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We study high-dimensional sample covariance matrices based on independent random vectors with miss-
ing coordinates. The presence of missing observations is common in modern applications such as climate
studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the “large
dimension d and large sample size n”” asymptotics is derived for possibly different observation probabilities
in the coordinates. The spectral distribution turns out to be strongly influenced by the missingness mech-
anism. In the null case under the missing at random scenario where each component is observed with the
same probability p, the limiting spectral distribution is a Mar¢enko—Pastur law shifted by (1 — p)/p to
the left. As d/n — y € (0, 1), the almost sure convergence of the extremal eigenvalues to the respective
boundary points of the support of the limiting spectral distribution is proved, which are explicitly given in
terms of y and p. Eventually, the sample covariance matrix is positive definite if p is larger than

1= (1=
whereas this is not true any longer if p is smaller than this quantity.

Keywords: almost sure convergence of extremal eigenvalues; characterization of positive definiteness;
limiting spectral distribution; sample covariance matrix with missing observations; Stieltjes transform

1. Introduction

In many modern applications, high-dimensional data suffers from missing observations. As
pointed out in [24], “The data from microarray experiments is usually in the form of large ma-
trices of expression levels of genes (rows) under different experimental conditions (columns)
and frequently with some values missing. Missing values occur for diverse reasons, including
insufficient resolution, image corruption, or simply due to dust or scratches on the slide. Miss-
ing data may also occur systematically as a result of the robotic methods used to create them.”
“Data available for climate research typically suffer from uneven sampling due to... sporadic
instrument failure; or other interruptions during the period of interest,” [20]. Further, missing
observations in telescope data may be caused by a cloudy sky, [18]. In the statistical literature,
high-dimensional low-rank covariance matrix estimation with missing observations has been in-
vestigated in [16], where sparsity oracle inequalities for a matrix-Lasso estimator are derived.
Very recently, an adaptive test for large covariance matrices with missing observations has been
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proposed in [5]. While in view of inference statements asymptotic properties of the eigenval-
ues and eigenvectors for high-dimensional sample covariance matrices based on complete data
are exhaustively investigated in random matrix theory, the statistically equally important case of
missing observations has not been studied so far. Concerning spectral based dimension reduction
techniques and statistics such as the log-determinant, a profound spectral analysis is inevitable.
The aim of this article is to get this development underway. We study asymptotic spectral prop-
erties of high-dimensional sample covariance matrices with missing observations. Let

Y=(Y1,...,Y,) e R, Ye=Yig, ..., Ya)* € RY, k=1,....n,
be a sample of independent identically distributed (i.i.d.) random vectors with covariance matrix
T =E((Y; —EY) ® (Y1 —EY))).

In examples as described above, we do not observe the whole random vector Y; but some of its
components. This missingness is represented by a random matrix & € R?*" with entries

)L if Y;x is observed,
Bik = 0, if Y;; is missing.

Under the assumption that the matrices Y and ¢ are independent, the estimator

. 1 _ _
Tj=— Y Yu—YD¥j—Y))

i] kGMj
is the analogue of the sample covariance and hence the natural estimator for 7;;, where
./\[ijZ{kE{l,...,n}ZSiijkZ1}, N,‘j:]V#J\/}j (1.1)

and

- 1
Yl' = N_ Z Yik-
ii keN;;

Subsequently, T =(T; i) € R?*4 s referred to as sample covariance matrix with missing obser-
vations. If EY; = 0 is known in advance one typically uses the estimator

« A A 1
¥ = () e R, Nij = — E YirYjk.
Nij keN;
eN;;

In what follows, we write E for T and ¥ if a statement holds for both estimators. The distribu-
tion of the missingness matrix & substantially influences the spectrum of S (see Figure 1). In the
high-dimensional scenario, g may be asymptotically indefinite even if the smallest eigenvalue
of T stays uniformly bounded away from zero. Heuristically, it is not clear at all how the high di-
mensionality affects the spectral properties in the situation of missing observations, and whether
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Figure 1. The left column shows histograms of the eigenvalues of the estimator 3 and the right column
of the estimator 7 from a centered Gaussian sample. The underlying population covariance matrix in each
histogram is the identity. The dimension of the observations in the first row is 2000, the sample size 8000
and all coordinates are observed. In the second row each coordinate is observed with probability 1/2. In the
last row, the probabilities of observation are changed to 1/4 for the first 1000 coordinates and to 3/4 for the
other half of the coordinates.

well-known phenomena occur in a possibly modified way. In this article we investigate asymp-
totic spectral properties of E under the classical missing (completely) at random (MAR) setting.
Here, the variables ¢j¢, i = 1,...,d, k =1, ...,n, are independent random Bernoulli variables
with

Pir=1)=p; and Plgpr=0)=1- p;,

and they are jointly independent of Y1, ..., Y,. The latter are assumed to be of the form
Ve =T'"?X¢ +EYs,  k=1,...,n,

where X1, ..., X, are i.i.d. centered random vectors with independent coordinates of variance 1.
This representation is common in literature on random matrix theory. Without missing observa-
tions, that is, for completely observed random vectors Y1, ... ¥}, the classical sample covariance
matrix is a well-studied object in the large dimension d and large sample size n asymptotics. The
first result on its spectral distribution is due to [17]. They established in particular weak conver-
gence in probability of the empirical spectral distribution for diagonal T under the assumption
of finite fourth moment on the entries of X1, ..., X,, and some dependency condition reflected
in their mixed second and fourth moments. The most general version of this statement has been
proved in [22], where weak convergence (almost surely) is established under the finite second
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moment assumption for rather general matrices 7. The almost sure convergence of the largest
eigenvalue in the null case T = I; x4 (identity matrix) has been proved in [29] under the assump-
tion of the existence of the fourth moment, which generalizes a first result in this direction due
to [8]. Bai, Silverstein and Yin [3] have shown that the existence of the fourth moment is in fact
necessary. As concerns the smallest eigenvalue in the null case, the most current theorem on its
almost sure convergence has been derived by [4]. Under quite general regularity conditions on 7,
the convergence of the extremal eigenvalues to the respective boundaries of the support of the
limiting spectral distribution follows from [2]. Our contributions in this article are the following.

(i) We establish a weak approximation of the empirical spectral distribution of the sample co-
variance matrix with missing observations g by a non-random sequence of probability measures
expressed in terms of their Stieltjes transforms, which holds true for possibly different observa-
tion probabilities in the coordinates. In the null case under the missing at random scenario where
each component is observed with the same probability p, the limiting spectral distribution is
shown to be a Marc¢enko—Pastur law shifted by (1 — p)/p to the left.

(i) Asd/n — y € (0, 1) and under the missing at random scenario where each component is
observed with the same probability, we prove almost sure convergence of the extremal eigenval-
ues of ¥ to the respective boundary points of the support of the limiting spectral distribution in
the null case. A statistically important consequence is the characterization of positive definiteness
for the sample covariance matrix with missing observations.

Understanding the empirical spectral distribution of sample covariance matrices with missing
observations is of great importance to develop improved estimators for the population covariance
matrix and the precision matrix. Such estimators have been already established for completely
observed data by [7] and [12] based on non-linear shrinkage of the eigenvalues. However, if some
data is missing, the situation is more intricate since the analysis in our article reveals that the
limiting behavior of the empirical spectral distribution does not only depend on the eigenvalues
of the population covariance matrix but also on its eigenvectors. Nevertheless, we expect that
adjusting the diagonal of the sample covariance matrix with missing observations yields a more
suitable matrix for spectrum estimation.

Very recently, various authors studied asymptotic spectral properties of sample autocovariance
matrices of high-dimensional time series which is another statistically relevant scenario. Jin et al.
[10] derived the limiting spectral distribution of the symmetrized autocovariance matrix in the
ii.d. case. Liu, Aue and Paul [15] established a Marcenko—Pastur-type law for the empirical
spectral distribution in case of general high-dimensional linear time series. They investigated the
moderately high-dimensional case of this problem in [27]. Li, Pan and Yao [14] developed the
limiting singular value distribution of the sample autocovariance matrix by means of the Stieltjes
transform for an independent sequence with elements possessing finite fourth moments. Wang
and Yao [28] proved the same result by the method of moments, and additionally the almost sure
convergence of the spectral norm. The strong limit of the extreme eigenvalues of symmetrized
autocovariance matrices is established in [26].

The article is organized as follows. First, we introduce the essential notation and the model
assumptions in the next section. Section 3 is devoted to our main results. The proof of Theorem
3.1 is quite long and therefore decomposed into Section 4, Section 5 and Appendix A. The proof
of Theorem 3.3 is deferred to Section 6 and Appendix B. Some auxiliary results which are used
throughout the proofs are collected in Appendix C.
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2. Notation and preliminaries

2.1. Notation
For any bounded function f : R — R

I£1l = sup| f(x)|
xeR

denotes its supremum norm. If f is Lipschitz in addition, then the bounded Lipschitz norm is
defined as

I £ lIsL = max ([l £l I £11),
where || f]| L denotes is the best Lipschitz constant of f. We write

Ct={zeC:3z>0}

for the upper complex half plane. For any Hermitian matrix A € C?*¢ denote the (normalized)
spectral measure by

d
1
A—_
we= 2%@1),
=

where A1(A) > --- > A4(A) are the eigenvalues of A and 4, denotes the Dirac measure in x. If
it is clear that we refer to a matrix A, we use the shortened notation A; > --- > A,. We write A*
for the adjoint of A. Let us introduce the Schatten norms for matrices

d 1/p
I1Alls, = (in(AA*)”/2> . p=L
i=1

Furthermore, tr(A) denotes the trace of A and rank(A) its rank. For two matrices A, B € R?*"
we write A o B = (AjxBir); r for the Hadamard product. For any vector v € RY, diag(v) € RIxd
is the diagonal matrix with the ith diagonal entry equal to v;. With slight abuse of notation we
also write diag(A) for diag(A11, ..., Add), A € R4%d The Stieltjes transform of a measure y on
the real line is defined by

1
mﬂ(z)=/ ——du(d), zeC™.
R A—2Z
On the space of probability measures on R recall the following distance measures

Kolmogorov metric: dg (i, v) = ||,u((—00, -]) - v((—oo, '])

)

Dual bounded Lipschitz metric: dpp (¢, v) = sup / fdu—v),
IflBL<1/R
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Lévy metric: dy (1, v) =inf{e > 0| ((—00, x — ¢]) — & < v((—o00, x])
< [,L((—OO, x+ 5]) + ¢ forall x € R}.
We will frequently make use of the well-known relation dy, (i, v) < dg (u, v) for any two prob-
ability measures p and v on the real line, cf. [19], page 43. For any measures p and v, p x v

denotes their convolution. As usual, = stands for weak convergence. The Marcenko—Pastur
distribution with parameters y, 02 > 0 is given by

MP ( 1) 50 + 1 Jb—-x)x—a)
+

Ky g2 = y 7702 " 1{a <x <b}dx 2.1

witha = o2(1 — ﬁ)z and b =o2(1+ ﬁ)z. Moreover, for 62 > 0 let Mg/lgz = 0,2. The notation
< means less or equal up to some positive multiplicative constant which does not depend on the
variable parameters in the expression.

2.2. Preliminaries

Let (X (i, k))i xen be a double array of i.i.d. centered random variables with unit variance. The
left upper d x n submatrix is denoted by X4 ,. Then the random vectors Y1 4., ..., Yn,an € R4
are the columns of the matrix
Yan —EYgn=T,7"Xan

with

Ty = diag(Ti1.am. .- Tad.an) € R
This structure on the population covariance matrix is the simplest one which allows to visual-
ize the effects of missing observations on the spectrum of the sample covariance matrix. The
non-diagonal case is discussed at the end of Section 4. Its treatment requires some technical
modification of the arguments presented here but not substantially new ideas and is beyond the
scope of the article. (¢4,,)4.» 18 a triangular array of random matrices 4 , € Rdxn independent
of (X (i, k)); ken, where the entries €;¢ 4., are independent Bernoulli variables with observation
probabilities

Pleik,an =1) = Pi.dn, i=1,....,dk=1,...n.

The dependence of the set \V;; and the number N;; in (1.1) on the sequence (g4,,) is indicated by
an additional subscript d, n. Throughout this article we impose that the family of spectral mea-
sures of the population covariance matrices (7 ,) as well as the family of empirical distributions

d
. 1 _ _
(,U«wd’n)d,n’ with g4 = 4 Zawi,d.n and  wq, = (pl,;l,n’ ceo pd,:i,n)’
i=1

are tight. This assumption ensures that there are not too many probabilities of observation p; 4.,
in the vector pg , that are very close to zero, in the sense that for most coordinates i =1, ...,n
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the number of observations remains proportional to n, while a few degeneracies may occur.
Asymptotic statements refer to

d— o0 while n = n(d) satisfies limsup(d/n) < oo. 2.2)

d—00
The sequence of sample covariance matrices with missing observations is denoted by
(Ed.n)d.n

the corresponding sequence of spectral measures by (it4.,)q,» and their Stieltjes transforms by
(Md.n)dn-

3. Results

The main results of the article are the weak approximation of the spectral measure g , of éd, n
by a non-random sequence of probability measures, and, in the null case, the almost sure conver-
gence of the extremal eigenvalues of X ,. Thereto, define the matrices

1— 1—
San = diag(ﬂﬂl,d,n, e MTdd,d,n) and
Pl.d.n Pd.d.n

1
Tidns---» Tdd,d,n>~

Rin= diag(
Pl.d,n Pd.d,n

Theorem 3.1. Suppose that the assumptions stated in Section 2.2 hold, and

sup | Ra nlls,, < oo.
d

Then for any 7 € CT,
|ma.n(@) —mg,(2)] =0 a.s.,

where mfl’n(z) satisfies

s 1 1 -
my ,(2) = 7 tf{ <WR[M —San— ZIdxd) } 3.1

and ey , is the (unique) solution of the fixed point equation

1 1 -1
o (2)=—-1tr{R —  Ryn—Sin—1z1 .
ed,n(z) d I‘{ d,n<l T (d/n)eg’n(z) d,n dn — 2 dxd) }

Moreover, mg , is the Stieltjes transform of a probability measure g , on the real line and

KUgpn—Mdn=>0  as.
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Remark. Note that the theorem covers in particular the case d/n — 0. It follows from the proof
that

Rinllss

leg ()] < ” , zeCh.

Sz

Due to Ry,n — Sa,n = Ty n, this implies that the Stieltjes transforms m , approach those of the
spectral measures of 7, , as d/n — 0. That is, an effect caused by missing observations appears
asymptotically only in the high-dimensional scenario liminf; d/n > 0.

