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Proper scoring rules measure the quality of probabilistic forecasts. They induce dissimilarity measures
of probability distributions known as Bregman divergences. We survey the literature on both entities and
present their mathematical properties in a unified theoretical framework. Score and Bregman divergences
are developed as a single concept. We formalize the proper affine scoring rules and present a motivating
example from robust estimation. And lastly, we develop the elements of the regularity theory of entropy
functions and describe under what conditions a general convex function may be identified as the entropy
function of a proper scoring rule and whether this association is unique.
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1. Introduction

Proper scoring rules measure the quality of probabilistic forecasts. They can be used as protocols
for eliciting private information and as incentives for a forecaster to make truthful predictions.
Bregman divergences, on the other hand, originate in convex programming as generalizations of
the Euclidean metric. The two notions are intimately connected through the fact that they both
derive from convex functions known as entropies. The principal objective of the present work
is to present and review the mathematical properties of the two entities in a unified theoretical
framework. To that end, we systematically generalize a number of results from the Euclidean
setting to the framework of spaces of finite signed measures. In this setting score and Bregman
divergences may be identified. We formalize the proper affine scoring rules and motivate their
interest in the context of estimation problems, which complements the approach of [16,17], who
formalize them as truthful mechanisms in decision theory. And finally, we develop the elements
of the regularity theory of entropy functions. This allows us to describe under what conditions a
general convex function can be identified with the entropy function of a proper scoring rule and
whether this association is unique.

1.1. Detailed plan of the paper

In Section 2, we introduce the general mathematical framework of the paper. We also illustrate
and motivate proper scoring rules with examples from Bayesian probability and robust statistics.
We show that the need to optimize unnormalized probability densities, λpθ , in some estimation
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problems with respect to both λ > 0 and θ ∈ � naturally leads to the notion of a proper affine
scoring rule.

Section 3 is dedicated to describing the characteristic properties of Bregman divergences. We
first consider Bregman divergences in the best-known context of Euclidean spaces. We begin with
an overview of the basic mathematical properties of Bregman divergences such as symmetry and
joint and separate convexity [5]. We then discuss the fact that Bregman divergences may also
be characterized probabilistically: They are the unique class of divergences with the property
that the expected divergence of every random variable to a given value is minimized by the
mean of the random variable [2,32]. The result remains true for multivariate variables and is
invariant with respect to any transformation of these variables [1,14]. A divergence characterizes
as Bregman if and only if it is a convex function in the true distribution inducing the same
Bregman divergence [3]. We generalize this result to the current measure-theoretic framework.
Some generalizations of Bregman divergence to function spaces have been investigated by [15],
however, the authors do not work in the general framework of spaces associated with scoring
rules. We adapt to our framework the result of [17] which characterizes the proper affine scoring
rules as the affine component of a functional Bregman divergence on a general (nonprobabilistic)
domain. Combining the results of this section, we resolve the problem stated in [19], Section 2.2,
to classify all score divergences.

In Section 4, we consider proper scoring rules only on domains of normalized probability
distributions. The results presented here are mostly classical and serve as a basis for the more
recent generalizations in Section 3.2. We first give the direct characterization of proper scoring
rules on the probability simplex due to [19,32]. We then present another characterization of
properness due to [27], who shows that the latter is equivalent to a seemingly stronger condition
that we term order sensitivity, borrowing its name from [24,33]. Specifically, a scoring rule is
order sensitive if its expected score increases whenever the predictive distribution moves in the
direction of the true distribution. Lastly, we present the earliest characterization of proper scoring
rules due to [20,26]. The result characterizes proper scoring rules on the positive orthant as
subgradients of 1-homogeneous convex functions.

In Section 5, our goal is to understand under what conditions a general convex function consti-
tutes the entropy of a proper scoring rule and whether the association between entropy and proper
scoring rule is unique. This requires knowledge of the regularity properties of convex functions.
The latter may be described simply in finite dimensions, where every convex function on an open
domain is the entropy function of a unique proper scoring rule up to a potentially negligible set of
distributions. In infinite dimensions, however, the regularity theory of entropy functions comes
in two flavours depending on whether the entropy is continuous or discontinuous. The first case
is well-known and similar to that in the Euclidean setting, while the second case requires some
less-known concepts such as the quasi-interior of a convex set. The discontinuous case is ex-
emplified by the Shannon and Hyvärinen entropies. We studied it in [29] under the assumption
that the entropy function is 1-homogeneous and presented necessary and sufficient conditions for
existence and uniqueness of subgradients that may be identified as proper scoring rules. We also
gave examples of domains on which the logarithmic and Hyvärinen scoring rules are the unique
subgradients of their 1-homogeneous entropies. Here, we extend these results to their general
form by dropping the assumption that the entropy is 1-homogeneous.
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2. Preliminaries

We begin by introducing the notation and underlying mathematical framework. We then give
the formal definitions of a proper scoring rule, an entropy function, and a divergence function. In
Section 2.3, we illustrate the role which proper scoring rules have played in justifying the notions
of probabilistic coherence and Bayesian probability. In Section 2.4, we consider an example from
robust estimation motivating the need to formalize the proper affine scoring rules.

2.1. Notation

We consider a probability space (�,A,P), a measurable space (X ,B), and a random variable X :
(�,A,P) → (X ,B). We assume that X is a subset of a Euclidean space and B is the associated
Borel σ -algebra. Here X plays the role of an observed quantity for which a forecaster makes
probabilistic predictions. The latter are probability distributions on (X ,B) that aim to represent
the uncertainty in the range of possible outcomes of X. Probabilistic forecasts are more general
and more informative than single-valued forecasts and may always be converted into the latter
by taking the mean, the mode, etc., of the predictive distribution. By P we denote a convex set
of probability measures on (X ,B). The set contains all feasible distributions for X, including its
true distribution. We use the term probability measure and the associated cumulative distribution
function interchangeably. Let coneP = {λP |λ > 0,P ∈ P} denote the convex cone of P . By
spanP , we denote the linear span of P , that is, the collection of all finite linear combinations of
elements in P .

Definition 2.1. We call the functions f :X →R P-integrable if f is measurable1 and∫
X

∣∣f (x)
∣∣dP (x) < ∞ (1)

for every P ∈ P . We denote by L(P) the linear space of all P-integrable functions.

Let us notice that the spaces spanP and L(P) are dual and every f ∈ L(P) can be viewed both
as a function on X and as a linear functional on spanP . By “·” we denote the duality operation
between spanP and L(P). In more abstractly orientated treatments of the subject scoring rules
are defined as function-valued maps of the form S : P → L(P). For every P ∈ P , S(P ) can be
viewed both as a linear functional acting on the space of finite signed measures spanP and as
a random function S(P )(X) of X.2 In most of the modern literature, however, scoring rules are
more simply defined as functions of the form S : P ×X → R such that, for every P ∈P , S(P, ·)
is a P-integrable function. The quantity S(P,x) denotes the score assigned to a forecast P ∈ P

1In this context it is not essential to distinguish between Borel and Lebesgue measurability of f . This follows from the
fact that if f is Borel-measurable then it is also Lebesgue-measurable, while if f is Lebesgue-measurable then there is a
Borel-measurable function g such that f = g almost everywhere.
2This interpretation of scoring rules and the “·” notation was introduced by [20].
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and a subsequent observation x ∈ X . The two definitions agree by setting S(P,x) = S(P )(x).
We write

