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Operator fractional Brownian motion (OFBM) is the natural vector-valued extension of the univariate frac-
tional Brownian motion. Instead of a scalar parameter, the law of an OFBM scales according to a Hurst ma-
trix that affects every component of the process. In this paper, we develop the wavelet analysis of OFBM,
as well as a new estimator for the Hurst matrix of bivariate OFBM. For OFBM, the univariate-inspired
approach of analyzing the entry-wise behavior of the wavelet spectrum as a function of the (wavelet) scales
is fraught with difficulties stemming from mixtures of power laws. Instead we consider the evolution along
scales of the eigenstructure of the wavelet spectrum. This is shown to yield consistent and asymptotically
normal estimators of the Hurst eigenvalues, and also of the eigenvectors under assumptions. A simulation
study is included to demonstrate the good performance of the estimators under finite sample sizes.
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1. Introduction

An R
n-valued stochastic process {X(t)}t∈R is said to be operator self-similar (o.s.s.) when its

law scales according to a matrix (Hurst) exponent H , that is,{
X(ct)

}
t∈R

L= {
cH X(t)

}
t∈R, c > 0, (1.1)

where cH =∑∞
k=0 logk(c)Hk/k! and

L= denotes the equality of finite-dimensional distributions.
No specific assumption on the eigenstructure of H is imposed, for example, canonical vectors are
not necessarily eigenvectors. The notion of operator self-similarity underpins the natural multi-
variate generalization of the univariate fractional Brownian motion (FBM): an operator fractional
Brownian motion (OFBM) BH = {BH (t)}t∈R is a proper Gaussian, o.s.s., stationary increment
stochastic process. In this paper, we propose using the wavelet eigenstructure of OFBM to esti-
mate H . The main motivation behind this methodology is to avoid the difficulties stemming from
the extrapolation of univariate techniques to a multivariate context, where operator scaling laws
such as (1.1) may arise.

Inferential theory for univariate self-similar processes now comprises a voluminous and well-
established literature. A non-exhaustive list includes Fox and Taqqu [23] and Robinson [43,44]
on Fourier domain methods, and Wornell and Oppenheim [52], Flandrin [22], and Veitch and
Abry [48] on wavelet domain methods, among many others. The multivariate framework evokes
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several applications where matrix-based scaling laws are expected to appear, such as in long
range dependent time series (Marinucci and Robinson [36], Davidson and de Jong [14], Chung
[9], Dolado and Marmol [21], Davidson and Hashimzade [15], Kechagias and Pipiras [29]) and
queueing systems (Konstantopoulos and Lin [30], Majewski [33,34], Delgado [17]). Like FBM
in the univariate setting, OFBM is a natural starting point in the construction of estimators for
operator self-similar processes due to its tight connection to stationary fractional processes and
its being Gaussian (on the general theory of o.s.s. processes, see Laha and Rohatgi [31], Hudson
and Mason [27], Maejima and Mason [32], Cohen et al. [11]).

A characterization of the covariance structure of OFBM can be derived from stochastic integral
representations. Under a mild condition on the eigenvalues of the exponent H (see (2.9)), Didier
and Pipiras [19] showed that any OFBM BH admits a harmonizable representation

{
BH (t)

}
t∈R

L=
{∫

R

eitx − 1

ix

(
x−D+ A + x−D− A

)
B̃(dx)

}
t∈R

(1.2)

for some complex-valued matrix A. In (1.2), x± = max{±x,0},
D = H − 1

2I, (1.3)

and B̃(dx) is a complex-valued random measure such that B̃(−dx) = B̃(dx), EB̃(dx)B̃(dx)∗ =
dx, where ∗ represents Hermitian transposition. Expression (1.2) shows that the law of an OFBM
can be fully described based on the scaling matrix H and the spectral parameter A (see Re-
mark 2.1 on the parametrization).

Let H = PJH P −1, P ∈ GL(n,C), be the Jordan form of the Hurst parameter in (1.2) (see
Section 2 for matrix notation). If H is diagonal, then we can assume that P takes the form
of a scalar matrix P = pI , where p ∈ R and I is the n × n identity matrix, and that JH =
diag(h1, . . . , hn). In this case, (1.1) breaks down into simultaneous entry-wise expressions{

X(ct)
}
t∈R

L= {(
ch1X1(t), . . . , c

hnXn(t)
)∗}

t∈R, c > 0. (1.4)

Relation (1.4) is henceforth called entry-wise scaling. In particular, under (1.4) an OFBM is a
vector of correlated FBM entries (Amblard et al. [4], Coeurjolly et al. [10]). Several estimators
have been developed by building upon the univariate, entry-wise scaling laws, e.g., the Fourier-
based multivariate local Whittle (e.g., Shimotsu [46], Nielsen [42]) and the multivariate wavelet
regression (Wendt et al. [51], Amblard and Coeurjolly [5], Achard and Gannaz [3]). However, if
H is non-diagonal, that is, if P is not a scalar matrix, then the relation (1.1) mixes together the
several entries of X. The estimation problem under a non-scalar P turns out to be rather intricate
and calls for the construction of methods that are multivariate from their inception.