The equation (3.1) characterizes uniquely the approximating spectral measure via its Stieltjes
transform. Without missing observation, that is, p; 4.» = 1, the solution of (3.1) coincides with
the solution to the Marcenko—Pastur equation

d 1

d ; Tiian(l —(d/n) — (d/m)z-mG ,(2)) =z’

=1

mg,(2) =

The difference in the representation results from the fact that the spectra of

1/2 1/2
T/ XanX},T,/7 and X}, TanXdn
are identical up to |d — n| zero eigenvalues, which is used in the classical analysis. Except for
special cases, this simplification is not possible in the missing at random scenario.
It is well known that the Stieltjes transform of the Marcenko—Pastur law with parameters
(y, a2/ po) is the unique solution to

o2 1 -1
$@)= (% 1+ 02/ po)ys(z) Z)

from C* — C*. In the special case Ty, = 0l yxq and pg., = (po. ..., po) € (0, 1)?, we have

(=)= (5 1 )
md’n —0 = — B 5 2 —Z .
Po po 1+ (d/n)(c*/po)my ,(z —o*(1 — po)/po)

o X . MP : 21-po
Hence, ug , is the MarCenko—Pastur law 14 d/n.o%/po shifted by o o 10 the left.

/p

Corollary 3.2. Grant the conditions of Theorem 3.1. If pjan =po >0 fori=1,...,d and
d,neNand Ty, = Uzldxd, 02> 0, we obtain
MP * 6

Hd,n = U,

a.s.
¥.02/po

—02(1=po)/po

asd —ooandd/n— y > 0. Eventually,as y < 1,

limsup)\min(éd,n) <0 as.ifpo<1—(1- ﬁ)z.
d

In other words, under the missing at random scenario where each component is observed with
the same probability po, the limiting spectral distribution is a Mar¢enko—Pastur law shifted by
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o2(1 — po)/po to the left. Eventually, the sample covariance matrix is not positive definite if po
is smaller than

2
==y
For the estimator f]d, » we even determine the almost sure limit of the extremal eigenvalues.

Theorem 3.3. Grant the conditions of Corollary 3.2 let additionally IEX‘f1 < o0 and g4, €

RI*" pe the upper left corner of a double array ((i, k))i ken of i.i.d. Bernoulli variables with
parameter po. Assume that EY; , =0. Then, if 0 <y < 1,

2
N 1—
lim Amin(Sdn) = —(1— V32 — —2262  as., and
d—o0 Po Po

2
. 2 o 1— Po
lim Amax(Zgn) = — 1+ ﬁ)z - —02 a.s.
d—o0 Po Po

The limit of the smallest eigenvalue is always smaller than in the completely observed case
po = 1, whereas the largest eigenvalue is always larger. In the limiting case y — 0 both expres-
sions on the right-hand side reduce to o2 as in the completely observed classical case, indepen-
dently of pg.

Asin Theorem 1 of [4], the existence of the fourth moment is necessary for the above Theorem
to hold. The proof of the necessity is a straightforward adaption of the arguments in [29].

The characterization of positive definiteness in the null case under the missing at random
scenario is an immediate corollary of Theorem 3.3.

Corollary 3.4. Under the condition of Theorem 3.3,
dlim Amin(Zan) <0 as.ifpo<1—(>1— 2 and
—00

lim Amin(Sa.) >0  as. if po>1—(1—y)>.
d— 00

4. Proof of Theorem 3.1, Part I

Reduction to the form %R;{ Z Zg, ,,Z;’ nR;{ ,21 — Sd,n

With the notation

- L 12 172
Tan= - RilnZanZj, Ryl = San
and
Xik,dn€ik,d .
Zd,nGRdxn, Zik,d,n=7l : 'ln/zl Sl i=1,....d,k=1,...,n,
pi,d,n

let [ig, be the spectral measure of 7_}1,,,. The aim of this section is to show that the spectral
distributions w4 , of B4, may be approximated by L4 ,.
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Proposition 4.1. Grant the conditions of Section 2.2. Then
dr(fldn, hdan) — 0 as.

Remark. Corollary 3.2 can be equally deduced from Proposition 4.1. Since in that case Sz, is a
multiple of identity, the eigenvalues satisfy

_ 1 1—
i (Tan) = A ( R/Zd,,Zanl/2>——pO62, i=1,....d.
Po
For the matrix
1 ip 172
Rdnzd”Zan

itis well known (see, e.g., [22]) that the spectral distribution converges weakly to ul;/[iz - almost

surely asd/n — y > 0.

The proof of Proposition 4.1 is postponed to Appendix A. At this place we give a sketch of the
proof. Subsequently, we restrict our attention to the estimator Td n- The proof for Ed n 18 just a
simplified version.

The proof of Proposition 4.1 is subdivided into eight steps. In each step, f"d,n is modified
in a way which does not affect its spectral distribution asymptotically. In order to simplify the
notation each modification of fd, » from one step will be again denoted by f"d, n in the next step.
Within the proof denote

y dxd 2 n
Wd,n € R~ s Wij,d,n = y
Nij.dn
n
deeRdXd Wiiagn=———.
, > Jj.d.n
E#Mj,d,n

Before we start with the description of the proof, we rearrange the entries T; j,d.n as follows

1
Z (Ylkdn_ ldn)(ijdn_ jdn)
Nlj d,n ke./\/,] in
1 _
= Z (Yik,an —EYikan) = Yian —EYikan))
Nij.dn KN
x (Yjkdn —EYjkan) — Yjan — Eij,d,n))
1
=N Z Yikdn —EYikan) — Z Yitan —EYira n)]

]’d’n keMj.d,n i, d " leMl d.n

Z (Y/l d,n IEY/I d n)]

d,
Ji.d.n le-/\/—/]dn

X [(ij,d,n —EYjran) —
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Therefore, we may assume without loss of generality Yy , to be centered. Rewrite f"d,,, in the
following way

N 1 .
Td,n = ;Wd,n o ((Yd,n o Sd,n)(Yd,n o Sd,n)*)
l - " *
- ; d,n © ((Md,n o 8d,n)(Yd,n o Ed,n) )
1

— —Wano ((Yd,n o Sd,n)(Md,n o 8d,n)*)

—_ S

+ ;Wd,n o ((Md.n o gd,n)(Ma',n o 8d,n)*)v

where
9 ~ ~ dxn . ~ 1
Mgp=@ngnu,...,Mmg,) €R with m; g, = Yikdn- 4.1)
—_— Niidn kN
n times &NViidon

Let us briefly describe the separate steps of the proof. The first three steps use the inequality

1

< —rank(A — B
_dran( )

A B
dg (u*, %)
for Hermitian matrices A, B € R4*“ in order to regularize certain rows of &4, for which the
probability of observation p; 4 , is smaller than some given value pg > 0, to get rid of the additive
term

| A N ~
;Wd,n o ((Md,n o é‘d,n)(lud,n o Ed,n)*)s

and to truncate the diagonal entries of T ,. Thereafter, we want to make use of the inequality
1
dy (1", ") = S te((A = B)(A = B)Y), 4.2)

where, in our case, A and B are two d x d random Hermitian matrices. In order to deduce almost
sure convergence to 0 of the right-hand side by means of the Borel-Cantelli lemma, truncation
of the random variables X 4., is necessary to guarantee the existence of higher order moments
of the empirical spectral distribution of f"d,n. This is realized in Step IV. In Step V the matrix
Wd,n is replaced by its deterministic counterpart Wy , the evaluation of which is based on a
sophisticated combinatorial analysis of moments. In Step VI a combination of both inequalities
displayed above is applied. More precisely, an entry Y 4., is preserved depending on whether
its absolute row sum ) ; |¥i; 4,»| exceeds a certain value or not. The number of removed rows
is asymptotically negligible while the remaining matrix is suitable for an application of (4.2).
Hereby, the matrices

1 A 1 ~
_;Wd,n o ((Md,n o 8d,n)(Yd,n o gd,n)*) and — ;Wd,n o ((Yd,n o 8d,n)(Md,n o Sd,n)*)
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are removed from 7y ,,. The form
. *
Wan= wd’nw;’n + dlag(Wd,n — wd,nwd,n)

is the motivation for replacing

1.
; dlag(Wd,n - wd,nw;n) o ((Yd,n o0&dn)(Yano gd,n)*)

by its expectation in Step VII. Reverting finally the truncation Steps II, III, IV yields the claim.
In the next section &, , denotes the matrix

1 1 12 1/2
;(wd,nw;n) o ((Yd,n o Sd,n)(Yd,n o 8d,n)*) - Sd,n = ;Rd,/n Zd,nZZ)an’/n - Sd,n

which is obtained in Step VIII. Correspondingly, we write g , and m, , for its spectral measure
and the Stieltjes transform.

Remark. In the case of non-diagonal 7, , we cannot reduce the sample covariance matrix with
missing observations to the form

I 12 172
;Rd,n Zd’”Z;,nRa',n — Sd.n

but instead have to analyze the spectrum of

l * * _ l v v *
n (wd,nwd,n) o ((Yd,n o 5d,n)(Yd,n o Ed,n) ) - Sd,n = n (Yd,n o 5)(Yd,n og)" — Sd,n

with
f/d,n = diag(w) Yd,n .

Nevertheless, the arguments of Section 5 can be modified at the cost of additional technical
expenditure. We find that the ideas of the proof are much clearer for the diagonal special case
and therefore omitted this extension due to length of the paper.

5. Proof of Theorem 3.1, Part 11

Note that, in general, the spectral analysis and limiting behavior of @d,n significantly differ from
those of the matrix analyzed in [23]. By Proposition 4.1 as well as Lemmas C.12 and C.13, we
continue to show that

|man(z) —mg,(2)] — 0 a.s.
for all z € CT. Such type of convergence has been established in [6] for

1/2 1/2
Bd,/n Xd’”X;,an,/n +Ad~"
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for positive semidefinite Hermitian matrices Ay ,, Bgn € C4>4 | For the proof of Theorem 3.1,
we establish the weak approximation in case of the negative semidefinite matrix Ay, = —Sg.,.
This requires several changes in the arguments of [6] due to the fact that the function

1
B z(1 +m(2))

is a Stieltjes transform if m is a Stieltjes transform of a finite measure on [0, co) but in general,
this is not true any longer if m is just a Stieltjes transform of a finite measure on R. Moreover,
our proof includes also the case d/n — 0.

The proof is structured as follows. In the first step, we truncate the entries of X, , at the
threshold level K > 0 which goes to infinity at the very end. Afterwards we start to analyze the
Stieltjes transform of the empirical spectral distribution of @d,n. With the resolvent

Gan(@) = Ean — 2laxa)”"

we prove that

1 N
ed,n(Z) = g tr{Rd,nGal,n (Z)}

is an approximate solution to the fixed point equation in Theorem 3.1 in Step II. Correspondingly,
the Stieltjes transform my , is shown to be approximated by the expression (3.1) with e4 , in
place of e . In the third step, existence and uniqueness of a solution to the system of equations
formy , is established. The solution my , is identified as a Stieltjes transform in Step IV. In Steps
V and VI, pointwise almost sure convergence of e; , — € dn and mg , —m$ d.n t0 zero is derived.
Finally, we deduce the weak convergence /ig,n — iy , = 0 almost surely in Step VIL

5.1. Step I: Second truncation of X4 ,
For arbitrary K > 0, define matrices Xd n Zd nand B ud n= n_lRl/QZ Z* Rl/ — S4.n, where

Xik,dn€ik,dn
12
i,d,n

Xik = Xal{|Xic| <K} and  Zigan =

Moreover, define for arbitrary 6 > O the event

ldl’l:{

With this notation, let

n
> o xia{IXul > K} —EXj1{|Xql > K}
=1

1
VvV —
n

1

<8}.
172

1 12 2 2 1 12
/d,n R/Zdn(zdn)R/ _Sd" and C‘/d, R/Zdn(zdn) Ra’,n_Sd”’

ap

s
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where
/
Xikdn = XikLai g,
and
/
7 _ Xik’d’ngik,d,n
ik,d,n — 1/2
pi,d,n

Then,

e

d,n)

dr(n50n, 1

2479
Xl{k,d,n = Xik]]'Ai,d.n
1 Xl{k,d,ngik»d’"
Zik,d,n = 172
pi,a’,n
5.1)

<dy (8o, pSin) - dy (e, pZan) 4 dy (uZon, pSin).

First, we evaluate the second term dj (/Lafiv",,ué;ﬁ) in (5.1). By Theorem C.10 for o = 1, the
Lidskii—Wielandt perturbation bound (1.2) in [13], and Holder’s inequality for Schatten norms,

& g
& &

d%(u d,n’u /d,n

~—

1/2 1/2 1/2

1/2

d,n Zé/i,n (Z;’,n)*Rd,n - Rd,n Zél,n (Z/d,n)*Rd,n ||S1

1 - ~
< 200200 = Zin(Z30) L I Rl

1 ~ ~ ~ ~ ~ -
= E ” (Zz/i,n - Zzli,n)(zz/i,n - Zé¢l,n)>i< + (Zt/i,n - Zt/z’,n)(zz/i,n)* + Z:i,n(zt/z',n - Zz/i,n)*”Sl

X [[Rd.nl'ss

1 ~ - - -
= (1~ Zaa) Fin = Z) Ny +20 o = 20 2 |51 Rl

1 - - ~ -
= %(H (Z:in - Z;’,n)(zél,n - Zél,n)*”Sl +2” Zél,n - Z(/i,n”Sz “Z;n ”Sz)

X [[Rdn S5

1 - -
= %{tr((zé,n - Zél,n)(zél,n - Z;l,n)*)

+ z(tr((zéi,n - Zéin)(zt/in - Zéi,n)*))l/z(tr(zéd,n(zél,n)*))l/z}”Rd,"”Soo'
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As in Section A.1, let pg > 0 be the lower bound on p; 4., i =1,...,d and d € N. With this
notation, we show that

d (( /Jl Zi,n)( /d,n Z/,n) ) = z . i
d n d

while

We have

d
1 ~ ~ 1 ~
% tr((Z&,n - Zé,ll)(zé,n - Zt/z’,n)*) = d_ Z (Zt{k,a',n - Zt/'k,d,n)2

ﬂﬂﬂﬂﬂ Pi,d,n

d n
1 1 )
S%ifllaxd< >;1Ai,d,nkZ=;Xik]l{|Xjkl>K}

- EX? 1{|X11| > K}+<s.

