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Fractional Brownian motion satisfies
two-way crossing
RÉMI PEYRE

Institut Élie Cartan de Lorraine, Campus Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex,
France. E-mail: remi.peyre@univ-lorraine.fr

We prove the following result: For (Zt )t∈R a fractional Brownian motion with arbitrary Hurst parameter,
for any stopping time τ , there exist arbitrarily small ε > 0 such that Zτ+ε < Zτ , with asymptotic behaviour
when ε ↘ 0 satisfying a bound of iterated logarithm type. As a consequence, fractional Brownian motion
satisfies the “two-way crossing” property, which has important applications in financial mathematics.
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1. Introduction

1.1. Context

In this article, we consider a filtered probability space (�,P,B, (Bt )t∈R). Notation ‘ω’ will im-
plicitly refer to eventualities of �; we will use it from time to time when needing to make the
dependency on the random phenomenon perfectly clear. We consider a (bilateral) Brownian mo-
tion (Wt)t∈R whose increments are adapted to our filtered space, which means, for all t ∈ R,
for all u ≤ 0, (Wt+u − Wt) is Bt -measurable, while for all v ≥ 0, (Wt+v − Wt) is independent
from Bt .

We fix once for all some arbitrary parameter H ∈ (0,1) (so that, in the sequel, “absolute”
constants may actually depend on H ) such that H �= 1/2; moreover, in all this article, (H − 1/2)

may be referred to as η. Then we consider the fractional Brownian motion (fBm) (Zt )t∈R driven
by W with Hurst parameter H , which means that

Zt := C1

∫
R

(
(t − s)

η
+ − (−s)

η
+
)
dWs

(with the convention that 0r = 0 ∀r ∈ R), where

C1 :=
(

1

2H
+

∫ ∞

0

(
(1 + s)η − sη

)2
ds

)−1/2

.

Then, the properties of Z are well known: it is a centred Gaussian process whose increments
are adapted to (Bt )t , with Var(Zt − Zs) = |t − s|2H and Z0 = 0 a.s.; its trajectories are locally
(H − ε)-Hölder with divergence in O(|t |H+ε) at infinity, etc. (see, e.g., [10], Chapter 2).
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Remark 1.1. The integral in the r.h.s. of (1.1) should not be seen as an actual Itô integral, but
rather as a compact writing for some complicated deterministic integral, which corresponds to
the “Itô” formulation via (formal) integrating by parts. Namely: (here in the case t > 0),

C−1
1 Zt =

∫
R

(
(t − s)

η
+ − (−s)

η
+
)
dWs

=
∫ 0

−∞
(
(t − s)η − (−s)η

)
dWs +

∫ t

0
(t − s)η dWs

= [(
(t − s)η − (−s)η

)
Ws

]0
s=−∞ − η

∫ 0

−∞
(
(t − s)η−1 − (−s)η−1)Ws ds (1.1)

+ [
(t − s)η(Ws − Wt)

]t
s=0 − η

∫ t

0
(t − s)η−1(Ws − Wt)ds

= tηWt − η

∫ t

−∞
(
(t − s)η−1 − (−s)

η−1
+

)
(Ws − 1s>0Wt)ds,

where all the computations are licit (with absolutely converging integrals) because of the prop-
erties of regularity and slow divergence of the (ordinary) Brownian motion.

Remark 1.2. It has to be stressed that in all this article, actually we are not interested in the
values themselves of the processes W and Z, but rather in their increments. This way, the fact
that W0,Z0 = 0 should be considered as a mere convention, completely unessential though con-
venient.

1.2. Main result

The main result of this article is the following theorem.

Theorem 1.1. In the context of Section 1.1, for τ any stopping time adapted to (Bt )t , one has
almost-surely:

lim inf
v↘0

Zτ+v − Zτ

(log|logv|)1/2vH
≤ −C1H

−1/2.

Remark 1.3. What is the intuitive meaning of Theorem 1.1? Well, we know that fractional Brow-
nian motion does not have Markov nor martingale property, which means that the future trajec-
tory of the fBm after a stopping time may differ qualitatively from what it would be at a fixed
time. Our theorem says however that future trajectory cannot differ too wildly from its ordinary
behaviour, in the sense that some weak form of the law of the iterated logarithm (LIL) always
has to remain true.

My motivation for proving Theorem 1.1 was its application to financial mathematics, which
will be explained in Section 6; but the theorem may also be interesting even on its own right.
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Remark 1.4. It is interesting to compare (1.1) with the standard LIL for the fBm, which states
(cf. [1], Corollary 3.1) that in the case τ ≡ 0:

lim inf
v↘0

Zv − Z0

(log|logv|)1/2vH
= −√

2.

Indeed, as soon as H �= 1/2, one has C1H
−1/2 <

√
2; therefore, provided the r.h.s. of (1.1) is

sharp, Theorem 1.1 does allow for a deviation from the standard LIL behaviour of the fBm after
a stopping time – though not a too wild one, as already said. I conjecture that the r.h.s. of (1.1) is
sharp indeed, and that it would be attained for τ being a hitting time, from above for H ≥ 1/2,
resp. from below for H ≤ 1/2 – for instance, for H ≥ 1/2, I believe that the following stopping
time would fit equality in equation (1.1):

τ := inf{t ≥ 0|Zt = Z0 + 1}.

Remark 1.5. As the increments of Z are adapted to the filtration (Bt )t , obviously in Theorem 1.1
we may replace that filtration by the filtration generated by the increments of Z.

Remark 1.6. In this article, we are only considering the case H �= 1/2, but Theorem 1.1 is
trivially valid for H = 1/2 too, since then the fBm Z is nothing but the ordinary Brownian
motion W itself, for which the result follows immediately from the Markov property and the
local properties of oBm.

1.3. Outline of the paper

Sections 2–5 will be devoted to proving Theorem 1.1. In Section 2, we will see how one can get
rid of the notion of stopping time to get Theorem 1.1 back to a result on the trajectories of the
fractional Brownian motion. In Section 3, we will make the needed result on fBm’s trajectories
more precise, by establishing a kind of law of the iterated logarithm for some variant of the fBm.
Next, an issue will be that we have to control the probability of an event being a union over a
continuous infinity of t ’s: that issue will be handled by Section 4, in which we will use regularity
estimates on the fBm to get our continuous union back to a finite union. Finally, after all these
simplifications it will only remain to prove some estimates on Gaussian vectors, which will be
the work of Section 5.

Some technical results will be postponed to Appendices. In particular, in Appendix A we will
compute the precise expression of the “drift operator” appearing in Lemma 2.1 describing what
the law of the fBm becomes when you condition it by a stopping time: this formula, though not
actually required to prove our main result, looks indeed intrinsically worthy to be written down
to my eyes. Also, in Appendices B and C we will prove two lemmas on resp. the supremum of
Gaussian processes and the inverse of nearly diagonal matrices.

Finally in Section 6 we will explain how Theorem 1.1 can be applied to yield some new results
in financial mathematics.
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2. Conditional future of the fractional Brownian motion

2.1. Preliminary definitions

To begin with, it will be convenient to set some notation for certain sets of trajectories:

Definition 2.1 (Sets P and F ).

• We denote by P [like “past”] the set of the (deterministic) paths (Xu)u≤0 such that:

1. X0 = 0;
2. X is locally (H − ε)-Hölder for all ε > 0;

3. Xu
u→−∞= O(|u|H+ε) for all ε > 0.

• Similarly, we denote by F [like “future”] the space of the paths (Xv)v≥0 satisfying the
analogues of conditions 1–3 for non-negative times.

