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Functional central limit theorems in L2(0,1)

for logarithmic combinatorial assemblies
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Functional central limit theorems in L2(0,1) for logarithmic combinatorial assemblies are presented. The
random elements argued in this paper are viewed as elements taking values in L2(0,1) whereas the Sko-
rokhod space is argued as a framework of weak convergences in functional central limit theorems for ran-
dom combinatorial structures in the literature. It enables us to treat other standardized random processes
which converge weakly to a corresponding Gaussian process with additional assumptions.
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1. Introduction

The aim of this paper is proving functional central limit theorems (FCLTs) in L2(0,1) for loga-
rithmic assemblies via Poisson approximations. Let {Zj }∞j=1 be a sequence of independent Pois-
son random variables with E[Zj ] = λj for all j = 1,2, . . . , and consider a sequence of random
variables {Cn

j }∞j=1 for a positive integer n whose law is determined by the conditioning relation

P
[
Cn

1 = c1, . . . ,C
n
n = cn

]= P

[
Z1 = c1, . . . ,Zn = cn

∣∣∣ n∑
j=1

jZj = n

]
(1.1)

for 1 ≤ j ≤ n and Cn
j = 0 for j ≥ n + 1. It means that, considering assemblies, Cn

j denotes the
number of components whose sizes are j for 1 ≤ j ≤ n, so they are called component counts of
a partition (see, e.g., Arratia et al. [3]). For these component counts, under some conditions for
{λj }∞j=1, the following FCLT holds (Arratia et al. [3], page 1354): the random process

(∑[nu]
j=1 Cn

j − θu logn√
θ logn

)
0≤u≤1

(1.2)

converges weakly to the standard Brownian motion (B(u))0≤u≤1 in the Skorokhod space D[0,1]
as n → ∞, where θ is some positive constant. In the present paper, we shall establish an alterna-
tive FCLT. That is, we shall show that the random process

Xn(·) =
(∑[nu]

j=1 Cn
j −∑[nu]

j=1 λj√∑[nu]
j=1 λj

)
0<u<1

(1.3)
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converges weakly to

G(·) =
(

B(u)√
u

)
0<u<1

in L2(0,1) as n → ∞. The difference between (1.2) and (1.3) is the standardization. We need
to note that our theory requires a set of stronger conditions that stems from the difference in the
denominator of (1.3). Moreover, we shall show that the random process

X′
n(·) =

((∑[nu]
j=1 Cn

j − θu logn√
θu logn

)
1

{
ε

logn
< u < 1

})
0<u<1

(1.4)

converges weakly to G(·) in L2(0,1) as n → ∞, where the notation 1{·} denotes the indicator
function and ε is a positive constant.

It is fruitful to show the convergence to 0 of the total variation distance between the laws of
component counts and of independent random variables; see, for example, Arratia and Tavaré
[4] and Arratia et al. [2]. One of existing results is the weak convergence of the random pro-
cess (1.2) in D[0,1] stated above. FCLTs for logarithmic combinatorial structures in D[0,1]
are originally proved for specific structures: for random permutations by DeLaurentis and Pittel
[6], for random mappings by Hansen [10] and for the Ewens sampling formula by Hansen [11].
The proof of Hansen [10,11] are by a direct way to check the tightnesses and convergences of
finite dimensional marginal distributions. Arratia and Tavaré [4] proved the functional central
limit theorems for the Ewens sampling formula and random mappings through elegant ways via
Poisson approximations. Arratia et al. [2] proved that it is possible to apply such strategy to
general logarithmic combinatorial structures. On the other hand, this paper supplies a new result
to total variation distance results for random combinatorial structures. The proof strategy is to
approximate

∑[nu]
j=1 Cn

j by a Poisson process and use a FCLT in L2(0,1) for Poisson processes.
The proofs of the approximations are based on the asymptotic result about the total variation
distance, which has been already established.

Let us show some notations. We shall mainly argue asymptotic behaviors when n tends to
infinity and denote a convergence in probability and a weak convergence by →p and ⇒, re-
spectively. Let us denote by A =d B that the laws of random elements A and B are the same.
The notations a ∧ b and a ∨ b for real numbers a, b mean min(a, b) and max(a, b), respectively.
Consider the inner product

〈z1, z2〉L2 =
∫ 1

0
z1(u)z2(u) du,

where z1(·) and z2(·) are real valued functions on (0,1). Introduce L2(0,1) as equivalence
classes of square integrable real valued functions on (0,1), that is, the set of all measurable
functions z : (0,1) → R which satisfy ‖z‖L2 =√〈z, z〉L2 < ∞. This space is a separable Hilbert
space with respect to L2 distance ‖z1 − z2‖L2 .