Po
Moreover,
/ 7V* 1 L 5/ 2
d_tr(zd n(Zd,n) ) = E Z ( tk,d,n)
i=1k=1
1 1 d n

_ 2 )

= dn i=rr11?id<pi,d,n> ;Mi’d'" gxlk’d’"ﬂ{mlk’d’nl =Kj
EX?, +8

T po

As concerns the first summand in (5.1), it holds P(A; 4.,) — 1 as d — oo by weak law of large
numbers. Note that P(A1 4.,) = P(A2.4.n) = --- = P(Ag.q4.n). Then by Hoeffding’s inequality
for sufficiently large d,
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Hence, by the Borel-Cantelli lemma

d
1
lim sup 7 Z ]lAf,d,n <6
i=1

d— 00

almost surely. As in inequality (A.2) of Section A.4, we deduce

o1

limsude(ué‘L",,ué;l-”) < limsupdg (u=", ;Léétn)

d—o0 d—o0

. 1 ~ ~/
< limsup — rank(ad,n -8y n)
d—o00

<26

almost surely. The third summand in (5.1) is bounded in the same way. Putting things together
in right-hand side of (5.1),

o
[

d.n

limsude(,u , d’”)

d— o0

2 2

EX21(1X11| > K} 48 yEXHLUX1|> K} +8,/6 + Ex} 7172

s46+sup||Rd,n||;ﬁf[ IECIUES SN, J ]
d Po Po

almost surely. Since § may be chosen arbitrarily small, we conclude
d.n )

2 2

FXx2 1{|X11| > K} \/EX“]l{|X11|>K}\/IEX“ 12

1/2 11

ssupuRd,nnsﬁo[ = +2 ] :
d Po Po

o>
o

limsupdy (u=", u

d— o0

In turn, the last expression can be made arbitrary small for K sufficiently large. Since the cen-
tralization of the truncated random variables X4 leads to a finite rank perturbation of @d, n (uni-
formly in d), we may assume the entries of X;x to be centered. In the following, denote the
centered truncated random matrix again by X, ,. Then, analogously to the truncation step by
replacing 1{| X;x| < K} with (EX 121)’1/ 2 in the definition of X we may assume the entries to be
standardized since the variance of the truncated variables converges to one as the truncation level
tends to infinity. Therefore, in the rest of the proof we analyze the matrix

112 1/2
;Rd,n Zd>"Z;,an,n - Sd,n,

~
=
Sd.n

where the entries of the matrix Z, , are centered, standardized and bounded.
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5.2. Step II: Approximate solution to the fixed point equation (3.1)

Subsequently, we assume that

d3/2
liminf — > 0. 5.2)

d—oo n

The general case is treated in Step VI. Recall that 14 , denotes the (normalized) spectral measure
of 4., and denote its Stieltjes transform by

1
mg.n(z) = / Py dpg,n(A), zeCt. (5.3)
We use subsequently the following abbreviations for the resolvents

A A — Ak A (k -1
Gan(@) = Ean—2laxa)™" and G\ @) =(EY) —zlaxa)”'.  k=1.....n.

o
For z € Ct, define
1 N
eqn(z) = P tr{Rd,nGd,n(Z)}~

Our goal in this step is to show that

1
i (D (@) —man(z) >0  as., and (5.4)
1 -
S t(Ran D @) —ean@—>0  as. (5.5)
with
1
Dan(z) = dn — San —zldxa. (5.6)

— R
1+ (d/n)eq n(z)

Let éd,n = Ognldn O; ,, denote a spectral decomposition, where

Agp=diagX1,dn, -, 2d,dn),

and define R; , = O , R4 n Og,n. With this notation,

ean(@) = = tt|R1nGan(2)}

tr{Rd,n(Oa’,nAa',nO:jF,n — Zld><a')71 }

tr{ Rin (Od,n [Agn— Zldxd]Ozlk,n)_l }

tr{ Ran(OanlAan — 2laxal ' 0} ,)} (5.7)

UI— U~ &=~ &=
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tr{ O} ,Ri.n Oan(Aan — 2laxa) "}

U~ &I'—‘

tr{ Ry ,(Aan — 2laxa) "}
_ 0 Z —u d,n
z d,n —

Since Ry , and therefore R , are positive semidefinite, the diagonal entries R;; ; ,,i =1,....d,
are non-negative. Hence, ¢4 , is the Stieltjes transform of a measure on R with at most d support
points and total mass

r .
/ d,n

Note that éd,n is not necessarily positive semidefinite, hence the support points are not restricted
to [0, 00). As a Stieltjes transform,
eqn:CT—CT. (5.8)

This implies in particular that Dy ,(z) as defined in (5.6) is in fact invertible by means of
Lemma C.3. Moreover, since ||Ry,,|ls,, < k for some constant ¥ > 0, it follows by Holder’s
inequality and the positive definiteness of Ry ,,

1
[ean(@] < SR llsy [ (Aan = 2laxa) ™ s,

1 1
=|-=trR max — 5.9
(d d'n) 1<i=d |Ajdn — 2| )
K
< —.
3z

Let Zi 4., be the kth column of the matrix Z; ,, and define

1/2 r&(k)_ra _
Rd’nzk’d’n and Ejn=Ea, kankan, k=1,...,n,

1
Y =—
k,d,n «/ﬁ
which arises from éd, » by taking away the kth sample vector, and recall (5.6). Then,

1

—  Ry.,
1+ @d/n)ean@ "

Ed.n — 2laxd — Dan(2) = Zkaﬂkan_
k=1

whence

Dy (){Gan@) — D7, (@)} (Egin — 2laxa) = Dan(@) — (Ban — 2laxa)

1 n
=—————Rin— YidnYp gn-
I+ d/mean@ " ,; bt
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Therefore,

n
Gan(2) = D) ==Y Dy (@ Yean¥ g,Gan()
k=1

1 B N
+ L@ R1nGan(2)

——F D
1+ (d/n)egn(z) "
"\ D, ()Y, ¥ (2)
:_Z dnDYean Y anGan
= 1t Y/id,ntg]fz,(Z)Yk,d,n

1
1+ (d/n)eqn(z) Dt

(5.10)

+ (Z)Rd nGdn(Z)

where (5.10) follows from Lemma C.1. Altogether,

n

1 1
S(Dg, @) =man@ =~ fim (5.11)

k=1

with

l 2 N _

f 1 Zk d, n / GZkL(Z)Dd n(Z)Rd n Zk»ds" 1 tr(Rd,nGd,n (Z)Dd}l(Z))

k’ 4 -7 .
" d 1+ Yljd nGd n(z)kadJl d 1+ (d/n)ed,n (2)

Multiplication of the matrix equality (5.10) with Ry, from the right, we deduce
ltr(R D; () —ean(@) = ! Z f; (5.12)
d dntqp d,n n k_I‘ ke .

with

1/2 k
RY2G ) @RunD @R Zian

1+ Yk*,a'ynGd,n(Z)Yk,d,n

1 t(Rg.nGan(2)RanDy ), (2))
d  1+Wd/men

1 Z{ anR
fk,e:_ u

Subsequently, we show that
o1
lim —ka,x =0 as,x=e,m. (5.13)

First, observe that

Yia nG;n(Z)Yk an = tr(Y, dn¥ia, ,1G(k) (2))
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is the Stieltjes transform of a measue on R with total mass || Yk 4.n ||2, following the arguments in

(5.7). Next, with )Lgk; I )»fikzi denoting the eigenvalues of :;kiw

1
k
”G( ) @) ”s = o
""" \/(kl dn — N2+ (32)2
(5.14)
1
< —
3z
The same holds true for Gd 2(2) in place of G dn &) (2). Therefore,
I1Yxl3
1Y 4G @) Y| < S 2,
which gives
1 1 Y 2
‘ G < — it | "f’"”z <1 (5.15)
1+ Y, Gy @Yean! 1= Ikanlly/3z 52

Denoting with O A O* a spectral decomposition of & "‘(k) and Vis.k) =(0*Y.d.n Y,;", a2 O)ii for the
moment, we obtain for || Yk 4,2 > 0 the bound

1 1
kd,ndn k.d.n S Y an D kdn
1
= k k N ~
Y v /GE -0 @)2 + (3P 516
< 1 .
- k k
S v/ @max; 1) 2 +2122)
_ 2max; iy, P+ 21z

Sz|Yell3

Combining the first bound (5.15) in case ||Yk 4.1l3/3z < 1/2 with the second bound (5.16) if
I1Ye.anll3/32 > 1/2 yields

1
A (k
I+ led,nGz(i,L(Z)Yk,d,n

max; 2y, 1* + |21
2 1
(32)?

(5.17)
2 max; |x, 7 n|2 +4|z)?

<
- (32)?
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Finally, due to

n
1Eanllse < 1Sanllse + | D Yidn Vg,
I=1 Soc
Ik
and Lemma C.7,
2c + 472\ 7! 1
]imsup{( C—t |22| > 0 } <C<o (518)
d—o00 (32) 1+ Y G @Yk dn

almost surely for some constants C, ¢ > 0. Define
1 A
el = Etr(Rd,,,G;’fL(z)), kefl,...,n}.
Note that analogously to (5.7), e[(l]le is a Stieltjes transform. Using (5.14) and the arguments of

(5.15) for the case n ' tr(Ry.,)/Sz < 1/2 as well as (5.16) for n = tr(R4.,)/Sz > 1/2, we obtain
analogously

k) 2 2
2max; |A; +4
‘ 1 &) = ! ljnl = (5.19)
1+ (d/n)ed)n(z) (3z2)
and for some constants C, ¢ > 0
2c+4lz)2\ 7! 1

limsup{< C—: |ZZ| ) T } <C <oo. (5.20)
d—o0 (Rz) 1+ (d/n)eé,z(z)

The same bound holds true for ¢4 , instead of e;kzl, in which case )»52 , are to be replaced by the

eigenvalues A; 4 , of 84 ,. Therefore, with

=1,...,

14 (d/n)ean(z) l—l-(d/”)e((zk,L(Z)

_d legn (@) = ean@)|
n |1+ (d/n)eqn (@)L + (d/n)ef) )]
d||[Ranlls, 1 1
- ;II ci%zlls Z|(1 o = (5.21)
3 nean(2)(1+ (d/n)ef) ()]
(k) 2\ 2
< l ”Rd,n”Soo <2wd,n +4z| ) ’ (5.22)
no 3z (32)?
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2487

where inequality (5.21) follows from Lemma C.2 and (5.22) results from (5.19). Furthermore,

with

1

Dy, @) = )
1+ (d/n)e, (z)

dn

it follows from Lemma C.3 that

|| D;L(Z) ” S =

1

(k)
3 as well as ” (D )

We begin with establishing (5.13). To this aim, let

We decompose

where

fix

f[2l

31 _

k,x

[4 _

k,x

E ) 1axas for x =m
x,dn = Rin, forx =e.

1 2
few = O+ £2 1B 4 £,

R\2

k
1Z,“,n G;L(z)Exdn

s

(Z)R Zk dn

1+Y, ,,G (Z)Yk,d,n

1/2
1 den

dn — Sd.n — 2laxd,

=

1
5

k k 1/2
G;L(Z)Exdn(D( )(Z)) IR / den

d L+ Y, , 60 () Yean

1 Zk anl/2

GO (D Exan(DY) @) RY 2 Zk am

1+ ka nGdn(Z)Yk,a',n

1 tr(Rg.n GY ,,(z)Ex an(DY @)™
d 1+Y;f,d,nG 2@ Ykdn

Ak
1 1Ry G (2) Ex.an (DY ()71
! e
d 1+ 1 d’nGﬁl’L(z)Yk,d,n

1t(Rg.n G a.n(2) Ex.a.n Dy (2))
_! - ,
d 1+ Y¢,,GE @ Y kan

1 tr(Rg.nGan(2) Ex.an DY ), (2))
e ~ (k
d 14+Y¢,,60 @Y an

1tr(Ry.nGan(2)Ex.an Dy, (2))
d 1+ (d/n)eqn(z)

)

(5.23)

(5.24)
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Using Lemma C.1 in (5.25) as well as the spectral norm bounds (5.22), (5.14) and (5.24) in
(5.27), we obtain

1/2
12§ 4 Rin G ion (@ Exanl Dy (2) = (DY) @) IR 2 Zian
d 1+ka,,G(k) (2)Yk,a.n

A

(5.25)

= ¥4 Gin@Eraa[ D740 ~ (D)) i

n A k -1
= E Y];k’d’n Ga’,n(Z) Ex,d,n (Dé(i,; (Z))

k _
x [DY) @) = Dan(@)]D7 L (@) Yean

< S 1¥eanl3|Gan@ | g NExanllss (5.26)

%[ D7,@ 15, 1D55@ = Daulls, 1(D5,@) ' I,

k
1 LU + 4122 Ranll | Ex.dnllss
7 ¥eanll2 L

k
(21/,( ) 4 412192 Rin ||§OQ I Ex.dnllss
(37)8 '

(5.27)

d—IIdenllz

By (5.17),

1/2 A
1 tr[(Rd nZk d "th d, nR ,/n - Rd,n)G‘(ik,L(Z)Ex,d’n(D( ) ()~ l]
d Ak
1+ YZd,nGg},L(Z)Yk,d,n

|ka| -

2max; [0 2 + 4]z

<
B (32)2

1 . .
x [0 (Re/ Zidn Zi g 0 Rl = Ran) G (D) Exan (D0 20) ™' ]].