S(P,Q) = EX∼QS(P,X) =
∫
X

S(P,x) dQ(x) = S(P ) · Q

for the expected score of the forecast P under the true distribution Q of X.3

In a number of situations we need to consider scoring rules outside the set of probabilities P .
In game-theoretic setting, this has been theorized by [17], while here we develop the idea purely
within the realm of statistics. We thus extend the domain of a scoring rule to the positive orthant,
coneP , which necessitates an extension of the range of the scoring rule to the space of all affine
P-integrable functionals on spanP . The latter is denoted by A(P) and we have that l ∈ A(P)

if and only if l is in the form l(P ) = a∗ · P + α, where P ∈ spanP is arbitrary, while a∗ ∈
L(P) and α ∈ R are fixed. Any mapping S : coneP → A(P) is said to be an affine scoring
rule on coneP . Unlike ordinary scoring rules, affine scoring rules are not naturally defined for
single observations. Instead, affine scoring rules are applied only to probability distributions; we
write S(P )(Q) for the expected score of P under Q, where P ∈ coneP and Q ∈ spanP are
arbitrary.4,5

In almost all cases of practical importance, the distributions P,Q are represented by proba-
bility densities with respect to a fixed measure μ on (X ,B). As a rule, the measure μ is either
the counting measure when X is discrete, or the Lebesgue measure when X is an open set (in
a Euclidean space). We may unite the two cases by referring to a probability mass function as
a probability density with respect to the counting measure. Probability densities are always de-
noted by lower-case letters p,q , while their cumulative distribution functions are denoted by
upper-case letters P,Q, respectively. Whenever the distributions in P have densities, we asso-
ciate them with their densities. In this case, we write

S(p,q) := EX∼qS(p,X) =
∫
X

S(p,x)q(x) dμ(x) = S(p) · q, p, q ∈P,

for the expected score of p under q .

Example 2.2. If the sample space X = {x1, . . . , xd} is discrete and has d elements, then we take
by default P to be the probability simplex in R

d , while coneP is the positive orthant in R
d . In

addition, spanP is the Euclidean space R
d and its dual space L(P) is identical to R

d , too.

Let a function � : coneP → R be given. It is said that � is (positively) α-homogeneous for
some α ∈ R if �(λa) = λα�(a) for every a ∈ P and every λ > 0. Let X ⊂ R

d be an open set
and 1 ≤ p < ∞. By Lp(X ), we denote the Lebesgue Lp-space of functions on X whose pth

3For the letters denoting the true and predictive distribution and their order of appearance in the expected score we follow
the convention established in the probabilistic forecasting community [11,19]. This convention is likely based on the fact
that in diagrams visualizing the calibration of probabilistic forecasts it is natural to use the horizontal axis to display the
forecasts and the vertical axis to display the observations.
4Notice that on P every affine scoring rule reduces to an ordinary scoring rule.
5Non-affine generalizations of proper scoring rules were considered by [22]. In particular, they introduce a continuum of
generalized scoring rules that connects the power and pseudospherical scoring rules.
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power of the absolute value is Lebesgue integrable. The associated Lp-norm is denoted by ‖ · ‖p .
We use upper indices to denote sequences of observations in X , as in xi . An element x ∈ X has

component form x = (x1, . . . , xd) and |x| = (|x1|+ · · ·+ |xd |2) 1
2 is its magnitude. We sometimes

write the partial derivative ∂/∂xi , i = 1, . . . , d , as ∂i . The gradient on X is denoted by

∇ =
(

∂

∂x1
, . . . ,

∂

∂xd

)
.

2.2. Definition of a proper scoring rule

Proper scoring rules are protocols for eliciting and evaluating probabilistic forecasts. By being
maximized in expectation at the true prediction, they incentivize a forecaster to truthfully report
his private information.

Definition 2.3. A scoring rule S :P ×X → R that maximizes its expected score,

S(Q,Q) = max
P∈P

S(P,Q), (2)

at the true distribution Q ∈ P is called proper. If the true distribution is always a unique maxi-
mizer, S is called strictly proper.

The definition of a proper scoring rule is equivalent to the condition that S(P,Q) ≤ S(Q,Q),
for all P,Q ∈ P , and S is strictly proper, if the latter inequality is strict for all P �= Q. The
function � : P → R given by �(P ) = S(P,P ), for every P ∈ P , is the (negative) entropy
function associated with S. Notice that in view of (2), � must be convex on P as a pointwise
maximum of linear functionals. Moreover, � is strictly convex if and only if S strictly proper.
Consider the function

DS(P,Q) = S(Q,Q) − S(P,Q), P,Q ∈P . (3)

The condition DS(P,Q) ≥ 0 for all P,Q ∈ P is equivalent to S being proper, while the ad-
ditional requirement that DS(P,Q) = 0 if and only if P = Q is equivalent to S being strictly
proper.

Definition 2.4. A function D : P × P → [0,∞) is called a divergence on P . If additionally
D(P,Q) = 0 if and only if P = Q, then D is called a strict divergence.

We conclude that S is a (strictly) proper scoring rule if and only if the associated function DS

is a (strict) divergence. A divergence DS induced by a scoring rule is called a score divergence.
Many authors prefer to define divergences as what we call strict divergences because only the
latter guarantee consistency in estimation problems of the associated estimators. In the context of
score divergences, however, we prefer the current more nuanced definition. In the same fashion,
we may also differentiate between strict and non-strict entropy functions. We shall later show in
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Section 3 that every score divergence may be identified as a functional Bregman divergence on a
subset of the space of finite signed measures, spanP .

In the context of an affine scoring rule S : coneP → A(P), Definition 2.3 is modified accord-
ingly: S is proper if, for every P,Q ∈ coneP , the expected score S(P )(Q) is maximized in P

at the true distribution Q. If the expected score is uniquely maximized at the true distribution,
then S is called strictly proper. The definition of a divergence on domains larger than P is analo-
gous to Definition 2.4. Proper affine scoring rules define score divergences analogously to proper
scoring rules.

2.3. Formalizing Bayesian probability

This subsection contains a recent take on a classical subject and has mostly illustrative purposes.
To begin with, we consider a binary predicted variable X taking values in the sample space

X = {0,1}. The variable X may be seen as the indicator function

1E(ω) =
{

1, ω ∈ E,

0, ω /∈ E

of the event E = {ω ∈ �|X(ω) = 1}. The distribution of X is a vector with components P(X =
0) = 1 − p and P(X = 1) = p, with p ∈ [0,1]. The endpoint cases p = 0 and p = 1 correspond
to a constant X and often may be excluded without loss of generality. We may represent the
probability distribution of X by a single number, which by convention we take to be P(X =
1) = p. This allows us to interpret a probabilistic forecast for X as a probability forecast for the
event E.

Examples of binary proper scoring rules are given by the log score,

S(p, i) = lnpi,

and the Brier score,

S(p, i) = −(i − pi)
2,

where p = (p0,p1) is a probability distribution and pi = P(X = i).
We now proceed to discuss what it means for a person to have logically consistent beliefs

about a collection of events. Let Ei ∈ A, i = 1, . . . , n, be n events in �, which we denote as the
vector E = (E1, . . . ,En). By a vector forecast for E we understand any vector p = (p1, . . . , pn),
pi ∈ [0,1], such that pi is the probability forecast prescribed to the event Ei . Let us fix a strictly
proper scoring rule S and a vector of events E. The combined score of a vector forecast p under
the outcome ω ∈ � is

Scom(p,ω) =
n∑

i=1

S
(
pi,1Ei

(ω)
)
.