In Section 2, a FCLT in L2(0,1) for Poisson processes is prepared. This result shall be used in
Section 5 and Section 7. In Section 3, Poisson approximations in L2(0,1) for Xn(·) are presented.
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The sufficient condition appearing in the precedent sections are discussed in Section 4. Section 5
is devoted to showing a FCLT in L2(0,1) which asserts the weak convergence of Xn(·) based on
the results given in the previous two sections. This result is applied to two important examples:
the Ewens sampling formula and random mappings in Section 6. Another FCLT in L2(0,1),
which asserts the weak convergence of X′

n(·), is presented in Section 7.

2. A FCLT in L2(0,1) for Poisson processes

There is a FCLT in D[0,1] for Poisson processes, which is used to prove the weak conver-
gence of (1.2), see the proof of Theorem 5 in Arratia and Tavaré [4]. First, let us prove a FCLT
in L2(0,1) for Poisson processes with another standardization, by which the limit becomes
(B(u)/

√
u)0<u<1.

Lemma 2.1. Let (Nt )t≥0 be a homogeneous Poisson process which satisfies N0 = 0 and its
intensity is λ > 0. Define the non-decreasing function u �→ sn(u) for 0 ≤ u ≤ 1 and n = 1,2, . . .

which satisfies

inf
u∈(τ,1)

sn(u) > 0

for all 0 < τ < 1,

lim
n→∞

(
supu∈(0,1) |sn(u) − Ku logn|

logn

)
= 0 (2.1)

for some positive constant K and

lim
n→∞

(∫ 1

0

du

(sn(u))δ

)
= 0 (2.2)

for some δ > 0. Then, the random process

Mn(·) =
(

Nsn(u) − λsn(u)√
λsn(u)

)
0<u<1

converges weakly to the Gaussian process G(·) = (B(u)/
√

u)0<u<1 in L2(0,1) as n → ∞,
where B(·) is the standard Brownian motion.

Proof. First of all, it holds that

Mn(u) = 1√
λ

∫ sn(1)

0

1{t ≤ sn(u)}√
sn(u)

(dNt − λdt)

for any u ∈ (0,1). Since it holds that

E
[‖Mn‖2

L2

]= 1,
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Mn(·) almost surely takes its value in L2(0,1). For the proof, we use Theorem 1.8.4 in
the book of van der Vaart and Wellner [15] which is based on the tightness criterion by
Prokhorov [12].

(A) Convergence of the inner product. Fix an arbitrary h ∈ L2(0,1). The Fubini theorem yields
that

〈Mn,h〉L2 = 1√
λ

∫ sn(1)

0

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

h(u)du

)
(dNt − λdt).

The process (
1√
λ

∫ s

0

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

h(u)du

)
(dNt − λdt)

)
0≤s≤sn(1)

is a martingale relative to the filtration Fs = {F0 ∨σ(Nt ; t ∈ (0, s))}, where F0 is a σ -field which
is independent of σ(Nt ; t ∈ (0, s)), with the predictable quadratic variation process

(
1

λ

∫ s

0

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

h(u)du

)2

λdt

)
0≤s≤sn(1)

=
(∫ s

0

(∫ 1

0

∫ 1

0

1{t ≤ sn(u)}1{t ≤ sn(v)}√
sn(u)sn(v)

h(u)h(v) dudv

)
dt

)
0≤s≤sn(1)

.

So, the predictable quadratic variation of 〈Mn,h〉L2 , denoted by 〈〈Mn,h〉L2〉, is

∫ 1

0

∫ 1

0

(
sn(u) ∧ sn(v)√

sn(u)sn(v)

)
h(u)h(v) dudv.

As for the integrand, it holds that

∣∣∣∣ sn(u) ∧ sn(v)√
sn(u)sn(v)

h(u)h(v)

∣∣∣∣ ≤ ∣∣h(u)h(v)
∣∣,

∫ 1

0

∫ 1

0

∣∣h(u)h(v)
∣∣dudv ≤

∫ 1

0
h(u)2 du < ∞

and

lim
n→∞

(
sn(u) ∧ sn(v)√

sn(u)sn(v)

)
= lim

n→∞

(
K((u logn) ∧ (v logn))√

K2 lognu lognv

)
= u ∧ v√

uv
.

Thence, the dominated convergence theorem yields that

lim
n→∞

〈〈Mn,h〉L2

〉= ∫ 1

0

∫ 1

0

(u ∧ v)h(u)h(v)√
uv

dudv
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and it is equal to ∫ 1

0

∫ 1

0

E[B(u)B(v)]h(u)h(v)√
uv

dudv = E
[〈G,h〉2

L2

]
.

Let us check the Lyapunov type condition. The Schwarz inequality yields that

∫ sn(1)

0

1

λ1+δ

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

h(u)du

)2+2δ

λdt

≤
∫ sn(1)

0

1

λδ

(∫ 1

0

1{t ≤ sn(u)}
sn(u)

du

)1+δ(∫ 1

0
h(u)2 du

)1+δ

dt

≤
∫ sn(1)

0

1

λδ

∫ 1

0

1{t ≤ sn(u)}
(sn(u))1+δ

du

(∫ 1

0
h(u)2 du

)1+δ

dt.

