‖k
1/r by (2.12),

so that lim‖ν2‖1/r→0 ‖πk(ν1 + ν2) − πk(ν1)‖1/(rk) = 0, showing the continuity of πk for
0 < k ≤ 1. The continuity of π̃ k follows analogously.

Now let us assume that 1 < k ≤ 1/r . In this case, the functions

x �−→ |x|k and x �−→ sign(x)|x|k

with x ∈R are C1-maps with respective derivatives

x �−→ k sign(x)|x|k−1 and x �−→ k|x|k−1.

Thus, if we pick νi = φiμ
r
0 as above, then by the mean value theorem we have

πk(ν1 + ν2) − πk(ν1) = (|φ1 + φ2|k − |φ1|k
)
μrk

0

= k sign(φ1 + ηφ2)|φ1 + ηφ2|k−1φ2μ
rk
0

= k sign(φ1 + ηφ2)|φ1 + ηφ2|k−1μ
r(k−1)
0 · ν2

for some function η : � → (0,1). If we let νη := ηφ2μ
r
0, then ‖νη‖1/r ≤ ‖ν2‖1/r , and we get

πk(ν1 + ν2) − πk(ν1) = kπ̃k−1(ν1 + νη) · ν2.

With the definition of dν1 π̃
k from (2.13) we have∥∥πk(ν1 + ν2) − πk(ν1) − dν1π

k(ν2)
∥∥

1/(rk)

= ∥∥k
(
π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

) · ν2
∥∥

1/(rk)

≤ k
∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

∥∥
1/(r(k−1))

‖ν2‖1/r

and hence,

‖πk(ν1 + ν2) − πk(ν1) − dν1π
k(ν2)‖ 1

rk

‖ν2‖ 1
r

≤ k
∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)

∥∥ 1
r(k−1)

.

Thus, the differentiability of πk will follow if

∥∥π̃ k−1(ν1 + νη) − π̃ k−1(ν1)
∥∥

1/(r(k−1))

‖ν2‖1/r→0−−−−−−→ 0,

and because of ‖νη‖1/r ≤ ‖ν2‖1/r , this is the case if π̃ k−1 is continuous.
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Analogously, one shows that π̃ k is differentiable if πk−1 is continuous.
Since we already know continuity of πk and π̃ k for 0 < k ≤ 1, and since C1-maps are contin-

uous, the claim now follows by induction on �k�. �

Thus, (2.13) implies that the differentials of πk and π̃ k (which coincide on Pr (�) and Mr (�))
yield continuous maps

dπk = dπ̃k : TPr (�) −→ TPrk(�),

TMr (�) −→ TMrk(�),
(μ,ρ) �−→ kμrk−r · ρ.

3. Congruent embeddings

3.1. Statistics and congruent embeddings

Given two measurable sets � and �′, a measurable map

κ : � −→ �′

will be called a statistic. Any (signed) measure μ on �, induces a (signed) measure κ∗μ on �′,
via

κ∗μ(A) := μ
(
κ−1A

)
, (3.1)

which is called the push-forward of μ by κ . Note that

κ∗ : S(�) −→ S
(
�′) (3.2)

is a bounded linear map which is monotone, that is, it maps nonnegative measures to nonnegative
measures. When using the Jordan decomposition (2.2), we obtain

‖κ∗μ‖TV = |κ∗μ+ − κ∗μ−|(�′) ≤ κ∗μ+
(
�′) + κ∗μ−

(
�′) = |μ|(�) = ‖μ‖TV.

Thus,

‖κ∗μ‖TV ≤ ‖μ‖TV with equality iff κ∗μ+ ⊥ κ∗μ−. (3.3)

In particular, κ∗ preserves the total variation of nonnegative measures, and whence maps proba-
bility measures to probability measures, i.e.

κ∗
(
P(�)

) ⊂P
(
�′).

Furthermore, if μ1 dominates μ2, then κ∗μ1 dominates κ∗μ2 by (3.1), whence κ∗ yields bounded
linear maps

κ∗ : S(�,μ) −→ S
(
�′, κ∗μ

)
, (3.4)

and if we write

κ∗(φμ) = φ′κ∗μ, (3.5)
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then φ′ ∈ L1(�′, κ∗μ) is called the conditional expectation of φ ∈ L1(�,μ) given κ . This yields
a bounded linear map

κ
μ∗ : L1(�,μ) −→ L1(�′,μ′), φ �−→ φ′ (3.6)

with φ′ from (3.5).
We also define the pull-back of a measurable function φ′ : �′ → R as

κ∗φ′ := φ′ ◦ κ.

If A′ ⊂ �′ and A := κ−1(A′) we have χA = κ∗χA′ , and thus, (3.1) is equivalent to χA′κ∗μ =
κ∗(χAμ) = κ∗(κ∗χA′μ), and by linearity and the density of step functions in L1(�′, κ∗μ) this
implies for φ′ ∈ L1(�′, κ∗μ)

κ∗
(
κ∗φ′μ

) = φ′κ∗μ or, equivalently, κ
μ∗
(
κ∗φ′) = φ′. (3.7)

Recall that M(�) and S(�) denote the spaces of all (signed) measures on �, whereas
M(�,μ) and S(�,μ) denote the subspaces of the (signed) measures on � which are domi-
nated by μ.

Definition 3.1 (Congruent embedding). Let κ : � → �′ be a statistic and μ′ ∈ M(�′). A κ-
congruent embedding is a bounded linear map K∗ : S(�′,μ′) → S(�) such that:

(1) K∗ is monotone, i.e., it maps nonnegative measures to nonnegative measures, or shortly:
K∗(M(�′,μ′)) ⊂M(�).

(2) κ∗K∗(ν′) = ν′ for all ν′ ∈ S(�′,μ′).

Furthermore, the image of a κ-congruent embedding K∗ in S(�) is called a κ-congruent
subspace of S(�).

Example 3.1. Let κ : � → �′ be a statistic, let μ ∈ M(�) and μ′ := κ∗μ ∈ M(�′). Then the
map

Kμ : S(
�′,μ′) −→ S(�,μ) ⊂ S(�), φ′μ′ �−→ κ∗φ′μ (3.8)

for all φ′ ∈ L1(�′,μ′) is a κ-congruent embedding, since

κ∗
(
Kμ

(
φ′μ′)) = κ∗

(
κ∗φ′μ

) (3.7)= φ′κ∗μ = φ′μ′.

We shall now see that the above example exhausts all possibilities of congruent embeddings.

Proposition 3.1. Let κ : � → �′ be a statistic, let K∗ : S(�′,μ′) → S(�) for some μ′ ∈ M(�′)
be a κ-congruent embedding, and let μ := K∗μ′ ∈M(�).

Then K∗ = Kμ with the map Kμ given in (3.8).
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Proof. We have to show that K∗(φ′μ′) = κ∗φ′μ for all φ′ ∈ L1(�′,μ′). By continuity, it suffices
to show this for step functions, as these are dense in L1(�′,μ′), whence by linearity, we have to
show that for all A′ ⊂ �′, A := κ−1(A′) ⊂ �

K∗
(
χA′μ′) = χAμ. (3.9)

Let A′
1 := A′ and A′

2 = �′ \A′, and let Ai := κ−1(A′
i ). We define the measures μ′

i := χA′
i
μ′ ∈

M(�′), and μi := K∗μ′
i ∈ M(�). Observe that the monotonicity of K∗ implies that μi are

indeed (nonnegative) measures. Since μ′
1 +μ′

2 = μ′, it follows that μ1 +μ2 = μ by the linearity
of K∗.