Although the emergence of o.s.s. processes in applications is rightly expected – for example,
as functional weak limits of multivariate time series – there is no specific reason to believe a
priori that scaling laws occur predominantly entry-wise and exactly along the canonical axes.
Indeed, this is palpably not true in several applications such as fractional blind source separation
(see Didier et al. [18]) and fractional cointegration (see Robinson [45] for a bivariate local Whit-
tle estimator). The framework of multivariate mixed fractional time series subsumes both cases.
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Let W = {Wt }t∈Z be an unobserved signal. To fix ideas, suppose that the signal is an operator
fractional Gaussian noise (OFGN), namely, it has the form Wt = BHW

(t) − BHW
(t − 1) with

spectral parameter AW (see (1.2)). Further assume that HW = diag(h1, . . . , hn). The observed
signal has the form Y = {Yt }t∈Z = {PWt }t∈Z, for a non-scalar, mixing matrix P ∈ GL(n,R).
Then, the mixed process Y is another OFGN with parameters HY = P diag(h1, . . . , hn)P

−1 and
AY = PAW . In blind source separation, the entries of W are uncorrelated, whereas in cointegra-
tion they are typically correlated.

From a mathematical standpoint, the mixing of scaling laws can be illustrated by means
of the expression for the spectral density fX of an OFBM with Hurst parameter H =
P diag(h1, h2)P

−1, 0 < h1 < h2 < 1, P ∈ GL(2,R) (see condition (2.12)). For M :=
P −1AA∗(P ∗)−1 ∈ M(n) (cf. condition (2.11)) and x > 0, the spectral density takes the form
(fX(x)ij ) = x−DAA∗x−D∗

, where

fX(x)11 = p2
11m11x

−2d1 + 2p11p12m12x
−(d1+d2) + p2

12m22x
−2d2 ,

fX(x)21 = p11p21m11x
−2d1 + (p11p22 + p12p21)m12x

−(d1+d2) + p12p22m22x
−2d2 ,

fX(x)22 = p2
21m11x

−2d1 + 2p21p22m12x
−(d1+d2) + p2

22m22x
−2d2 ,

and d1 = h1 − 1/2, d2 = h2 − 1/2 (see (4.18) for the analogous expression in the wavelet do-
main). The univariate-inspired approach of setting up a Fourier-domain log-regression – for ex-
ample, Whittle-type estimators – has to cope with the double-sided challenge of mixed power
laws. On one hand, under mild assumptions on the amplitude coefficients, the dominant power
law x−2d2 always prevails around the origin of the spectrum. On the other hand, and paradox-
ically, even if the estimation of d2 is the target, the magnitude of the amplitude coefficients
themselves can arbitrarily bias the estimate over finite samples by masking the dominant power
law.

In this work, we build upon the wavelet analysis of (n-dimensional) OFBM to propose a novel
wavelet-based estimation method for bivariate, and potentially multivariate, OFBM. The method
yields the Hurst eigenvalues of H and, under mild assumptions, also its eigenvectors when P ∈
O(2). Its essential ingredient, and the main theme of this paper, is a change of perspective: instead
of considering the entry-wise behavior of the wavelet spectrum as a function of wavelet scales, it
draws upon the evolution along scales of the eigenstructure of the wavelet spectrum. This way, it
avoids much of the difficulty associated with inference in the presence of mixed power laws, as
we now explain.

For a wavelet function ψ ∈ L2(R) with a number Nψ of vanishing moments (see (2.6)), the
(normalized) vector wavelet transforms of OFBM is naturally defined as

R
n � D

(
2j , k

)= 2−j/2
∫
R

2−j/2ψ
(
2−j t − k

)
BH (t) dt, j ∈ N∪ {0}, k ∈ Z, (1.5)

provided the integral in (1.5) exists in an appropriate sense. The wavelet-domain process
{D(2j , k)}k∈Z is stationary in k and o.s.s. in j (Proposition 3.1). Moreover, whereas the origi-
nal stochastic process BH (t) displayed fractional memory, the covariance between (multivariate)
wavelet coefficients decays as a function of |2j k−2j ′

k′| according to an inverse fractional power
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controlled by Nψ (Proposition 3.2). The wavelet spectrum (variance) at scale j is the positive
definite matrix