This is just a sum of scores assigned to n probability forecasts under the same realization ω.
Here, the distribution for each variable Xi = 1Ei

is represented by a single number, pi , rather
than the full vector (1 − pi,pi).
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Definition 2.5. A vector forecast p is dominated by a vector forecast q if Scom(p,ω) ≤
Scom(q,ω), for all ω ∈ �, and strongly dominated by q if the inequality is strict for all ω ∈ �.
A vector forecast p is called admissible if it is not dominated by a vector forecast other than
itself.

In the framework of Bayesian probability, only the admissible vector forecasts are deemed as
rational representations of beliefs. This is based on the idea that beliefs may be expressed through
the betting behaviour of an individual in lottery games and an inadmissible vector forecast leads
to a sure-loss bet. See, for example, [13]. We are next going to characterize the class of admissible
vector forecasts.

Definition 2.6. We call a vector forecast p = (p1, . . . , pn) for the events E = (E1, . . . ,En)

probabilistically coherent whenever there is a probability measure ν over (�,A) such that
ν(Ei) = pi .

Under mild regularity conditions on the scoring rule, [30] show the following.

Theorem 2.7. The admissible vector forecasts are precisely those that are probabilistically co-
herent. Moreover, any incoherent vector forecast is strongly dominated by some coherent vector
forecast.

To illustrate the theorem, consider , for example, events E = (E1,E2) such that E1 ⊆ E2.
Then, for any vector forecast p = (p1,p2) for E that does not satisfy the inequality p1 ≤ p2,
there is a another vector forecast that strongly dominates it. The result lends support to the idea
that any rational description of uncertainty by numbers must obey the rules of probability calcu-
lus. The proof of Theorem 2.7 relies on the notion of Bregman divergence and provides a new
insight into classical results obtained by [25,32].

2.4. On the estimation of unnormalized probability densities

Here, we consider an application of scoring rules to robust statistics which will motivate their
extension as affine scoring rules on coneP . Our example involves the power scoring rule Spow :
P ×X →R, given by

Spow(p, x) = γp(x)γ−1 − (γ − 1)‖p‖γ
γ ,

and the pseudospherical scoring rule Spsu :P ×X → R, given by

Spsu(p, x) = λ
p(x)γ−1

‖p‖γ−1
γ

,

both defined for γ > 1.
Suppose we draw a sample from a contaminated probability density

qε(x) = (1 − ε)q(x) + εr(x), (4)
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where q is the true or target density, r is the contamination density, and ε ∈ [0,1] is the rate
of contamination. A standard estimation method tries placing the model density close to qε ,
which is not favourable as our real goal is estimating q , not qε . A robust estimation method tries
instead placing the model density close to q . We consider (4) in the case where q ∼ N(0,1)

and r ∼ N(5,1) are normal densities and 20% of the sample is contaminated, corresponding
to ε = 0.2. Let us compare how well the power and pseudospherical scoring rules are able to
estimate the target density in this context.

To that end, let us suppose that the mean μ = 0 of q is known and try to estimate its standard
deviation σ . Thus, we employ the parametric model pσ ∼ N(0, σ 2), where

pσ (x) = 1√
2πσ

e
− x2

2σ2

is the univariate Gaussian. We draw from (4) an independent and identically distributed sample
x1, . . . , xn, where n = 1000. The estimating equation of the power scoring rule is

c(γ )σ + 1

n

n∑
i=1

(−σ 2 + (xi − μ)2)pσ/
√

γ−1(xi) = 0, (5)

where

c(γ ) =
(

γ − 1

γ

) 3
2 1√

2π
, γ > 1. (6)

The estimating equation of the pseudospherical scoring rule is

n∑
i=1

(−σ 2/γ + (xi − μ)2)pσ/
√

γ−1(xi) = 0. (7)

The above two estimating equations have been adapted to our context from the more general
equations in [4,18], or in [12], equation (13). We solve (5) and (7) in σ to find the corresponding
score estimators. We repeat this 100 times and find the average values of each estimator. From
the two average values, we subtract the true value of σ (σ = 1) and obtain an estimate of the
bias of each estimator. The results are displayed in Figure 1. The graph exhibits the bias of each
estimator in the range γ ∈ [1,2]. We see that the power scoring rule has a persistent bias across
all γ , while the pseudospherical scoring rule, on the other hand, is approximately unbiased for a
sufficiently large γ .

We now try to explain the apparent difference in robustness between the two scoring rules.
To that end, let � be the parameter space of a given model and assume that the contamination
density r lies in the tails of the model density pθ so that the quantity

εθ = p
γ−1
θ · r
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Figure 1. Bias of the pseudospherical (solid lines) and power scoring rule (dashed lines) for γ ∈ [1,2] in
the estimation of the standard deviation σ of the true density q in (4).

is sufficiently small for an appropriately large γ > 1 and all θ ∈ �. Notice that the function
λ → Spsu(pθ , λq) is linear in λ > 0, where

Spsu(pθ , λq) = λ
p

γ−1
θ · q

‖pθ‖γ−1
γ

= λSpsu(pθ , q)

is the expected score of the pseudospherical scoring rule. As a result of this, we have that

Spsu
(
pθ , (1 − ε)q + εr

) = (1 − ε)Spsu(pθ , q) + εcθεθ ,

where cθ = ‖pθ‖1−γ
γ . Assuming that the term εcθεθ is sufficiently small, we may neglect it and

obtain that

arg max
θ∈�

Spsu(pθ , qε) ≈ arg max
θ∈�

Spsu(pθ , q),

which explains the robustness of the pseudospherical scoring rule under heavy contamination.
On the other hand, the function λ → Spow(pθ , λq) is affine, where

Spow(pθ , λq) = λγp
γ−1
θ · q − (γ − 1)‖pθ‖γ

γ ,

is the expected score of the power scoring rule. As above, we have that

Spow
(
pθ , (1 − ε)q + εr

) = Spow
(
pθ , (1 − ε)q

) + γ εεθ ,

which shows the approximate equivalence of the optimization problems

arg max
θ∈�

Spow(pθ , qε) ≈ arg max
θ∈�

Spow
(
pθ , (1 − ε)q

)
.

However, the latter problem is clearly not approximately equivalent to the desired one,
arg maxθ∈� Spow(pθ , q), unless ε > 0 is sufficiently small, due to the nonlinearity (affinity) of
the expected score of Spow. This heuristically explains the non-robustness of the power scoring
rule under heavy contamination. The above analysis and example have been adapted from [18].

Notwithstanding the preceding analysis, it turns out that the deficiency in robustness of Spow
in comparison to Spsu may be completely overcome if the optimization problem is formulated in
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a suitable way. Indeed, let us notice that

Spow
(
λpθ , (1 − ε)q

) = (1 − ε)γ Spow(pθ , q)

for λ = (1 − ε). This motivates the model

{λpθ |λ > 0, θ ∈ �},
called an enlarged parametric model, which we use to formulate the two-fold optimization prob-
lem

(λ̂, q̂) = max
λ∈[0,1],θ∈�

Spow(λpθ , qε). (8)

Under mild regularity assumptions, [23] show that λ̂ is an approximately unbiased estimator
for the target ratio, 1 − ε, and q̂ is an approximately unbiased estimator for the target density,
q . Moreover, the latter estimator turns out to be identical to the score estimator of Spsu, thus
showing a surprising equivalence between the two scoring rules [23], Theorem 1.

The above example and analysis indicate the need to consider enlarged parametric models,
where the model, empirical, and population distributions may not be normalized. This motivates
the formal introduction of proper affine scoring rules.