Furthermore, using (5.17) in (5.28), the invariance of the trace under cyclic permutation and
Lemma C.2 in (5.29) for the first term in the curly brackets and the spectral norm bounds (5.22),
(5.14) and (5.24) in (5.30) yields the bound
1 Ry (G () Er.an(DE @)™ = Gan(@) Ex.an Dy ()]

L+ Y, GO @) Yian

|/

2 max; |xf; 2441z

< e (5.28)
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1 Ak A —1
x {5 [ Ra.n (G @) = Gan(@) Exan(Dy5 @) |

+ [ RanGan @ Evan (D)) —D;;<z>)]|}

2max; [ 2+ 41z [ 1 1Ex.an(DYr (@)~ Ranllss,
= (32)? d 3z (5:29)
1 A _
+ [0 R1nGan () Evan Dy ([ D) = DY )] (DY) ]|}
1 2max; A 2+ 41z 1
< E (l er)lz S22 1RanllSoo I Ex,dnll Sn (5.30)
L1 <2w(k)+4|1|2>3||Rdn”sm 1Esanlls
n\  (32)? (3t T

Finally, using (5.14) and (5.24) in (5.31), (5.17) and (5.19) in (5.32) and Lemma C.2 in (5.33),

_ 2 _ 2 2
§ ‘tr[RdnGdn<z)R” 1=n71Z} 4 R GV R Zn
1+, G0 @ Yean) (1 + (d/n)eq.n(2))
_ LIRaalls I Exdanlls. 531)
~d (32)?
§ n ulRY 2Gan @R~ 0728,  RY2G ORY: Zkan
1+ G0 (@ Yean) (1 + (d/n)eq.n(2))
(k)
1| Ra.nlls, I Ex.d.nllseo <2(w )74z |2)
<= (5.32)
d (32)? (32)2
1
tr[Rl/zGd,,(z)Rl/z] de,,Rl/ZG;")( VRY Zk.an
(k)
_ LIRalls I Ev.dallss <2<vf >2+4Iz|2) 5:33)
~d (32)? (32)? '

1 12 Ak 127 1 172 Ak 172
x H u[R)2GS) (RY, ]—;Z,f,dyanV/nG()(z)R "2 Ztdn

o LIRdnllsy }
n ST
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Based on these estimates on fk[’l)]c, 1=1,2,3,4, we are ready to prove (5.4) and (5.5). In the next
display, ¢ > 0 denotes a constant depending only on the support of Z;1, and may change from
line to line. By means of Lemma C.4, Lemma C.5, Lemma C.6 and the spectral norm bounds

(5.14) and (5.24),

U Zkanl 22 +412)°)

1116 ”Rdn” ”Exdn”Soo
]E|fk[’]| < E

6d6(~ )48
IRanlls ”Exdn“
17 Soo 24 1/2

Z Y

Ik

2

=1

2 n 9 12y 12
Seo Mi=1 Soo

X |:<]E<||Sd,n||§oo +max{

18 6
c ”Rd,n ”Soo ”Ex,d,n ”Soo
- n6(3 )48

E [2]6< CE 2 max; |)\'ldi‘l|2+4|z|2
‘fk,x| —_ E (AZ)2

(1Sanll§2, + 1Ranlls: + 121",

1/2 k k 1/2
< RV G @B (050 RIS}
Cc
e )24||Rdn||sw||Exdnnsw(nsdnn + I Raalli +121"2),
E[fP)° < —1Runll I EcanlS (ISanlli + 1RaAIE +121'2)
k,x = &z )240'6 d,nllg, 1 Ex.d,nll g, d,n d,n

+W||Rd,nn S NExanlS, (1520130, + IRan 3 +12°).

12 6
P < cd®|Rynll g N Ex.anl§,
kxl — n6(3Z)42

(1SanlI5E + 1RanlZE + 121%).

In order to show finally (5.13), it remains to note that for any ¢ > 0,

o135 ) < T3 R 8

d=1 d=1k=1I1=1

kax

<33 (5) T <

d=1k=11=1

by an application of the union bound, Markov’s inequality, and (5.2). (5.13) is then a consequence
of the Borel-Cantelli lemma.
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5.3. Step III: Existence and uniqueness of ¢

We show that for any d, n and Ry ,, there exists a unique e(z) € C™ which solves the fixed point
equation

1 1 -1
b =—tr{R ——Ran — Sa.n — 21, , CT. 5.34
ed,n(z) p 1‘{ d,n(l T (d/n)e;,’n(z) d,n dn — 2 dxd) } ZE ( )

To this end, define for any fixed d, n the subsequences (d;);eN and (n;);en, Where dj = Id and
n; =In, 1 € N, and correspondingly the /-block diagonal matrices

R ny, =diag(Rgpn, ..., Ran) and S p), =diag(Sqn, ..., San)

of size dl x dl. Note that the right-hand side of (5.34) remains unchanged when replacing
d,n, Rg, and Iyxq by dj, ny, R n), and Iy xq,. By (5.5) of the previous section,

1 1 -1
e 7) — —tr{ R R — S -zl -0
(dny (2) @ { M””<1+%¢/mkmﬁn&)(¢MI (d.n) mxm) }

a.s. as [ — oo with
1 & -1
edny (2) = d_ltr{R(d,n)l(C"(d,n); —z2lgxa)” |
where

[
& 1 12 » . 12
S(d,n) = nl Z R(d,n), Zk.dy.m Z;:,a’;,n]R(d,n)[ — Sty
k=1

7= (Zik)i,keN is a double array of i.i.d. Rademacher variables, and Zk,d,,, is the kth column of
the submatrix Zg , = (Zik.d.n)i<d k<n- Consider a realization of these random variables where
this convergence occurs. First note by (5.9),
le@nm @] <~  VieN
(d.n)\2)] = 32 .
By Bolzano—Weierstraf3, there exists a convergent subsequence of (e(g,,),) with limit e(z), say,
such that in particular

1 1
%
L+ (di/npe@ny, () 1+ (d/n)e(z)
along this subsequence due to (5.20) for e(g ), (z). By (5.5), e(z) solves the fixed point equation
(5.34). As 3(ea.n), (z)) > O forany / € Nand z € Ct, it follows that its limit satisfies J(e(z)) > 0

and therefore J(e(z)) > 0, because I(e(z)) = 0 contradicts with e(z) being a solution of the fixed
point equation. Consequently, any such solution e of (5.34) enjoys the following two properties:

(5.35)

e:Ct—C* (5.36)
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and
lez)] < —  vzeCH. (5.37)
NV

It remains to show uniqueness. Denoting

1

Dun(@) = Dan(2 @) = 1 s R

dn — Sd.n — 2laxd, (5.38)

we obtain the representation

e(z) = tr([)(zz(z)Rd,,,)

L 5
1+ (d/n)e(z)*

U= X =

~_ ~ -1
= tr(Dd;l(z)Rd,n(Dj’n(z)) [ dn = Sdn — Z*Idde~

Note that (A*)~! = (A~1)*. Now, the expression

(D7 @ Ran (D}, (@) Sa) =0 (5.39)

is in particular real because the trace of the product of two positive semidefinite Hermitian ma-
trices is non-negative. Hence,

1 - - _ 1
J(e(2) = E‘:ﬁ(tr{D;L(Z)Rd,n(Dj,n(Z)) l(— dn — Z*Idxd) })

R
1+ (d/n)e(2)*
~ - _ 1
tr{ Dy, () Ran(D} ,(2)) : (5 (W) Ran — (‘«NVZ*)Idxd) }

(d/n)3(e(z))
1+ (d/me(2)|?

Ul— =

= tr{ D;L(Z)Rd,n (Djj,n(z))_1 ( Ryn+ (S‘z)ldxd) }

=a(e(2))I(e(2)) + B(e(2))3z
with

-2

1 d ~ - -
ale(z) = ;'1 +e() tr{ D}, (2)Ra.n (D, (2)) "Ran}.

| ~ —1
Be@) =~ tr{Dy @ Ran(Df, ()}
Note that both, o and S, are non-negative, and «(e(z)) > 0 implies S(e(z)) > 0 since the trace of

a positive semidefinite Hermitian matrix equals zero only for the null matrix. If e(z) is another
solution of (5.34), we obtain the analogous identity

3(e(2)) = @(e(2))3(6(2)) + B(6(2))3I(2).
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We denote by Dd,n(z) the matrix ﬁd,n(z) as defined in (5.38) with e(z) in place of e(z), and
define @ (e(z)) and B(e(z)) correspondingly. Then

e(z) —e(z) = —u{(Dy () — D}, () Ra.n}

tr{D; % (2)(Da.n(z) — Dan(2)) Dy ) (2)Ra.n }

{ L )(1 + (d/n)e(z)) — (1 4+ (d/n)e(z))
dn (I +(d/n)e(z))(1 + (d/n)e(z))

- &|~ A=

Rd,nbd},<z>Rd,n} (5.40)

d/n l
(I +d/me@)(1+ (d/n)e(z)) d
=: (e(x) —e(@))y-

If y =0, uniqueness of e(z) follows immediately. In case y # 0, we deduce the inequality

= (e(z) — 2(2)) tw{Dy ) @) RanDy () Ran}

d 1. - B 1/2
=i a 1 Bab O Ras (Biato) Rasl

[ d/n
X R,
11+ (d/me@)?d

= Ja(e@) /o) (5.41)

< S(e(z))a(e(z)) )1/2
(e(2)al(e(z)) + (Iz)B(e(2))

( 3@(z)a@(z)) )‘/2
Se@)ae@) + 3pEkR))

But B(e(z)), B(e(z)) > 0 for a(e(z)), a(e(z)) > 0 which implies |y| < 1 and therefore, e = e.

_ B} - 1/2
tr{ D}, (2)R4.n (D} ,(2)) ‘Rd,n}}

5.4. Step IV: Identification of e; , and m;,  as Stieltjes transforms

As concerns ¢e; ,, we know already that e C* — CT. Its analyticity follows by the analyt-
icity of the pointwise approximating sequence e ,), and the local boundedness of (e n),) on
C™. Note that the pointwise convergence occurs simultaneously on a countable set with a ac-
cumulation point in C* with probability 1. Using on the right-hand side of (5.34), the fact that
e;}yn (z) = 0 as Jz — oo which follows from (5.37), we also have

1
z-eg,(2) — —37 tr(Rg ) as Jz, Rz — oo.

Hence, Lemma 2.2 in [21] implies that 62 , 18 the Stieltjes transform of a measure on the real

line with total mass d ! tr(Ry ).
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Define
1

Pin = @m0

d,n — Sd,n —zlixd. (5.42)
Finally, observe that for any z € CT,

3(mg,(2)) = =5t Dg @7 (D,)") " (D5.,()"}

U~ =

3 tr{ D5, ()~ ((Pg,,@)") ™"

1
R n— *I X
) (H(d/n)(e;,n(z))* dn o d>}

1 (e, @)
L+ d/neg , (@)

(5.43)
(D, ((D3,(2)") " Ran)

1 0\~
+ Q2 u(D, 7 (05,@)) )
>0

since both 3z and J(ej; , (z)) are strictly positive. Furthermore, since ey , (z) — 0 as Sz — o0
by (5.37), we conclude

z-mg,(z) = —1 as Jz, Rz — o0.
As above, m} | is the Stieltjes transform of a measure on the real line with total mass 1.
5.5. Step V: Approximation of ¢; , by e;’n

Let e;’l,n denote the solution of (5.34). We will show that for any z € Ct,

ean(z) —eg,(2) =0 a.s. as d — oo. (5.44)
Define
@®(z) =a(eg,(z)) and B°(z) =p(e3, ()
such that
S(eg ., (@) =a’(@)3(eg ) + B°(2)3z. (5.45)
Noting that
Olo(Z) -2

)

<R —|1+ =5, (z
I d,n||Smn‘ " d.n(2)

Be(z) —
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we deduce
e () d d -2
As(ed,nm)mss(edn(z»uRdnnsm 1+, (@) (5.46)
1Rall *( ! )
= — f\g -
S\ T4 (d/mye, @)
< IR :
= VS T @ /myeg, 2)
2 max; [A; (2 2 4z
< [ Ranlls., limsup 22X i Eam)l” + 427 (5.47)

[—00 (32)2

where the last inequality follows by convergence (5.35) and bound (5.19) (in the latter the eigen-
values corresponding to &4 ), have to be inserted). As a consequence,

(€3, (@) (@) )
°(z) = . 5.48
“@ ((tvz)/a%z) + 305, @ @) 649

20 Ranllsu I€anls, +4lzl?
T (322 + 2l Ranlisg | Banlly, +4zl?

(5.49)

where the first identity (5.48) follows by rearrangement of (5.45), and after expanding the fraction
by (8°(z))~! we used the elementary inequality

X Z
<

ey forx,y,z>0and x <z
y+x y+z

and (5.47) in (5.49). By (5.12),

1
€d.n (z) = tl‘(Rd n (Z) - = Z fk e

Then as previously in (5.39) and the subsequent display, we obtain the representation

1

~ 1 - * -
S(ean(2) = Ed(W) tr{Dd; (2)Ra.n (D}, (2)) le,n}

1 oy Iy
— = (32) 1 D3, O Rua (D 4@) ) =~ 3" 3(ke) (5.50)
k=1

1
= S(ean(@)a(ean@) + @2 (ean(@) = =D I(fie),

k=1
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and as in (5.40),
1 n
ea.n(2) — €3 ,(2) =y (ean(2) — €y, ) — o Z Jre (5.51)
k=1

with

Iyl </ (@a(eqn(2)). (5.52)

Consider a realization for which the convergence

1 n
- Z See—0
"=
occurs. Then in particular,
12":f N n (2||éd,n||§m+4|z|2)-2 553
— ke| =52 = .
n = T (Rl v D (32)2
for sufficiently large d. Recall that by definition of «(ey ,(z)) and B(eq,,(2)),
a(eq n(2)) d d -2
— S <Ryl s —|1 + —€a.n(2) (5.54)
,B(ed,n(Z)) n n
Hence, if
Blean(d) < n <2||éd,n||2w +4|z|2>—2
d,n\Z)) = ~ ’
! 4d(|Ranll 5o V' 1) (32)?

then inserting (5.19) into (5.54) yields

d (21Eanl% +4|z|?
<|IR — 2
alean@) <l d,nnswn( Ty

in which case (5.52) implies |y| < 1/2 since «°(z) < 1 by (5.48) and the non-negativity of
a°(z), B°(z) and S(ez’n(z)). Otherwise, if

2 1
) .B(ed,n(z)) = 2’

n <2||Ed,n||§m +4|z|2>—2

Plein®) > LRl v D (32)2

(5.52), (5.50), (5.53), and (5.49) imply

- J(ed.n (@) (€d.n(2) V2
vl= Ve (Z)<3<ed,n(z>>a(ed,n(z>) T+ 0Ban@) — (M, ts(fk,e>>

o) 2 2
B ( 2| Ranlisn | Eanll}, +4l2| >1/2
T\ @3+ 21 Ran sy IEanll5, +4lzI?
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As d — oo the limes superior of the last expression is bounded by some positive constant y (z) <
1 almost surely. Finally, solving the equation (5.51) for eq,, — €, and using the upper bounds
on |y|, we obtain

|(1/n) D%y frel
1—((1/4)Vvy)

-0 a.s.

lean(@) — €5, ()| <
(5.55)

as d — 00, by (5.13). This proves (5.44).