Taking indices mod2, and using κ∗μi = κ∗K∗μ′
i = μ′

i by the κ-congruency of K∗, note that

μi(Ai+1) = μi

(
κ−1(A′

i+1

)) = κ∗μi

(
A′

i+1

) = μ′
i

(
A′

i+1

) = 0.

Thus, for any measurable B ⊂ � we have

μ1(B) = μ1(B ∩ A1) since μ1(B ∩ A2) ≤ μ1(A2) = 0

= μ1(B ∩ A1) + μ2(B ∩ A1) since μ2(B ∩ A1) ≤ μ2(A1) = 0

= μ(B ∩ A1) since μ = μ1 + μ2

= (χAμ)(B) since A1 = A.

That is, χAμ = μ1 = K∗μ′
1 = K∗(χA′μ′), so that (3.9) follows. �

3.2. Markov kernels and Markov morphisms

Definition 3.2 (Markov kernel and Markov morphism, cf. [5,10,21]). A Markov kernel be-
tween two measurable spaces � and �′ is a map K : � → P(�′), associating to each ω ∈ � a
probability measure on �′ such that for each fixed measurable A′ ⊂ �′ the map

� −→ [0,1], ω �−→ K
(
ω;A′) := K(ω)

(
A′)

is measurable. The Markov morphism induced by K is the linear map

K∗ : S(�) −→ S(�), K∗μ
(
A′) :=

∫
�

K
(
ω;A′)dμ(ω). (3.10)

We shall use the notation K∗(μ;A′) := K∗μ(A′). Since K(ω) ∈ P(�′), it follows that
K(ω;�′) = 1 and hence (3.10) implies that K∗μ(�′) = μ(�). Thus,

‖K∗μ‖TV = ‖μ‖TV for all μ ∈ M(�). (3.11)

In particular, a Markov morphism maps probability measures to probability measures. For a
general measure μ ∈ S(�), (2.3) implies that |K∗(μ;A′)| ≤ K∗(|μ|;A′) for all A′ and hence,

‖K∗μ‖TV ≤ ∥∥K∗|μ|∥∥TV = ‖μ‖TV for all μ ∈ S(�),

so that K∗ : S(�) → S(�′) is a bounded linear map.
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Observe that we can recover the Markov kernel K from K∗ using the relation

K(ω) = K∗δω for all ω ∈ �,

where δω denotes the Dirac measure supported at ω ∈ �.

Remark 3.1. From (3.10) it is immediate that K∗ preserves dominance of measures, i.e., if μ

dominates μ̃, then K∗μ dominates K∗μ̃. Thus, for each μ ∈M(�) there is a restriction

K∗ : S(�,μ) −→ S
(
�′,μ′),

where μ′ := K∗μ. This again induces a bounded linear map

K
μ∗ : L1(�,μ) −→ L1(�′,μ′), φ �−→ φ′, (3.12)

where φ′ is given by

K∗(φμ) = φ′μ′, (3.13)

and as for statistics, φ′ is called the conditional expectation of φ given K , cf. (3.5).

Definition 3.3 (Composition of Markov kernels). Let �i , i = 1,2,3 be measurable spaces,
and let Ki : �i → P(�i+1) for i = 1,2 be Markov kernels. The composition of K1 and K2 is
the Markov kernel

K2K1 : �1 −→ P(�3), ω �−→ (K2)∗
(
K1(ω)

)
.

Since ‖(K2)∗(K1(ω))‖TV = ‖K1(ω)‖TV = 1 by (3.11), (K2)∗(K1(ω)) is a probability mea-
sure, hence this composition yields indeed a Markov kernel. Moreover, it is straightforward to
verify that this composition is associative, and for the induced Markov morphism we have

(K2K1)∗ = (K2)∗(K1)∗. (3.14)

Markov kernels are generalizations of statistics. In fact, a statistic κ : � → �′ induces a
Markov kernel by

Kκ(ω) := δκ(ω), so that Kκ
(
ω;A′) := χκ−1(A′)(ω).

In this case, the Markov morphism induced by Kκ is the map κ∗ : S(�) → S(�′) from (3.2). We
shall write the Markov kernel Kκ also as κ if there is no danger of confusion.

Definition 3.4 (Congruent Markov kernels). A Markov kernel K : �′ → P(�) is called κ-
congruent for a statistic κ : � → �′ if

κ∗K
(
ω′) = δω′

for all ω′ ∈ �′, (3.15)

or, equivalently, (
KκK

)
∗ = IdS(�′) : S(

�′) −→ S
(
�′).

In this case, we also call the induced Markov morphism K∗ : S(�′) → S(�) κ-congruent.
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In order to relate the notions of κ-congruent Markov morphism and κ-congruent embeddings
from Definition 3.1, we need the notion of κ-transverse measures.

Definition 3.5 (Transverse measures). Let κ : � → �′ be a statistic. A measure μ ∈ M(�)

is said to admit κ-transverse measures if there are measures μ⊥
ω′ on κ−1(ω′) such that for all

φ ∈ L1(�,μ) ∫
�

φ dμ =
∫

�′

(∫
κ−1(ω′)

φ dμ⊥
ω′

)
dμ′(ω′), (3.16)

where μ′ := κ∗μ. In particular, the function

�′ −→ R̂, ω′ �−→
∫

κ−1(ω′)
φ dμ⊥

ω′

is measurable for all φ ∈ L1(�,μ).

Observe that the choice of κ-transverse measures μ⊥
ω′ is not unique, but rather, one can change

these measures for all ω′ in a μ′-null set.

Proposition 3.2. Let κ : � → �′ be a statistic and μ ∈ M(�) a measure which admits κ-
transverse measures {μ⊥

ω′ : ω′ ∈ �′}. Then μ⊥
ω′ is a probability measure for almost every ω′ ∈ �′

and hence, we may assume w.l.o.g. that μ⊥
ω′ ∈P(κ−1(ω′)) for all ω′ ∈ �′.

Proof. Given ε > 0, define A′
ε := {ω′ ∈ �′ : μ⊥

ω′(κ−1(ω′)) ≥ 1 + ε}. Then for φ := χκ−1(A′
ε)

the
two sides of equation (3.16) read ∫

�

χκ−1(A′
ε)

dμ = μ
(
κ−1(A′

ε

)) = μ′(A′
ε

)
∫

�′

(∫
κ−1(ω′)

χκ−1(Aε)
dμ⊥

ω′

)
dμ′(ω′) =

∫
A′

ε

(∫
κ−1(ω′)

dμ⊥
ω′

)
dμ′(ω′)

=
∫

A′
ε

μ⊥
ω′

(
κ−1(ω′))dμ′(ω′)

≥ (1 + ε)μ′(A′
ε

)
.