3. Bregman divergence

Although the notions of Bregman divergence and proper scoring rules are intimately related, their
origin and development occurred to a large extent separately. Indeed, the former has been used
primarily in convex optimization as a generalization of the Euclidean distance, while the latter
are protocols for eliciting and evaluating probabilistic forecasts. By developing Bregman diver-
gences in the framework of spaces of finite signed measures, we may identify score and Bregman
divergences. We begin with an overview of the characteristic properties of Bregman divergence
in Euclidean spaces, and then address the analogous question in the context of arbitrary spaces
of finite signed measures.

3.1. Bregman divergence in Euclidean spaces

Let I be an open interval in R and consider a convex function φ : I → R that is continuously
differentiable. Let also φ′(a) denote the derivative of φ at a.

Definition 3.1. The function dφ : I × I → [0,∞), given by

dφ(a, x) = φ(x) − φ′(a)(x − a) − φ(a) (9)

is the Bregman divergence associated with φ.6

6The order and meaning of the arguments is reversed with respect to the convention used for example, in information
theory, but is in line with that of probabilistic forecasting [11,19].
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Geometrically, dφ(a, x) is nonnegative whenever the graph of φ lies above its tangent line
at x = a. Such a tangent line is said to support φ at a. Moreover, a continuously differentiable
function is convex if and only if the function lies above all of its tangents. If in addition we have
equality in dφ(a, x) ≥ 0 precisely for x = a, then the supporting lines of φ have a single point of
tangency with the graph of φ. The latter is equivalent to φ being strictly convex.

Example 3.2. One-dimensional Bregman divergences are associated with an important class of
divergences for probability densities. Let again P be a convex set of probability densities with
respect to a fixed measure μ on the sample space X . If the domain of φ is I = (0,∞), we may
construct the divergence Dφ : P ×P → [0,∞) by setting

Dφ(p,q) =
∫
X

dφ

(
p(x), q(x)

)
dμ(x)

for any p,q ∈ P . Divergences of that form are called separable because they are sums or inte-
grals of a fixed scalar divergence applied pointwise to p and q . Associated with every separable
Bregman divergence dφ is a proper scoring rule, Sφ :P ×X →R, defined as

Sφ(p, x) = φ′(p(x)
) −

∫
X

(
φ′(p(x)

)
p(x) − φ

(
p(x)

))
dμ(x),

a convex entropy function � : P → R, given by

�(p) =
∫
X

φ
(
p(x)

)
dμ(x),

and we have that

Dφ(p,q) = �(q) − Sφ(p, q), for every p,q ∈ P .

For example, the logarithmic and power scoring rule are associated with separable Bregman
divergences, while the pseudospherical scoring rule is not.

We now describe three basic mathematical properties of Bregman divergences of the form (9).
First, dφ(a, x) is called symmetric whenever dφ(a, x) = dφ(x, a) for all a, x ∈ I . Symmetry is a
special property and holds only for the quadratic divergence7 d(a, x) = (x − a)2 [5,32]. Second,
it is clear that dφ(a, x) is convex in x for every a ∈ I , so in addition it is reasonable to consider
the following two stronger properties:

(i) dφ is jointly convex if (a, x) → dφ(a, x) is convex on I × I ;
(ii) dφ is separately convex if a → dφ(a, x) is convex on I , for every x ∈ I .

Joint convexity implies separate convexity but not conversely [5]. The main result of the latter
work is to show that dφ is jointly convex if and only if 1/φ′′ is concave, provided that φ′′(x) exists

7We identify all divergences differing by a multiplicative constant.
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and is positive for every x ∈ I . One may verify that for example φ(x) = x lnx and φ(x) = xγ ,
for 1 < γ ≤ 2 satisfy this criterion on I = (0,∞). Separate convexity is characterized in [5],
Theorem 3.11.

We now proceed to describe Bregman divergences in R
d .

Definition 3.3. Let φ : U → R be a continuously differentiable convex function defined on an
open convex domain U ⊂R

d . The function dφ : U × U → [0,∞),

dφ(a, x) = φ(x) − ∇φ(a) · (x − a) − φ(a), (10)

is the Bregman divergence associated with φ.

In fact, (10) is the remainder evaluated at x of the first-order Taylor series expansion of φ

around a. The following result is a mathematical folklore [5].

Lemma 3.4. Let dφ be defined as in (10), where φ : U → R is an arbitrary continuously differ-
entiable function. Then,

(i) dφ(a, x) ≥ 0 (with equality only for x = a) if and only if φ is (strictly) convex;
(ii) dφ(a, x) = 0 for all x, a ∈ U if and only if φ is affine.

Thus, two convex functions define the same Bregman divergence if and only if their difference
is an affine function. The properties of symmetry, joint convexity, and separate convexity are
defined analogously to the one-dimensional case. Let A be a positive semi-definite matrix of
dimension d . The bilinear form

φ(x) = xtAx

is a convex function. Furthermore, [6] show that the associated generalised quadratic divergence,

dA(p,q) = (p − q)tA(p − q),

closely related to Mahalanobis distance, is the only symmetric Bregman divergence on R
d . Ev-

idently, dA is separable if and only if the matrix A is diagonal. For characterization of joint
convexity see [5], Theorem 6.1.

Example 3.5. Perhaps a bit surprisingly, Bregman divergences may also be characterized prob-
abilistically. Indeed, they are the unique class of divergences for which the mean divergence of a
random variable to a fixed value is minimized by the mean of the random variable. Specifically,
let U ⊂ R

d be open and convex and d0 : U × U → [0,∞) be such that d0(a, x) = 0 if and only
if a = x, for all a, x ∈ U . If for all random variables X taking values in U we have that

EX = arg min
a∈U

Ed0(a,X),

and d0 satisfies mild regularity conditions, then there is a continuously differentiable strictly
convex function φ : U → R such that d0 = dφ . Conversely, if d0 has the form dφ then the above
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minimization property holds.8 The result is best known in the special case where d0(x, y) =
(x − y)2 is the squared error. See, for example, [2,32]. The assertion is invariant with respect to
transformations of X. Let, for example, g : U → V be a continuously differentiable and invertible
transformation, where V is also open and convex set in R

d . Then, if s : U × V → [0,∞) is such
that for all random variables X taking values in U we have that

Eg(X) = arg min
a∈V

Es(a,X),

and s is subject to mild regularity assumptions, then there is a continuously differentiable strictly
convex function ψ : V → R such that s(a, x) = dψ(a, g(x)). For proof of the claim in both
directions see [16], Section 4.2.1, or [1,14].

Bregman divergences may also be defined for arbitrary convex functions by replacing the
gradient with a selection of subgradients. This is discussed more generally in the next subsection.
An overview of the basic regularity properties of convex functions in Euclidean spaces may be
found in Section 5.1.

3.2. Functional Bregman divergence

Here we present Bregman divergences in the context of spaces of finite signed measures. To that
end, let (X ,B) be a measurable space such that X is a subset of an Euclidean space and B is the
associated Borel σ -algebra. The set P is a convex subset of the set of all probability measures on
(X ,B). The vector space spanP is the linear span of P , while L(P) is the dual space to spanP
and is defined as the collection of all P-integrable functions on X . In what follows, we fix a
convex set U such that P ⊂ U ⊂ spanP .

In order to keep the presentation sufficiently general, we are not going to assume that the set
U is open and that the convex functions on U are continuous or differentiable. To motivate this,
we consider the following.