ED
(
2j , k

)
D
(
2j , k

)∗ = ED
(
2j ,0

)
D
(
2j ,0

)∗ =: EW
(
2j
)
,

and its natural estimator, the sample wavelet variance, is the matrix statistic

W
(
2j
)= 1

Kj

Kj∑
k=1

D
(
2j , k

)
D
(
2j , k

)∗
, Kj = ν

2j
, j = j1, . . . , jm, (1.6)

for a dyadic total of ν (wavelet) data points. Within the bivariate framework, the univariate-
like entry-wise scaling approach would consist of exploiting the behavior of each component
W(2j )i1,i2 , i1, i2 = 1,2, of the sample wavelet transform W(2j ) as a function of the scales 2j .
Apart from an amplitude effect, the entries are then controlled by the dominant Hurst eigen-
value h2 (see expression (4.16)). Figure 1, top panels, illustrates the fact that this precludes the
estimation of h1.

The proposed estimators of the Hurst eigenvalues h1 and h2 are

ĥ1
(
2j
)= logλ1(2j )

2 log(2j )
, ĥ2

(
2j
)= logλ2(2j )

2 log(2j )
, (1.7)

where λ1(2j ) ≤ λ2(2j ) are the eigenvalues of the positive definite symmetric matrix W(2j ) (see
Definition 4.1 for the precise assumptions). However, as usual with operator self-similarity, the
finite sample expressions for λ1(2j ) and λ2(2j ) themselves involve a mixture of distinct power
laws 2j2h1 , 2j (h1+h2), 2j2h2 (h1 < h2). For this reason, one must take the limit at coarse scales,
namely, the scale itself must go to infinity. It is a remarkable fact that the power law 2j2h1 ends
up prevailing in the expression for λ1(2j ) (see Figure 1, bottom panels, and the striking contrast
with the top panels; see Remark 4.1 for a mathematically motivated, intuitive discussion). The
convergence of (1.7) in turn allows for the convergence of associated sequences of eigenvectors
when P is orthogonal. Moreover, simulation studies show that the estimation procedure is accu-
rate and computationally fast. The asymptotics are mathematically developed in two stages. In
the first, the wavelet scales (octaves) are held fixed and the asymptotic distribution of the sample
wavelet transform is obtained (Proposition 3.3 and Theorem 3.1). In the second, one takes the
limit with respect to the scales themselves. However, the latter must go to infinity slower than
the sample size, a feature that our estimators share with Fourier or wavelet-based semiparametric
estimators in general (e.g., Robinson [43], Moulines et al. [39–41]).

Our results are related to the literature on the estimation of operator stable laws via eigenval-
ues and eigenvectors of sample quadratic forms (see Meerschaert and Scheffler [37,38]). In this
context, one encounters the same problem with the prevalence of some dominant power law (i.e.,
the tail exponent) in most directions. In Becker-Kern and Pap [8], a similar philosophy is applied
in the time domain to produce one of the very few available estimators for authentic, mixed scal-
ing o.s.s. processes of dimension up to 4. However, the asymptotics provided are restricted to
consistency. In our work, the wavelet transform is the main tool for ensuring the consistency and
asymptotic normality of the proposed estimators.
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Figure 1. Entry-wise vs eigenvalue-based estimation. From one synthetic realization of OFBM, the top
row displays (black solid lines with ∗), from left to right, log2 W(2j )1,1 vs. j , log2 W(2j )1,2 vs j and
log2 W(2j )2,2 vs. j , on which the asymptotic behavior j2h2 is superimposed (red dashed line with “o”).
All auto- and cross-components are then driven by the dominant Hurst eigenvalue h2, which precludes the
estimation of the eigenvalue h1. The first two bottom row plots display (black solid lines with ∗), from
left to right, log2 λ1(2j ) vs j and log2 λ2(2j ) vs j , with their respective asymptotic trends j2h1 and j2h2
superimposed (red dashed line with “o”). This demonstrates that both Hurst eigenvalues h1 and h2 can be
estimated (see Section 5.1 for the simulation details). The bottom right plot displays the increments of the
generated OFBM.