Remark 2.1. With the notation of Definition 2.1, one has almost-surely that, for all t ∈ R,
(Z(ω)t+u−Z(ω)t )u≤0 ∈ P and (Z(ω)t+v −Z(ω)t )v≥0 ∈F (cf. [10], Propositions 1.6 and 2.2.3).

We also define a certain “drift operator”:

Definition 2.2 (“Drift operator” D). Let D : P →F be the linear operator such that, for X ∈P :

(DX)v :=
∫ 0

−∞
K(u,v)Xu du,

where

K(u,v) := η

�(η)�(−η)

{
η

∫ 0

−∞
(
1s>uξη−1(s − u,v)ξ−η−1(−s, s − u)

(2.1)

− ξη−1(−u,v)ξ−η−1(−s,−u)
)
ds − v(v − u)η−1(−u)−η−1

}
,

where �(···) is Euler’s pi function extrapolating the factorial, and where we denote, for r ∈ R,
a, b > 0:

ξr (a, b) := (a + b)r − ar .

Remark 2.2. Note that, since H ∈ (0,1), the integrals in (2.1) and (2.2) do converge (absolutely)
indeed, and D is well-defined on the whole P with values in F .

Remark 2.3. The equations (2.1)–(2.2) defining D, though interesting as such, shall not play an
essential role in this article. What is really important to have in mind is the moral meaning of this
operator: actually D was defined so that, informally,

(DX)v = E
(
Zv

∣∣(Zu)u≤0 = (Xu)u≤0
)
.
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The formal meaning of (2.3) will be made clear by Lemma 2.1 below.

Finally, we define a process called the “Lévy fractional Brownian motion”, which is a kind of
unilateral version of the “classic” fBm.

Definition 2.3 (Lévy fBm). If (Wv)v≥0 is a (unilateral) ordinary Brownian motion, then the
process (Yv)v≥0 defined by

Yv := C1

∫ v

0
(v − s)η dWs

(interpreted via the same integration by parts trick as in (1.1)) (and where we recall that C1 is
defined by (1.1)) is called a Lévy fractional Brownian motion (with Hurst parameter H ) – or,
more accurately, the law of this process (which (2.3) defines without ambiguity) is called “the
law of the Lévy fBm”.

Remark 2.4. From the regularity properties of the oBm, it is easy to check that the trajectories
of the Lévy fBm lie in F a.s.

2.2. Conditioning lemma

Now we can state the key lemma of this section.

Lemma 2.1. In the context of Section 1.1, for τ a stopping time, ((Zτ+v −Zτ )v≥0 − D((Zτ+u −
Zτ )u≤0)) is independent of Bτ , and its law is the Lévy fBm.

Remark 2.5. In other words, Lemma 2.1 states that, conditionally to Bτ (or, morally, knowing
the past trajectory of Z until τ ), the law of the future trajectory of Z is equal to a “deterministic”
drift term D((Zτ+u − Zτ )u≤0) plus a “random” noise term being a Lévy fBm.

Proof of Lemma 2.1. As the increments of W are adapted to (Bt )t , conditionally to Bτ , the past
trajectory (Wτ+u − Wτ)u≤0 of (the increments of) W is deterministic, while its future trajectory
(Wτ+v − Wτ)v≥0 still has the unconditioned law of a standard oBm. Therefore, for t ≥ 0, we
split

Zτ+t − Zτ =
(1.1)

C1

∫
s∈R

(
(τ + t − s)

η
+ − (τ − s)

η
+
)
dWs

=
s←s−τ

C1

∫
s∈R

(
(t − s)

η
+ − (−s)

η
+
)
dWτ+s

(2.2)

= C1

∫ 0

u=−∞
(
(t − u)η − (−u)η

)
dWτ+u

+ C1

∫ t

v=0
(t − v)η dWτ+v,
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in which the first term is deterministic and given by some function of (Wτ+u − Wτ)u≤0, while
the second term (seen as a trajectory indexed by t ) has the law of the Lévy fBm indeed.

To end the proof, it remains to show that the aforementioned first term (seen as a trajectory
indexed by t ) is equal to D((Zτ+u − Zτ )u≤0) indeed. Since this point is actually not needed to
prove our main result, we will postpone it to Appendix A. �

2.3. Reformulation of the main theorem

Thanks to Lemma 2.1, we will be able to get a sufficient condition for Theorem 1.1 in which there
are no stopping times any more. But first we observe that proving Theorem 1.1 is tantamount to
proving that for any 	 < C1H

−1/2, for any stopping time τ :

P

(
lim inf

v↘0

Zτ+v − Zτ

(log|logv|)1/2vH
≥ −	

)
= 0.

When the event of the probability in equation (2.3) holds true, we will say that τ(ω) is a 	-slow
time for the trajectory (Z(ω)t )t∈R.

☛ From now on, we fix an arbitrary 	 > −C1H
−1/2 all along.

Now we need an ad hoc definition:

Definition 2.4 (Nasty path). We say that a deterministic path (Xu)u≤0 ∈ P is nasty, and we
denote “X ∈A”, when, for Y a Lévy fBm:

P
(
0 is a 	-slow time for

(
DX + Y(ω)

))
> 0.

Remark 2.6. A is a measurable subset of P ,1 as can be checked along the following lines:

• The drift operator D : P →F is measurable. (This is obvious from its characterization (2.2)
as an explicit kernel operator).

• Denoting [[n[[ := {0, . . . , n − 1} and XI := (Xi)i∈I , for all n ∈ N, for all v[[n[[ ∈ (R+)[[n[[,
P( Yv[[n[[ ∈ ∏

i∈[[n[[[ai, bi]) is a measurable function of (a[[n[[, b[[n[[). (This is because Yv[[n[[ is
a Gaussian random vector with known parameters.)

• Therefore, for all n ∈ N, for all v[[n[[ ∈ (R+)[[n[[, for all a[[n[[, b[[n[[ ∈ R[[n[[, the probabilities

P
(∀i ∈ [[n[[ (

DX + Y(ω)
)
vi

∈ [ai, bi]
)

are measurable functions of X; by Dynkin’s π -λ theorem, it follows that for all measurable
A ⊂F , P(DX + Y(ω) ∈ A) is a measurable function of X.

1The σ -algebra considered on P (resp. on F ) is obviously (the trace of) the product σ -algebra – a trajectory in P (resp.
F ) being seen as a function from R− (resp. R+) to R.
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• But “0’s being a 	-slow time” is a measurable subset of F (because the trajectories of F
are continuous, so they can be described fully from a countable set of time indices), so the
probability in the l.h.s. of (2.4) is a measurable function of X, which finally implies that A
is measurable.

That vocabulary being set, equation (2.3), and hence Theorem 1.1, will be a consequence of
the following.

Proposition 2.2. In the context of Section 1.1:

P
(∃t ∈ R

(
Z(ω)t+u − Z(ω)t

)
u≤0 ∈A

) = 0.