The right-hand side is equal to

1

λδ

∫ 1

0

∫ sn(1)

0
1
{
t ≤ sn(u)

}
dt

1

(sn(u))1+δ
du

(∫ 1

0
h(u)2 du

)1+δ

= 1

λδ

∫ 1

0

1

(sn(u))δ
du

(∫ 1

0
h(u)2 du

)1+δ

.

It converges to 0 as n → ∞ by the assumption. Therefore, the convergence of the inner product,
〈Mn,h〉L2 ⇒ 〈G,h〉L2 as n → ∞, is proved by the martingale CLT.

(B) Asymptotic tightness. It is sufficient to prove

lim
J→∞ lim sup

n→∞
E

[∑
j>J

〈Mn, ej 〉2
L2

]
= 0,

where {ej (·)}∞j=1 is a complete orthonormal system of L2(0,1). The Fubini theorem yields
that

〈Mn, ej 〉L2 = 1√
λ

∫ sn(1)

0

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

ej (u) du

)
(dNt − λdt).

It holds that

lim sup
n→∞

E

[∑
j>J

〈Mn, ej 〉2
L2

]
= lim sup

n→∞
E

[
‖Mn‖2

L2 −
J∑

j=1

〈Mn, ej 〉2
L2

]
. (2.3)

For the first term of the integrand in the right-hand side of (2.3), it holds that

lim sup
n→∞

E
[‖Mn‖2

L2

]= 1,
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and, for the second term, it holds that

0 ≥ lim sup
n→∞

E

[
−

J∑
j=1

〈Mn, ej 〉2
L2

]

= − lim inf
n→∞ E

[
J∑

j=1

〈Mn, ej 〉2
L2

]

= − lim inf
n→∞

J∑
j=1

1

λ

∫ sn(1)

0

(∫ 1

0

1{t ≤ sn(u)}√
sn(u)

ej (u) du

)2

λdt (2.4)

= − lim inf
n→∞

J∑
j=1

∫ 1

0

∫ 1

0

∫ sn(1)

0

1{t ≤ (sn(u) ∧ sn(v))}√
sn(u)sn(v)

dtej (u)ej (v) dudv

= − lim inf
n→∞

∫ 1

0

∫ 1

0

sn(u) ∧ sn(v)√
sn(u)sn(v)

(
J∑

j=1

ej (u)ej (v)

)
dudv.

Applying the Fatou–Lebesgue theorem, the right-hand side of (2.4) is bounded above by

−
∫ 1

0

∫ 1

0
lim inf
n→∞

sn(u) ∧ sn(v)√
sn(u)sn(v)

(
J∑

j=1

ej (u)ej (v)

)
dudv, (2.5)

since ∣∣∣∣∣ sn(u) ∧ sn(v)√
sn(u)sn(v)

(
J∑

j=1

ej (u)ej (v)

)∣∣∣∣∣≤
J∑

j=1

∣∣ej (u)ej (v)
∣∣

and ∫ 1

0

∫ 1

0

J∑
j=1

∣∣ej (u)ej (v)
∣∣dudv ≤

J∑
j=1

∫ 1

0

(
ej (u)

)2
du = J < ∞.

By the condition (2.1), (2.5) is equal to

−
∫ 1

0

∫ 1

0

u ∧ v√
uv

(
J∑

j=1

ej (u)ej (v)

)
dudv = −E

[
J∑

j=1

〈G,ej 〉2
L2

]
.

The Bessel inequality yields that

J∑
j=1

〈G,ej 〉2
L2 ≤ ‖G‖2

L2,
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so the dominated convergence theorem yields that

lim
J→∞ E

[
J∑

j=1

〈G,ej 〉2
L2

]
= E

[ ∞∑
j=1

〈G,ej 〉2
L2

]
= E

[‖G‖2
L2

]= 1.

Hence, (2.3) converges to 0 as J → ∞.
Because (A) and (B) hold, the conclusion follows from the Theorem 1.8.4 of van der Vaart

and Wellner [15]. This completes the proof. �

Consider the case

sn(u) =
[nu]∑
j=1

λj ,

for 0 ≤ u ≤ 1. The condition (2.1) shall be discussed in Section 4. The condition (2.2) for δ = 1/2
can be written by

∫ 1

0

du√∑[nu]
j=1 λj

=
n−1∑
k=1

∫ logk+1
logn

log k
logn

du√∑k
j=1 λj

= 1

logn

n−1∑
k=1

log(k + 1) − logk√∑k
j=1 λj

→ 0,

where the equalities hold for n ≥ 2. Nevertheless, it may be difficult to check this condition.
However, for example, by the following proposition, we easily verify the condition (2.2) if jλj

is a positive constant (the Ewens sampling formula) or if jλj is non-decreasing with respect to
j and λ1 > 0 (e.g., random mappings), see Section 6.