The paper is organized as follows. Section 2 contains the notation, assumptions and basic
concepts. Section 3 is dedicated to the wavelet analysis of n-dimensional OFBM, as well as the
asymptotics of the wavelet transform for fixed scales (most of the proofs can be found in the
supplementary material file Abry and Didier [2], Section B). In Section 4, the estimation method
for the Hurst exponent of bivariate OFBM is laid out in full detail and its asymptotics are estab-
lished at coarse scales. Section 5 displays finite sample computational studies, including one of
the performance of the estimators under blind source separation and cointegrated instances, with
the purpose of illustrating the robustness of the estimators’ performance with respect to differ-
ent parametric scenarios. The research contained in this paper leads to a number of interesting
open questions, which are mentioned in Section 6. Among these is the extension of the consis-
tency and asymptotic normality to any dimension n ≥ 3, which will generally require dispensing
with explicit formulas for eigenvalues and eigenvectors. The proofs of some basic results can be
found in the appendix. In addition, the supplementary file Abry and Didier [2], Section B, con-
tains several additional auxiliary results and proofs. In Section C of the supplementary file, the
performance of the estimators is established under the assumption that only discrete observations
are available, instead of a full sample path as in (1.5).
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2. Notation and assumptions

All through the paper, the dimension of OFBM is denoted by n ≥ 2.
We shall use throughout the paper the following notation for finite-dimensional operators (ma-

trices). All with respect to the field R, M(n) or M(n,R) is the vector space of all n × n matrices
(endomorphisms), GL(n) or GL(n,R) is the general linear group (invertible matrices, or auto-
morphisms), O(n) is the (orthogonal) group of matrices O such that OO∗ = I = O∗O (i.e., the
adjoint operator is the inverse), and S(n,R) is the space of symmetric matrices. We also write In

to indicate the dimension of the identity matrix I . A block-diagonal matrix with main diagonal
blocks P1, . . . ,Pn or m times repeated diagonal block P is represented by

diag(P1, . . . ,Pn), diagm(P), (2.1)

respectively. The symbol ‖ · ‖ represents a generic matrix or vector norm. For q ∈ N, the lq

entry-wise norm of an m × n real-valued matrix M is denoted by

‖M‖lq =
(

m∑
i1=1

n∑
i2=1

|Mi1,i2 |q
)1/q

(2.2)

and ‖M‖l∞ = supi1,i2
|Mi1,i2 |. A generic matrix M ∈ M(n,C) has real and imaginary parts

�(M) and �(M), respectively. The functions

πi(v),πi1,i2(M), v ∈R
n,M ∈ M(n,R), (2.3)

denote, respectively, the ith projection (entry) of the vector v and the (i1, i2)th projection (entry)
of the matrix M , i1, i2 = 1, . . . , n. For S = (si1,i2)i1,i2=1,...,n ∈ S(n,R), we define the operator

vecS(S) = (s11, s12, . . . , s1n; s22, . . . , s2n; . . . ; sn−1,n−1, sn−1,n; sn,n)
∗. (2.4)

In other words, vecS(·) vectorizes the upper triangular entries of the symmetric matrix S.
When establishing bounds, C stands for a positive constant whose value can change from one

line to the next. For a sequence of random vectors {Xl,Yl}l∈N, P(Yl = 0) = 0, we write

Xl
P∼ Yl (2.5)

to mean that Xl/Yl
P→ 1, l → ∞. Note that this does not imply that {Xl,Yl}l∈N converges in

probability. Relations of the type (2.5) will often appear in the proofs of the results in Section 4.

We write X d= Y when the random vectors X and Y have the same distribution.
All through the paper, we will make the following assumptions on the underlying wavelet

basis. For this reason, such assumptions will be omitted in the statements.

Assumption (W1). ψ ∈ L1(R) is a wavelet function, namely,∫
R

ψ2(t) dt = 1,

∫
R

tqψ(t) dt = 0, q = 0,1, . . . ,Nψ − 1,Nψ ≥ 2. (2.6)
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Assumption (W2).

supp(ψ) is a compact interval. (2.7)

Assumption (W3). There is α > 1 such that

sup
x∈R

∣∣ψ̂(x)
∣∣(1 + |x|)α < ∞. (2.8)

Under (2.6), (2.7) and (2.8), ψ is continuous, ψ̂(x) is everywhere differentiable and its first
Nψ −1 derivatives are zero at x = 0 (see Mallat [35], Theorem 6.1 and the proof of Theorem 7.4).

Example 2.1. If ψ is a Daubechies wavelet with Nψ vanishing moments, supp(ψ) = [0,2Nψ −
1] (see Mallat [35], Proposition 7.4).

Starting from the harmonizable representation (1.2), throughout the paper we will make the
following assumptions on the OFBM BH = {BH (t)}t∈R.

Assumption (OFBM1). The eigenvalues (characteristic roots) hk of the matrix exponent H

satisfy

0 < �(hk) < 1, k = 1, . . . , n. (2.9)

Assumption (OFBM2).