Thus, (3.16) implies

μ′(A′
ε

) ≥ (1 + ε)μ′(A′
ε

)
,

and hence, μ′(A′
ε) = 0 for all ε > 0. Thus,

μ′({ω′ ∈ �′ : μ⊥
ω′

(
κ−1(ω′)) > 1

}) = μ′
( ∞⋃

n=1

A′
1/n

)
≤

∞∑
n=1

μ′(A′
1/n

) = 0,
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whence {ω′ ∈ �′ : μ⊥
ω′(κ−1(ω′)) > 1} is a μ′-null set. Analogously, {ω′ ∈ �′ : μ⊥

ω′(κ−1(ω′)) < 1}
is a μ′-null set, that is, μ⊥

ω′ ∈P(κ−1(ω′)) and hence ‖μ⊥
ω′‖TV = 1 for μ′-a.e. μ′ ∈ �′.

Thus, if we replace μ⊥
ω′ by μ̃⊥

ω′ := ‖μ⊥
ω′‖−1

TVμ⊥
ω′ , then μ̃⊥

ω′ ∈ P(κ−1(ω′)) for all ω′ ∈ �′, and
since μ̃⊥

ω′ = μ⊥
ω′ for μ′-a.e. ω′ ∈ �′, it follows that (3.16) holds when replacing μ⊥

ω′ by μ̃⊥
ω′ . �

We are now ready to relate the notions of κ-congruent embeddings and κ-congruent Markov
kernels.

Theorem 3.1. Let κ : � → �′ be a statistic and μ′ ∈M(�′) be a measure.

(1) If K : �′ → P(�) is a κ-congruent Markov kernel, then the restriction of K∗ to
S(�′,μ′) ⊂ S(�′) is a κ-congruent embedding and hence, for φ′ ∈ L1(�′,μ′) we have

K∗
(
φ′μ′) = κ∗φ′K∗μ′, or, equivalently, K

μ′
∗

(
φ′) = κ∗φ′.

(2) Conversely, if K∗ : S(�′,μ′) → S(�) is a κ-congruent embedding, then the following are
equivalent.
(a) K∗ is the restriction of a κ-congruent Markov morphism to S(�′,μ′) ⊂ S(�′).
(b) μ := K∗μ′ ∈ S(�) admits κ-transverse measures.

Theorem 3.1 implies that the two notions of congruency, that is, congruent embeddings and
congruent Markov morphisms, are equivalent for large classes of statistics κ , since the existence
of transversal measures is guaranteed under rather mild hypotheses, for example, if one of �, �′
is a finite set, or if �, �′ are differentiable manifolds equipped with a Borel measure μ and κ is
a differentiable map.

However, there are examples of statistics and measures which do not admit κ-transverse mea-
sures, cf. Example 3.2 below.

Proof of Theorem 3.1. The first statement follows directly from (KκK)∗ = (Kκ)∗K∗ = κ∗K∗
by (3.14) and Proposition 3.1.

For the second, suppose that K∗ : S(�′,μ′) → S(�) is a κ-congruent embedding. Then K∗ =
Kμ given in (3.8) for the measure μ := K∗μ′ by Proposition 3.1.

If we assume that K∗ is the restriction of a κ-congruent Markov morphism induced by the
κ-congruent Markov kernel K : �′ → P(�), then we define the measures

μ⊥
ω′ := K

(
ω′)∣∣

κ−1(ω)
∈M

(
κ−1(ω′)).

Note that for ω′ ∈ �′

K
(
ω′;� \ κ−1(ω′)) =

∫
�\κ−1(ω′)

dK
(
ω′) =

∫
�′\ω′

dκ∗K
(
ω′)

(3.15)=
∫

�′\ω′
dδω′ = 0.
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That is, K(ω′) is supported on κ−1(ω′) and hence, for an arbitrary set A ⊂ � we have

K
(
ω′;A) = K

(
ω′;A ∩ κ−1(ω′)) = μ⊥

ω′
(
A ∩ κ−1(ω′)) =

∫
κ−1(ω′)

χA dμ⊥
ω′ .

Substituting this into the definition of K∗ we obtain for a subset A ⊂ �∫
�

χA dμ = μ(A) = K∗
(
μ′;A) (3.10)=

∫
�′

K
(
ω′;A)

dμ′(ω′)

=
∫

�′

(∫
κ−1(ω′)

χA dμ⊥
ω′

)
dμ′(ω′),

showing that (3.16) holds for φ = χA. But then, by linearity (3.16) holds for any step function φ,
and since these are dense in L1(�,μ), it follows that (3.16) holds for all φ, so that the measures
μ⊥

ω′ defined above yield indeed κ-transverse measures of μ.
Conversely, suppose that μ := K∗μ′ admits κ-transverse measures μ⊥

ω′ , and by Proposition 3.2
we may assume w.l.o.g. that μ⊥

ω′ ∈ P(κ−1(ω′)). Then we define the map

K : �′ −→ P(�), K
(
ω′;A) := μ⊥

ω′
(
A ∩ κ−1(ω′)) =

∫
κ−1(ω′)

χA dμ⊥
ω′ .

Since for fixed A ⊂ � the map ω′ �→ ∫
κ−1(ω′) χA dμ⊥

ω′ is measurable by the definition of transver-
sal measures, K is indeed a Markov kernel. Moreover, for A′ ⊂ �′

κ∗K
(
ω′)(A′) = K

(
ω′;κ−1(A′)) = μ⊥

ω′
(
κ−1(A′) ∩ κ−1(ω′)) = δω′(

A′),
so that κ∗K(ω′) = δω′

for all ω′ ∈ �′, whence K is κ-congruent. Moreover, for any φ′ ∈
L1(�′,μ′) and A ⊂ � we have

Kμ

(
φ′μ′)(A)

(3.8)= κ∗φ′μ(A) =
∫

�

χAκ∗φ′ dμ

(3.16)=
∫

�′

(∫
κ−1(ω′)

χAκ∗φ′ dμ⊥
ω′

)
dμ′(ω′)

=
∫

�′

(∫
κ−1(ω′)

χA dμ⊥
ω′

)
φ′(ω′)dμ′(ω′)

=
∫

�′
K

(
ω′;A)

d
(
φ′μ′)(ω′) (3.10)= K∗

(
φ′μ′)(A).

Thus, Kμ(φ′μ′) = K∗(φ′μ′) for all φ′ ∈ L1(�′,μ′) and hence, Kμ(ν) = K∗ν for all ν ∈
S(�′,μ′). That is, the given congruent embedding Kμ coincides with the Markov morphism
K∗ induced by K , and this completes the proof. �

Now we give an example of a statistic which does not admit κ-transverse measures.
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Example 3.2. Let � := S1 be the unit circle group in the complex plain with the 1-dimensional
Borel algebra B. Let � := exp(2π

√−1Q) ⊂ S1 be the subgroup of rational rotations, and let
�′ := S1/� be the quotient space with the canonical projection κ : � → �′. Let B′ := {A′ ⊂
�′ : κ−1(A′) ∈ B}, so that κ : � → �′ is measurable. For γ ∈ �, we let mγ : S1 → S1 denote
the multiplication by γ .