5.6. Step VI: Approximation of mg4 , by mj ,

Without loss of generality, we may assume that either

432 J3/2
—>1 or — <1
n n

holds on the whole sequence. We start with the first case. Recall the definition (3.1) of m;’ , and
(5.42) of Dy ,,(z), and note that

1 _
Mm@ =5 1((Dj,) 7).

while by (5.11),

1
man(z) = d ((Dd n (Z) - = Z Jm
with
lZf;w,,—>0 a.s.asd — oo.
n
Then,
1
man(2) =m, (@) =~ Dy, ) = (DG, )} =~ Z fem
1 — o
= S u{Dg, (D, () = Dun(@)(Dg, )} = Z fem
1 edn(2) —eg ,(2)

D Y ()R, ,(D° -1
= 1 (L+ @/ meqn @)+ @d/meg, ) { Dy @Rin (D) "}

1
- ;];fk,m-
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So, almost surely by (5.24), (5.19) and (5.55),

limsup|mg,n(z) — m;,n(Z)|
d—o00

QClEanlls, +41z1*)?
(3z)°

. . d
< limsup|eq,,(z) — €5 ,, ()| limsup — || Rq.n | 5,
d—00 d—oo N

=0.

Now, consider the case

232

— <1

Due to

d sup, | Ra.nlls.,

d
;|e§’n(z)|§ - —0

Sz
for any z € C* and by reasons of continuity, we conclude
|mg (@) —m 7, @) =0

for any z € CT, where pdn

show that

is the spectral measure of the matrix 7, ,. Therefore, it remains to

|md,n(z) - mMTd,n (Z)| —0 a.s.

By Lemma C.12 and Lemma C.13, this convergence holds true if dr, (144 x, MTd»") — 0 almost
surely. Theorem C.10 for @ = 1 and inequality (1.2) of [13] yield

d

1
di(tan 1'") < =3 |4 (Ban) = 4i(Tum)| <
i=1

I 15 12
;Rd,nxd;”lx:;,an,n - Rd>”

Sco

Finally, for arbitrary ¢ > 0 and d sufficiently large we apply Corollary 5.50 of [25] with t =1 so
that

“RY2x,,x% RY?>_R <
n d,n dnddn d,n d,n =

H I 4 12
Soo

with probability at least 1 — 2 exp(—d). Again, by the Borel-Cantelli lemma,

12
-0
Soo

1/2 1/2

1
dp, (Md,ns MTd’n) =< ;Rd,n Xd,nX;,an’n - Rd,n

almost surely as d — oo.
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5.7. Step VII: Weak approximation of the spectral measures

First, we show that the measure uj; , has compact support. Thereto, define similarly to the defi-
nition of e(g »),,{ € N, in Step III,

1 . _
M), (2) = 4 tr{(E,ny — 21dxd;) 1}-

By (5.4),

1 1 -
m 7)) — —tr R — S —zl -0 as | — oo
@) (2) @ {(1 T @/meam @ (d,n) — O(d,n) dIXdl) }

almost surely. Note that

1 | »
—tr R d, - S d. —zly d> }
d {(1 + (d/i’l)E(d’n)l (2) (d,n) (d,n); 1 xd;

1 —1
=—tr Rijn—Sq,—121 ,
d {<1+(d/n>e<d,n>,<z> i T 2dn "”’) }

and therefore by reasons of continuity

1 1 -
M.y (@) =~ tr{ (WRd,n — Sdn — szz) } —-0 as/—>ooas.

because of (5.44). By Vitali’s convergence theorem, the exceptional set on which convergence
does not occur can be chosen uniformly in z € CT. This implies that Wy, is the weak limit of
(d,n), almost surely. In particular, the support of 1 , is bounded since

linf{x : 1, (=00, x1) > 0} > liminf Az (Ea,m,) = —Sa.nllss
[—00
and
|sup{x : g, (=00, x1) < 1}| < limsup [|E .y I, < ISanlls + ¢,
[— 00

where ¢’ > 0 is a constant satisfying inequality (C.6) of Lemma C.7 applied to

nl

1 12 . 12
vl 2 Riy L 2y Ry,
k=1

and is chosen uniformly over d € N. Subsequently, we assume that d (in dependence on the
specific realization) is sufficiently large such that

linf{x : an((—00, x1) > 0} = —[ISanlls — "
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and
|sup{x : pta.n ((—00,x1) < 1}| < Sanlls. +¢”

with an appropriate contant ¢” > 0 from (C.6). Now, define ¢ = ¢’ v ¢”. For fixed 0 < v < 1,
define the closed interval K = [uy, U3 J+1] with

2]

+ mv_lﬂt(ﬂsd,nﬂsoo +¢)

up =—v" 4 (IISunlls, +c)

forl=1,..., |_v_3J + 1. By Step VI, we have
|man(u;+iv) —m§ ,(u +iv)| <v

simultaneously at all points u;, [ =0, ..., Lv_3J + 1, almost surely for all d sufficiently large.
Furthermore, for any inner point u of K, pick / such that u € [u;, u;41). Then,

|man(u—+iv) —mg, u+iv)|
< |md’n(u +iv) —mg,(u; +iv)| + |m§,n(u +iv) —mf,’n(ul +iv)‘

+ |man i +iv) —mg , (u +iv)|

</ L
- X—u—iv XxX—u;—iv
“f

1
u—uy .
< [ dpan+ w50+ v

dﬂd,n(x)

dpg ,(x) +v

X—u—iv X—u;—iv

< v(4lugl +1).

Next, we derive an upper bound on the integral
/Kc|md,,,(u +iv) —mg ,(u+ iv)| du
which tends to zero for v — 0. For this aim, we decompose the integral into
/Kc|md,n(u +iv) — mz’n(u + iv)| du
:/ |man(u+iv) —mg , (u+iv)|du
(—00,u0)

+/ |md,,,(u—|—iv)—mz’n(u+iv)|du.

() y=3)41>20)
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We can use the same arguments for both integrals and therefore only consider the first one. By
Fubini’s theorem and the bounds on the support of ug4,, and uy ,,

/ }md,n(u-l-iv)—mZ,n(u-I-iv)‘du
(—o0,u0)

<[/
(—00,uq)
//f( ><u_v1/4b|, 3 g ()40, )
00,1
Sm//|X—Y|de,n(x)dM§,n(y)

m(/ IXIden(x)+/|y|dudn(y)>

1/4

. dudpg n(x)dpg , ()
X—u—Iiv y—u-—Iv

v
e

Now, by Lemma C.11 we conclude

R v 1 . o .
dr (mans 185.,) 52,/;+E/Imd,n(u+lv)—md,n(u+lv)\du
<2 U+1| |(4luol + 1) +2 v/t
[—+ —|u u vt ——,
=Nz 7" 0 7l —ol/4

where the inequalities hold almost surely for all d sufficiently large. Hence,

dr, (Md,na P‘Z,n) —0

almost surely as d — oo. Lemma C.13 yields finally pa,» — uy , = 0 as. ]

5.8. Proof of Corollary 3.2

As afore-mentioned to the corollary,

o _ , MP
K = Pgn pojo? * 0=2(1=po)/po-
Therefore, by the representation (2.1) of the Marcenko—Pastur distribution we deduce

K == Iy %8021 poy /s

such that

Hdn== M} Gz/po *8_62(1-po)/po-
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Furthermore, if the left edge of the limiting distribution

MP S

*
Hy.2/po

—o2(1=po)/po
is smaller than zero, then almost surely

lim sup Amin(@d,n) < 0.
d—o00

For y < 1 the left edge of the limiting distribution is smaller than zero if and only if pg <

1—(1- M. O

6. Proof of Theorem 3.3

We will show Theorem 3.3 by means of the next proposition. The proof of the proposition is
postponed to Appendix B.

Proposition 6.1. Let (X (i, k)); ken be a double array of i.i.d. centered random variables with
unit variance and finite fourth moment, and denote by X4 € RI*" jts d x n submatrix in the up-
per left corner. Moreover, let (Ag n)d.n, Ad.n € RI%d pe g sequence of symmetric random matri-
ces and (Bg n)a,n, Ban € R be another sequence of random matrices such that (Ag ,, Bg.n)
and Xg4 , are independent. Letd,n — oo andd/n — y > 0. If

. 2
lim supmax |A;;j 4,,| max Bijan<c a.s. 6.1)
d—oo bLJ ik

for some absolute constant a > 0, then

<a(l+.9°>  as. (6.2)
Soo

lim sup
d—00

1
;Ad,n o ((Xd,n o Bd,n)(Xd,n o Bd,n)*)

Proof of Theorem 3.3. By Weyl’s inequality, we obtain
1 *
Amax ;Wd,n o ((Xd,n o Sd,n)(Xd,n o 3d,n) )
[ *
+ Amin ;(Wd,n - Wd,n) o ((Xd,n Ogd,n)(Xd,n 0&dn) )

o+ *

< Amax ;Wd,n o ((Xd,n o Ed,n)(Xa',n o 8d,n) )
1 *

< Amax ;Wd,n o ((Xd,n o Sd,n)(Xd,n o Sd,n) )

1 .
+ Amax(;(Wd,n —Wan)o ((Xd,n o&dn)(Xano 8d,n)*)>
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and
1 *
Amin ;Wd,n o ((Xano08d.n)(Xdno€dn)*)
+ mm( (Wd n— Wd,n) o ((Xd,n o 8a’,n)(Xd,n o Sd,n)*)>
1 - *
< Amin Wd n© ((Xd,n 0&dn)(Xan ©&dn) )
1 k
< Amin ;Wd,n o ((Xan08d.n)(Xdnodn))
| BN
+ Amax(;(Wd,n - Wd,n) o ((Xd,n o Ed,n)(Xd,n o 8d,n)*))~
Because of
1 *
Amax ;Wd,n o ((Xd,n o Sd,n)(Xd,n o Ed,n) )
1 « l—po ,
= Amax ;(wd,nwd’n) o ((Xd,n 0&dn)(Xan °5d,n)) - 0 lgxd
* * 1— Po o
+ diag (Wd n— Wd.aw) ) o ((Xano0edn)(Xanoean))|+ TG Lixd |,
and
1 * * —Po »
diag| (Wi = wanw)) o (Xan o €an) X 0 800)") |+ — 220" Lixa
Soo

—0 a.s.asd — o0

by the Marcinkiewicz—Zygmund strong law of large numbers (cf. Lemma B.25 in [1]), we obtain
again by Weyl’s inequality and Theorem 1 of [4]

1 — o
)‘«max< deo((anogdn)(Xa'nogd n) )) _(1+«/—) 0 ——2
With same argument,
(1 2 1-po »
Amin de0((an°8dn)(xdn08dn) ) _(1_\/_) — 0.

In order to finish the proof, it suffices to show that

a.s.
—=0.

Soo

| BN
H ;(Wd,n —Wan)o ((Xd,n o0&dn)(Xano 8d,n)*)
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But this is an easy consequence of Proposition 6.1 since by (A.12),

. ~ a.s.
limsupmax |W;j g.n — Wijanl —> 0.
n—-oo L]

Appendix A: Proof of Proposition 4.1
A.1. Step I: Modifying &4 ,

By tightness of (u"4n), we have for any § > 0 a constant py > 0 such that for sufficiently large
deN

# pi.an < po} <d§.

We replace the matrix &4, by €4, Where &k g.n = €ik,a.n if pi = po and otherwise &;x 4, is a
Bernoulli random variable with P(€;x = 1) = pg such that the entries of €4, are independent and
jointly independentof Y1 4 s, ..., Yn.d.n- Td,n be the matrix as f"d,n but relying on the missingness
matrix €4 , in place of &4 ,. Since by Theorem C.8

- A 1 - N
di (ulan, puTan) < Srank(Ty = Tan) <9,

we may assume subsequently p; 4., > po.

A.2. Step II: Removing 1 Wy, o (Mg, 0 €4,0) (Ma,n 0 £4,1)*)
Let
Tun="Tin— %Wd,n o (Man 08an)(Manoean)*).
First, note that
P(r?ijn#./\/ij = O) < dznilz}x P#N;j=0) < d2(1 — p(z))n
Hence, by the Borel-Cantelli lemma we have almost surely for all but finitely many indices d

1. . . P
n Wd,n o ((Md,n o Ed,n)(Md,n o Ed,n) ) =mgnmg .
Now, by Theorem C.8 we have

limsupdg (,uf‘“', uf"-") =0 a.s.

d— 00

Therefore, it is sufficient to prove dy (i Tan ,u,TdJl) — 0. In the next subsection, we refer to Td, n
as Ty .
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A.3. Step III: Truncation of 7y ,

By the tightness of the sequence (u’¢) we have for any § > 0 a constant 79 > 0 such that for
sufficiently large d € N

#{Thk,a,n > 0} < dJ.

Therefore, let Zv"d,n =diag(M{T11.4.n <w0}T11.d1>---» WTaa.d.n < ©0}Tdd.a.n) and Td,n be the

sample covariance matrix with missing observations built from the random variables
Yi,d,nsz,nXi,d,na izla"'ana

while &4 , remains the same. Since again by Theorem C.8
v ~ 1 o N
dic (', 1) < S rank(Tan = Tan) <,

it is sufficient to assume subsequently that the spectral measures of the sequence (7 ,) have
uniformly bounded support.