�(AA∗) has full rank. (2.10)

The condition (2.9) generalizes the familiar constraint 0 < H < 1 on the Hurst parameter of a
FBM. As shown in Didier and Pipiras [19], it ensures the existence of the harmonizable repre-
sentation (1.2). Also, (2.9) implies that the OFBM under consideration has mean zero, which fol-
lows by the same reasoning as in Taqqu [47], page 7, property (ii). In turn, recall that a stochastic
process is called proper when the distribution of X(t) is full dimensional for t �= 0. The condi-
tion (2.10) is sufficient (though not necessary) for the integral on the right-hand side of (1.2) to
be a proper stochastic process and hence to define an OFBM.

The next two assumptions will appear in some of the results.
Assumption (OFBM3).

�(AA∗)= 0. (2.11)

Assumption (OFBM4). BH = {BH (t)}t∈R is a bivariate OFBM with scaling matrix

H = PJH P −1 = P diag(h1, h2)P
−1, 0 < h1 < h2 < 1,P ∈ GL(2,R), (2.12)

where the columns of P are unit vectors.

The condition (2.11) is equivalent to time reversibility, namely, {BH (−t)} L= {BH (t)}. In turn,
the latter is equivalent to the existence of a closed form expression for the covariance function,
i.e.,

EBH (s)BH (t)∗ = 1
2

{|t |H �|t |H ∗ + |s|H �|s|H ∗ − |t − s|H �|t − s|H ∗}
, (2.13)
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where � := EBH (1)BH (1)∗ (Didier and Pipiras [19], Proposition 5.2). Time reversibility is used
in some of the results in Section 3 and in all Section 4. The bivariate framework (2.12) is only
used in limits at coarse scales (Section 4), due to the availability of convenient formulas for
eigenvalues and eigenvectors.

Remark 2.1. In regard to the parametrization, the connection between � and (H,AA∗) can
be obtained implicitly based on the second moment of the harmonizable representation (1.2) at
t = 1, and it can be worked out explicitly under (2.13) and stronger additional conditions, for
example, assuming H is diagonalizable with real eigenvalues and eigenvectors.

The condition (2.12) renders OFBM identifiable, namely, the mapping from the parametriza-
tion H into the space of OFBM laws is injective for a fixed spectral parameter AA∗. This is a
consequence of only considering Hurst matrices H with real eigenvalues. For a general discus-
sion of the (non)identifiability of OFBM, see Didier and Pipiras [20].

3. Wavelet analysis

In this section, we carry out the wavelet analysis of n-dimensional OFBM. The proof of Propo-
sition 3.1 can be found in the Appendix, whereas Abry and Didier [2], Section B, contains the
proofs of Propositions 3.2, 3.3 and Theorem 3.1.

3.1. Basic properties

The normalized wavelet transform (1.5) is itself a vector-valued random field in the scale and
shift parameters j and k, respectively. It will be convenient to make the change of variables
z = 2−j t − k, and reexpress

D
(
2j , k

)=
∫
R

ψ(z)BH

(
2j z + 2j k

)
dz. (3.1)

As in the univariate case, the wavelet coefficients of OFBM exhibit a number of nice proper-
ties. The next proposition describes such properties as well as the general form of the wavelet
spectrum (variance).

Proposition 3.1. Under the assumptions (OFBM1)–(2), let {D(2j , k)}j∈N,k∈Z be as in (3.1).
Then,

(P1) the wavelet transform (1.5) is well-defined in the mean square sense, and ED(2j , k) = 0;

(P2) (stationarity for a fixed scale) {D(2j , k + h)}k∈Z
L= {D(2j , k)}k∈Z, h ∈ Z;

(P3) (operator self-similarity over different scales) {D(2j , k)}k∈Z
L= {2jH D(1, k)}k∈Z;

(P4) for some C > 0, the wavelet spectrum EW(2j , k) ≡ EW(2j ) is given by

EW
(
2j
)= C

∫
R

(
x−D+ AA∗x−D∗

+ + x−D− AA∗x−D∗
−

) |ψ̂(2j x)|2
x2

dx; (3.2)
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(P5) the wavelet spectrum satisfies the operator scaling relation

EW
(
2j
)= 2jH EW(1)2jH ∗ = 2jH

{∫
R

∫
R

ψ(t)ψ
(
t ′
)
EBH (t)BH

(
t ′
)∗

dt dt ′
}

2jH ∗
,

j ∈ N. In particular, under (2.11),

EW
(
2j
)= −1

2
2jH

{∫
R

∫
R

ψ(t)ψ
(
t ′
)∣∣t − t ′

∣∣H �
∣∣t − t ′

∣∣H ∗
dt dt ′

}
2jH ∗; (3.3)

(P6) in analogy to (P5), W(2j )
d= 2jH ( 1

Kj

∑Kj

k=1 D(1, k)D(1, k)∗)2jH ∗
, where Kj is given

in (1.6);
(P7) the wavelet spectrum has full rank, namely, detEW(2j ) �= 0, j ∈N.