Let λ be the 1-dimensional Lebesgue measure on � and λ′ := κ∗λ be the induced measure
on �′. Suppose that λ admits κ-transverse measures (λ⊥

ω′)ω′∈�′ . Then for each A ∈ B we have

λ(A) =
∫

�′

(∫
A∩κ−1(ω′)

dλ⊥
ω′

)
dλ′(ω′). (3.17)

Since λ is invariant under rotations, we have on the other hand for γ ∈ �

λ(A) = λ
(
m−1

γ A
) =

∫
�′

(∫
(m−1

γ A)∩κ−1(ω′)
dλ⊥

ω′

)
dλ′(ω′)

=
∫

�′

(∫
A∩κ−1(ω′)

d
(
(mγ )∗λ⊥

ω′
))

dλ′(ω′).
(3.18)

Comparing (3.17) and (3.18) implies that ((mγ )∗λ⊥
ω′)ω′∈�′ is another family of κ-transverse mea-

sures of λ which implies that (mγ )∗λ⊥
ω′ = λ⊥

ω′ for λ′-a.e. ω′ ∈ �′, and as � is countable, it follows
that

(mγ )∗λ⊥
ω′ = λ⊥

ω′ for all γ ∈ � and λ′-a.e. ω′ ∈ �′.

Thus, for a.e. ω′ ∈ �′ we have λ⊥
ω′({γ · x}) = λ⊥

ω′({x}), and since � acts transitively on κ−1(ω′),
it follows that singleton subsets have equal measure, i.e., there is a constant cω′ with

λ⊥
ω′

(
A′) = cω′

∣∣A′∣∣
for all A′ ⊂ κ−1(ω′). As κ−1(ω′) is countable infinite, this implies that λ⊥

ω′ = 0 if cω′ = 0, and
λ⊥

ω′(κ−1(ω′)) = ∞ if cω′ > 0. Thus, λ⊥
ω′ is not a probability measure for a.e. ω′ ∈ �′, contradict-

ing Proposition 3.2. This shows that λ does not admit κ-transverse measures.

We conclude this section by the following result (cf. [5], Theorem 4.10).

Theorem 3.2. Any Markov kernel K = � → P(�′) can be decomposed into a statistic and a
congruent Markov kernel. That is, there is a Markov kernel Kcong : � →P(�̂) which is congru-
ent w.r.t. some statistic κ1 : �̂ → �, and a statistic κ2 : �̂ → �′ such that

K = Kκ2Kcong.

Proof. Let �̂ := � × �′ and let κ1 : �̂ → � and κ2 : �̂ → �′ be the canonical projections. We
define the Markov kernel

Kcong : � −→ P(�̂), Kcong(ω) := δω × K(ω),
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i.e., Kcong(ω; Â) := K(ω;κ2(Â ∩ ({ω} × �′))) for Â ⊂ �̂. Then evidently, (κ1)∗(Kcong(ω)) =
δω , so that Kcong is κ1-congruent, and (κ2)∗Kcong(ω) = K(ω), so the claim follows. �

3.3. Powers of densities and congruent embeddings

As we saw in the preceding section, a Markov kernel K : � → P(�′) (e.g., a statistic κ : � →
�′), induces the monotone bounded linear map K∗ : S(�) → S(�′) from (3.10) and for each
μ ∈ M(�) the restriction yields a bounded linear map K∗ : S(�,μ) → S(�′,μ′), where μ′ :=
K∗μ ∈ M(�′). This induces the bounded linear map K

μ∗ : L1(�,μ) → L1(�′,μ′) from (3.12)
(or in case of a statistic, the map κ

μ∗ : L1(�,μ) → L1(�′,μ′) from (3.6), respectively).
We wish to show that when restricting this map to Lk(�,μ) ⊂ L1(�′,μ′), the k-regularity is

preserved by κ
μ∗ and K

μ∗ , respectively, cf. Theorem 3.3 below. The first step towards this is to
consider congruent Markov kernels.

Proposition 3.3. Let K : �1 → P(�2) be a Markov kernel which is congruent w.r.t. some
statistic κ : �2 → �1. Let μ1 ∈ M(�1) and μ2 := K∗μ1 ∈ M(�2), and consider the map
K

μ1∗ : L1(�1,μ1) → L1(�2,μ2).
Then for all φ ∈ Lk(�1,μ1) with 1 ≤ k ≤ ∞ we have φ′ := K

μ∗ (φ) ∈ Lk(�2,μ2), and∥∥φ′∥∥
k
= ‖φ‖k.

Proof. Since K is κ-congruent, by Theorem 3.1 we have φ′ := K
μ1∗ (φ) = κ∗φ. Thus, for 1 ≤

k < ∞, ∥∥φ′∥∥k

k
=

∫
�2

∣∣φ′∣∣k dμ2 =
∫

�2

κ∗|φ|k dκ∗μ1 =
∫

�1

|φ|k dμ1 = ‖φ‖k
k, (3.19)

showing the assertion. For k = ∞, ‖φ′‖∞ = ‖κ∗φ‖∞ = ‖φ‖∞ is obvious. �

Next, we shall deal with statistics κ : � → �′.

Proposition 3.4. Let κ : � → �′ be a statistic and μ ∈ M(�), μ′ := κ∗μ ∈ M(�′), and let
κ

μ∗ : L1(�;μ) → L1(�′,μ′) be the map from (3.6). Then the following hold.

(1) If φ ∈ Lk(�,μ) for 1 ≤ k ≤ ∞, then φ′ := κ
μ∗ (φ) ∈ Lk(�′,μ′), and∥∥φ′∥∥

k
≤ ‖φ‖k. (3.20)

(2) For 1 < k < ∞, equality in (3.20) holds iff φ = κ∗φ′.

Remark 3.2. The estimate (3.20) in Proposition 3.4 also follows from [23], Proposition IV.3.1.

Proof of Proposition 3.4. We decompose φ = φ+ − φ− as in (2.1). Then ‖φ′‖1 = ‖κ∗(φμ)‖TV

and ‖φ‖1 = ‖φμ‖TV, so that (3.3) implies (3.20) for k = 1.
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If φ ∈ L∞(�,μ), then |φμ| ≤ ‖φ‖∞μ, and by monotonicity of κ∗ it follows that∣∣φ′μ′∣∣ = ∣∣κ∗(φμ)
∣∣ ≤ κ∗|φμ| ≤ ‖φ‖∞μ′,

whence ‖φ′‖∞ ≤ ‖φ‖∞, so that (3.20) holds for k = ∞.
For φ′ ∈ Lk(�′,μ′) (3.19) implies that κ∗φ′ ∈ Lk(�,μ) and∥∥κ∗φ′∥∥

k
= ∥∥φ′∥∥

k
for all φ′ ∈ Lk

(
�′,μ′),1 ≤ k ≤ ∞. (3.21)

Suppose now that φ ∈ Lk(�,μ) with 1 < k < ∞ is such that φ′ ∈ Lk(�′,μ′), and assume that
φ ≥ 0 and hence, φ′ ≥ 0. Then

∥∥φ′∥∥k

k
=

∫
�′

φ′k dμ′ =
∫

�′
φ′k−1

dκ∗(φμ) =
∫

�

κ∗(φ′k−1)
φ dμ

(∗)≤ ∥∥κ∗(φ′k−1)∥∥
k/(k−1)

‖φ‖k

(∗∗)= ∥∥φ′k−1∥∥
k/(k−1)

‖φ‖k = ∥∥φ′∥∥k−1
k

‖φ‖k.