Proposition 2.1. Consider a sequence {λj }∞j=1 of positive real numbers. If

L = inf
j=1,2,...

jλj > 0

holds, then it holds that

lim
n→∞

(∫ 1

0

du√
�′
n(u)

)
= 0, (2.6)

where

�′
n(u) =

[nu]∑
j=1

λj (0 ≤ u ≤ 1).

Proof. It holds that

�′
n(u) =

[nu]∑
j=1

1

j
jλj > L

[nu]∑
j=1

1

j
> L log

([
nu
]+ 1

)
> Lu logn,
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for any 0 ≤ u ≤ 1. Therefore, it follows that

0 <

∫ 1

0

du√
�′
n(u)

<
1√

L logn

∫ 1

0

du√
u

= 2√
L logn

→ 0

as n → ∞. This completes the proof. �

3. Poisson approximations

Define the total variation distance dTV(X,Y ) between the laws of random variables X and Y

which take their values in finite or countably infinite space S by

dTV(X,Y ) = sup
A⊂S

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣.

It holds that

dTV(X,Y ) = 1

2

∑
s∈S

∣∣P(X = s) − P(Y = s)
∣∣.

Define

Tmn =
n∑

j=m+1

jZj (0 ≤ m < n),

and

db(n) = dTV
((

Cn
1 , . . . ,Cn

b

)
, (Z1, . . . ,Zb)

)
for 1 ≤ b ≤ n, where {Cn

j }nj=1 and {Zj }nj=1 are sequences of random variables introduced in
Section 1. Then,

db(n) = 1

2

∞∑
r=0

P[T0b = r]
∣∣∣∣1 − P[Tbn = n − r]

P[T0n = n]
∣∣∣∣

holds, which is the equation (33) of Arratia and Tavaré [5]. Asymptotic properties of db(n) have
been already established, see, for example, Arratia et al. [2,3]. The following lemma, which
guarantees a Poisson approximation in L2(0,1)

∥∥∥∥Xn(·) −
∑[n·]

j=1 Zj −∑[n·]
j=1 λj√∑[n·]

j=1 λj

∥∥∥∥
2

L2
→p 0,

holds by the convergence of db(n) to 0 with some additional conditions, where Xn(·) is defined
in (1.3).
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Lemma 3.1. Consider an assembly. Let

gθ (n) = sup
u∈(0,1)

∣∣∣∣∣
[nu]∑
j=1

(
θ

j
− λj

)∣∣∣∣∣= sup
u∈(0,1)

∣∣�n(u) − �′
n(u)

∣∣, (3.1)

where

�n(u) =
[nu]∑
j=1

θ

j
, �′

n(u) =
[nu]∑
j=1

λj ,

for 0 ≤ u ≤ 1. Assume λ1 > 0 and

lim
n→∞

(
gθ (n) log logn

logn

)
= 0 (3.2)

for some θ > 0. If

sup
i≥1

iλi < ∞, lim inf
i→∞ iλi > 0

and if

lim
n→∞db(n) = 0 (3.3)

for some b = b(n) such that b/n = o(1) and

lim
n→∞

(
log

(
n

b

)√
(gθ (n) + 1) log logn

logn

)
= 0,

then it holds that ∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�′
n(u)

∣∣∣∣
2

du →p 0.

Proof. We have

0 ≤
∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�′
n(u)

∣∣∣∣
2

du

=
∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�n(u)

∣∣∣∣
2(

1 + �n(u) − �′
n(u)

�′
n(u)

)
du

(3.4)

≤
∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�n(u)

∣∣∣∣
2(

1 + supu∈(0,1)(�n(u) − �′
n(u))

infu∈(0,1) �′
n(u)

)
du

≤
(

1 + gθ (n)

λ1

)∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�n(u)

∣∣∣∣
2

du.
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The right factor of the right-hand side of (3.4) is evaluated by

∫ 1

0

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

�n(u)

∣∣∣∣
2

du

=
∫ 1

0

∣∣∣∣
∑n

j=1 1{j ≤ nu}(Cn
j − Zj )√

�n(u)

∣∣∣∣
2

du

=
∫ 1

0

n∑
j=1

n∑
k=1

1{j ≤ nu}(Cn
j − Zj )1{k ≤ nu}(Cn

k − Zk)

�n(u)
du (3.5)

=
n∑

j=1

n∑
k=1

∫ 1

0

1{(j ∨ k) ≤ nu}(Cn
j − Zj )(C

n
k − Zk)