Fix some 0 < δ < 1/2, and consider the range of wavelet parameters j , j ′, k, k′ such that∣∣∣∣max{2j ,2j ′ }
2j k − 2j ′

k′

∣∣∣∣≤ δ

max{1, length(supp(ψ))} . (3.4)

If the parameters (j, k) and (j ′, k′) of two wavelet coefficients satisfy (3.4), then we can interpret
that the latter are “far apart” in the parameter space. The next result provides a notion of decay
of the covariance between wavelet coefficients under (3.4). The proof is similar to that for the
univariate case, but we provide it in Abry and Didier [2] for the reader’s convenience.

Proposition 3.2. Under the assumptions (OFBM1)–(3) and (3.4), the covariance between
wavelet coefficients (3.1) satisfies the relation

ED
(
2j , k

)
D
(
2j ′

, k′)∗
(3.5)

= −1

2

2(j+j ′)Nψ

|2j k − 2j ′
k′|2Nψ

{∣∣2j k − 2j ′
k′∣∣H (ONψ

i1,i2
(1)

)
i1,i2=1,...,n

∣∣2j k − 2j ′
k′∣∣H ∗}

,

where (O
Nψ

i1,i2
(1))i1,i2=1,...,n is an entry-wise bounded symmetric-matrix-valued function that de-

pends only on Nψ . As a consequence,

∥∥ED
(
2j , k

)
D
(
2j ′

, k′)∗∥∥≤ C
(
Nψ, j, j ′) | logκ |2j k − 2j ′

k′||
|2j k − 2j ′

k′|2Nψ−2 maxh∈eig(H) �(h)
, (3.6)

where κ is the dimension of the largest Jordan block in the spectrum of H , and C(Nψ, j, j ′) =
C(Nψ)2(j+j ′)Nψ for some constant C(Nψ) > 0.

3.2. Asymptotics for sample wavelet transforms: Fixed scales

As typical in the asymptotic study of averages, we begin by investigating the asymptotic covari-
ance of the sample wavelet transforms W(2j ).
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For FBM, the asymptotic covariance between wavelet transforms W(2j ),W(2j ′
) ∈ R is not

available in closed form since it depends on the wavelet function, which is itself not available in
closed form (cf. Bardet [7], Proposition II.3). Operator self-similarity adds a layer of intricacy,
since in general exact entry-wise scaling relations are not present.

For notational simplicity, let

X∗ = (X1, . . . ,Xn) = (
d1
(
2j , k

)
, . . . , dn

(
2j , k

))
,

(3.7)
Y∗ = (Y1, . . . , Yn) = (

d1
(
2j ′

, k′), . . . , dn

(
2j ′

, k′)),
where di(2j , k), i = 1, . . . , n, is the ith entry of the wavelet transform vector D(2j , k). The
bivariate case serves to illustrate the computation of covariances.

Example 3.1. For a zero mean, Gaussian random vector Z ∈ R
m, the Isserlis theorem (e.g.,

Vignat [50]) yields

E(Z1 · · ·Z2k) =
∑∏

E(ZiZj ), E(Z1 · · ·Z2k+1) = 0, k = 1, . . . , �m/2�. (3.8)

The notation
∑∏

stands for adding over all possible k-fold products of pairs E(ZiZj ), where
the indices partition the set 1, . . . ,2k. So, let X and Y be as in (3.7) with n = 2. Then,

Cov

⎛⎝⎛⎝ X2
1

X2
2

X1X2

⎞⎠ ,

⎛⎝ Y 2
1

Y 2
2

Y1Y2

⎞⎠⎞⎠
(3.9)

=
⎛⎜⎝

(
E(X1Y1)

)2
2
(
E(X1Y2)

)2
2E(X1Y1)E(X1Y2)

2
(
E(X2Y1)

)2 2
(
E(X2Y2)

)2 2E(X2Y1)E(X2Y2)

2E(X1Y1)E(X2Y1) 2E(X1Y2)E(X2Y2) c33

⎞⎟⎠ ,

where c33 = E(X1Y1)E(X2Y2) + E(X1Y2)E(X2Y1).