From this, (3.20) follows. Here we used Hölder’s inequality at (∗), and (3.21) applied to φ′k−1 ∈
Lk/(k−1)(�′,μ′) at (∗∗). Moreover, equality at (∗) holds iff φ = cκ∗φ′ for some c ∈ R, and the
fact that κ∗(φμ) = φ′μ′ easily implies that c = 1, i.e., equality in (3.20) occurs iff φ = κ∗φ′.

If we drop the assumption that φ ≥ 0, we decompose φ = φ+ − φ− as in (2.1) and let φ′± :=
κ

μ∗ (φ±) ≥ 0. Although in general, φ′+ and φ′− do not have disjoint support, the linearity of κ∗
still implies that φ′ = φ′+ − φ′−. Let us assume that φ′± ∈ Lk(�′,μ′). Then∥∥φ′∥∥

k
= ∥∥φ′+ − φ′−

∥∥
k
≤ ∥∥φ′+

∥∥
k
+ ∥∥φ′−

∥∥
k
≤ ‖φ+‖k + ‖φ−‖k = ‖φk‖,

using (3.20) applied to φ± ≥ 0 in the second estimate. Equality in the second estimate holds iff
φ± = κ∗φ′±, and thus, φ = φ+ − φ− = κ∗(φ′+ − φ′−) = κ∗φ′.

Thus, it remains to show that φ′ ∈ Lk(�′,μ′) whenever φ ∈ Lk(�,μ). For this, let φ ∈
Lk(�,μ), (φn)n∈N be a sequence in L∞(�,μ) converging to φ in Lk(�,μ), and let φ′

n :=
κ

μ∗ (φn) ∈ L∞(�′,μ′) ⊂ Lk(�′,μ′). As (φ′
n − φ′

m)± ∈ L∞(�′,μ′) ⊂ Lk(�′,μ′), (3.20) holds
for φn − φm by the previous argument, that is,∥∥φ′

n − φ′
m

∥∥
k
≤ ‖φn − φm‖k,

which tends to 0 for n,m → ∞, as (φ)n is convergent and hence a Cauchy sequence in Lk(�,μ).
Thus, (φ′)n is also a Cauchy sequence, whence it converges to some φ̃′ ∈ Lk(�′,μ′). It follows
that φn − κ∗φ′

n converges in Lk(�,μ) to φ − κ∗φ̃′, and as κ∗((φn − κ∗φ′
n)μ) = 0 for all n, we

have

0 = κ∗
((

φ − κ∗φ̃′)μ) = φ′μ′ − φ̃′μ′,

whence φ′ = φ̃′ ∈ Lk(�′,μ′). �

Putting the last two results together, we obtain the following theorem.
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Theorem 3.3. Let K : � → P(�′) be a Markov kernel, μ ∈ M(�) and μ′ := K∗μ ∈ M(�′).
Then for φ ∈ Lk(�,μ) with 1 ≤ k ≤ ∞ we have K

μ∗ (φ) ∈ Lk(�′,μ′), and

∥∥K
μ∗ (φ)

∥∥
k
≤ ‖φ‖k.

Proof. By Theorem 3.2, we can decompose K = κ∗Kcong, where Kcong : � → P(�̂) is con-
gruent w.r.t. some statistic κ̂ : �̂ → �, and with a statistic κ : �̂ → �′. Then it follows that
K∗ = κ∗Kcong∗ , and whence,

K
μ∗ = κ

μ̂∗ K
cong∗

μ
,

where μ̂ := K
cong∗ (μ) ∈ M(�̂). Given φ ∈ Lk(�,μ), then by Theorem 3.1, φ̂ := K

cong∗
μ
(φ) =

κ̂∗φ, whence φ′ := K
μ∗ (φ) = κ

μ̂∗ (φ̂). Thus,

∥∥K
μ∗ (φ)

∥∥
k
= ∥∥κ

μ̂∗ (φ̂)
∥∥

k
≤ ‖φ̂‖k = ‖φ‖k,

where the first estimate follows from Proposition 3.4, whereas the second equation follows from
Proposition 3.3. �

Remark 3.3. Theorem 3.3 can be interpreted in a different way. Namely, given a Markov kernel
K : � →P(�′) and r ∈ (0,1], one can define the map Kr∗ : Sr (�) → Sr (�′) by

Kr∗
(
μ̃r

) := π̃ r (K∗μ) for μ ∈ S(�), (3.22)

with the signed r th power μ̃r defined before. Since π̃ r and π̃1/r are both continuous by Propo-
sition 2.2, the map Kr∗ is continuous, but it fails to be C1 for r < 1, even for finite �.

Let μ ∈ M(�) and μ′ := K∗μ ∈ M(�′), so that Kr∗(μr) = μ′r . If there was a derivative of
Kr∗ at μr , then it would have to be a map between the tangent spaces TμrM(�) and Tμ′rM(�′),
i.e., according to Proposition 2.1 between Sr (�,μ) and Sr (�′,μ′). Let k := 1/r > 1, φ ∈
Lk(�,μ) ⊂ L1(�,μ), so that φ′ := K

μ∗ (φ) ∈ Lk(�′,μ′) by Theorem 3.3. Then by Proposi-
tion 2.2 and the chain rule we obtain

d
(
π̃ kKr∗

)
μr

(
φμr

) = kμ′1−r · d(
Kr∗

)
μr

(
φμr

)
,

d
(
K∗π̃ k

)
μr

(
φμr

) = kK∗(φμ) = kφ′μ′,

and these should coincide as π̃ kKr∗ = K∗π̃ k by (3.22). Since d(Kr∗)μr (φμr) ∈ Sr (�′,μ′), we
thus must have

d
(
Kr∗

)
μr

(
φμr

) = φ′μ′r , where φ′ = K
μ∗ (φ). (3.23)

Thus, Theorem 3.3 states that this map is a well defined linear operator with operator norm
≤ 1. The map d(Kr∗)μr : Sr (�,μ) → Sr (�′,μ′) from (3.23) is called the formal derivative of
Kr∗ at μr .
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4. Parametrized measure models and k-integrability

In this section, we shall now present our notion of a parametrized measure model.

Definition 4.1 (Parametrized measure model). Let � be a measure space.

(1) A parametrized measure model is a triple (M,�,p) where M is a (finite or infinite dimen-
sional) Banach manifold and p : M → M(�) ⊂ S(�) is a C1-map in the sense explained
in Section 2.2.

(2) The triple (M,�,p) is called a statistical model if it consists only of probability measures,
that is, such that the image of p is contained in P(�).

(3) We call such a model dominated by μ0 if the image of p is contained in S(�,μ0). In this
case, we use the notation (M,�,μ0,p) for this model.

Remark 4.1. Evidently, for the applications we have in mind, we are interested mainly in sta-
tistical models. However, we can take the point of view that P(�) is the projectivization of
P(�) = P(M(�) \ 0) via rescaling. Thus, given a parametrized measure model (M,�,p), nor-
malization yields a statistical model (M,�,p0) defined by

p0(ξ) := p(ξ)

‖p(ξ)‖TV
,

which is again a C1-map. Indeed, the map μ �→ ‖μ‖TV on M(�) is a C1-map, being the restric-
tion of the linear (and hence differentiable) map μ �→ ∫

�
dμ on S(�).