Example 3.6. Let X ⊂ R
d and N be a linear subspace of L1(X ) containing continuous func-

tions. By P we denote the set of all probability densities in N that are strictly positive. We are
going to show that the positive orthant in N , denoted as coneP , has empty algebraic interior in
N if the elements of coneP satisfy the following condition

∀p ∈ coneP ∃x0 ∈X ∃q ∈ coneP : lim
x→x0

p(x)

q(x)
= 0, 9 (11)

where x0 could also denote infinity if X is unbounded. For example, this condition will be sat-
isfied if we take X = R, x0 = ∞, and two Gaussians p and q on the real line such that p has

8Analogous claim holds for non-strict Bregman divergences.
9Notice that this condition cannot hold in finite dimensions and signifies a qualitative difference between the finite and
infinite-dimensional settings.
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smaller variance than q . Let condition (11) hold and notice that the function p(x) − tq(x) can-
not remain positive as x → x0, no matter how small t > 0 is. It is clear that p cannot be a core
point for coneP and thus the latter has empty algebraic interior in N . (See [35], page 2, or [28],
Section A.3, for definitions.) The implications of this fact are that any entropy function, such as
the Shannon or Hyvärinen entropy, that cannot be extended past the positive orthant coneP will
not be continuous or differentiable, regardless of the choice of topology on N .

The example shows that in the context of continuous variables there are important entropy
functions that are not continuous, differentiable, or even finite on the open domains of the normed
subspaces of L1(X ). Local regularity properties of entropy functions like these will be the subject
of Section 5. The existence of subgradient, however, is a global property that is well-defined in
the context of a general vector space. The exposition here will be based on the latter property and
will be independent of topology.

Definition 3.7. If � : U →R and there is P ∗ ∈ L(P) such that

�(Q) ≥ P ∗ · (Q − P) + �(P ), for all Q ∈ U, (12)

then we say that P ∗ is a subgradient of � at P . If the inequality is strict for all P �= Q, then P ∗
is called a strict subgradient.

Geometrically, the inequality in (12) means that the graph of � is supported at P by the
hyperplane

πP = {
(Q,y)|y = P ∗ · (Q − P) + �(P )

}
(13)

in the vector space (spanP,R). The collection of all subgradients of � at P is called the subd-
ifferential of � at P and denoted by ∂�(P ). Suppose that ∂�(P ) �= ∅ for each P ∈ U . Then,
we call a selection of subgradients �∗(P ) ∈ ∂�(P ), for each P ∈ U , a subgradient of � on
U . In view of the fact that �∗(P ) ∈ L(P), we may identify �∗(P ) with its P-integrable kernel
function on X , denoted as �∗(P )(x).

Definition 3.8. Suppose that � : U → R has a subgradient �∗ : U → L(P). Then the function
D(�,�∗) : U × U → R given by

D(�,�∗)(P ,Q) = �(Q) − �∗(P ) · (Q − P) − �(P ), (14)

for all P,Q ∈ U , is the functional Bregman divergence on U associated with the pair (�,�∗).

Geometrically, D(�,�∗)(P ,Q) is the vertical distance at Q between the graph of � and its
supporting hyperplane at P induced by �∗(P ). As a mnemonic rule, the forecast distribution
P selects the supporting hyperplane of �, while the true distribution Q determines the place of
vertical distance. The next result is proved analogously to Lemma 3.4.

Lemma 3.9. Suppose that � : U → R has a subgradient �∗ : U → L(P). If D(�,�∗) is defined
as in (14), then
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(i) D(�,�∗)(P ,Q) ≥ 0 (with equality only for P = Q) if and only if � is (strictly) convex;
(ii) D(�,�∗)(P ,Q) = 0 for all P,Q ∈ U if and only if � is affine.

We are now ready to relate functional Bregman divergences and score divergences. To that
end, we extend the notion of a proper affine scoring rule to the set U , which may contain finite
signed measures as P ⊂ U ⊂ spanP .

Definition 3.10. The affine scoring rule S : U → A(P) is said to be proper if S(P )(Q) ≤
S(Q)(Q) for all P,Q ∈ U , and strictly proper, if the latter inequality is strict for all P �= Q.

A straightforward example of a proper affine scoring rule S : U → A(P) obtains by defining
S as the affine component of a functional Bregman divergence, that is, by setting

S(P )(Q) = �∗(P ) · Q + �(P ) − �∗(P ) · P,

for every Q ∈ spanP , where � and �∗ are the same as in Definition 3.8. As we show next, this
actually constitutes a characterization of the proper affine scoring rules. The result first appeared
in [17], Theorem 1, however, some modification is required to adapt it to the current measure-
theoretic setting. Since the difference is only formal, we state the theorem without proof.

Theorem 3.11. An affine scoring rule S : U → A(P) is (strictly) proper if and only if there is
a (strictly) convex function � : U → R and a subgradient �∗ : U → L(P) of � on U such that
the expected score of S is in the form

S(P )(Q) = �∗(P ) · (Q − P) + �(P ) (15)

for all P,Q ∈ U .

In the theorem, the functional Bregman divergence associated with (�,�∗) is the score di-
vergence of S. For conditions describing whether and in what sense � and S may be uniquely
associated, see Section 5. We next present a characterization of functional Bregman divergences
by generalizing a result originally stated in the context of Euclidean spaces [3], Appendix A.

Theorem 3.12. Let D : U × U → [0,∞) be a divergence on the convex set U ⊂ spanP . Then
D is a functional Bregman divergence on U if and only if

(a) for any P ∈ U the function �(Q) = D(P,Q) is convex;
(b) there is a subgradient �∗ : U → L(P) of � for which it holds that

D(P,Q) = D(�,�∗)(P ,Q)

for all P,Q ∈ U .

Proof. Although it is not hard to adapt the proof from [3], Appendix A, we sketch it for com-
pleteness. The sufficient part of the claim is elementary. To show the necessary part, let D be the
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Bregman divergence associated with the pair (�1,�
∗
1). Then

�(Q) = D(P,Q) = �1(Q) − �∗
1(P ) · Q + �∗

1(P ) · P − �1(P )

and �1 differ only by an affine function. Therefore, � is also convex and �∗ : U → L(P) given
by �∗(Q) = �∗

1(Q) − �∗
1(P ) is its subgradient. It is now easy to see that the pairs (�,�∗) and

(�1,�
∗
1) generate the same Bregman divergence. �

In conclusion, the last two results resolve the problem stated in [19], Section 2.2, to clas-
sify all score divergences. Indeed, this follows from Theorem 3.11, where score divergences are
classified as functional Bregman divergences, which are in turn characterized by Theorem 3.12.

4. Characterization of proper scoring rules

Here we restrict attention to the important special case where scoring rules are defined over the
set of probability measures P , or its conic hull coneP .

4.1. Direct characterization and order sensitivity

The analysis of Section 3 allow us to describe the classical proper scoring rules as follows:
they are restrictions to the probability simplex of affine functionals whose graphs are supporting
hyperplanes to a convex function – the entropy. Moreover, the score assigned to a particular
outcome is the value at that outcome of the kernel function representing the associate affine
functional. This may be seen more formally in the following result due to [19,32].

Theorem 4.1. A scoring rule S :P ×X →R is (strictly) proper if and only if there is a (strictly)
convex function � :P →R and a subgradient �∗ :P → L(P) of � such that

S(P,x) = �∗(P )(x) + �(P ) − �∗(P ) · P,

for every P ∈P .

We next give a brief comment on the relationship between S, �, and �∗ in the above theorem.
Notice that every proper scoring rule S is a subgradient relative to P of its entropy with the
additional property S(P,P ) = �(P ), for every P ∈ P . Conversely, every subgradient �∗ of �

relative to P that satisfies �∗(P ) · P = �(P ) for every P ∈P is a proper scoring rule on P . We
thus arrive at the following description of the type of subgradients that constitue a proper scoring
rule.