Expression (3.9) shows that the asymptotic behavior of the second moments of W(2j ) involves
several cross products. A notationally parsimonious way of tackling this difficulty is by resorting
to Kronecker products. For instance, in the bivariate case,

M(4,R) � EXY ∗ ⊗ EXY ∗ =
(

E(X1Y1) E(X1Y2)

E(X2Y1) E(X2Y2)

)
⊗
(

E(X1Y1) E(X1Y2)

E(X2Y1) E(X2Y2)

)
contains all the 9 terms (two-fold products of cross moments), as well as a few repeated ones,
needed to express (3.9). In view of (3.8), this fact extends to general dimension n by means of
the relations

Cov(Xi1Xi2, Yj1Yj2) = E(Xi1Yj1)E(Xi2Yj2) + E(Xi1Yj2)E(Xi2Yj1), (3.10)

for i1, i2, j1, j2 = 1, . . . , n. The next proposition provides an expression that encompasses the
asymptotic fourth moments of the wavelet coefficients.
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Proposition 3.3. Let BH = {BH (t)}t∈R be an OFBM under the assumptions (OFBM1)–(3) and
let Kj be as in (1.6). As ν → ∞, for every pair of octaves j , j ′,

(i)

√
Kj

√
Kj ′

1

Kj

1

Kj ′

Kj∑
k=1

Kj ′∑
k′=1

ED
(
2j , k

)
D
(
2j ′

, k′)∗ ⊗ ED
(
2j , k

)
D
(
2j ′

, k′)∗
(3.11)

→ 2−(j+j ′)/2 gcd
(
2j ,2j ′) ∞∑

z=−∞



z gcd(2j ,2j ′
)
⊗ 


z gcd(2j ,2j ′
)
,

where


q := −1

2

∫
R

∫
R

ψ(t)ψ
(
t ′
)∣∣(2j t − 2j ′

t ′
)+ q

∣∣H �
∣∣(2j t − 2j ′

t ′
)+ q

∣∣H ∗
dt dt ′;

(ii) there is a matrix Gjj ′ ∈ M(n(n + 1)/2,R), not necessarily symmetric, such that√
Kj

√
Kj ′ Cov

(
vecSW

(
2j
)
,vecSW

(
2j ′))→ Gjj ′ ,

where the entries of Gjj ′ can be retrieved from (3.11) by means of (3.10) (see (2.4) on the notation
vecS ).

Remark 3.1. The definition of wavelet only requires Nψ ≥ 1, but Nψ ≥ 2 (see (2.6)) is needed
for the convergence in Proposition 3.3 (see (B.32)).

The next theorem establishes the asymptotics for the vectorized sample wavelet transforms
(vecS W(2j ))j=j1,...,jm at a fixed set of octaves.

Theorem 3.1. Let BH = {BH }t∈R be an OFBM under the assumptions (OFBM1)–(3). Let j1 <

· · · < jm be a fixed set of octaves. Then,(√
Kj

(
vecS W

(
2j
)− vecS EW

(
2j
)))

j=j1,...,jm

d→ Nn(n+1)/2×m(0,F ), (3.12)

as ν → ∞ (see (2.4) on the notation vecS ). In (3.12), the matrix F ∈ S(
n(n+1)

2 m,R) has the
form F = (Gjj ′)j,j ′=1,...,m, where each block Gjj ′ ∈ M(n(n + 1)/2,R) is described in Proposi-
tion 3.3.

4. A wavelet-based estimator for bivariate OFBM

In this section, we switch to the bivariate framework (2.12), that is, n = 2. We draw upon explicit
expressions for eigenvalues to establish the consistency and asymptotic normality of the estima-
tors (1.7) as the wavelet scale grows according to a factor a(ν) → ∞, as ν → ∞. We also show
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the consistency and asymptotic normality, in a sense to be defined, of a sequence of eigenvectors
associated with the smallest eigenvalue of the sample wavelet variance matrix.

The proposed estimators make use of the behavior at coarse scales of the sample wavelet
variance

W
(
a(ν)2j

)= 1

Ka,j

Ka,j∑
k=1

D
(
a(ν)2j , k

)
D
(
a(ν)2j , k

)∗
, Ka,j = ν

a(ν)2j
. (4.1)

Recall that h1 < h2 under (2.12). In (4.1), {a(ν)}ν∈N is assumed to be a dyadic sequence such
that

a(ν) ≤ ν

2j
,

a(ν)

ν
+ ν

a(ν)1+2h1
→ 0, ν → ∞ (4.2)

(see Remark 4.2 on the choice of a(ν) in practice).
We will make use of some basic relations for bivariate symmetric positive semidefinite matri-

ces. Recall that for a matrix

S =
(

a b

b c

)
(4.3)

the eigenvalues can be expressed in closed form as

λ1 = (a + c) − √
�

2
≤ λ2 = (a + c) + √

�

2
, � = (a + c)2 − 4

(
ac − b2). (4.4)