�n(u)
du

≤
n∑

j=1

n∑
k=1

∫ 1

0

1{(j ∨ k) ≤ nu}
�n(u)

du
∣∣(Cn

j − Zj

)(
Cn

k − Zk

)∣∣.
For j = k = 1, it holds that∫ 1

0

1{(j ∨ k) ≤ nu}
�n(u)

du =
∫ 1

0

1

�n(u)
du

<

∫ 1
logn

0

1

θ log(1 + [nu]) du +
∫ 1

1
logn

1

uθ logn
du

<
1

θ logn

(
1

log 2
+ log logn

)

since �n(u) > θ log([nu] + 1) > θu logn for any u ∈ (0,1). For other (j, k), it holds that∫ 1

0

1{(j ∨ k) ≤ nu}
�n(u)

du =
∫ 1

log(j∨k)
logn

1

�n(u)
du

<

∫ 1

log(j∨k)
logn

1

uθ logn
du

= 1

θ logn

(
log logn − log log(j ∨ k)

)
.

It yields the bound for the right-hand side of (3.5)

1

θ logn

(
1

log 2
+ log logn

)∣∣(Cn
1 − Z1

)(
Cn

1 − Z1
)∣∣

− log log 2

θ logn

∣∣(Cn
2 − Z2

)(
2
(
Cn

1 − Z1
)+ (Cn

2 − Z2
))∣∣
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+
n∑

j=1

n∑
k=2

log logn

θ logn

∣∣(Cn
j − Zj

)(
Cn

k − Zk

)∣∣

<
2

θ logn

(
1

log 2
− log log 2 + log logn

)( n∑
j=1

∣∣Cn
j − Zj

∣∣)2

.

So, it is sufficient to prove that√(
1 + gθ (n)

λ1

)
log logn

logn

n∑
j=1

∣∣Cn
j − Zj

∣∣→p 0.

It follows from the next lemma. This completes the proof. �

The following lemma was used in the proof of the previous lemma. It is slightly different from
Lemma 2 of Arratia et al. [3], though the proof is essentially the same.

Lemma 3.2. Consider an assembly which satisfies

sup
i≥1

iλi < ∞, lim inf
i→∞ iλi > 0, (3.6)

lim
n→∞db(n) = 0 (3.7)

for some b = b(n) such that b/n = o(1) and

lim
n→∞

(
log

(
n

b

)√
f (n)

logn

)
= 0,

where f (n)/ logn = o(1). Then, there is a coupling satisfying√
f (n)

logn

n∑
j=1

∣∣Cn
j − Zj

∣∣→p 0

as n → ∞.

Proof. For any 1 ≤ b = b(n) ≤ n, the triangle inequality yields that

n∑
j=1

∣∣Cn
j − Zj

∣∣≤ b∑
j=1

∣∣Cn
j − Zj

∣∣+ n∑
j=b+1

Cn
j +

n∑
j=b+1

Zj .

As for the first term in the right-hand side, for any ε > 0, it holds that

P

[
b∑

j=1

∣∣Cn
j − Zj

∣∣> ε

]
≤ P
[(

Cn
1 , . . . ,Cn

b

) �= (Z1, . . . ,Zb)
]= db(n) → 0
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by the assumption (3.7). Both of the expectation of the second term and third term are
O(log (n/b)) by the assumptions (3.6), see the proof of Lemma 2 in Arratia et al. [3]. This
completes the proof. �

4. On logarithmic conditions

When λj = θ/j for all j = 1,2, . . . with some θ > 0, the conditioning relation (1.1) yields that

P
[(

Cn
1 , . . . ,Cn

n

)= (c1, . . . , cn)
]= n!

(θ)n

n∏
j=1

(
θ

j

)cj 1

cj !1

{
n∑

j=1

jcj = n

}
, (4.1)

where (θ)n denotes θ ×(θ +1)×· · ·×(θ +n−1). This law is the Ewens sampling formula (ESF)
which appears firstly in Ewens [8]. Some random structures can be regarded as “perturbations”
of ESF in some sense. The meaning of “perturbations” is, for example, the logarithmic condition

lim
j→∞ jP[Zj = 1] = lim

j→∞ jE[Zj ] = θ (4.2)

see Arratia and Tavaré [5] and Arratia et al. [2], or an approximation of a generating function
of the sequence {λj }∞j=1 to ESF near the singularity, see Flajolet and Soria [9] and Arratia et al.
[3]. Note that the conditions (3.6) and (3.7) in Lemma 3.2 follow from the logarithmic condition
(4.2), see Theorem 3.1 of Arratia et al. [2] and Section 4.1 of Arratia et al. [3]. There exists a
unified approach by Arratia et al. [2] for structures satisfying the uniform logarithmic condition
(ULC)

|εil | ≤ e(i)cl (l = 1,2, . . .),

lim
i→∞ e(i) = 0, D1 =

∞∑
l=1

lcl < ∞,

where εi1 = iP[Zi = 1] − θ and εil = iP[Zi = l] for l = 2,3, . . . . In particular, assemblies, mul-
tisets, and selections satisfying the logarithmic condition also satisfy the uniform logarithmic
condition (Arratia et al. [2], Proposition 1.1). In this paper, the magnitude of the “perturba-
tion” is measured by gθ (n) which is defined in (3.1) and it also relates to the condition (2.1) of
Lemma 2.1.