Corollary 4.2. Given a (strictly) convex function � :P → R and a subgradient �∗ :P → L(P)

of �, �∗ is a (strictly) proper scoring rule with entropy � if and only if

�(P ) = �∗(P ) · P (16)

for every P ∈P .
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Unlike [19], Theorem 1, we do not allow scoring rules to become infinite, which is in line
with the standard definition of subgradient in convex analysis. Moreover, subgradients may be
prevented from becoming infinite if one introduces a suitable notion of interior for the domain of
the associated entropy function.

Example 4.3. Let us consider the (negative) Shannon entropy,

�(p) =
d∑

i=1

pi lnpi, p ∈ P,

where P is the (relative) interior of the probability simplex in R
d . It is easy to verify that �

extends as a convex function to the positive orthant, Rd+. We have that

∇�(p) = (lnpi + 1, . . . , lnpd + 1), p ∈R
d+,

is the gradient of �. Using Theorem 4.1, we find that the logarithmic scoring rule, Slog(p, i) =
lnpi , is a proper scoring rule associated with Shannon entropy.

We next present an alternative condition to properness. To that end, let S : P × X → R be a
scoring rule and P,Q ∈ P be predictive distributions. For any λ ∈ [0,1], we set Pλ = (1−λ)P +
λQ to be the convex mixture between P and Q.

Definition 4.4. We say that S is (strictly) order sensitive if the function

λ → S(Pλ,Q), λ ∈ [0,1],
is (strictly) monotone increasing for every P,Q ∈P .

Clearly, a scoring rule S that is (strictly) order sensitive is also (strictly) proper. In addition,
the expected score of S improves whenever the original forecast P moves in the direction of the
true density Q. Seemingly weaker, properness turns out to be equivalent to order sensitivity of a
scoring rule.

Theorem 4.5 ([27]). A scoring rule S is (strictly) proper if and only if S is (strictly) order
sensitive.

4.2. Characterization through 1-homogeneous entropies

We are next going to present another characterization of proper scoring rules which relies on Eu-
ler’s homogeneous function theorem to incorporate condition (16) directly in the notion of sub-
gradient. First, let us note that every function � : P → R may be extended as a 1-homogeneous
function to coneP by setting

�(P ) = (1 · P)�

(
P

1 · P
)

, for every P ∈ coneP .
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Here, 1 · P is the normalising constant of P . We recall that if � is convex on P , then its 1-
homogeneous extension to coneP is a sublinear function. Similarly, every scoring rule S : P ×
X → R extends to a 0-homogeneous function on coneP by setting

S(P,x) = S

(
P

1 · P ,x

)
, for every P ∈ coneP .

A generalized version of Euler’s homogeneous function theorem states that if � : coneP →R

is 1-homogeneous, then

∂�(a) · a = �(a) (17)

for every a ∈ coneP , where ∂�(a) is the subdifferential of � at a. The above identity relates
sets, since ∂�(a) is generally a multi-valued map. It can be further shown that the subdifferential
is a 0-homogeneous multi-valued map in the sense that it satisfies the relation ∂�(λa) = ∂�(a),
for every λ > 0 and every a ∈ coneP [20,29]. Consequently, it always possible to take a 0-
homogeneous selection of subgradients to a 1-homogeneous function. Notice the similarity
between conditions (16) and (17). In view of the latter, the definition of subgradient of a 1-
homogeneous function simplifies as follows.

Definition 4.6. Let � : coneP → R be a 1-homogeneous function. Then P ∗ ∈ L(P) is a sub-
gradient of � at P if for all Q ∈ coneP

�(Q) ≥ P ∗ · Q, (18)

with equality for P = Q. The subgradient P ∗ is called strict if the above inequality is strict for
all P not positively collinear to Q.10

Clearly, the notion of subgradient to a 1-homogeneous function matches precisely the condi-
tion for properness of a scoring rule. Thus, we recover the classical characterisation of proper
scoring rules due to [26] and [20]. We paraphrase the result by emphasizing the role of the ex-
tension of the entropy to the positive orthant for obtaining the “right” notion of subgradient, and
simultaneously generalize the result to the context of probability measures. We also retain the
original function-valued notation of scoring rules.

Theorem 4.7. Let S : P → L(P) be a scoring rule and � : P → R be defined as �(P ) =
S(P ) ·P , for every P ∈ P . Then S is (strictly) proper if and only if the 0-homogeneous extension
of S to coneP is a (strict) subgradient of the 1-homogeneous extension of � to coneP .

If we agree to call the 1-homogeneous extension of an entropy function a 1-homogeneous
entropy, then the theorem simply states that proper scoring rules are subgradients of 1-
homogeneous entropies. Although Theorem 4.7 has only been proved in the context of prob-
ability densities by [20], the difference is purely notational and the proof remains unchanged.

10The convention for strict subgradient used in Definition 4.6 is standard in convex analysis in the context of 1-
homogeneous functions. There is no danger of ambiguity, as we use it here only in the special context where � and
S are defined on coneP and � is 1-homogeneous.
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In Section 2.4, we saw that the power scoring rule Spow(p)(q) is an affine function in q ∈
coneP . In contrast, the pseudospherical scoring rule Spsu(p)(q) is linear in q ∈ coneP . In our
next result, we characterize all such “linear” scoring rules.

Corollary 4.8. Let S : coneP → A(P) be a proper affine scoring rule and let � : coneP → R,
�(P ) = S(P )(P ), be the associated extended entropy. Then, the range of S lies in L(P) if and
only if S is 0-homogeneous, if and only if � is 1-homogeneous.

Proof. Suppose first that S : coneP → L(P). Then, in view of (15), S = �∗ is a subgradient of
� that satisfies Euler’s 1-homogeneous function identity,

�∗(P ) · P = �(P ).

Hence, S is 0-homogeneous and � is 1-homogeneous. Conversely, if S is 0-homogeneous, or
equivalently � is 1-homogeneous, it follows that the subgradients of � satisfy the above identity
[20,29]. Then (15) reduces to S = �∗, implying that S is also a subgradient of �. �

4.3. Some examples

We continue with some illustrations of Theorem 4.7. We first do so in the context of discrete
sample spaces.

Example 4.9. In contrast to Example 4.3, here we derive the logarithmic scoring rule from the
1-homogeneous extension to R

d+ of Shannon entropy,

�(p) =
d∑

i=1

pi ln
pi

|p|1 , p ∈R
d+,

where we have used the notation |p|1 = (p1 + · · · + pd). In view of the fact that � is a differen-
tiable function, we find that

∂�(p)

∂pi

= ln
pi

|p|1 ,

which is the 0-homogeneous extension of Slog to R
d+. The supporting hyperplanes of � become

vertical at the boundary of R
d+, implying that the subdifferential of � is empty there. Conse-

quently, the logarithmic scoring rule cannot be defined for probabilities that vanish.

We next present two examples in the context of continuous variables.

Example 4.10. Let us consider the Lebesgue space L2(X ) and take P to be the set of all prob-
ability densities in L2(X ) with respect to the Lebesgue measure on X . We leave it to the reader
to verify that the 1-homogeneous entropy,

�(p) =
∫
X p2(x) dx∫
X p(x)dx

, p ∈ coneP,
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has a Gâteaux derivative on coneP given by

�′(p)(x) = 2p(x)

‖p‖1
−

(‖p‖2

‖p‖1

)2

, p ∈ coneP .

This immediately defines the proper scoring rule

S(p,x) = 2p(x) − ‖p‖2
2, p ∈ P,

known as the quadratic scoring rule. A more detailed and rigorous derivation of the quadratic
scoring rule is also contained in Example 5.6.