Proof of equation (2.3) from Proposition 2.2. Let τ be any stopping time. We introduce the
notation P

′ for the law of the Lévy fBm Y , and the probability P
′
τ,ω defined as the pushforward

measure of P′ by the map (Yv)v≥0 �→ (Xt )t∈R from F to C(R,R) defined by:

Xt =
{

Zt , t ≤ τ(ω);
Zτ(ω) + D

((
Z(ω)τ(ω)+u − Z(ω)τ(ω)

)
u≤0

) + Yt−τ(ω), t > τ(ω),

so that, by Lemma 2.1, (P′
τ,ω)ω∈� is the conditional probability of P given Bτ . (That conditional

probability is regular, by the same arguments as in Remark 2.6.) Then, writing the law of total
probability w.r.t. Bτ :2

P(τ is a 	-slow time for Z)

= E
(
P

′
τ,ω

(
τ(ω) is 	-slow time for Z

(
ω′)))

(2.3)
= E

(
P

′(0 is a 	-slow time for
(
D

(
Z(ω)τ(ω)+u − Z(ω)τ(ω)

)
u≤0 + Y

(
ω′))))

= E
(
0 whenever (Zτ+u − Zτ )u≤0 /∈ A

)
,

which is zero by Proposition 2.2. �

So, in the sequel, our new goal will be to prove Proposition 2.2.

3. Local behaviour of fBm’s trajectories

3.1. A law of the iterated logarithm for the Lévy fBm

☛ In all this article, we denote [[n[[ := N ∩ [0, n) = {0,1,2, . . . , n − 1}. A subset I ⊂ N will
be said to be thick when it has positive upper asymptotic density:

lim sup
n→∞

|I ∩ [[n[[|
n

> 0.

2In the following computation, to avoid confusions, I denoted by ‘ω’ the variable bound to operator E, and by ‘ω′’ the
variable bound to probabilities P′ and P

′
τ,ω .
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The first main result of this section is the following lemma.

Lemma 3.1. Let r ∈ (0,1) and let I be a thick subset of N; then, for Y a Lévy fBm:

lim inf
i∈I

i→∞

Yri

(log i)1/2rHi
≤ −C1H

−1/2 a.s.

Remark 3.1. From Lemma 3.1, one can deduce immediately that

lim inf
v↘0

{
Yv /

(
log|logv|)1/2

vH
} ≤ −C1H

−1/2,

which is the classic formulation of (one sense of) a law of the iterated logarithm, hence the title of
this subsection. Note by the way that one could also prove that there is actually equality in (3.1)
as well as in the LIL derived from it; but that will not be needed here.

Proof of Lemma 3.1. It will be convenient in this proof to assume that Y is driven by some oBm
W according to (2.3). Then, for v ≥ 0, let us define

Ỹv := C1

∫ v

rv

(v − s)η dWs,

resp.

Y ′
v := Yv − Ỹv = C1

∫ rv

0
(v − s)η dWs.

First let us study the Ỹri ’s. Obviously these random variables are independent, with Yri / rHi ∼
N (0,C2

1(1 − r)2H /2H) ∀i. Now, using that P(N (0,1) ≤ −x) ≥ e−x2/2/2
√

2πx for x ≥ 1,3 we
get that for i large enough: (having fixed some arbitrary small ε ∈ (0,1)),

P
(
Ỹri / (log i)1/2rHi ≤ −(1 − ε)C1(1 − r)H H−1/2)
= P

(
N (0,1) ≤ −(1 − ε)

√
2(log i)1/2) (3.1)

≥ i−(1−ε)2
/ (1 − ε)4

√
π(log i)1/2 i→∞= �

(
i−1),

where “f (i) = �(g(i))” means that g(i) = O(f (i)). As I is thick, the series
∑

i∈I i−1 is diver-
gent, thus so is

∑
i∈I

P

(
Ỹri

(log i)1/2rHi
≤ −(1 − ε)C1(1 − r)H H−1/2

)
.

3This is because of convexity of the density y �→ ϕ(y) := e−y2/2 /
√

2π on (−∞,−1]: from this property you deduce

that
∫ −x
−∞ ϕ(y)dy ≥ ϕ(−x)2/2ϕ′(−x) = ϕ(−x)/2x.
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Since the events concerning the different Ỹri ’s are independent, it follows by the (second) Borel–
Cantelli lemma that almost-surely there are infinitely many i ∈ I for which Ỹri / (log i)1/2rHi ≤
−(1 − ε)C1(1 − r)H H−1/2, so that:

lim inf
i∈I

i→∞

Ỹri

(log i)1/2rHi
≤ −(1 − ε)C1(1 − r)H H−1/2 a.s.,

in which the factor (1 − ε) can be removed by letting ε → 0.
Now let us handle the Y ′

ri ’s. One has Y ′
ri / rHi ∼ N (0,C2

1(1 − (1 − r)2H )/2H); therefore,

using that P(N (0,1) ≥ x) ≤ e−x2/2 for all x,4 we get that: (having fixed some arbitrary small
ε > 0),

P
(
Y ′

ri / (log i)1/2rHi ≥ (1 + ε)C1
(
1 − (1 − r)2H

)1/2
H−1/2)

(3.2)
= P

(
N (0,1) ≥ (1 + ε)

√
2(log i)1/2) ≤ i−(1+ε)2

.

The series
∑

i∈I i−(1+ε)2
is convergent since

∑
i∈N i−(1+ε)2

is, thus so is

∑
i∈I

P

(
Y ′

ri

(log i)1/2rHi
≥ (1 + ε)C1

(
1 − (1 − r)2H

)1/2
H−1/2

)
.

It follows by the (first) Borel–Cantelli lemma that almost-surely there are only finitely many i’s
for which Ỹri / (log i)1/2rHi ≥ (1 + ε)C1(1 − (1 − r)2H )1/2H−1/2, so that:

lim sup
i∈I

i→∞

Y ′
ri

(log i)1/2rHi
≤ (1 + ε)C1

(
1 − (1 − r)2H

)1/2
H−1/2 a.s.,

in which the factor (1 + ε) can be removed by letting ε → 0.
Summing (3.1) and (3.1), we get an intermediate result.

Proposition 3.2. Under the assumptions of Lemma 3.1, almost-surely:

lim inf
i∈I

Yri

(log i)1/2rHi
≤ −λ(r),

where

λ(r) := C1
(
(1 − r)H − (

1 − (1 − r)2H
)1/2)

H−1/2.

So, now it remains to improve the constant λ(r) in (3.2) into C1H
−1/2. For this, we begin

with observing that the Lévy fBm is scale-invariant with exponent H (by which I mean that
for a ∈ R∗+, (Yav / aH )v≥0 is also a Lévy fBm); therefore, Proposition 3.2 has the following
corollary.

4This is because E(exN (0,1)) = ex2/2, from which the claimed formula follows by Markov’s inequality.
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Corollary 3.3. Under the assumptions of Lemma 3.1, for a ∈ R∗+, one has almost-surely:

lim inf
i∈I

Yari

aH (log i)1/2rHi
≤ −λ(r).

Now let k > 1 be an arbitrary large integer; and take l ∈ [[k[[ such that J := {j ∈ N|kj + l ∈ I}
is thick – such an l exists since I itself is thick. Then one has:

lim inf
i∈I

Yri

(log i)1/2rHi
≤ lim inf

j∈J
Yrkj+l

(log(kj + l))1/2rH(kj+l)

(3.3)

= lim inf
j∈J

Yrl(rk)j

(rl)H (log j)1/2(rk)Hj
,

where in the last equality we used that (log(kj + l))1/2 j→∞∼ (log j)1/2. But, applying Corol-
lary 3.3 with ‘r’ = rk , ‘a’ = rl and ‘I’ = J , the r.h.s. of (3.3) is bounded above by −λ(rk);
so,

lim inf
i∈I

Yri

(log i)1/2rHi
≤ −λ

(
rk

)
.