It follows from |λj − θ/j | = |∑∞
l=1 lεjl/j | ≤ D1e(j)/j for any j = 1, . . . , n that

n∑
j=1

∣∣∣∣λj − θ

j

∣∣∣∣≤ D1

n∑
j=1

e(j)

j
.

If
∑∞

j=1 e(j)/j < ∞ holds, then the series
∑∞

j=1(θ/j −λj ) is absolutely convergent, so gθ (n) =
O(1) as n → ∞. Especially, when an assembly is considered, e(j) can be taken as

max

(
1

j
, sup

i≥j

∣∣iP[Zi = 1] − θ
∣∣),
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see the proof of Proposition 1.1 in Arratia et al. [2]. Thence, if

sup
i≥j

∣∣iP[Zi = 1] − θ
∣∣= sup

i≥j

∣∣iλie
−λi − θ

∣∣= O

(
1

log j

)
(4.3)

holds as j → ∞, e(j) = O((log j)−1) follows for enough large j , so we have

gθ (n) ≤ D1

n∑
j=1

e(j)

j
= O(log logn)

as n → ∞. It shows that (3.2) is met.
When applying Lemma 2.1 in Section 5, the case sn(u) =∑[nu]

j=1 λj is considered. The condi-
tion (2.1) is met if gθ (n) = o(logn) for some θ > 0, because

[nu]∑
j=1

λj =
[nu]∑
j=1

(
λj − θ

j

)
+ θ

([nu]∑
j=1

1

j
− u logn

)
+ θu logn

≤ gθ (n) + θ + θu logn

holds for any u ∈ (0,1). Moreover, we can choose b = b(n) in Lemma 3.1 such as n/((logn)2)

if gθ (n) = O(log logn). The condition
∑∞

j=1 e(j)/j < ∞ appeared in Arratia et al. [2] as an
additional sufficient condition for the results in their paper, and the slightly weaker condition
(4.3) is new.

5. A FCLT in L2(0,1) for logarithmic combinatorial assemblies

Let us show the main assertion of this paper: a functional central limit theorem in L2(0,1) for
logarithmic assemblies.

Theorem 5.1. Consider an assembly. Assume (2.6) and the conditions in Lemma 3.1 for
some θ > 0. Then, the random process (Xn(u))0<u<1 defined in (1.3) converges weakly to
(G(u))0<u<1 = (B(u)/

√
u)0<u<1 in L2(0,1) as n → ∞.

Proof. Lemma 3.1 yields that

∥∥∥∥
∑[n·]

j=1 Cn
j − �′

n(·)√
�′
n(·)

−
∑[n·]

j=1 Zj − �′
n(·)√

�′
n(·)

∥∥∥∥
L2

→p 0.

Let (N1
t )t≥0 be the homogeneous Poisson process with unit intensity, then it holds that

[nu]∑
j=1

Zj =d

[nu]∑
j=1

(
N1

�′
j (1)

− N1
�′
j−1(1)

)= N1
�′
[nu](1)

= N1
�′
n(u),
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for any u ∈ (0,1). Lemma 2.1 yields that

(∑[nu]
j=1 Zj − �′

n(u)√
�′
n(u)

)
0<u<1

⇒ (
G(u)

)
0<u<1

in L2(0,1). Theorem 2.7(iv) in van der Vaart [14] yields the conclusion. This completes the
proof. �

Using a sufficient condition stated before, the following corollary holds.

Corollary 5.1. Consider an assembly. Assume the conditions (3.3) for b(n) satisfying the con-
ditions in Lemma 3.1, (4.3),

lim
j→∞ jλj = θ, (5.1)

and

inf
j=1,2,...

jλj > 0. (5.2)

Then, the random process (Xn(u))0<u<1 defined in (1.3) converges weakly to (G(u))0<u<1 =
(B(u)/

√
u)0<u<1 in L2(0,1) as n → ∞.

6. Examples

As examples for Theorem 5.1 and Corollary 5.1, let us apply them to the component counts for
the Ewens sampling formula and {nn} uniform random mappings. Concerning FCLTs, Poisson
approximations for “small components” are important. As it is already seen in Section 3, a con-
vergence db(n) → 0 for some b = b(n) guarantees the approximation. For special cases of the
Ewens sampling formula (ESF) and random mappings, db(n) → 0 if, and only if, b = o(n), see
Theorem 2 and Theorem 10 of Arratia and Tavaré [4]. For general logarithmic assemblies, there
are some options to prove the convergence, and here let us introduce two of them.