A.4. Step IV: Truncation of X ,

For 0 < 8 < § we truncate the variables X;x 4, at the threshold level n'/2@®=1/2, o > 10,
Hence, let

Xik,d,n = Xik,d,n]l(lXik,dﬂ < nl/zd“_l/z) (A.1)
and Ta’,n» ?d,n and A;Id,n be the matrices constructed by replacing X, , with f(dy,, = ()N(,-k,d,n) in
Td,l’h Yd,n, and Md,n. ‘We have

dx (Mfd,n , ’ufd.n)

1 ~ o
=7 rank(Ta,n — Ta,n)

1 1 - * v v *
= d rank ;Wd,n o ((Yd,n o&dn)¥Yanotan) — Yanoean)Yano&dn)

- (Md,n o Sd,n)(Yd,n o gd,n)* + (Md,n o gd,n)(f/d,n o Ed,n)*

- (Yd,n o 8d,n)(Md,n o <9cl,n)>k + (Yd,n o 8d,n)(Md,n o Ed,n)*)]

1 | A ~ .
= E rank ;Wd,n o (((Yd,n - Yd,n) o Sd,n)(Yd,n o Sd,n)

+ (id,n o 3d,n)((Yd,n - ?d,n) o 801,}1)>'<
- (Ma',n o 8d,n)((Yd,n - ?d,n) o gd,n)>‘<
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- ((Md,n - Md,n) o 8d,n)(Y~vd,n o ed,n)*

- ((Yd,n - ?dn) o Ed,n)(Md,n o Sd,n)*
- (?d,n © Sd,n)((Md,n - Md,n) ° Sd,n)*):|

1 1.4 ~ N
=< 2 rank[; Wa’,n o (((Yd,n - Yd,n) o 8d,n)((Ya',n - Md,n) o Sa',n)*
- ((Md,n - Md,n) o 5d,n)(?d,n o 8d,n)*)i|

1 1.4 ~ N ~ "
+ E rank[; Wd,n o (((Yd,n - Md,n) o 5d,n)((Yd,n - Yd,n) o Ed,n)

- (?d,n o 8d,n)((Md,n - Ma’,n) o 8d,n)*):|

2 n
< d—#{i e{l,...,d}: Zn(|x,~k,d,,,| >n'/2q*=12) > o} (A.2)
k=1
2 _
=22 (1 Xicanl > n!/2d*= 1), (A3)
ik

where inequality (A.2) follows by the simple observation that the ith row respectively the ith
column of the matrices

((Yd,n - ?d,n) o 8d,n)((Yd,n - Md,n) o Sd,n)*

and
(Mg — Map) o ean)Yanoeqn
respectively
((Yan — My, o edn)((Yan —Yan) oean)
and

(Yd,n o Sd,n)((Md,n - Md,n) o Sd,n)*

is the null vector if
n

> 1(IXikanl > n'2d*"'2) = 0.
k=1

Next, we prove that

Zl(|xik,d,n| > n1/2d0t—1/2) 280
i,k

SWES
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as d — oo. Note first that by Markov’s inequality
Var(L{|X11,4,0| > n'/2d*7'?}) < E1{|Xix,an| > n'?d* 12} <nld' =2 (A4

Using (A.4) in (A.5), and (A.4) in Bernstein’s inequality in (A.7), we conclude for sufficiently
large d and some constant 8 > 0

P(Zl{lxik,d,ﬂ >n'/2q* =12} > dl—é)

k,i

:P(Z(ﬂ{lxik,d,nl >n'2d* 12} —E1{| Xig.an| > n'/2d*"2})
k,i

Z dl—b‘ _ndE]]-“Xll,d,n| > n1/2da—l/2}>

: P<Z(ﬂ{|xik’d’"| >n'2a*7 2} —B1{|Xik a.nl > n'/?a*7'2})

k,i
> gl _d2(]a)> s
= P<Z(ﬂ{|xik’d’"| >n!'2d* 12} —E1{|Xik.an| > n'/2d*~1})
k,i
>34 (A.6)
)
serp(=64) A7)

where inequality (A.6) holds since « > (1 + 8)/2. So, by inequality (A.3) follows
dg (;Lid’",,ufd»") 250 for d — oo.

Note that X d.n 18 not centered and standardized, but by Cauchy—Schwarz inequality and Markov
inequality,
IEXik.d.n = |EXik.dn — EXik.d.nl

= |EXik.anl(1Xik.anl > n'/?a*=12)|
(A.8)

= \/P(|Xik,d,n| > n1/2da—1/2)

<p12g1/2

and moreover, Var(f( ik.d.n) 1T 1asd — oo.In the subsequent section we redefine the matrix X4
by X4.» and keep the initial notations.
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A

A.5. Step V: Replacing the normalizing matrix n_IWd, n

Let

~ 1
Tgn = ;Wd,n o ((Yd,n 0 &dn)(Yan Ogd,n)*)
1 9 *
- ;Wa’,n o ((Md,n o Sa',n)(ya',n Ogd,n) )

1 9 *
- ;Wd,n o ((Yd,n o Sd,n)(Md,n Ogd,n) )
By Theorem C.9, the elementary inequality
tr((C + D)?) <2tr(C* + D?)

for real, symmetric d x d matrices C and D, applied to
| N
C= ;(Wd,n - Wd,n) o (((Yd,n o 8d,n)(Yd,n o 8(1,11)*)):

_ e - . . .
D= n (Wd,n Wd,n) o (((Md,n o 8d,n)(Yd,n o Ed,n) ) + ((Yd,n o Ed,n)(Md,n o 8d,n) ))7
as well as the inequality
(A + A*)7] <4tr(AA*%)
for any d x d matrix A with real entries, we deduce
dz (MTd,n , MTd.n)

1 1 . x
< C_Ztr ;(Wa’,n - Wd,n) o (((Yd,n o gd,n)(Yd,n Ogd,n) )

2
- ((Md,n o Sd,n)(Yd,n o Sd,n)*) - ((Yd,n o Sd,n)(Md,n o Sd,n)*))> :|

2 [(1 . 0\
= gtr ;(Wd,n —Wan)o (((Yd,n o0&dn)(¥Yano&dn) )) (A.9)

8 | 2 Y *

+ Etr E(de —Wan) o (((Md,n 0&dn)(Ydn o &dn) )

x ((Yan © €a.0) (M 0 ed,n)*))]
=:thgn.
We prove that by, — 0 a.s. as d — o0o. Thereto, define for an arbitrary constant

y > 4o +7 (A.10)
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.. - 1 1 logn
Agn=1{V1<i,j<d:|(Wijan) ' = Wijan) | <y pl £ (A.11)

Then, for sufficiently large d the union bound and Hoeffding’s inequality yield

the event

B(Ad) =1 - B(45,)

n _ _ logn
zl—dzmaxP<|<Wij,d,n) b= Wijan) ™ > vy - )
1]

yzlogn>

> 1—2d? exp(—
—1—2d%n" 2",

By the Borel-Cantelli lemma all but finitely many events A, , almost surely occur. Hence, if
Tay,hdn —> 0as. ford — oo then hy , — 0 a.s. Note furthermore that on the event Ay,

1 1
Wijam)™t Wijan)™

[Wijdn — Wijanl = ‘

A Wiam) ™ = Wiyl
|(Wijan) ™Y (Wijan)
1
v/ (logn)/n (A.12)

min; p?; ,(Wijam) ™" = ((Wijan) ™" = (W)~

v/ (logn)/n
min; p? ;| (min; p?,  — y/(logn)/n)

2y [logn
min; p?,d,n n

for d sufficiently large. Now we prove that El4, ,hg,, — 0. In order to save space, the explicit
dependence on d and #n is suppressed in the displays until the end of the section. By inequality
(A.12), we have

8y2logn - ? - ?
Ehlp < ——=—— Z E( (> YuYjeuej | +4( Y MuYjeinejn| |1a
min; p}dn i =1 k=1 k=1

IA

IA

IA

d n n

8y2logn . A

S ——= Z E [EYir Y Yy Y| +4 Z EM;1 Y MY jieire jreirejila
min; p;dn® \ 7=, k=1

=1+ D,
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where
8y logn
Iy = g Z Z |EY1ijlelel|
min; pl i,j=1k,I=1
and
32y%logn 4z A A
h=——% 0D EMuY i MiYjisixe jkeijila.
min; p; 8dn Pty

For the first term, we obtain by (A.8), (2.2), uniform boundedness of the entries of 7, ,, and (A.1)

/- 8y2logn (Z 3 |Ey,ky]ky,lyj,|+z Z|EY3(Y3

i 813
min; p;dn> \, 7= T2, i=1 k=1
i#j k#l k£l
d n d n
2 y2 4
D WICTIIS N 37N
i,j=1k=1 i=1k=1
i#]
logn logn dlogn logn
Nnd4a—l n + I’l2 nd1—2ot
logn
S —> 0.

Recall the definition (4.1) of ]l;ld,,,. Using again the bound

A 1 2
[Wiil < = <— on the event A (A.13)
(W)~ = [(Wip)=t — (W;)~1| — min; p;

for d sufficiently large, we get for the second term with the same type of arguments

24y logn 1 -,
I = Z Z En_zwiinkl Yk Yiky Yiky €ik, € jky €ikr € jkr Eiks Eiky L A
min; pid i) j=1k1,ka ks ka=1

96y2logn
Zd 5 Z Z |Eij1ij2Yik3Yik4|
mln pi-an i,j=1k1,ka,kzks=1

d n n
logn
S [Z( oo+ >|Eml Yit, Vit Vi,
i=1 “ky,kp,k3,ks=1 ki,ko k3, ka=1
ki#koFksF#ks  —(kiF#ko#k3Fks)
d n n
+ Z( > o+ X )|Eyjk1 Y,-kzmmm]
i,j=1 “ki,kp,k3,k4=1 ki,ko,k3,ka=1
i#]  kithoFks#ks  —~(ki#koFkaths)
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< logn

~ dn’
2a—1

< d logn

~

(d3—4oln2+d2(xn4+d4—40ln2+d2n3)

— 0.
n

We need a sufficiently tight bound on the variance of hy ,14,, in order to conclude by the
Borel-Cantelli lemma that in addition kg4 ,14,, — O almost surely. Thereto, define

~ 1 . ..
Gij,d,n=;(Wij,d,n—Wij,d,n), i,j=1,...,d.

Using (A.12) in (A.15) and dropping those summands of (A.14) whose indices satisfy {i1, ji} N
{i2, jo} # 9, we get

Varhil 4
1 d

2 2
= > E{G,?]j](z( > Y,-lijlk) +8< > M,-lijlk))

i1,i2,j1,/2=1 keNi, j, ke, j,
2 2
A2 A
X Gizjz (2( Z Yirk szk> + 8< Z Mk Yj2k> )]lA }
keNiy ) keNi, j,

1 d

2 2
T2 Z ]E{éizljl(2< Z Yilij1k> +8( Z Milij1k> >1A} (A.14)

i1,i2,j1,j2=1 keNi j, keNiy jy

2 2
xE{Gl-zm(Z( > Yizij2k> +8< > Mizij2k> )11A}

keNi, j, keNs, j

2107/4(10gn)2 d 2 R 2
Siminp.md%ﬂ Z E (( Z Yilij1k> +( Z Mi.ij|k) JlA)
! i1,82,J1,j2=1 keNi jy keN, j,
{in.jiinfiz. o} #2

n 2 2
x (( > Yizij2k> +< > Mizijzk) 1A>} (A.15)

keszz kE./\/;‘ij
1 d . 2 . 2
e 2 efen (X v (X o))
i1,i2,j1,j2=1 keNi, jy keNi j,

{in, 1INtiz, o} =2

2 2
XG%ZjQ(( Z YiZkYJZk) +( Z Mizij2k> )]]-A} (Alé)

keNiy keNiy
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d 2

1 A

2 s (( X2 men) (X ) )l
i1.i2,j1,j2=1 keNiy j; keNiy jy

{i1, 1ini2, o }=2

2 2
x]E{G,2m<< > Yizkyjzk> +( > Ml-2ij2k> >1A} (A.17)
k=eNiy j, keNiyjp
=h+D,
where I; consists of the term (A.15) and I; of (A.16) and (A.17). The term [; yields

LShi+hLo+ 13,

with
d
(logn)? .
L= W Z Z |EYi1k1 leklyilkz lekz Yi2k3 szks Yi2k4 Yj2k4|v
i1,i, j1,j2=1  ki,ka,k3,ks=1
(i1, j1}N{iz, 2}#2
d
(logn)* - . .
L= W Z Z |E(Yilk1 lekl YilszjlkzMizksYj2k3Mi2k4Yj2k4
i1,i2,j1,J2=1  ki,ka,k3,kq=1
(i1, 1iN{ia, 2} #2
X Eiyk1 € jiki €irka € j1ka €ink3 € jok3 Einks € joky
d
(logn)? ! . . R .
hi3= d2n0 Z Z |E(Mi1k| Yy Misio Y jiko Migis Y jois Minky Y joky

inyio, j1,j2=1  kika,k3,ka=1
{in, j1intiz, o} #2

X 8i1k18j1k1gilkzgjlkzgizks8j2k38i2k48j2k4]lA)“
For 11,1 we have

n

2 d
(logn)
I = 206 Z Z IEYi i Yk Yisko Yjiko Yioks Y joks Yioks ¥ ks
i1,i2,j1,2=1  ki,ka,k3,ka=1
{ir, j1iN{iz, 2}£2
i1#]j1Vi2#j2

(10g n)*
d2n6 Z Z EY lkz Ylk3 Ylk4
i=1 k] k2 k3 k4 1

n*®(logn)?
n4

)

A
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where we used for iy, ji, iz, jo with {i1, j1} N {iz, j2} # @ and i| # j; or i» # j» the bounds

n2d%e—2 for #{ky, ko, k3, ka} =1,
nd?*—1, for #{ky, ko, k3, ka} =2,
Bk Yjik Yiko Yjik Yioks Y ks Yioky Yioky | S N or #(k,. ko, ks ka) = 3.
n=2dre for #{k1, k2, k3, ka} = 4

and for i = i1 = j; =i» = j, the estimates

n3dte=3,
2 j4q—2
2 y2 v2 p2 n-d ,
EYH{] Yikz Yik3 Yik4 S 2a—1
nd ,
17

for #{k] , kz, k3, k4} = 1,
for #{ky, kp, k3, k4} =2,
for #{ky, kp, k3, k4} =3,
for #{k1, kp, k3, kq4} = 4.

These estimates are deduced by the following consideration. First, the expectation is factorized
by independence into a product of moments of the Y;;’s. Then applying (A.1) and (A.8), the /th

moment is bounded by

|EYilk ’ < (nl/Zda—1/2)1—27

Now we evaluate I 5. Using (A.13),

leN.

D EYiky Yk Yirka Vjika Yok ¥joks Yioks Yioke |

1 .
2
x E(n_z Wizizgilkl € j1ky Eirka € jiko Einks & joks Einks € joks Eiks Eink LA

d
I (logn)? "
2= Z
i1,i0,j1,jo=1  ki,....kg=1
{inj30{i2, 2} #2
d n
log n)2
<O X
~ d*n ) '
i1,i2,j1,2=1  ki,....ke=1

(i1, j1}N{iz, 2} #2
2 16a
< (logn)-d
R R

where we used for the bound

Z EYi ke Yk Yirko ¥ jia Yioks Y ok

Yiz’% Yj2k4|

IEYi Yk Yisko Y jika Yioks Y joks Yioke ¥ joky |

<

~

n

(—) d?*@=0 for i =#{ky, ko, k3, ka, ks, k).
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Again by (A.13), we obtain with the same argument as for /; 2

d n

(logn)>
L33 “2nl0 Z Z IEYiiks Yiike Y jiki ¥ jiko Yioks Yioks Y joks ¥ joy |

i1, j1,j2=1  ki,...kg=1
(i1, j1iN{iz, 2}£2
(logn)2d6°‘
< 2T°e 7 7
~ d?nb

with
IEYi ks Yiyko Y ik Yjrka Yioks Yikg Y joks ¥ ok |

d i—4 )
5(—) d* 4D fori =#{ky, ko, k3, ka, ks, ke, k7. ks}.
n

As concerns I, define

2 2
Uij,d,n=G,2j,d,n{< Z Yik,d,ank,d,n> +( Z Mik,d,ank,d,n> }

ke-/\[ij,d.n ke-/\/i_j‘d,n

and note that U;; 4 , is bounded by a constant multiple of n%d**=2 pecause J\/}j,d,n contains at
most n elements, Gizj an S 1since by Section A.1 min; p; ., is uniformly bounded away from
zero, |Yik anl < nl/2qe=1/2 by Section A.3 and Section A.4,

|Mik.a, |=‘ Yitan| Sn'/?a%12,
Hence,
d
1
h=— 3 EWUjUppla) —EWi TOEUs 1)
i1,i2,j1,j2=1

(i, j1iN{i2, 2}=2
| d
=— Z {-EUi, j Ui, j,14¢) + E(Uj, j,140)E(Uj, j,)

i1,i2,j1,j2=1
{in, jiin{iz, p}=2

+EUi,j)EWUi, j,1ac) — EUj, j; 1a)E(Us, j1a0)
5 d
<5 ) EWh)EUppla)

i1,i2,j1,j2=1
{in, 1infiz, jo}=2

. _9,,2
5 d8a72n12]P>(AL) Sn12+80{ 2y )
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Note that by choice of y in (5.40) the exponent in the last line is strictly smaller than —1. There-
fore by the lemma of Borel-Cantelli /4,,14,, — 0 almost surely (d — o0). In the following

subsection we redefine the matrix f"d,n by Td,,,.