Letting k tend to infinity, λ(rk) tends to C1H
−1/2, which finally proves (3.1). �

3.2. Nastiness condition as a limit

For all the sequel of this article, we fix some r ∈ (0,1) small enough (in a sense to be made
precise later); we also fix arbitrarily two parameters α ∈ (0,C1H

−1/2 − 	) and p ∈ (0,1). Then
we define, for all n > 0:

An := {
(Xu)u≤0 ∈ P

∣∣ card
{
i ∈ [[n[[∣∣(DX)ri ≥ α(log i)

1/2
+ rHi

} ≥ pn
}
.

Then we have the following connection between A and the An’s:

Lemma 3.4.

A⊂ lim inf
n∈N

An.

Proof. We prove the contrapositive inclusion. Let (Xu)u≤0 ∈ P be such that X /∈ lim inf{An},
that is, the set {n|X /∈An} is unbounded; and set

I := {
i ∈ N

∣∣(DX)ri < α(log i)
1/2
+ rHi

}
.

One has by definition that |I ∩ [[n[[| / n ≥ 1 − p for all n such that X /∈ An; as these n are
unbounded and 1 −p > 0, it follows that I is thick. Therefore, Lemma 3.1 gives that for almost-
all Lévy fBm Y(ω), one has that

lim inf
i∈I

Y(ω)ri

(log i)1/2rHi
≤ −C1H

−1/2.
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On the other hand, the definition of I obviously implies that

lim inf
i∈I

(DX)ri

rHi(log i)1/2
≤ α.

Summing (3.2) and (3.2), it follows that almost-surely:

lim inf
i∈I

(DX + Y(ω))ri

(log i)1/2rHi
≤ α − C1H

−1/2 < −	,

so that X /∈A. �

3.3. Second reformulation of the main theorem

Thanks to the work of this section, we are now able to show that the following result will be a
sufficient condition for Proposition 2.2.

Proposition 3.5. In the context of Section 1.1:

P
(∃t ∈ [0,1] (

Z(ω)t+u − Z(ω)t
)
u≤0 ∈An

) n→∞→ 0.

Proof of Proposition 2.2 from Proposition 3.5. Proposition 3.4 implies that{
ω ∈ �

∣∣∃t ∈ [0,1] (
Z(ω)t+u − Z(ω)t

)
u≤0 ∈A

}
(3.4)

⊂ lim inf
n→∞

{
ω

∣∣∃t ∈ [0,1] (
Z(ω)t+u − Z(ω)t

)
u≤0 ∈ An

};
therefore, by the (first) Borel–Cantelli lemma, Proposition 3.5 yields that

P
(∃t ∈ [0,1] (

Z(ω)t+u − Z(ω)t
)
u≤0 ∈ A

) = 0.

But, since the increments of the fractional Brownian motion are stationary, in (3.3) we may
replace [0,1] by [n,n + 1] for all n ∈ Z; and then, by countable union, we get the wished re-
sult (2.2). �

So, in the sequel, our new goal will be to prove Proposition 3.5.

4. Pathwise control via pointwise control

4.1. A regularity result

One of our issues to prove Proposition 3.5 is that we have to bound the probability of an event
defined as a union for uncountably infinitely many t ’s. To overcome this issue, we will need a
tool to “get rid of the trajectorial aspects” of the problem: this is the work of this section.

First, we need a little notation.
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Definition 4.1 (Processes �̂i and variables �i ). Within the context of Section 1.1, for i ∈ N, we
define the following random process (indexed by t ∈ R):

�̂i(ω)t := D((Z(ω)t+u − Z(ω)t )u≤0)ri

rHi
.

We also define the following random variable:

�i(ω) := �̂i(ω)0 = D((Z(ω)u)u≤0)ri

rHi
.

Then, the main result of this section is the following.

Lemma 4.1. In the context of this section, there exist absolute5 constants Ca > 0,Cb < ∞
(whose exact expressions do not matter) such that for all i ∈ N, for all T > 0:

P
(∃t ∈ [0, T ] ∣∣(�̂i)t − �i

∣∣ ≥ 1
) ≤ Cb exp

(−Ca
(
ri / T

)2H∧1)
.

Proof. First, since Z is scale-invariant with exponent H (and operator D preserves that scale
invariance), it will be enough to prove Lemma 4.1 for i = 0; so we will only handle that case.
Then the subscript i becomes useless, so we remove it in our notation.

Because of the characterization (2.3) of D, �̂t may be written as a function of W :

�̂t = C1

∫ t

−∞
(
(t + 1 − s)η − (t − s)η

)
dWs.

That shows that �̂ is a stationary centred Gaussian random process, with

Var(�̂t − �̂0) = C2
1

∫
R

(
1s≤t (t + 1 − s)η − 1s≤0(1 − s)η − (t − s)

η
+ + (−s)

η
+
)2

ds

(4.1)
t→0= O

(
t2H∧1).

To go further, we need the following lemma, whose proof is postponed to Appendix B:

Lemma 4.2. Let (Xt )t∈[0,1] be a centred Gaussian process such that X0 = 0 a.s. and

∀t, s ∈ [0,1] Var(Xt − Xs) ≤ |t − s|2θ

for some θ ∈ (0,1]. In such a case it is known that X has a continuous version (by the Kolmogorov
theorem) and that, for this continuous version, the random variable ‖X‖(ω) := supt∈[0,1]|X(ω)t |
is sub-Gaussian (by the Fernique theorem), that is, there exist constants Cc > 0,Cd < ∞ such
that

∀x ≥ 0 P
(‖X‖ ≥ x

) ≤ Cd exp
(−Ccx

2).
5Remember that in this article, “absolute” constants may actually depend on H .
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The present lemma states that, moreover, the constants Cc and Cd can be made explicit, only
depending on θ .

We apply Lemma 4.2 in the following way. From (4.1), one has Var(�̂t − �̂s) ≤ Ce|t − s|2H∧1

for all t, s ∈ [0,1], for some Ce < ∞. Therefore, for T ≤ 1, the random process

X(ω)t := (
CeT

2H∧1)−1/2(
�̂(ω)tT − �(ω)

)
satisfies the assumptions of Lemma 4.2 with ‘θ ’ = H ∧ 1/2, so that (4.2) yields:

P
(∃t ∈ [0, T ] ∣∣(�̂i)t − �i

∣∣ ≥ x
) ≤ Cd exp

(−CcC
−1
e x2 / T 2H∧1).

This implies (4.1) for T ≤ 1, with constants not depending on T . On the other hand, up to
replacing Cb by (eCa ∨ Cb), (4.1) is automatically true for T > 1; so the proof of Lemma 4.1 is
completed. �

4.2. Third reformulation of the main result

Now, we will see how Proposition 4.1 allows one to find an easier sufficient condition for Propo-
sition 3.5. First of all, we have to introduce a little notation: in this section, we fix some arbitrary
α′ ∈ (0, α), p′ ∈ (0,p), and we define A′

n by the variant of equation (3.2) in which α and p are
replaced by resp. α′ and p′; also, we fix some arbitrary r̃ ∈ (0, r), and we set

Tn := r̃n.

Now, we introduce the following events of �:

Definition 4.2 (Events An, A′
n, Ān, Āk

n and Ā∗
n).