Observe that while S(�) is a Banach space, the subsets M(�) and P(�) do not carry a
canonical manifold structure.

If a parametrized measure model (M,�,μ0,p) is dominated by μ0, then there is a density
function p : � × M →R such that

p(ξ) = p(·; ξ)μ0. (4.1)

Evidently, we must have p(·; ξ) ∈ L1(�,μ0) for all ξ . In particular, for fixed ξ , p(·; ξ) is
defined only up to changes on a μ0-null set.

Definition 4.2 (Regular density function).
Let (M,�,μ0,p) be a parametrized measure model dominated by μ0. We say that this model

has a regular density function if the density function p : � × M → R satisfying (4.1) can be
chosen such that for all V ∈ TξM the partial derivative ∂V p(·; ξ) exists and lies in L1(�,μ0).

Remark 4.2. The standard notion of a statistical model always assumes that it is dominated
by some measure and has a positive regular density function (e.g., [4], Section 2, p. 25, [3],
Section 2.1, [27], [5], Definition 2.4). In fact, the definition of a parametrized measure model or
statistical model in [5], Definition 2.4, is equivalent to a parametrized measure model or statistical
model with a positive regular density function in the sense of Definition 4.2.
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Let us point out why the present notion is indeed more general. The formal definition of
differentiability of p implies that for each C1-path ξ(t) ∈ M with ξ(0) = ξ , ξ̇ (0) =: V ∈ TξM ,
the curve t �→ p(·; ξ(t)) ∈ L1(�,μ0) is differentiable. This implies that there is a dξ p(V ) ∈
L1(�,μ0) such that ∥∥∥∥p(·; ξ(t)) − p(·; ξ)

t
− dξ p(V )(·)

∥∥∥∥
1

t→0−−→ 0.

If this is a pointwise convergence, then dξ p(V ) = ∂V p(·; ξ) is the partial derivative and whence,
∂V p(·; ξ) lies in L1(�,μ0), so that the density function is regular.

However, in general convergence in L1(�,μ0) does not imply pointwise convergence, whence
there are parametrized measure models in the sense of Definition 4.1 without a regular density
function, cf. Example 4.1 below. Nevertheless, for simplicity we shall frequently use the notation
∂V p(·; ξ) instead of dξ p(V )(·), even if the density function is not regular.

By this convention, for a parametrized measure model (M,�,μ0,p) we can describe its
derivative in the direction of V ∈ TξM as

dξ p(V ) = ∂V p(·; ξ)μ0.

Example 4.1. To see that there are parametrized measure models without a regular density func-
tion, consider the family of measures on � = (0,π) and ξ ∈ (−1,∞)

p(ξ) := p(t; ξ) dt with p(t; ξ) =
{(

1 + ξ
(
sin2(t − 1/ξ)

)1/ξ2)
dt for ξ �= 0,

1 for ξ = 0.

This model is dominated by the Lebesgue measure dt with density function p, and the partial
derivative ∂ξp does not exist at ξ = 0, whence the density function is not regular.

On the other hand, p : R → M(�,dt) is differentiable in the above sense at ξ = 0 with
d0p(∂ξ ) = 0, so that (M,�,p) is a parametrized measure model in the sense of Definition 4.1.
To see this, we calculate

∥∥∥∥p(ξ) − p(0)

ξ

∥∥∥∥
1

= ∥∥(
sin2(t − 1/ξ)

)1/ξ2
dt

∥∥
1

=
∫ π

0

(
sin2(t − 1/ξ)

)1/ξ2
dt

=
∫ π

0

(
sin2 t

)1/ξ2
dt

ξ→0−−→ 0,

which shows the claim. Here, we used the π -periodicity of the integrand for fixed ξ and domi-
nated convergence in the last step.
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Since for a parametrized measure model (M,�,p) the map p is C1, it follows that its deriva-
tive yields a continuous map between the tangent fibrations

dp : T M −→ TM(�) =
⋃̇

μ∈M(�)

S(�,μ).

That is, for each tangent vector V ∈ TξM , its differential dξ p(V ) is contained in S(�,p(ξ)) and
hence dominated by p(ξ).

Definition 4.3. Let (M,�,p) be a parametrized measure model. Then for each tangent vector
V ∈ TξM of M , we define

∂V log p(ξ) := d{dξ p(V )}
dp(ξ)

∈ L1(�,p(ξ)
)

(4.2)

and call this the logarithmic derivative of p at ξ in direction V .

If such a model is dominated by μ0 and has a regular density function p for which (4.1) holds,
then we can calculate the Radon–Nikodym derivative as

d{dξ p(V )}
dp(ξ)

= d{dξ p(V )}
dμ0

·
(

dp(ξ)

dμ0

)−1

= ∂V p(.; ξ)
(
p(.; ξ)

)−1 = ∂V logp(·; ξ),

where we use the convention log 0 = 0. This justifies the notation in (4.2) even for models without
a regular density function.

For a parametrized measure model (M,�,p) and k > 1 we consider the map

p1/k := π1/k ◦ p : M −→ S1/k(�), ξ �−→ p(ξ)1/k.

Since π1/k is continuous by Proposition 2.2, it follows that p1/k is continuous as well. Let
us pretend for the moment that p1/k is a C1-map, so that dξ p1/k(V ) ∈ Tp(ξ)1/kM1/k(�) =
S1/k(�,p(ξ)). In this case, because of πk ◦ π1/k = Id, we have

p = πk ◦ p1/k,

whence by the chain rule and (2.13) we have for ξ ∈ M and V ∈ TξM

dξ p(V ) = kp(ξ)1−1/k · (dξ p1/k(V )
)
.

Thus with (4.2) this implies

dξ p1/k(V ) = 1

k
∂V log p(ξ)p1/k(ξ) ∈ S1/k

(
�,p(ξ)

)
(4.3)

and hence, in particular, ∂V log p(ξ) ∈ Lk(�,p(ξ)), and depends continuously on V ∈ T M . This
motivates the following definition.
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Definition 4.4 (k-integrable parametrized measure model).
A parametrized measure model (M,�,p) is called k-integrable for k ≥ 1 if for all ξ ∈ M and

V ∈ TξM we have

∂V log p(ξ) = d{dξ p(V )}
dp(ξ)

∈ Lk
(
�,p(ξ)

)
,

and moreover, the map

dp1/k : T M −→ T S1/k(�)

given in (4.3) is continuous. Furthermore, we call the model ∞-integrable if it is k-integrable for
all k ≥ 1.

Since p(ξ) is a finite measure, we have Lk(�,p(ξ)) ⊂ Ll(�,p(ξ)) for all 1 ≤ l ≤ k. Thus,
k-integrability implies l-integrability for all such l.

Remark 4.3. The reader who is familiar with the definition of k-integrability in [5], Defini-
tion 2.4. might notice that there only the continuity of the norm ‖dξ p1/k‖ on T M is required.
Also, by our previous discussion, a parametrized measure model (M,�,p) for which p1/k is a
C1-map is always k-integrable.

As it turns out, these three notions of k-integrability are equivalent. That is, ‖dξ p1/k‖ is con-
tinuous if and only if dξ p1/k is continuous if and only if p1/k is a C1-map.