A.6. Step VI: Removing n~!W o ((Y o s)(M oe)*+ (M oe)(Y oe)¥)

By the same arguments as in Section A.4, we return to the original centered and standardized
matrix Xy ,. Define

~ 1
Tyn= ;Wd,n o ((Yd,n o 5d,n)(Yd,n o 8d,n)*)~
We prove that
dL (MTd,n’ Mfd.n) — O

almost surely. For y > 1, define the event

Ad,n = {mzax INii,d,n — Pidn| <V nlOgn}~

Note that
n
{max |Nii,d,n — npidnl < y\/nlogn} = {max > (Eikdn — Pidn)| <V nlogn}
L 1
k=1
for d sufficiently large. The union bound and Hoeffding’s inequality yield
P(AY,) <2dn™". (A.18)

By the Borel-Cantelli lemma, all but finitely many of the events (A;) occur. Moreover, for
% < n < 1 define the event

d
. [ @2(1—=n)
Bd,n:{z:ﬂ-{|mi,d,n|> n } <d".
i=1

First, observe that by the same type of argument as used in (A.13) and by Markov’s inequality
Z €ik.d,nYikd.n

. d2a-n)  _ 2 420-n)
maxIP’<|m,-,d,,,| > ,Ad,n> < maxP(,i > )
i n i nmin p; 4. |

n
AE(Y y €ik.dn Yik.dn)*
~ n? min; piz,d,n (d21=1 /)

5 d2r/72’
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where we have used
1 2

<
Niign ~— nminp; g,

for d sufficiently large in the first inequality. In particular,

. d2(—mn) ) d20-n
I[‘Eﬂ{|7"’li,d,n| > } :E1{|mi,d,n| > }(]1,;(1 + 1 )
n n Sn d,n

<k (d2'7_2 + dn_27’2)

for some suitably chosen constant ¥ > 0. We conclude for d sufficiently large by Hoeffding’s
inequality

42(1-n) 42(1-n) }

d
P(B;,) < P(Z;]l{ﬁli,d,n > . } - E]l{f;li,d,n > p

>d" —k(d*! - dznzyz))

d
d2-n) d2(-n) 1
< P(Z]]-{”hi,d,n > . } —E]l{l’;li’d,n > " } > Edn>

By the Borel-Cantelli lemma, all but finitely many of the events (By ) occur.
Let ¥’ > 0 be an appropriate constant such that for all n

n
2 ElYikanl <v'n.
k=1

Then, define the event

d n d
Dd,n=:zﬂ{ Yik,d,n|>)/n}§10gd}.
k

|
i=1 k=1

In the next step, we shall prove that P(limsup, Dj ,) = 0 in order to remove the corresponding
rows from the matrix Y. By Chebyshev’s inequality we have

n
max P Y; >y'n
‘ (Zl ikdnl >y )

k=1

n n
< maxP Y; —E|Y; 'n—Y E|Y;
= ix <Z| zk,d,n| | lk,d,nl >yn Z | tk,d,n|)

k=1 k=1
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n
1
Sn?xp(ggnmﬂﬂ|—Eunﬂﬁ|>Ey%>

~

-

3%

for an appropriate constant «” > 0. Again, by the Hoeffding inequality for sufficiently large d,

d n
) d k'd
]P’(Dfi,n)S]P’(E 31{ |Yik,d,n|>V/n}_Eﬂ{ E |Yik,d,n|>7//n] > logd_7>
i—1 k=1

k=1

n

d n "
1 d
SIP’( 11{Z|Yik,d,nl > V’n} —Eﬂizmk»d’"' g ”/”] ” Elogd>

k=1 k=1

i=

d
< -
'”m<umwg’

and therefore P(limsup, Dj ) = 0. Now let

v 1 ~ -
Ton = ;Wd,n o ((Yd,n o&dn)(¥Yano Ed,n)* — (Yanoedn)(Mgn Ogd,n)*
- (Md,n o Sd,n)(?d,n o Ed,n)*)»

where

42(-m }

Mixan= Mik,d,nll{lMik,d,nl < "

and

n
Yikdn = Yik,d,n]l{z Yit,anl < V/n}-
I=1

By Theorem C.8 and due to P(lim supd(Dgyn U Bfi')n)) = 0 we conclude by the same type of
arguments as in Section A.4

dr (MTd,n , Mfd.n)

1

1 N N
< d_ rank(; Wd,n o ((Yd,n o 8d,n)(Md,n o gd,n)* + (Md,n o 8d,n)(Yd,n o Sd,n)*

- (f/d,n o 8d,n)(Md,n o 8(1,11)* - (Md,n o ed,n)();d,n o Sd,n)*)>

a.s.
=0 as d — oo.
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In order to save space the explicit dependence on d and rn is suppressed in the displays until the
end of the section. By Theorem C.9,

& (Mﬁ Mf) (A.19)
< %tr((%w o ((Y~' oS)(M og)* + (Mos)(l? 08)*)>

x (%Wo (Yoe)(Moe)* +(Moe)(1?os)*)>>

W2o ((Moe)(?oe)*(ioe)(Moe)*+(Yoe)(Mos)*(?oe)(Mos)*))

1 2 Y % * 17 Y *

—2W o ((Moé‘)(Yos) Yoe)Moe) )) (A.20)

4 d ) dz(] n) d 1 ) n 2 n
SEZmil{'m"'< }Zn—zwﬁ D ciweikYik | 1Y DYl <y'n
i =1 k=1 =1

i=1 j —

J2m-n 4. d ([ n 2 (o
S 22 | DemwenYi ) Y Wl < yin g, (A21)
=1

i=1 j=1 \k=1

where we have used the elementary inequality
tr(Cz) <t(CC*) for any C € R4*¢

in (A.20). It remains to prove that the last line (A.21) converges to zero almost surely. Let n <
n’ < 1, and rewrite

3
maxp(z<281k8jkyjk) =Z|le| <)/l’l} = 20— 1))

j=1 \k=1 =1

d n
o Gn) (zr) i)
j= =

Define for n” < n” < 1 the random variables

(A.22)

n
Z gildn€jldnYjldn
=1

Iij,d,n=11{ z«/ﬁd“’"‘“}, 1<i,j<d.

Then by Markov’s inequality for the conditional probability and an appropriate constant «” > 0,

SllgllE K
Z&lgjlyll > Vnd?0"=1 ‘ ) <

"

dzm”fl) = 20"

E(lijle) = (
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The inner conditional probability in line (A.22) can be further estimated by

d n 2 n n3
P(Z(Zamﬂn) ]]-{Z|le| < )/n} > mF)
k=1 =1

=Y ”} = 2d2(n/71)‘ )

-1
< Vnd } = 2d2(n’ 1)‘ )

where the last conditional probability disappears for d sufficiently large. For the first probability
on the right-hand side, we obtain
<””} = 2d2(n’ 1)‘ )

d
( 221{ Jd" D <
j=1
d 3 1212
2 n n(y'n)"d
( Z E(Ilj|8) = 2d2(n/ 1) —K d2(77//_1) &

j=1

d
(Z ~BUylo) = ¢ e )

J=1

Zgllgjlyll

=1

d
S

j=1

s

j=1

Zgllgjlyjl

=1

Z&ISJIYI

for d sufficiently large. Finally, by Hoeffding’s inequality the last line is bounded by

2
CXp T8y Aqin 3 )

Altogether, (A.21) is bounded by d2("~"") with probability

dz(ﬂ D n )
( dn3 ZZ Zslksjkyjk 1 Z Yiul<y'{ > 42m=1)
=1

i=1 j=1 \k=1

03
> 1 —dmaxP(Z(Zelks]kY]k> [ZIYJII <y n] 20— 1)>

j=1 \k=1

n2
>1— deXp<_78y’4d477/3 )

By the lemma of Borel-Cantelli,

dz (Mfd,n,ﬂrfd,n) -0
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almost surely. Consequently,
dp (jTan, pTn) < dp (ular, lan) 4 dp (ulin, plan) 250 asd — oc.

Subsequently, we denote Td,n by f"d,,,.

A.7. Step VII: Diagonal manipulation

Rewrite the matrix fd,,l in the following way
. 1
Td,n = ;(wd,nw;,n) o ((Yd,n o Sd,n)(Yd,n o Ed,n)*)

1
- dlag[ (wd nwd n) ((Yd,n o Sd,n)(Yd,n o 8d,n)*)

1 *
- ;Wd,n o ((Yd,n o ed,n)(Ya’,n o 8d,n) ) .

In this step, we replace the diagonal matrix

1
Sd n = dlag[ (wd nWy, n) ((Yd,n o0&dn)Yano Sd,n)*)

1 *
- ;Wd,n o ((Yd,n o Ed,n)(Yd,n Ogd,n) )

by its diagonal deterministic counterpart Sy , with

1 - Pi,d,n

Tii d.ns i=1,...,d.
Pid,n

Sii,d,n =
Thereto, we use similar arguments as in the last subsection. In contrast to the last subsection, we
cannot simply rely on Markov’s inequality since Y; 4., is assumed to possess only two moments.
In order to save space, the explicit dependence on d and n is suppressed in the displays until the
end of the section. Note that for any u > 0,

Gmax = Max P(1Sii — Siil > u)

.....

n
— Di 2 €ik
= max P Y: —Tii )l >u
i=l1,....d ( np; ];( tkpi u) )
1 —pi 1—pi 281k
< max P T;; — >u, Eik — nlogn
o (S ; PR SO BN
_ . 1_ . &
+ max P p'T,~,~— pi 2 Zik >u, Z(S,k—p, )| <+/nlogn|.
i=1,....d Di np; =
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As concerns the first term in this last inequality, Hoeffding’s inequality yields
1-—

1—pi w
max P PtT”_ Pzz 2 Eik
i=1,..d Di npi = Pz
< max (

In order to bound the second term, note that

1 _Pl — PDi y2 Eik
T OW

1

pi)

)

Z(Ezk - Pz

=

n

u, | (&ix — pi)

5,/nlogn)

k=1
|np;i++/nlogn] 1= p 1— . n
— max Z P plTii— plZsz ik >”a25ik=l
i=l,...d Pi npi — D —
I=[np;j—+/nlogn] k=1 k=1

|np;i++/nlogn]
IP(

= max Z
i d

""" I=[np;—+/nlogn]
n
X P(Z &ik = l)
k=1
Lnp;++/nTogn] (
P

= max Z
i=1,...d

I=[np;—+/nlogn]

1—p; 1-— £
p}plTii_ pzZYlk zl-< —u

Ze,-k = l) (A.23)
k=1

l

1—pi 1—pi—Y3
R B E

Pi npj =l Pi

i)

where the last identity holds true because Y;i 4., ..., Yin,a.» are i.i.d. and jointly independent of
&4.n- By the elementary inequality

1 / y2 1 [npi—«/nlogn] 2 1 [npi++/nlogn] y2
T — = L R PP Zikl T — = —ik |
ii n kX:; i ii n kX:; i il n kX:; i

we conclude

[np;—+/nlogn] y2

) 1—
P:Tii_ Pi Z Lik

pi npi = b

,,,,,

1= pi 1= pi [npi++/nlogn] Y2
+ max P LTy — Z >u
i=1,...d Di npi =1 Di
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)
.

L”Pz
2
4 SDIRGIE
pi np; k=1

1 P [v/nlogn]+1 u
— pi 5
Hp( ny 2)}

1 [npi]

_Pi T Pz ZTHsz
pi np; k=1

.\ 2T,~,»<1;pi>< [logn +g>}_
up; n n

For n sufficiently large, the last expression is bounded by

Lnpi ]
1 : AT;(1—p;) [1
2 max |P S (X% 1) > P ) HTL ) Jloen ) oy
i=1,...d Lnpi | — 4T v 1) up; n

Note that by Section A.3 and Section A.1

id,
liminf min _Pidn >0 and liminf min |_np, dnl=
d—oo i=l,...d Tij.an V1 d—oo i=1,...,

Hence, by the weak law of large numbers (A.24) converges to zero as d — oo which implies
Umax — 0. Now, with o; = P(|S;; — Sii| >u),i=1,...,d,

‘ 1
(Z Sii — Sii| > M} > 2d, [ 0max V \/;>

==

d
(ZIL S”|>u —; > 2dy| dmax V

i=

—d amax)

—_

d
(Z]l 1Sii — Siil > u} — o > d3/4>
i=1
< exp(—2vd),
where we used Hoeffding’s inequality in the last line. Therefore,

d

1 .

y > " 1{|Siidin — Siidn| > u} =50
i=1



Spectral analysis with missing observations 2523

as d — oo. Let S’d,n be the diagonal matrix with entries

Siian = Sii.an1{|Sii.an — Sii.anl < u}.
We conclude by Theorem C.9 and Theorem C.8 that almost surely for sufficiently large d
dL (Mfd,n , M’fd,nfsd,n+§d<n)
S dL (’qu.n , MTd.n* d.n+Sd,n) + dL (MTd.n*Sd,nJFSd,n , Mnl.nfsd,n‘i‘sd,n)

d 1/3
1 ~ ~ 1 -
< —rank(San = Sa) + (3 > " (Siidn — Sii,d,nﬂ)

i=1

=<

Z]l{lgii,d,n — Siian| > u} +u*? <2u3,
i=1

U=

Since the constant u > 0 is chosen arbitrarily, we have
f n T n—9d,n § n as
dL(,u gy Td, Sd.n+Sd, )_> 0

for d — oo.