An := {
ω

∣∣(Z(ω)u
)
u≤0 ∈ An

}; (4.2)

A′
n := {

ω
∣∣(Z(ω)u

)
u≤0 ∈ A′

n

}; (4.3)

Ān := {
ω

∣∣∃t ∈ [0, Tn]
(
Z(ω)t+u − Z(ω)t

)
u≤0 ∈An

}; (4.4)

Āk
n := {

ω
∣∣∃t ∈ [

kTn, (k + 1)Tn

] (
Z(ω)t+u − Z(ω)t

)
u≤0 ∈An

}; (4.5)

Ā∗
n := {

ω
∣∣∃t ∈ [0,1] (

Z(ω)t+u − Z(ω)t
)
u≤0 ∈An

}
. (4.6)

Then we claim the following lemma.

Lemma 4.3. For n large enough,

ω ∈ Ān \ A′
n ⇒ ∃i ∈ [[n[[,∃t ∈ [0, Tn]

∣∣�̂i(ω)t − �i(ω)
∣∣ ≥ 1.
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Proof. Assume that ω ∈ Ān \ A′
n. Then the fact that ω ∈ Ān means that there exists some t ∈

[0, Tn] such that (Zt+u − Zt)u≤0 ∈An. For such a t , going back to the definitions (3.2) and (4.1)
of An and �̂i , this means that

card
{
i ∈ [[n[[∣∣(�̂i)t ≥ α(log i)

1/2
+

} ≥ pn.

Similarly, the fact that ω /∈ A′
n means that

card
{
i ∈ [[n[[∣∣�i ≥ α′(log i)

1/2
+

}
< p′n.

Therefore, there exist at least (p − p′)n indices ‘i’ such that (�̂i)t ≥ α(log i)
1/2
+ while (for the

same i) �i < α′(log i)
1/2
+ . Necessarily one these indices is ≥ (p − p′)n − 1; thus, for such an i,

one has:

(�̂i)t − �i ≥ (
α − α′)(log

((
p − p′)n − 1

))1/2
.

But, provided n ≥ (e(α−α′)−2 + 1) / (p − p′), the r.h.s. of (4.2) is ≥ 1; so in the end we have
found i ∈ [[n[[, t ∈ [0, Tn] such that |�̂i(ω)t − �i(ω)| ≥ 1, proving the lemma. �

Combining Lemma 4.3 with Lemma 4.1, we get that

P
(
Ān \ A′

n

) ≤
n−1∑
i=0

Cb exp
(−Ca

(
ri / Tn

)2H∧1)
,

in which the right-hand side is obviously bounded by

nCb exp
(−Ca(r / r̃)(2H∧1)n

)
,

which shows that P(Ān \ A′
n) decreases superexponentially in n (that is, faster than any expo-

nential).
Now Ā∗

n ⊂ ⋃
k∈[[�1/Tn�[[ Āk

n, where P(Āk
n) = P(Ān) ∀k by translation invariance, so it follows

that

P
(
Ā∗

n

) ≤ �1 / Tn�P(Ān) ≤ ⌈
r̃−n

⌉(
P
(
A′

n

) + P
(
Ān \ A′

n

)) = ⌈
r̃−n

⌉
P
(
A′

n

) + o(1).

Our goal being to prove that P(Ā∗
n) → 0 as n → ∞ (that is just rewriting Proposition 3.5 with

the notation of this section), it will be sufficient for that to prove the following proposition.

Proposition 4.4. P(A′
n) decreases superexponentially in n.

So, as A′
n corresponds to a condition on a finite-dimensional Gaussian vector, we have man-

aged to get completely rid of the trajectorial aspects of the problem! Now our ultimate goal will
be to prove Proposition 4.4.
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Remark 4.1. As the “prime” symbols would be somehow cumbersome, we will drop them in the
sequel, thus actually proving the superexponential decrease of P(An). Nevertheless this should
not be confusing, as the constraints on α and p (and therefore on An) are the same as on α′ and
p′ (and therefore on A′

n).

5. Final computations: Controlling a Gaussian vector

5.1. Covariance structure

☛ In this section, for ‘X’ a symbol and I a discrete set, “ XI ” will be a shorthand for
“(Xi)i∈I ”.

So, our goal is to prove the superexponential decay of P(An), which can be rewritten as

P(An) = P
(
card

{
i ∈ [[n[[∣∣�i ≥ α(log i)

1/2
+

} ≥ pn
)

(where �i was defined by (4.1)). (5.1) obviously implies that

P(An) ≤
∑

I⊂[[n[[
|I |≥pn

P
(∀i ∈ I �i ≥ α(log i)

1/2
+

)
.

As there are only 2n subsets of [[n[[, to prove that P(An) decreases superexponentially it is
therefore sufficient to prove that

sup
I⊂[[n[[
|I |≥pn

P
(∀i ∈ I �i ≥ α(log i)

1/2
+

)

decreases superexponentially.
Now, by (2.3) one has

�i(ω) = C1r
−Hi

∫ 0

−∞
((

ri − s
)η − (−s)η

)
dW(ω)s;

therefore �N is a centred Gaussian vector, with:

Cov(�i,�j ) = C2
1r−(i+j)H

∫ 0

−∞
((

ri − s
)η − (−s)η

)((
rj − s

)η − (−s)η
)
ds

= C2
1r−|i−j |H

∫ 0

−∞
((

r |i−j | − s
)η − (−s)η

)(
(1 − s)η − (−s)η

)
ds (5.1)

≤ Cfr
(1/2−|η|)|i−j |,



3586 R. Peyre

for some absolute constant Cf < ∞. Therefore, provided r was chosen small enough, we have
the following control on the covariance matrix of �N:

Cov(�i,�j ) = σ 2 for i = j ; (5.2)∣∣Cov(�i,�j )
∣∣ ≤ σ 2ε|i−j | for i �= j , (5.3)

where ε > 0 is some small parameter which will be fixed later, and where σ := Var(�)1/2 > 0
(since H �= 1/2).

5.2. Density estimates

To exploit (5.2)–(5.3), we need the following lemma (whose proof is postponed to Appendix C):

Lemma 5.1. For n ∈ N, ε > 0, let A =: ((aij ))i,j∈[[n[[ be a square matrix such that aii = 1 ∀i

and |aij | ≤ ε|i−j | ∀i �= j . Then:

det A ≥ exp
(−n�g(ε)ε

2),
where �g : (0,∞) → [1,∞] is some absolute function (in particular, not depending on n) such

that �g(ε)
ε→0→ 1 – we will call such a function a quasi-one function. In particular, provided

ε is small enough, A is invertible. The present lemma asserts moreover that, then, denoting
A−1 =: ((bij ))i,j :

|bij | ≤ 2|i−j |−1(�h(ε)ε
)|i−j | ∀i �= j ; (5.4)

|bii − 1| ≤ 2�i(ε)ε
2 ∀i, (5.5)

for �i and �h some other absolute “quasi-one functions”.