The 
-domain with parameters η > 0 and 0 < φ < π/2 is defined by


(η,φ) = {z ∈ C; |z| ≤ 1 + η,
∣∣arg(z − 1)

∣∣≥ φ
}
.

Consider the exponential generating function of {λj }∞j=1

f (z) = exp

( ∞∑
j=1

λj z
j

)
.

For concrete examples, see Section 4.3 in Arratia et al. [3]. The following theorems, by Arratia
et al. [3] or Arratia et al. [2] respectively, can be used to see the conditions of Lemma 3.1.
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Theorem 6.1 (Arratia et al. [3], Theorem 3). For some η0 > 0 and 0 < φ < π/2, define

 = 
(η0, φ). Assume f is analytic on 
 \ {1} and there exist positive constants δ, θ,K such
that f (z) = K(1 − z)−θ (1 + O((1 − z)δ)) as z → 1 in 
. Consider an assembly such that
supj=1,2,... jλj < ∞. If (b(n) logn)/n → 0 holds, then it holds that

db(n) = |1 − θ |
2n

E
[∣∣T0b − E[T0b]

∣∣]+ o

(
b

n

)
= O

(
b

n

)

as n → ∞.

Theorem 6.2 (Arratia et al. [2], Theorem 3.1). Consider a random structure which satisfies
uniform logarithmic condition. If b(n)/n → 0 holds, then it holds that

lim
n→∞db(n) = 0.

6.1. The Ewens sampling formula

Consider the component counts of ESF. The probability mass function (pmf) of the component
counts is determined by the conditioning relation (1.1): the pmf is (4.1). In the case of ESF,
since λj = θ/j for θ > 0 and j = 1,2, . . . , jλj is a constant θ > 0. Note that �n(·) = �′

n(·), so
gθ (n) = 0.

The conditions (5.1) and (5.2) are obvious. The condition (4.3) follows from

sup
i≥j

θ
∣∣e−θ/i − 1

∣∣= θ
(
1 − e−θ/j

)= O

(
1

j

)

as j → ∞. By Theorem 6.2, (3.3) is met for b(n) = n/ logn. Therefore, Corollary 5.1 yields a
FCLT (∑[nu]

j=1 Cn
j − �n(u)√

�n(u)

)
0<u<1

⇒
(

B(u)√
u

)
0<u<1

(6.1)

in L2(0,1) as n → ∞ for the component counts whose law is given by (4.1).

Remark 6.1. Theorem 1 of Arratia et al. [1] yields that

E

[
sup

u∈(0,1)

∣∣∣∣
∑[nu]

j=1(C
n
j − Zj )√

logn

∣∣∣∣
]

≤
∑n

j=1 E[|Cn
j − Zj |]√

logn
= O

(
1√

logn

)

as n → ∞, see also Theorem 1 of Arratia and Tavaré [4]. As an analog of the result, it may be of
interest to see the order of

E

[∥∥∥∥
∑[n·]

j=1(C
n
j − Zj )√

�n(·)
∥∥∥∥

2

L2

]
. (6.2)
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The thesis of the author considered it in Lemma 9.2.1, but unfortunately the proof, specifically
the inequality in (9.2.5) page 118, was wrong. Note that, as it is stated before, a FCLT (6.1) in
L2(0,1) holds without the convergence of (6.2) to 0.

6.2. Random mappings

Consider the component counts of {nn} uniform random mappings, in which case,

λj = e−j

j

j−1∑
i=0

j i

i!
for j = 1,2, . . . and the conditioning relation (1.1) gives the pmf

P
[(

Cn
1 , . . . ,Cn

n

)= (c1, . . . , cn)
]= n!en

nn

n∏
j=1

λ
cj

j

cj ! 1

{
n∑

j=1

jcj = n

}
. (6.3)

It holds that θ = 1/2.
First, let us verify the conditions (3.2) and (2.6). Consider a sequence of independent Poisson

random variables {Pj }∞j=1 with E[Pj ] = j for all j = 1,2, . . .. It holds that

P(Pj < j) =
j−1∑
i=1

P(Pj = i) = e−j

j−1∑
i=0

j i

i! = jλj .

Teicher [13] proves in their second inequality of (8) that jλj , which is denoted by Aj−1,j with
their notation, is increasing with respect to j . It holds that

inf
j=1,2,...

jλj = λ1 = 1

e
> 0.

Moreover, the convergence

lim
j→∞ jλj = lim

j→∞ P

(
Pj − j√

j
< 0

)
= 1√

2π

∫ 0

−∞
e−x2/2 dx = 1

2

holds, which is the essentially same as the equation (9) of Teicher [13]. It yields that 1/(2j) > λj

for all j = 1,2, . . .. By this inequality and

∞∑
j=1

(
1

2j
− λj

)
= log 2

2
,

which is the equation (31) in Donnelly et al. [7], it holds that

g 1
2
(n) =

n∑
j=1

(
1

2j
− λj

)
= O(1).
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Moreover, Theorem 6.1 yields db(n) → 0 for b = b(n) such that b(n) = n/((logn)2) e.g. There-
fore, Theorem 5.1 yields a FCLT in L2(0,1) for the component counts whose law is given
by (6.3).