Example 4.11. Consider the L2-norm, �(p) = ‖p‖2 in the Lebesgue space L2(X ) and compute
its Gâteaux derivative, �′(p)(x) = p(x)/‖p‖2, for p ∈ coneP . Since � is 1-homogeneous, this
defines the proper scoring rule

S(p,x) = p(x)/‖p‖2

known as the spherical scoring rule.

It was key in the above examples that we were able to extend the entropy � to coneP , or
spanP , where � was a differentiable function. See also [34] who studies proper scoring rules by
making use of the duality theory of convex functions.

5. Regularity theory of entropy functions

Our main goal here is to understand under what conditions a general convex function constitutes
the entropy of a proper scoring rule and whether the association between entropy and proper
scoring rule is unique.

5.1. Entropy functions in finite dimensions

Below are summarized the most basic regularity properties of convex functions in Euclidean
spaces, contained in any standard book on convex analysis such as [9,10,21,28,31].

Theorem 5.1. Let φ : U →R be convex and U ⊂R
n be an open convex set. Then

(a) φ is locally Lipschitz continuous on U and hence a continuous function;
(b) there is a dense subset A of U such that U \ A has Lebesgue measure zero and ∇φ exists

on A;
(c) for every a ∈ A we have

φ(x) ≥ ∇φ(a) · (x − a) + φ(a), for all x ∈ U ;
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(d) for every a ∈ U \ A there is a∗ ∈ R
n such that

φ(x) ≥ a∗ · (x − a) + φ(a), for all x ∈ U ; (19)

(e) φ is differentiable everywhere on U if and only if ∇φ is continuous on U if and only if φ

is continuously differentiable on U .

As a result, every convex function on an open convex set containing the probability simplex in
R

d constitutes the entropy function of a proper (affine) scoring rule that is uniquely determined
up to a negligible set from its entropy. Entropy functions are locally Lipschitz continuous and
differentiable almost everywhere.

5.2. Entropy functions in infinite dimensions

The regularity theory of convex functions in normed spaces that are continuous is very similar
to that in finite dimensions. The existence of discontinuous linear functionals in every infinite-
dimensional normed space [9], Excercise 4.1.22, however, implies that continuity of convex func-
tions is not a property that is preserved when passing to infinite dimensions. The continuous and
discontinuous cases are qualitatively different and for that reason are considered separately in
what follows. As prototypes to exemplify each of the two cases, we have the quadratic and Shan-
non entropy, respectively.

5.2.1. Continuous case

We assume we may identify the space of signed densities spanP with a normed space N and
denote by N ∗ its topological dual. We further assume that the elements of N ∗ may be identified
with elements of L(P), in particular they are real-valued functions on X . We are interested in
entropy functions of the form � : U → R, where U is an open convex set in N containing P . The
following result gathers several equivalent characterizations of continuity of convex functions,
see, for example, in [28], Section 3.5, or [9], Section 4.1.

Theorem 5.2. Let U be an open convex set in a normed space N , and let � : U → R be a
convex function. Then the following assertions are equivalent:

(i) � is locally Lipschitz on U ;
(ii) � is continuous on U ;
(iii) � is continuous at some point of U ;
(iv) � is locally bounded on U ;
(v) � is bounded from above on a nonempty open subset of U .

Thus, just like linear functionals, convex functions are either continuous at a single point or
discontinuous and unbounded at every point of an open domain. When continuous, they are
locally Lipschitz and thus “almost” differentiable in various technical senses which fall outside
our scope [9], Section 4.6.
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Subgradients in this context are defined as usual, but in addition we require them to be contin-
uous linear functionals. In other words, any p∗ ∈N ∗ satisfying

�(q) ≥ p∗ · (q − p) + �(p), for all q ∈ U ; (20)

is a subgradient of � at p. The set ∂�(p) of all such p∗ ∈ N ∗ constitutes the subdifferential
of � at p. The following fundamental result [28], Section A.3, called the supporting hyperplane
theorem, Hahn–Banach separation theorem, or Mazur’s theorem, guarantees the existence of
subgradients of continuous convex functions.

Theorem 5.3. Let U be an open convex set in a normed space N , and let � : U → R be a
continuous convex function. Then ∂�(a) �=∅ for any a ∈ U .

In order to describe when a continuous convex function has unique subgradients, we need a
notion of derivative in normed spaces.

Definition 5.4. Let U be an open set in a normed space N . A function � : U → R is Gâteaux
differentiable at a point p ∈ U if there is p∗ ∈N ∗ such that for every q ∈N the limit

p∗ · q = lim
t→0

�(p + tq) − �(p)

t
(21)

exists. The functional p∗ is called the Gâteaux derivative of � at p and is also denoted by �′(p).

In analogy to the Euclidean case, if � is continuous and the limit (21) exists for all q ∈ N
and is linear in q ∈ N , then the linear functional p∗ it defines is necessarily a member of N ∗.
The claim is a classic application of the Hahn–Banach theorem and may be used to justify the
following result see, for example, [9], Section 4.2.

Theorem 5.5. Let U be an open convex set in a normed space N , and let � : U → R be a
continuous convex function. Then � is Gâteaux differentiable at a ∈ U if and only if ∂�(a) is a
singleton. In this case, ∂�(a) = {�′(a)}.

We finish this subsection with the following rigorous derivation of the power scoring rule.

Example 5.6. Let us consider the Lebesgue space N = Lγ (X ), for 1 < γ < ∞, and take P
to be the set of all probability densities in N with respect to the Lebesgue measure on X . The
continuous dual space is N ∗ = Lγ/(γ−1)(X ). Consider the power or Tsalis entropy function,

�γ (p) =
∫
X

∣∣p(x)
∣∣γ dx,

where p ∈ N is arbitrary. We proceed to compute the Gâteaux derivative of �γ on Lγ (X ). For
p,q ∈ Lγ (X ) and pt = p + tq , we have

lim
t→0

�γ (p + tq) − �γ (p)

t
= d

dt

∣∣∣∣
t=0

∫
X

∣∣pt(x)
∣∣γ dx

= γ sgn(p)|p|γ−1 · q.
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The exchange of differentiation and integration is legitimate due to the fact that the resulting
integrand is a Lebesgue integrable function. In fact, �′

γ (p)(x) = γ sgn(p(x))|p(x)|γ−1 ∈ N ∗
and thus �′

γ is indeed the Gâteaux derivative of �γ . We therefore may write that

Dγ (p,q) = ‖q‖γ
γ − γ sgn(p)|p|γ−1 · (q − p) − ‖p‖γ

γ

is the Bregman divergence on Lγ (X ) associated with �γ . On P , the associated proper scoring
rule is

Sγ (p, x) = γpγ−1(x) − (γ − 1)‖p‖γ
γ ,

the power scoring rule with exponent γ .

5.2.2. Discontinuous case

The most basic regularity property common to all convex functions is the existence of directional
derivatives. Through directional derivatives one may connect the finite and infinite-dimensional
regularity theories of convex functions. Throughout this subsection, the set U is convex and
we have that P ⊂ U ⊂ spanP . The elements of P are considered to be represented by their
probability densities.

Definition 5.7. The right directional derivative of � : U → R at p ∈ U along the vector q ∈
cone(U − p) is defined as the limit

�′+(p;q) = lim
t→0+

�(p + tq) − �(p)

t
, (22)

whenever it exists.