We apply Lemma 5.1 to the covariance matrix of �[[n[[ (assuming ε was chosen small enough
so that �g is finite); then, the formula for the density of Gaussian vectors gives that:

dP(�[[n[[ = γ[[n[[)
dγ

≤
(

exp(�g(ε)ε
2)

2πσ 2

)n/2

exp

(
1

2σ 2

((−1 + 2�i(ε)ε
2) ∑

i∈[[n[[
γ 2
i (5.6)

+ 1

2

∑
i,j∈[[n[[

i �=j

|γi ||γj | ×
(
2�h(ε)ε

)|i−j |
))

.
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Bounding above |γi ||γj | by 1
2 (γ 2

i + γ 2
j ), that is bounded again by

(
�j(ε)/2πσ 2)n/2 exp

(
− 1

2�k(ε)σ 2

∑
i∈[[n[[

γ 2
i

)
,

where

�j(ε) := exp
(
�g(ε)ε

2)
and

�k(ε) :=
(

1 − 2�i(ε)ε
2 − 1

2

∑
z∈Z∗

(
2�h(ε)ε

)|z|
)−1

+

are “quasi-one functions” again.
In the sequel, we assume that ε was chosen small enough so that �j(ε),�k(ε) < ∞; and we

define the following vectorial random variable (which we are actually only interested in through
its law).

Definition 5.1 (Variable �N). �N is a random vector on RN whose entries are i.i.d. N (0,

�k(ε)σ
2).

Then, equation (5.2) can be rephrased into:

dP(�[[n[[ = γ[[n[[)
dP( �[[n[[ = γ[[n[[)

≤ (
�j(ε)�k(ε)

)n/2 uniformly in γ[[n[[.

Therefore, for I ⊂ [[n[[ with |I | ≥ pn:

P
(∀i ∈ I �i ≥ α(log i)

1/2
+

) ≤ (
�j(ε)�k(ε)

)n/2
P
(∀i ∈ I �i ≥ α(log i)

1/2
+

)
.

But

P
(∀i ∈ I �i ≥ α(log i)

1/2
+

)
=

∏
i∈I

P
(
�i ≥ α(log i)

1/2
+

)
(5.7)

=
∏
i∈I

P
(
N (0,1) ≥ Cl(log i)

1/2
+

) ≤
∏
i∈I

exp
(−C2

l (log i)+/2
)

=
∏
i∈I

(i ∨ 1)−C2
l /2 ≤ (|I | − 1

)
+!−C2

l /2 ≤ (�pn� − 1
)
+!−C2

l /2

(with Cl := α / �k(ε)
1/2σ ), where the penultimate inequality comes from ordering I =:

{i0, i1, . . . , i|I |−1} with i0 < i1 < · · · , and observing that then ij ≥ j for all j , so that (ij ∨
1)−C2

l /2 ≤ (j ∨ 1)−C2
l /2.
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Combining (5.2) with (5.7) shows that P(�i ≥ α(log i)
1/2
+ ∀i ∈ I ) decreases superexponen-

tially in n uniformly in I , which finally proves Proposition 4.4 and hence Theorem 1.1.

6. Application to financial mathematics

6.1. Two-way crossing property

Theorem 1.1 implies in particular that a stopping time τ can almost-never be a local minimum at
right for the trajectory of Z, that is, that for almost-all ω, there exist arbitrarily small ε > 0 such
that Z(ω)τ(ω)+ε < Z(ω)τ(ω). Symmetrically (since −Z has the same law as Z), τ can almost-
never be a local maximum for Z. The conjunction of these two facts implies that fBm has the
“two-way crossing property” introduced by Bender in [2] (whose definition is recalled below for
the sake of self-containment).

Definition 6.1 (Two-way crossing property). A process X (whose increments6 are) adapted to
a filtration (Bt )t is said to satisfy the two-way crossing (TWC) property when, for any stopping
time τ adapted to (Bt )t , one has almost-surely:

inf{t > τ |Xt > Xτ } = inf{t > τ |Xt < Xτ }.

Corollary 6.1. For any H �= 1/2, fractional Brownian motion (hence also geometric fBm) satis-
fies the two-way crossing property.

6.2. Financial context

The motivation for this work comes from the study of (geometric) fractional Brownian motion
as a model for price processes in financial mathematics, which is a natural choice for modelling
correlations and scale invariance, as was first suggested by [9]. FBm is however not a semimartin-
gale, which in the classic setting leads to arbitrage opportunities, as was shown by Delbaen and
Schachermayer [6]: so, an efficient market should not allow for fBm price processes. Rogers
[12] showed however that arbitrage strategies for a fBm price process shall necessarily rely on
making numerous transactions on extremely short scales of time. That suggested to look whether
relaxing slightly some assumptions of the classic financial theory would nevertheless lead to a
consistent theory allowing for fBm price processes: many work on this issue was carried out over
the last two decades.

A first idea is to impose restrictions on the authorized trading strategies. In [3], it was suggested
to restrict oneself to the so-called Cheridito class of strategies, in which a minimal waiting time
is imposed between two transactions. In such a context, it can be shown rather easily that fBm
is arbitrage-free indeed. An intermediate class of trading strategies between the Cheridito class
and the full class of predictable strategies, called simple strategies, was investigated by Bender

6Or logarithmic increments in the case of geometric fBm.
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[2]: a simple strategy allows only for a fixed, finite number of transactions, but transaction times
may be arbitrarily close to each other. In his paper Bender introduced the (TWC) property, and
showed that this property (together with conditional full support, see below) was a necessary
and sufficient condition for simple arbitrage to be ruled out. At that time it remained an open
question however whether fBm did have this (TWC) property. My work answers positively to
this question, and therefore proves that geometric fBm is proof against simple arbitrage. This
was actually my initial motivation for this article.

Another approach for limiting arbitrage opportunities is to allow for any trading strategy, but
to introduce transaction costs, generally proportional, of arbitrarily small rate. In this context,
Guasoni [7] proved that fBm is arbitrage-free indeed. The proof of that property already relied on
studying the properties of fBm after a stopping time: a sufficient condition for arbitrage-freeness
is indeed the stickiness property, which says that the future trajectory of the price process after
any stopping time may remain arbitrarily close to its initial value for an arbitrarily large amount of
time, with positive probability. The stickiness property itself is a particular case of the conditional
full support property, which says that future trajectories of the process after any stopping time
have full support among the space of continuous trajectories (for the topology of locally uniform
convergence). Conditional full support was shown to hold for fBm by Guasoni, Rásonyi and
Schachermayer [8].

Still in presence of transaction costs, more recently Czichowsky, Schachermayer et al. inves-
tigated on existence of a so-called shadow price process for an asset whose price is modelled
by a non-semimartingale process (like geometric fBm): a shadow price process is a semimartin-
gale process taking values in the bid-ask spread, whose optimal trading strategy in absence of
transaction costs coincides with the optimal strategy for the actual price process in presence of
transaction costs. The notion of optimality considered here is to maximise the expectation value
of some (reasonable) utility function. Using the stickiness property, Czichowsky and Schacher-
mayer [5] proved first that geometric fBm does admit a shadow price indeed in the case the utility
function is bounded from above and defined on the whole R (e.g., U(x) = 1 − e−x ). Then they
realised that a process satisfying Bender’s (TWC) condition (together with some boundedness
estimate) would actually have a shadow price for a much larger class of utility functions, includ-
ing in particular logarithmic and concave power utilities. Hence, they used my results in [4] to
show that geometric fBm admits a shadow price for such utilities.