A.8. Step VIII: Reverting the truncation

Reverting finally the truncation Steps I, III, IV yields the claim.

Appendix B: Proof of Proposition 6.1

Define )A(d,,, € RI*n by )A(,-k,d,n = X 1{| Xik| < 84.n/n}. By Lemma 2.2 (truncation lemma)
of [29] for r = 1/2, given any preassigned decay rate to zero, there exists a sequence (84.),
84,n — 0, with lower speed of convergence than that decay rate such that

P(X4., # Xy, infinitely often) = 0.

Let (84,,) be a sequence satisfying the truncation lemma with

1
—— =o(1). B.1
NG (L (B.1)
Therefore,
. 1
llmSUP H _Ad,n o ((Xd,n o Bd,n)(Xd,n o Bd,n)*)
d—oo |7 Soo
1 ~ N
- H ;Ad,n o ((Xd,n o Bd,n)(Xd,n o Bd,n)*) =0 a.s.
Soo
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Now let f(d,,, be the random matrix with entries X,-k,d,,, = )A(,-k,d,n — ]E)A(,-k,d,,,. We prove

. 1 ~ ~
limsup|||—=Ag.n 0 ((Xd,n o By u)(Xano Bd,n)*)
d—oo |7 Soo
1 ~ A
- H ;Ad,n o ((Xd,n o0 Bgn)(Xdno Bd,n)*) =0 a.s.
Soo

As EX 1 =0, note first that
IEX 11,40 = |EX11 — EX111{|X11] > 8,/n}]
= [EX111{IX11] = 8,+/n}| (B.2)
<EX{n 28,3,
Using the triangle inequality, the bound || - ||s,, < || - Ils, as well as the inequality

d
IClls, < max Z ICi;l for symmetric C € R?*¢
j=1,....d

i

in (B.3), we conclude

1 ~ ~
‘ H ;Ad,n o ((Xd,n o By u)(Xano Bd,n)*)

Sco

1 > o *
- ;Ad,n o ((Xd,n 0 By un)(Xano Ban) )

Soo

<

1 ~ A N
;Ad,n o (_(Xd,n o Ba’,n)(EXd,n o Ba’,n)* - (Bd,n o Exd,n)

S ()?dn o Ban)* + (]Ejzdn o Bd,n)(]EXd,n o Bd,n)*)

Sco

=

S|

d n 2
> A% an (Z Xik,d,nBik,d,nBjk,d,nEXjk> (B.3)

i,j=1 k=1

2 0 2
+dmax|Aijqnl (m.gx Bik,d,n) (EX11.a.n)
L] ]

d ~
=2 SER 110l max | Ayl (max B ) (B4)
i,j i

2 5 2
+dmax |Ajj .l (m%x Bik,d,n> EX11,d,n)
i,j i

—0 a.s.,
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where the first summand in inequality (B.4) tends to O by (6.1), (B.1), (B.2) and the
Marcinkiewicz—Zygmund strong law of large numbers (cf. Lemma B.25 in [1] with 8 =1 and
o = 3/4). Since the entries of Xd . have all the same finite variance and EX? 11.an — 1, we may
assume for convergence statements about

1 v v *
;Ad,n o ((Xd,n o Bd,n)(Xd,n o Bd,n) )

Soo

that the entries of X d.n to have unit variance. In order to apply the Lemma of Borel-Cantelli, we
need to show that the probabilities
> za)
Sco

are summable over d € Nforany z > (1+ ﬁ)z. By Markov’s inequality and because of ||.S ||gfD <
tr(S%) for any symmetric matrix S and / € N, it is sufficient to show that for any sequence (/4 ,)
of even integers with

1 ~ ~
P(H ~Adn o ((Xan o Ban)Xan o Ban)")

lgn/logn — 0o and 8;{3ld,n/logn — 0,

we get

1 - - ld,n
Mdnly, = Etr[JlEd,n (;Ad,n o ((Xa,n 0 Ban)(Xano Bd,n)*)) ] < (an)dn,
where (1 + ﬁ)2 < n < z is an absolute constant and E , is the event
Eqn= {H.la.x |Aij,d,n|(m§cx Bizk,d,n) < 0‘}'
ij i

We have by independence of f(dﬁ and (Ag.n, Ban),

— . . . S
Mdnlg, =10 " E: E: E[]lEdnAlllelm"'Alld,,rllld,nAl/d.nll

X Bi]k] Bi2k1 ot Bild,nkld.n Bilkld,n]
X E[Xilkl Xi2k1 t Xi]d nk’d‘n Xilkld,n]
lan,—la, X . X X X
<o®'n " Z Z |E[Xl]k]Xl2k] ”.X”d,nkld,nXl]k/d.nH
iyeees ”d,n_lkl k’d n—l

S ald,n nld.n ,
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for d sufficiently large in which case the inequality

nld,n

d n
—ld,n Y. . X X Y
nl 0 2 Bk Ko Xy, Xink, ]

i1yenny ”d,nzlkl’“"kld,nzl

has been shown in the proof of Theorem 3.1 in [29].

Appendix C: Auxiliary results

Lemma C.1 (Lemma 4 in [6]). Let A € C¢*¢ 1 € C and r € R? such that A and A + trr* are
invertable. Then

1

— —1
S Troea A (D

r*(A + Trr*)71

Lemma C.2 (Lemma 2.6 in [23]). Ler z € Ct, A, B € C?*? B Hermitian, t € R and q € C¢.
Then

[ (B = 2laxa) ™" = (B+ 199" — 2laxa) ) A]| < - (C.2)

Lemma C.3 (Lemma 8 in [6]). Let C = A+iB +ivlyyq, with A, B € R**¢ symmetric and B
positive semidefinite, v > 0. Then

e g, <v" (C.3)

Lemma Cd4. Let Z = (Zy,...,2Zy) € RY be a centered random vector with components
bounded in absolute value by some constant ¢ > 0. Then for any p > 1,

EIZI} - ElZ|3|" < CPpP?ar/?, (C.4)

E|Z|3" < CPpPlar, (C5)
where the constant C > 0 depends on c only.

Proof. The lemma is an easy consequence of Lemma 5.9 of [25] together with the Definition 5.7
of the sub-Gaussian norm of [25], since

g A d 2 2112
=@l -E2l,
1=

<82

1
Hg(nzu% —~E|IZI3)
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where A corresponds to the absolute constant of Lemma 5.9 of [25], and

Hlnzu% - H1E||Z||%+1(nzn§—Euzn%) 2
d V2 d d V2
1 2 ? 1 2 2 g
§2<H3E”Z”2 +HE(”Z”2_E”Z”2) )
1% V2
16AY 4
Lemma C.5. Let d/n < ¢| and Z\,...,Z, € R? be a sample of i.i.d. random vectors with

centered and independent components of variance 1 and bounded in absolute value by some
constant ¢3 > 0. Denote the largest eigenvalue of the matrix n=! Yk ZkZ by A1. Then for any
p=1

EA] <C,
where C depends on c1, ¢y and p only.

Proof. Since

where the kth column of the matrix Z € R?*" is given by Z;, A| = 512 with 51 the largest singular
value of n~!/2Z. Dividing the right-hand side of inequality (5.22) of [25] by /n yields

1t
s15¢6+A1+—n

7

with probability at least 1 — 2 exp(—Ast?) for some constant Ay, A, > 0 depending on ¢, only.
Therefore,

EA? = Es?

oo
=/ x2PP(s) > x) dx
0

o
< (Ver + A1)2P+2/ ¥ exp(—Aon(x — (/o1 + Ap)°) d
Jer+Ay

o0
< (Ja+a)¥ + 2f0 (x + +/c1 + AP exp(—Axnx?) dx
S C?

where C can be chosen independently of 7. (]
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Lemma C.6. Let Uy, ..., Uy i.id. random C-valued random variables with EU; = 0, E|U; |2 =
1, |U;| < C for some constant C >0 and A € C4>d  Denote U = (Uy, ..., Uy)*. Then

E|U*AU —twA|® < ¢ A|§_d>C?
with a constant ¢ > 0 which does not depend on d, A and the distribution of U;.

Proof. The proof follows the lines of Lemma 3.1 in [23] by replacing the logarithmic bound on
the entries of U with C. U

Lemma C.7. Ford e Nandn =ng € Nwithlimsup,d/n <cy <oolet X1,4,...,Xp q bei.id.
d-dimensional, centered random vectors with variance 1 such that

limsup max max |X;rql<c2
d—oo i=l,...dk=l1,...n

almost surely and Ry € R4 be a positive definite diagonal matrix with

limsup max |R; ;4| <c3.
i=1,...d

d—oo =1
Then,
l n
lim sup Amax [ — Z R;/ZXk,dX;(‘ dR[l/2 <c a.s. (C.6)
d—00 n =1 ’

for some constant ¢ > 0 depending on c1, ca and c3 only.

Proof. Since the random variables are uniformly bounded which implies uniform sub-Gaussian
tails, Theorem 5.39 of [25] applies. The particular choice t = logd yields

1 12 12\ _d (logd)?
Amax<;;Rd XeaXigR/") =~ +C+——

with probability at least 1 — 2exp(—C’(logd)?) for two positive constants C, C’ which depend
only on ¢ and c¢;. Hence, the claim follows by the lemma of Borel-Cantelli. ([l

Theorem C.8 (Theorem A.43, [1]). Let A and B be two d x d Hermitian matrices. Then,
1
di (1", n”) = 5 rank(A — B), (C7)
where i and 8 denote the spectral distributions of A and B, respectively.

Theorem C.9 (Corollary A.41,[1]). Let A and B be two d x d Hermitian matrices with spectral
distribution u and w®. Then,

1
d; (u*, u®) < i tr((A — B)(A — B)*). (C.8)
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Theorem C.10 (Theorem A.38, [1]). Let A1, ..., g and 81, ..., 84 be two families of real num-
bers and their empirical distributions be denoted by i and ji. Then, for any a > 0, we have

d

1
a+1 P : o
dit (s ) = min = Y Ak — x|, (C9)
k=1
where the minimum is running over all permutations w on {1, ..., d}.

The next lemma and its proof are essentially taken from [11], Lemma 34. Since the necessary
dependence of (in his notation) § on y is neither mentioned in his statement nor its proof, we
include a proof for completeness.

Lemma C.11. Let v and v be two probability measures on the real line and m, and m, their
Stieltjes transforms. Then for any v > 0 we have

dr(u,v) < 2\/g+ % /|S(mﬂ(u —i—iv)) — S(m,,(u +iv))‘ du.

Proof. Let C, denote the Cauchy distribution with scale parameter v > (. Recall that its
Lebesgue density f, is given by

1 v
fv(X)Z;m, xeR.
By the triangle inequality,
dp(p,v) =dp(p, px Cy) +dp(ux Cy, v* Cy) +dr (v, v % Cy). (C.10)

Now observe that for =, vand any z =u +iv e CT,

L oy (LY
3y iv) = / e ) = frcy ),

where fy.c, is the Lebesgue density of the convolution n x C,. Therefore,

dp(uxCy,v*Cy) <dg(uxCy,v*Cy)

1
= E /|fﬂ*cv(u) - fU*CU (M)|d1/t (Cll)

1 ~ : .
=5 /|;s(mu(u —i—lv)) — S‘(mv(u +lv))|du.
As concerns dp (n,n x Cy), let X ~n and Z ~ C1 be two independent random variables on a
common probability space, whence X + vZ ~ n « C, for any v > 0. Using the elementary tail

inequalities

© 1 1
IF’(Z<—t)=IP’(Z>t)§/ —dr=— for any 1 > 0,
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we obtain for any § > 0 and x € R,
1) 1lv
PX<x—-68§)<PX+vZ<x)+P|Z>- 5P(X+vZ§x)+—g.
v T

That is,
PX<x—-6§)—-06<PX+vZ<x) (C.12)

whenever § > /v/m, in which case we also have

8
P(X +vZ <x) SP(XSx—i—S)—HP’(Z < ——) <P(X <x+9)+3. (C.13)
v
(C.12) and (C.13) imply
v
dr(n,n*Cy) S\/; n=pu,v. (C.14)
Plugging (C.14) and (C.11) into (C.10) yields the claim. O

Lemma C.12. Let u, v be two probability measures on the real line and m,,, m, the correspond-
ing Stieltjes transforms. Then for any z € CT,

dpL(u,v)
|mu(z)—mv(z)| 52ﬁ~ (C.15)
J2)° Az
Proof. Note that
‘ 1 1 _ A — 2| <|A—)J|
A=z NM—z| |G- =27 2?’
that is,
X2 A X N2 A X
R AR R AR
A0 —( ) < and A>3 —( 32) <
A—2Z A—Z
are bounded by 1 in absolute value and 1-Lipschitz. This proves (C.15). (]

Lemma C.13. Let (i) nen and (Vy)nen be two sequences of probability measures on the Borel
o-algebra on R. Assume that (un)neN is tight. Then

dp(tn,ve) >0 & dpL(Un,vs) — 0. (C.16)

Moreover, tightness of (un)neN and (C.16) imply weak convergence ,, — v, = 0 on the space
of finite signed measures on R.

Proof. As concerns the equivalence relation, we need only to verify that

dp(tn,ve) =0 = dpL(Un,vp) =0, (C.17)
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because di <dgL (see, e.g. [9]). Assume that df (i, v,) — 0. Tightness of (u,), implies that
any subsequence (i, )k possesses a subsubsequence (Hg i which converges weakly to a lim-
iting probability measure w, say. Consequently, as both, dpr, and d; metrize weak convergence
on the space of probability measures on R,

dp(pny» ) >0 < dBL(tny,, 1) = 0. (C.18)
By the triangle inequality,
dr, (Vnkl ) <dp (:unk] ) +dp (Mnkl , "'nk]) — 0,

which in turn is equivalent to dBL(vnk] ,u) — 0. Again by the triangle inequality,
dBL (ny » Vn kz) — 0. This proves (C.17) and therefore the equivalence relation (C.16).

As concerns the second statement, it is sufficient to show that any subsequence (14 ) possesses
a subsubsequence (ng,); with Png, = Vg, = 0. But this follows immediately from the above
arguments, because for any subsequence (n ), there exist a subsubsequence (n4,); and a measure
0 such that both, Py, = 14 and Vg, = Iy hence Mong, = Vng, = 0. [l
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