Some authors prefer to write the limit (22) in the following equivalent way

�′+(p;q − p) = lim
t→0+

�((1 − t)p + tq) − �(p)

t
,

for all p,q ∈ U . Equivalency follows from the identity

cone(U − p) = {
λ(q − p)|q ∈ U,λ > 0

}
and the observation that the latter gives all directions based at p towards points in U . It is well
known (from the finite-dimensional theory) that when � is convex, we have that

�′+(p;q) = inf
t>0

�(p + tq) − �(p)

t
.

Hence, allowing convergence to −∞, the limit always exists. Moreover, the limit is finite, pro-
vided that p lies in the relative interior of a line segment in U along the direction q [31], Theo-
rem 24.1.
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As a way of informally justifying what follows, let us restrict � to some finite dimensional
open convex subset U ′ of U . Then the graph of q → �′+(p;q−p), where p is fixed and q ∈ U ′ is
arbitrary, is a convex cone11 with vertex at p that supports the graph of � at p and is the envelope
of all supporting hyperplanes of � at p. Similar arguments lead to the following proposition, see
e.g. the proof of [28], Lemma 1.5.1, [29], Proposition 2.3, or [31], Theorem 23.1.

Proposition 5.8. Suppose that � : U → R is convex. Then

�(q) ≥ �′+(p;q − p) + �(p) for all p,q ∈ U

and the function �′+(p; ·) : cone(U − p) → R∪ {−∞} is sublinear.

To help understand the following theorem, let us assume that �′+(p; ·) : cone(U − p) → R is
finite, for some p ∈ U . Then, starting with any subgradient of � at p relative to U ′, we may use
the Hahn–Banach theorem12 to extend this subgradient to a linear functional lp : spanP → R

such that

lp(q) ≤ �′+(p;q)

for all q ∈ cone(U − p). Moreover, �′+(p;q) will be the envelope of all such lp . Due to the
fact that � is not continuous, we cannot guarantee that the resulting lp would be bounded with
respect to some norm. Instead, we may only verify in each concrete case whether lp identifies
with a member p∗ of L(P), which, if so, will constitute a subgradient in our framework. Thus,
we arrive at the following result, which generalizes [29], Theorem 3.1, where � is assumed to
be a 1-homogeneous convex function on coneP .

Theorem 5.9. A convex function � : U → R has a subgradient p∗ ∈ L(P) at p ∈ U if and only
if

p∗ · q ≤ �′+(p;q)

for all q ∈ cone(U − p).

We note that in the above result if there is a single q ∈ cone(U − p) such that �′+(p;q) =
−∞, then no p∗ ∈ L(P) exists that satisfies the above inequality and thus ∂�(p) is empty.
The condition that �′+(p;q) is finite for all q ∈ cone(U − p) cannot be guaranteed for a general
convex function �. It must hold, however, whenever � is the entropy function of a proper scoring
rule. The latter crucially depends on the suitable choice of domain U and ambient space spanP
with respect to �.

The last question we consider here is that of uniqueness of subgradients. Most entropy func-
tions of practical significance are defined as integral functionals of smooth convex kernels. We
thus typically have that �′+(p;q) = p∗ · q , for some p∗ ∈ L(P), where P and U are suitably

11The cone may be flat, i.e. a hyperplane, if � is smooth in a neighbourhood of p.
12In fact, we need a slight modification of the classical theorem to allow for sublinear functions that are finite only on a
convex subcone of the ambient vector space, see e.g. [29], Theorem B.4.
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chosen, and q ∈ cone(U − p) is arbitrary. Notice that cone(U − p) is generally not a pointed
cone and may contain some straight lines through the origin. Let O(p) denote the maximal lin-
ear subspace of cone(U − p), or equivalently, the set of all vectors q ∈ cone(U − p) such that
−q is in cone(U − p) too. The latter may also be written as

O(p) = cone(U − p) ∩ − cone(U − p).

Let us assume that the directional derivative �′+(p; ·) is linear on O(p). Then, any subgradient
p∗ of � at p is uniquely defined in all directions in O(p) as a result of finite-dimensional theory.
The uniqueness of p∗ as a functional on spanP is therefore dependent on the size of the subspace
O(p) of spanP . More precisely, p∗ is uniquely defined as an element of L(P) if and only if the
space O(p) has trivial annihilator in L(P). To clarify the latter notion, let us recall that if E is
a subset of spanP , the linear subspace of L(P) of all f such that f · p = 0 is the annihilator
of E in L(P). The annihilator is called trivial whenever it is identical to the trivial vector space
{0}. We next give a crude algebraic analogue of the topological notion of quasi-interior [7],
Definition 2.6 or [8], Definition 2.3.

Definition 5.10. Any point p ∈ U such that O(p) has trivial annihilator in L(P) is called an
algebraically quasi-interior point of U relative to spanP . The collection of all algebraically
quasi-interior points of U is the algebraic quasi-interior of U , denoted by aqiU .

As an illustration, notice that the algebraic quasi-interior coincides with the interior of U

with respect to spanP , whenever the latter is finite dimensional. A convex set in an infinite-
dimensional normed space, however, may have empty interior but nonempty algebraic quasi-
interior. We also have that for any two points p1 and p2 in aqiU the line segment connecting
them also lies in aqiU . Indeed, consider pλ = (1 − λ)p1 + λp2, for λ ∈ (0,1), and notice that
any line segment in U containing p1 in its relative interior has a homothetic copy containing pλ

in its relative interior that also lies in U . It follows that O(pλ) ⊃ O(p1) and O(pλ) ⊃ O(p2).
Thus, the annihilator of O(pλ) must be a subspace of the intersection of the annihilator of O(p1)

and the annihilator of O(p2). We conclude that aqiU is a convex subset of U . With the argu-
ments directly preceding the above definition, and relying on Proposition 5.8, we have shown the
following result.

Theorem 5.11. Consider a convex function � : U → R and a point p ∈ aqiU . If there is p∗ ∈
L(P) such that

p∗ · q = �′+(p;q) (23)

for all q ∈ cone(U − p), then p∗ is the unique subgradient of � at p that belongs to L(P).

In the special case of U = coneP and � being 1-homogeneous and convex, this result has been
proven in [29], Theorem 3.2. We use it to construct positive cones of densities with nonempty
algebraic quasi-interior where the logarithmic and Hyvärinen scoring rules are the unique 0-
homogeneous subgradients of their 1-homogeneous entropy functions [29], Section 4.
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[35] Zălinescu, C. (2002). Convex Analysis in General Vector Spaces. River Edge, NJ: World Scientific
Co. MR1921556

Received August 2015 and revised March 2016

http://www.ams.org/mathscinet-getitem?mr=1865628
http://www.ams.org/mathscinet-getitem?mr=3263105
http://www.ams.org/mathscinet-getitem?mr=0668607
http://www.ams.org/mathscinet-getitem?mr=2178902
http://www.ams.org/mathscinet-getitem?mr=3450505
http://www.ams.org/mathscinet-getitem?mr=2597577
http://www.ams.org/mathscinet-getitem?mr=1921556

	Introduction
	Detailed plan of the paper

	Preliminaries
	Notation
	Deﬁnition of a proper scoring rule
	Formalizing Bayesian probability
	On the estimation of unnormalized probability densities

	Bregman divergence
	Bregman divergence in Euclidean spaces
	Functional Bregman divergence

	Characterization of proper scoring rules
	Direct characterization and order sensitivity
	Characterization through 1-homogeneous entropies
	Some examples

	Regularity theory of entropy functions
	Entropy functions in ﬁnite dimensions
	Entropy functions in inﬁnite dimensions
	Continuous case
	Discontinuous case


	Acknowledgement
	References