Definition 4.5 (Canonical n-tensor). For n ∈ N, the canonical n-tensor is the covariant n-tensor
on S1/n(�), given by

Ln
�(ν1, . . . , νn) = nn

∫
�

d(ν1 · · ·νn), where νi ∈ S1/n(�). (4.4)

The main purpose of defining the notion of k-integrability is that for a k-integrable model, we
can for any n ≤ k define the pullback

τn
(M,�,p) := (

p1/n
)∗

Ln
�,

τn
(M,�,p)(V1, . . . , Vn) = Ln

�

(
dξ p1/n(V1), . . . , dξ p1/n(Vn)

)
=

∫
�

∂V1 log p(ξ) · · · ∂Vn log p(ξ) dp(ξ),

(4.5)

where the second line follows immediately from (4.3) and (4.4). This is well defined as p1/n :
M → S1/n(�) is differentiable by Remark 4.3

Example 4.2.

(1) For n = 1, the canonical 1-form is given as

τ 1
(M,�,p)(V ) :=

∫
�

∂V log p(ξ) dp(ξ) = ∂V

∥∥p(ξ)
∥∥.
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Thus, it vanishes if and only if ‖p(ξ)‖ is locally constant, e.g., if (M,�,p) is a statistical
model.

(2) For n = 2, τ 2
(M,�,p) coincides with the Fisher metric

gF (V,W)ξ :=
∫

�

∂V log p(ξ) ∂W log p(ξ) dp(ξ) (4.6)

(3) For n = 3, τ 3
(M,�,p) coincides with the Amari–Chentsov 3-symmetric tensor

T AC(V ,W,X)ξ :=
∫

�

∂V log p(ξ) ∂W log p(ξ) ∂X log p(ξ) dp(ξ).

Observe that the Fisher metric gF is a Riemannian metric on M iff p is an immersion, i.e., if
kerdξ p = 0.

Remark 4.4. While the Fisher metric and the Amari–Chentsov tensor give an interpretation
of τn

(M,�,p) for n = 2,3, we do not know of any statistical significance of τn
(M,�,p) for n ≥ 4.

However, we shall show later that τ 2n
M can be used to measure the information loss of statistics

and Markov kernels, cf. Theorem 5.2. Moreover, in [18], p. 212, the question is posed if there are
other significant tensors on statistical manifolds, and the canonical n-tensors may be considered
as natural candidates.

5. Parametrized measure models and sufficient statistics

Given a parametrized measure model (statistical model, respectively) (M,�,p) and a Markov
kernel K : � → P(�′) which induces the Markov morphism K∗ :M(�) →M(�′) as in (3.10),
we obtain another parametrized measure model (statistical model, respectively) (M,�′,p′) by
defining p′(ξ) := K∗p(ξ). These transitions can be interpreted as data processing in statistical
decision theory, which can be deterministic (i.e., given by a statistic) or randomized (i.e., given
by a Markov kernel). We refer to for example, [11] where this is elaborated in detail.

It is the purpose of this section to investigate the relation between these two models in more
detail.

Theorem 5.1. Let (M,�,p), K : � → P(�′) and (M,�′,p′) be as above, and suppose that
(M,�,p) is k-integrable for some k ≥ 1. Then (M,�′,p′) is also k-integrable, and∥∥∂V log p′(ξ)

∥∥
k
≤ ∥∥∂V log p(ξ)

∥∥
k

for all V ∈ TξM, (5.1)

where the norms are taken in Lk(�,p(ξ)) and Lk(�′,p′(ξ)), respectively. If K is congruent,
then equality in (5.1) holds for all V .

Moreover, if K is given by a statistic κ : � → �′ and k > 1, then equality in (5.1) holds iff
∂V log p(ξ) = κ∗(∂V log p′(ξ)). In particular, equality in (5.1) either holds for all k > 1 for which
the model is k-integrable or for no such k > 1.
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Proof. Since K∗ is the restriction of a bounded linear map, it is obvious that p′ : M → M(�′)
is again differentiable, and in fact,

dξ p′(V ) = K∗
(
dξ p(V )

)
(5.2)

for all V ∈ TξM , ξ ∈ M .
Let μ := p(ξ) and μ′ := p′(ξ) = K∗μ, and let φ := ∂V log p(ξ) and φ′ := ∂V log p′(ξ), so that

dξ p(V ) = φμ and dξ p′(V ) = φ′μ′. By (5.2) we thus have

K∗(φμ) = φ′μ′,

so that φ′ = K
μ∗ (φ) is the expectation value of φ given K . If p is k-integrable, then φ =

∂V log p(ξ) ∈ Lk(�,μ), whence φ′ ∈ Lk(�′,μ′), and ‖φ′‖k ≤ ‖φ‖k , by Theorem 3.3. That is,
p′ is k-integrable as well and (5.1) holds.

If K is congruent, then ‖φ′‖k = ‖φ‖k by Proposition 3.3.
If k > 1 and K is given by a statistic κ , then equality in (5.1) occurs iff φ = κ∗φ′ by Proposi-

tion 3.4. �

Since the Fisher metrics gF of (M,�,p) and g′F of (M,�′,p′) are defined as

g(V ,V ) = ∥∥∂V log p(ξ)
∥∥2

2 and g′(V ,V ) = ∥∥∂V log p′(ξ)
∥∥2

2

by (4.6), Theorem 5.1 immediately implies the following.

Theorem 5.2 (Monotonicity theorem, cf. [3,5,28]). Let (M,�,p) be a k-integrable parame-
trized measure model for k ≥ 2, let K : � → P(�′) be a Markov kernel, and let (M,�′,p′) be
given by p′(ξ) = K∗p(ξ). Then

g(V ,V ) ≥ g′(V ,V ) for all V ∈ TξM and ξ ∈ M. (5.3)

Remark 5.1. Note that our approach allows to prove the Monotonicity Theorem 5.2 with no
further assumption on the model (M,�,p). In order for (5.3) to hold we can work with arbitrary
Markov kernels, not just statistics κ . Even if K is given by a statistic κ , we do not need to assume
that � is a topological space with its Borel σ -algebra as in [19], Theorem 1.2, nor do we need
to assume the existence of transversal measures of the map κ (e.g. [3], Theorem 2.1), nor do we
need to assume that all measures p(ξ) have the same null sets ([5], Theorem 3.11). In this sense,
our statement generalizes these versions of the monotonicity theorem, as it even covers a rather
peculiar statistic as in Example 3.2.

In [3], p. 98, the difference

g(V ,V ) − g′(V ,V ) ≥ 0 (5.4)

is called the information loss of the model under the statistic κ , a notion which is highly relevant
for statistical inference. This motivates the following definition.
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Definition 5.1. Let (M,�,p) be k-integrable for some k > 1, let K : � → P(�′) and
(M,�′,p′) be as above, so that (M,�′,p′) is k-integrable as well. Then for each V ∈ TξM

we define the kth order information loss under K in direction V as∥∥∂V log p(ξ)
∥∥k

k
− ∥∥∂V log p′(ξ)

∥∥k

k
≥ 0,

where the norms are taken in Lk(�,p(ξ)) and Lk(�′,p′(ξ)), respectively.

That is, the information loss in (5.4) is simply the special case k = 2 in Definition 5.1. Observe
that due to Theorem 5.1 the vanishing of the information loss for some k > 1 implies the vanish-
ing for all k > 1 for which this norm is defined. That is, the kth order information loss measures
the same quantity by different means.