Appendix A: Conditional expectation of the fBm

This appendix is devoted to ending the proof of Lemma 2.1 initiated in Section 2.2. At the point
we have got to, what remains to do is showing that

C1

∫ 0

s=−∞
(
(v − s)η − (−s)η

)
dWτ+s

(seen as a trajectory indexed by v ∈ R+) is actually equal to D((Zτ+u − Zτ )u≤0) with D defined
by (2.1)–(2.2), where W is the ordinary Brownian motion driving the fBm Z. To alleviate nota-
tion, actually we will only prove this result for τ ≡ 0, the original case being the same up to time
translation of the increments (hence the informal definition (2.3) of D).
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The starting point for our computation is the Pipiras–Taqqu formula, which says that equa-
tion (1.1) defining the past increments of Z as a function of the past increments of W has an
“inverse” giving back the past increments of W from the past increments of Z:

Proposition A.1 ([11], Corollary 1.1). In the context of Section 1.1, one has almost-surely, for
all t :

Wt = C−1
1

�(η)�(−η)

∫
R

(
(t − s)

−η
+ − (−s)

−η
+

)
dZs.

(Recall that �(···) is Euler’s pi function extrapolating the factorial.)

☛ From now on in this appendix, it will be convenient to shorthand “1 / �(η)�(−η)” into
“CH ”.

So, let us use (A.1) to get (2.2)–(2.1). First, like (1.1), equations (A) and (A.1) have to be
interpreted by integrating by parts: for v ≥ 0, s ≤ 0, that means resp. that:

(A) = ηC1

∫ 0

−∞
ξη−1(−s, v)Ws ds;

Wt

C−1
1 CH

= η

∫ t

−∞
ξ−η−1(t − s,−t)(Zs − Zt) ds (A.1)

+ η

∫ 0

t

(−s)−η−1Zsds + (−t)−ηZt ,

where we recall that ξr (a, b) := (a + b)r − ar . Hence, (A) is equal to:

η2CH

∫ 0

s=−∞

∫ s

u=−∞
ξη−1(−s, v)ξ−η−1(s − u,−s)(Zu − Zs)ds du (A.2)

+ η2CH

∫ 0

s=−∞

∫ 0

u=s

ξη−1(−s, v)(−u)−η−1Zu ds du (A.3)

+ ηCH

∫ 0

−∞
ξη−1(−s, v)(−s)−ηZs ds. (A.4)

Now we are going to rewrite each of the terms (A.2)–(A.4) as an integral against Zu du, in
order to get (2.2)–(2.1). First, Term (A.4) is already of the wanted form, up to renaming ‘s’ into
‘u’. Next, Term (A.3) simplifies into:

(A.3) = η2CH

∫ 0

u=−∞

(∫ u

s=−∞
ξη−1(−s, v) ds

)
(−u)−η−1Zu du

= −ηCH

∫ 0

−∞
[
ξη(−s, v)

]u
s=−∞(−u)−η−1Zudu (A.5)
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= −ηCH

∫ 0

−∞
ξη(−u,v)(−u)−η−1Zu du.

Term (A.2) is the hardest to get into the wanted form, because splitting naively the factor
(Zu − Zs) would yield divergent integrals. To bypass that problem, we first make a truncation:
for ε a small positive number,

(A.2) ≈ η2CH

∫ 0

s=−∞

∫ (1+ε)s

u=−∞
ξη−1(−s, v)ξ−η−1(s − u,−s)(Zu − Zs)ds du

= η2CH

∫∫
s<0

u<(1+ε)s

ξη−1(−s, v)ξ−η−1(s − u,−s)Zu ds du (A.6)

− η2CH

∫∫
s<0

u<(1+ε)s

ξη−1(−s, v)ξ−η−1(s − u,−s)Zs ds du. (A.7)

By the change of variables (s, u) ← (u − s, u),

(A.6) = η2CH

∫ 0

u=−∞

(∫ εu/(1+ε)

s=−∞
1s>uξη−1(s − u,v)ξ−η−1(−s, s − u)ds

)
Zu du

(A.8)

≈ η2CH

∫ 0

u=−∞

(∫ εu

s=−∞
1s>uξη−1(s − u,v)ξ−η−1(−s, s − u)ds

)
Zu du

(where by “≈” we mean that, for all v, the difference between the two members from either side
of the ‘≈’ sign tends to 0 as ε → 0, as one can check by simple estimates); and by the change of
variables (s, u) ← (u − s, s),

(A.7) = −η2CH

∫ 0

u=−∞

(∫ εu

s=−∞
ξη−1(−u,v)ξ−η−1(−s,−u)ds

)
Zu du.

So,

(A.2) ≈ η2CH

∫ 0

−∞

(∫ εu

−∞
J (v,u, s) ds

)
Zu du,

with

J (v,u, s) := 1s>uξη−1(s − u,v)ξ−η−1(−s, s − u) − ξη−1(−u,v)ξ−η−1(−s,−u).

But
∫ 0

J (v,u, s) ds does converge, so, letting ε tend to 0, we get in the end:

(A.2) = η2CH

∫ 0

−∞

(∫ 0

−∞
J (v,u, s) ds

)
Zu du.

Summing (A.4), (A.5) and (A), and observing that ξη−1(−u,v)(−u)−η − ξη(−u,v)×
(−u)−η−1 = −v(v − u)η−1(−u)−η−1, finally yields equations (2.2)–(2.1).



3592 R. Peyre

Appendix B: Explicit estimate for the supremum of Gaussian
processes

Proof of Lemma 4.2. Let θ ∈ (0,1] and let X satisfying the assumptions of the lemma. Then
obviously, for the continuous version of X:

‖X‖(ω) ≤
∞∑
i=0

sup
a∈[[2i [[

∣∣X(ω)a2−i − X(ω)(a+1)2−i

∣∣.
Therefore, for (γi)i a sequence of positive real numbers such that

∑
i γi = 1, one has that, for all

x ≥ 0:

P
(‖X‖ ≥ x

) ≤
∞∑
i=0

P

(
sup

a∈[[2i [[
|Xa2−i − X(a+1)2−i | ≥ γix

)
(B.1)

≤
∑

i

2i sup
a

P
(|Xa2−i − X(a+1)2−i | ≥ γix

)
.

But, uniformly in a,

P
(|Xa2−i − X(a+1)2−i | ≥ γix

) = P
(
N (0,1) ≥ γix / Var1/2(Xa2−i − X(a+1)2−i )

)
(B.2)

≤ P
(
N (0,1) ≥ 2iθ γix

) ≤ 2 exp
(−22iθ−1(γix)2);

so, taking γi := (1 − 2−θ/2)2−iθ/2:

P
(‖X‖ ≥ x

) ≤
∞∑
i=0

2i+1 exp
(−(

1 − 2−θ/2)2 × 2iθ−1x2).
Provided x ≥ 2 / (1 − 2−θ/2)θ1/2 =: Cm(θ), one has (bounding 2iθ below by (1 + iθ log 2))

exp
(−2iθ x2/2

(
1 − 2−θ/2)2) ≤ exp

(−x2/2
(
1 − 2−θ/2)2 − log(4)i

)
,

so that, for x ≥ Cm:

P
(‖X‖ ≥ x

) ≤
( ∞∑

i=0

2i+14−i

)
exp

(−x2/2
(
1 − 2−θ/2)2) =: 4e−Cc(θ)x2

.