7. Another FCLT in L2(0,1) for logarithmic combinatorial
assemblies

In this section, let us prove the weak convergence in L2(0,1) to (B(u)/
√

u)0<u<1 of the random
process (X′

n(u))0<u<1 defined in (1.4). In the case of the Ewens sampling formula and random
mappings, the assumptions in Lemma 3.2 and (7.1), which are the assumptions of the weak
convergence, are met.

Theorem 7.1. Consider an assembly satisfying the assumptions in Lemma 3.2 with f (n) =
log logn and

lim
n→∞

(
gθ (n)

√
log logn

logn

)
= 0 (7.1)

for some θ > 0, where gθ (n) is defined in (3.1). Then, (X′
n(u))0<u<1 defined in (1.4) converges

weakly to (G(u))0<u<1 = (B(u)/
√

u)0<u<1 in L2(0,1) as n → ∞.

Proof. Denote

Pn(·) =
(

N1
θu logn − θu logn√

θu logn

)
0<u<1

,

where (N1
t )t≥0 is the Poisson process with unit intensity. It holds that

X′
n(u) −Pn(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Pn(u)

(
0 < u <

ε

logn

)
,∑[nu]

j=1(C
n
j − Zj )√

θu logn
+
∑[nu]

j=1 Zj − N1
θu logn√

θu logn

(
ε

logn
< u < 1

)
.

In order to prove a Poisson approximation in L2(0,1):

∥∥X′
n(·) −Pn(·)

∥∥2
L2 →p 0, (7.2)

it is sufficient to prove the followings:

∫ ε
logn

0

(N1
θu logn − θu logn)2

θu logn
du →p 0, (7.3)

∫ 1

ε
logn

(
∑[nu]

j=1(C
n
j − Zj ))

2

θu logn
du →p 0, (7.4)
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∫ 1

ε
logn

(
∑[nu]

j=1 Zj − N1
θu logn)

2

θu logn
du →p 0. (7.5)

As for (7.3), it follows from

E

[∫ ε
logn

0

(N1
θu logn − θu logn)2

θu logn
du

]
= ε

logn
→ 0.

As for (7.4), it follows from

∫ 1

ε
logn

(
∑[nu]

j=1(C
n
j − Zj ))

2

θu logn
du ≤

∫ 1

ε
logn

(
∑n

j=1 |Cn
j − Zj |)2

θu logn
du

= log logn − log ε

θ logn

(
n∑

j=1

∣∣Cn
j − Zj

∣∣)2

→p 0

by Lemma 3.2. As for (7.5), it holds that

sup
u∈(0,1)

E

[([nu]∑
j=1

Zj − N1
θu logn

)2]

= sup
u∈(0,1)

(∣∣�′
n(u) − θu logn

∣∣2 + ∣∣�′
n(u) − θu logn

∣∣), (7.6)

since ∣∣∣∣∣
[nu]∑
j=1

Zj − N1
θu logn

∣∣∣∣∣=d
∣∣N1

�′
n(u) − N1

θu logn

∣∣=d N1
|�′

n(u)−θu logn|

holds for any u ∈ (0,1). The triangle inequality yields that

sup
u∈(0,1)

∣∣�′
n(u) − θu logn

∣∣≤ sup
u∈(0,1)

∣∣�′
n(u) − �n(u)

∣∣+ sup
u∈(0,1)

∣∣�n(u) − θu logn
∣∣, (7.7)

so (7.6) is o(logn/ log logn). That is because the first term of (7.7) is o(
√

logn/ log logn) by the
assumption (7.1) and the second term is bounded above by θ . Thence, (7.5) holds, because

E

[∫ 1

ε
logn

(
∑[nu]

j=1 Zj − N1
θu logn)

2

θu logn
du

]

≤ sup
u∈(0,1)

(
E

[([nu]∑
j=1

Zj − N1
θu logn

)2])∫ 1

ε
logn

1

θu logn
du



FCLTs for logarithmic assemblies 1051

= sup
u∈(0,1)

(∣∣�′
n(u) − θu logn

∣∣2 + ∣∣�′
n(u) − θu logn

∣∣) log logn − log ε

θ logn
.

Therefore, (7.2) follows. Setting sn(u) = θu logn (0 ≤ u ≤ 1), K = θ and δ < 1, the conditions
of Lemma 2.1 are met, so Lemma 2.1 yields the weak convergence of Pn(·) to G(·). This com-
pletes the proof. �

Remark 7.1. Comparing with Theorem 5.1, (7.1) is stronger than (3.2), but note that if (4.3)
holds, then the condition (7.1) also holds.
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