For instance, if (M,�,p) is k-integrable for 1 < k < 2, but not 2-integrable, then the Fisher
metric and hence the classical information loss in (5.4) is not defined. Nevertheless, we still can
quantify the kth order information loss of a statistic of this model.

Observe that for k = 2n an even integer τ 2n
(M,�,p)(V , . . . , V ) = ‖∂V log p(ξ)‖2n

2n, whence the
difference

τ 2n
(M,�,p)(V , . . . , V ) − τ 2n

(M,�′,p′)(V , . . . , V ) ≥ 0

represents the 2nth order information loss of κ in direction V . This gives an interpretation of the
canonical 2n-tensors τ 2n

(M,�,p).
It is a natural problem to characterize statistics of a model which do not produce any informa-

tion loss. Fisher [14] called such a statistic sufficient writing that “. . . the criterion of sufficiency,
which latter requires that the whole of the relevant information supplied by a sample shall be
contained in the statistics calculated” [14], p. 367. This motivates the following definition.

Definition 5.2 (Sufficient statistic). Let (M,�,p) be a parametrized measure model which is
k-integrable for some k > 1. Then a statistic κ : � → �′ or, more general, a Markov kernel
K : � → P(�′) is called a sufficient for the model if the kth order information loss vanishes for
all tangent vectors V , that is, if∥∥∂V log p′(ξ)

∥∥
k
= ∥∥∂V log p(ξ)

∥∥
k

for all V ∈ TξM,

where p′(ξ) = κ∗p(ξ) or p′(ξ) = K∗p(ξ), respectively.

Again, in this definition it is irrelevant which k > 1 is used, as long as k-integrability of the
model is satisfied.

Example 5.1 (Fisher–Neyman [24]). Let (M,�′,μ′
0,p′) be a parametrized measure model

dominated by μ′
0, given by

p′(ξ) = φ′(·; ξ)μ′
0, φ′ : � × M −→ [0,∞].

Moreover, let κ : � → �′ be a statistic and μ0 ∈ M(�) such that κ∗(μ0) = μ′
0. Define the

parametrized measure model (M,�,μ0,p) as

p(ξ) := φ′(κ(·), ξ)
μ0. (5.5)
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Then κ is a sufficient statistic for (M,�,μ0,p). Indeed, κ∗(p)(ξ) = p′(ξ) by (3.7), and
dξ p(V ) = κ∗(dp′

ξ (V )) for all V ∈ TξM , so that ∂V log p(ξ) = κ∗(∂V log p′(V )). By Theorem 5.1
it follows that equality holds in (5.1), so that κ is a sufficient statistic for (M,�,μ0,p).

Under some further assumptions, the statistics given in Example 5.1 exhaust all sufficient
statistics. More precisely, the following is known as the Fisher–Neyman factorization.

Proposition 5.1 ([24]). Let (M,�,μ,p) be a parametrized measure model with a positive reg-
ular density function p : � × M → (0,∞), and let κ : � → �′ be a sufficient statistic of the
model.

Then (M,�,μ,p) admits a Fisher–Neyman factorization, that is, it is of the form (5.5) in
Example 5.1 for some measure μ0 on �, μ′

0 := κ∗(μ0) and some function φ′ : �′ × M →
(0,∞).

Proof. If p(ξ) = p(·; ξ)μ where p is positive and differentiable in the ξ -variable, then logp(·; ξ)

and logp′(·; ξ) are well defined functions on �×M and �′ ×M , respectively and differentiable
in ξ . In particular, κ∗(∂V logp′(·; ξ)) = ∂V (logp′(κ(·); ξ)), so that by Theorem 5.1 equality in
(5.1) holds for k > 1 iff

∂V log
p(·; ξ)

p′(κ(·); ξ)
= ∂V

(
logp(·; ξ) − (

logp′(κ(·); ξ))) = 0.

If M is connected, then this is the case for all V ∈ T M iff the positive function h(·) := p(·;ξ)
p′(κ(·);ξ)

does not depend on ξ ∈ M . Thus, setting μ0 := hμ implies (5.5), showing the assertion. �

Observe that the proof uses the positivity of the density function p in a crucial way. In fact,
without this assumption the conclusion is false, as the following example shows.

Example 5.2. Let � := (−1,1) × (0,1), �′ := (−1,1) and κ : � → �′ be the projection onto
the first component. For ξ ∈ R we define the statistical model p on � as p(ξ) := p(s, t; ξ) ds dt ,
where

p(s, t; ξ) :=

⎧⎪⎨
⎪⎩

h(ξ) for ξ ≥ 0 and s ≥ 0,

2h(ξ)t for ξ < 0 and s ≥ 0,

1 − h(ξ) for s < 0,

with h(ξ) := exp(−|ξ |−1) for ξ �= 0 and h(0) := 0. Then p(ξ) is a probability measure, and

p′(ξ) := κ∗p(ξ) = p′(s; ξ) ds with p′(s; ξ) := (
1 − h(ξ)

)
χ(−1,0)(s) + h(ξ)χ[0,1)(s),

and thus,

∥∥∂ξ logp(s, t; ξ)
∥∥

k
= ∥∥∂ξ logp′(s; ξ)

∥∥
k
= k

(∣∣∣∣ d

dξ
h(ξ)1/k

∣∣∣∣
k

+
∣∣∣∣ d

dξ

(
1 − h(ξ)

)1/k

∣∣∣∣
k)1/k

,
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where the norm is taken in Lk(�,p(ξ)) and Lk(�′,p′(ξ)), respectively. Since this expression is
continuous in ξ for all k, the models (R,�,p) and (R,�′,p′) are ∞-integrable, and there is no
information loss of kth order for any k ≥ 1, so that κ is a sufficient statistic of the model in the
sense of Definition 5.2. Thus, κ is a sufficient statistic for the model.

Indeed, this model admits a Fisher–Neyman factorization when restricted to ξ ≥ 0 and to
ξ ≤ 0, respectively; in these cases, we have

p(ξ) = p′(s; ξ)μ±,

with the measures μ+ := ds dt for ξ ≥ 0 and μ− := (χ(−1,0)(s) + 2tχ[0,1)(s)) ds dt for ξ ≤ 0,
respectively.

However, since μ+ �= μ−, κ is not of the form (5.5) and hence not among the sufficient statis-
tics given in Example 5.1 when defining it for all ξ ∈R. This does not contradict Proposition 5.1
since p(s, t; ξ) is not positive a.e. for ξ = 0.

The reader might be aware that most texts use the description (5.5) in Example 5.1 as a defi-
nition for a sufficient statistic, for example, [14], [5], Definition 3.1, [3], (2.17), [8], Theorem 1,
p. 117. In the light of the Fisher–Neyman factorization in Proposition 5.1, this is equivalent to
our Definition 5.2 under the assumption that the model is given by a regular positive density
function, an assumption that has been made in all these references.

However, the significance of Example 5.2 is that the two notions of sufficiency are no longer
equivalent if the assumption of positivity of the density function is dropped. But since in this
example, all statistical information of (M,�,p) can be recovered from (M,�′,p′), it seems
natural to define sufficiency of a statistic in such a way that this example is subsumed, that is, as
in Definition 5.2.
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