On the other hand, for x < Cm one has obviously P(‖X‖ ≥ x) ≤ 1; so equation (4.2) follows
with Cd := 4 ∨ eCcC

2
m . �
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Appendix C: Almost diagonal matrices

Proof of Lemma 5.1. Consider A satisfying the assumptions of the lemma, and denote In−A =:
H. The first part of this proof will consist in deriving estimates on the entries of H and its powers.
Denote respectively,

H =: ((hij )
)
i,j∈[[n[[; (C.1)

Hk =: ((h(k)
ij

))
i,j∈[[n[[ ∀k ≥ 0. (C.2)

Then the assumptions of the lemma ensure that one has |hii | = 0 ∀i, resp. |hij | ≤ ε|i−j | ∀i �= j ,
and hence ∣∣h(k+1)

ij

∣∣ ≤
∑

i′∈[[n[[
|hii′ |

∣∣h(k)

i′j
∣∣ =

∑
i′ �=i

ε|i−i′|∣∣h(k)

i′j
∣∣ ∀i, j,∀k.

That suggests to define by induction:⎧⎪⎨
⎪⎩
h(0)

z := 1z=0, ∀z ∈ Z,

h(k+1)
z :=

∑
z′ �=z

ε|z−z′|h(k)

z′ , ∀z ∈ Z,∀k ≥ 0,

so that one has ∣∣h(k)
ij

∣∣ ≤ h
(k)
i−j ∀i, j,∀k.

The interest of having introduced the h
(k)
z ’s is that these are easier to bound than the h

(k)
ij ’s

themselves. To bound the h
(k)
z ’s, we begin with observing that one has obviously by induction:

h(k)
z =

∑
(0=:s0,s1,s2,...,sk−1,z=:sk)

0�=s1,s1 �=s2,...,sk−1 �=z

ε
∑

i∈[[k[[|si−si+1|

(C.3)

=
∑
n≥0

card

{
(0 =: s0, s1, . . . , sk−1, z =: sk)

∣∣∣si+1 �= si ∀i,
∑

i

|si − si+1| = n

}
εn.

To bound the cardinality appearing in (C.3), we observe that a (k + 1)-tuple (0, s1, s2, . . . , sk−1,

z) such that si+1 �= si ∀i and
∑

i |si − si+1| = n (we will call such a (k +1)-tuple as valid) can be
coded by a word of n symbols from {+,+|,−,−|}, in the following way: successively, for each
i we write (|si+1 − si | − 1) symbols “sgn(si+1 − si)” followed by a symbol “sgn(si+1 − si)|” –
for instance, for k = 5, z = 2, n = 8, one would have

(0,1,4,2,1,2) �→ “+|+++|−−|−|+|”.

Obviously such a coding in injective. Moreover, for given k, z, n, an n-character word may be
the image of a valid (k + 1)-tuple only if z and n have the same parity, that the word contains
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(n + z)/2 symbols from {+,+|} vs. (n − z)/2 symbols from {−,−|}, and that k exactly of the n

symbols, necessarily including the last one, are from {+|,−|}. Henceforth:

card

{
(0, s1, s2, . . . , sk−1, z)

∣∣∣si+1 �= si ∀i and
∑

i

|si − si+1| = n

}
(C.4)

≤ 12|n−z

(
n(

n − |z|)/2

)(
n − 1

k − 1

)
.

In the end, combining (C), (C.3) and (C.4):

∣∣h(k)
ij

∣∣ ≤
∑
m≥0

(|i − j | + 2m

m

)(|i − j | + 2m − 1

k − 1

)
ε|i−j |+2m ∀i, j,∀k.

After these preliminary estimates, let us turn to proving the lemma itself. We begin with the
first part, namely, bounding det A from below. For X =: ((xij ))i,j an n × n matrix, denote

‖X‖ := sup
j∈[[n[[

∑
i∈[[n[[

|xij | :

‖···‖ is the operator norm of X when seen as an operator from �1([[n[[) into itself, so it is sub-
multiplicative. Then, the formula

log(In − H) =
∞∑

k=1

k−1Hk

converges as soon as ‖H‖ < 1, then yielding:

∣∣tr log(In − H)
∣∣ ≤

∞∑
k=1

k−1
∣∣tr Hk

∣∣
≤ 0 + 1

2

∣∣tr H2
∣∣ + n

∑
k≥3

k−1
∥∥Hk

∥∥ (C.5)

≤ 1

2

∣∣tr H2
∣∣ + n

∑
k≥3

k−1‖H‖k.

But the assumptions on the entries of H imply that

‖H‖ ≤
∑
z∈Z∗

ε|z| = 2ε

1 − ε
,

which is < 1 as soon as ε < 1/3; and on the other hand, we get from (C) that, for all i,

∣∣h(2)
ii

∣∣ ≤
∑
m≥1

(
2m

m

)
(2m − 1)ε2m ≤ 2ε2 +

∑
m≥2

22m(2m − 1)ε2m =: 2�n(ε)ε
2,
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so that |tr H2| ≤ 2n�n(ε)ε
2. In the end:

det A = det exp log(In − H) = exp tr log(In − H)
(C.6)

≥ exp

(
−n�n(ε)ε

2 − n
∑
k≥3

k−1
(

2ε

1 − ε

)k)
=: exp

(−n�g(ε)ε
2),

which is equation (5.1).
Now let us handle the second part of the lemma, namely, bounding the entries of (A−1 − In).

Provided ‖H‖ < 1, one has

A−1 − In =
∞∑

k=1

Hk,

so that

|bij − 1i=j | ≤
∞∑

k=1

∣∣h(k)
ij

∣∣ ∀i, j.

To bound the r.h.s. of (C), we write that, starting from (C):

∑
k≥1

∣∣h(k)
ij

∣∣ ≤
∑
m≥0

(|i − j | + 2m

m

)(|i−j |+2m∑
k=1

(|i − j | + 2m − 1

k − 1

))
ε|i−j |+2m

=
∑
m≥0

(|i − j | + 2m

m

)
1|i−j |+2m≥12|i−j |+2m−1ε|i−j |+2m (C.7)

=
(∑

m≥0

1|i−j |+2m≥1

(|i − j | + 2m

m

)(
4ε2)m

)
2|i−j |−1ε|i−j |.

But we observe that, for z ≥ 1, x > 0,

∑
m≥0

(
z + 2m

m

)
xm = 1 +

∑
m≥1

(
z + 2m

m

)
xm ≤ 1 +

∑
m≥1

(z + 2m)m

m! xm

≤ 1 +
∑
m≥1

(2z)m + (4m)m

m! xm

(C.8)

≤ 1 +
∑
m≥1

(2zx)m

m! +
∑
m≥1

(4ex)m = e2zx + 4ex

1 − 4ex

≤
(

e2x + 4ex

1 − 4ex

)z

=: �o(x)z,
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so that here, for i �= j :

∞∑
k=1

∣∣h(k)
i,j

∣∣ ≤ �o
(
4ε2)|i−j |2|i−j |−1ε|i−j | =: 2|i−j |−1(�h(ε)ε

)|i−j |
,

which is equation (5.4).
Equation (5.5) for the case i = j is derived in the same way as (5.4), with just a few minor

differences at the beginning of the computation: namely, in the l.h.s. of (C.7), we treat apart the
cases “k = 1” (which yields zero here since hii = 0 by assumption) and “k = 2” (which has
already been handled by (C)); then all the sequel is the same. �

Remark C.1. The bounds (5.1)–(5.5) of Lemma 5.1 are optimal at first order. Actually this is
much more than needed to prove Theorem 1.1, and we could have got a sufficient result with a
shorter proof; but it seemed interesting to me to state the sharp version of the lemma.
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