By Sylvester’s criterion, positive semidefiniteness implies that a + c ≥ 0. As a consequence, if
det(S) > 0,

λ1 = 1

2
(a + c)

(
1 −

√
1 − 4(ac − b2)

(a + c)2

)
= 2(ac − b2)

a + c

(1 −
√

1 − 4(ac−b2)

(a+c)2 )

4(ac − b2)/(a + c)2
, (4.5)

and

λ2 = 1

2
(a + c)

(
1 +

√
1 − 4(ac − b2)

(a + c)2

)
. (4.6)

Let v = (v1, v2)
∗ ∈ R

2 be an eigenvector associated with an eigenvalue λ. By further assuming
b �= 0, the relation Sv = λv yields

v2 = λ − a

b
v1. (4.7)

4.1. The weak limit of eigenvalues

The next definition describes the proposed estimators for the Hurst eigenvalues h1 < h2.
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Definition 4.1. Let BH = {BH (t)}t∈R be an OFBM under the assumptions (OFBM1)–(4). For a
dyadic number a(ν), let W(a(ν)2j ) be the associated (symmetric) sample wavelet spectrum at
scale a(ν)2j , and let

λ1
(
a(ν)2j

)≤ λ2
(
a(ν)2j

)
(4.8)

be its eigenvalues. The wavelet estimators at scale a(ν)2j of the eigenvalues h1 < h2 are defined,
respectively, as in expression (1.7) with a(ν)2j in place of 2j .

By analogy to (4.8) and (1.7), we denote the eigenvalues and normalized log-eigenvalues of
EW(a(ν)2j ), respectively, by

λE
1

(
a(ν)2j

) ≤ λE
2

(
a(ν)2j

)
,

(4.9)

hE
1

(
a(ν)2j

) = logλE
1 (a(ν)2j )

2 log(a(ν)2j )
≤ hE

2

(
a(ν)2j

)= logλE
2 (a(ν)2j )

2 log(a(ν)2j )
.

When developing asymptotics for the estimators (4.8), in view of the operator self-similarity
property (P6) we will consider the matrix statistics

B̂a

(
2j
) := P −1Wa

(
2j
)(

P ∗)−1
, j = j1 < · · · < jm, (4.10)

where Wa(2j ) = 1
Ka,j

∑Ka,j

k=1 D(2j , k)D(2j , k)∗ (cf. (1.6) and (4.1)). Each B̂a(2j ) is only a
pseudo-estimator of

B
(
2j
) := P −1EW

(
2j
)(

P ∗)−1
, P ∈ GL(2,R), (4.11)

because its expression involves the unknown matrix parameter P . It will be convenient to de-
scribe the matrices (4.10), (4.11) entry-wise as

B̂a

(
2j
)= (

b̂i1,i2

(
2j
))

i1,i2=1,2, B
(
2j
)= (

bi1,i2

(
2j
))

i1,i2=1,2. (4.12)

The asymptotic distribution of the matrix statistics (4.10) is given in the following lemma.

Lemma 4.1. For m ∈ N, let j1 < · · · < jm be a set of fixed octaves j . Let � = (πi1,i2)i1,i2=1,2 =
P −1, and let B̂a(2j ), B(2j ) be as in (4.10), (4.11), respectively. Under the assumptions
(OFBM1)–(4) and (4.2),(√

Ka,j

(
vecS B̂a

(
2j
)− vecSB

(
2j
)))

j=j1,...,jm

d→ N
(
0,�B(j1, . . . , jm)

)
, ν → ∞. (4.13)

In (4.13),

�B(j1, . . . , jm) = diagm(P)F diagm(P)∗, (4.14)

where F is the asymptotic covariance matrix in (3.12), diagm(P) is as defined in (2.1), and

P =
⎛⎝ π2

11 2π11π12 π2
12

π11π21 π11π22 + π12π21 π12π22

π2
21 2π21π22 π2

22

⎞⎠ .
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Proof. For any j , a brief calculation shows that vecS(�Wa(2j )�∗) =PvecSWa(2j ). Likewise,
vecS(�EW(2j )�∗) =PvecSEW(2j ). Therefore, we can recast the left-hand side of (4.13) as

diagm(P)
(√

Ka,j

(
vecSWa

(
2j
)− vecSEW

(
2j
)))

j=j1,...,jm
.

The weak limit in (4.13) is now a consequence of (4.2) and Theorem 3.1. �

The next lemma contains expressions for the wavelet spectrum and its sample counterpart. The
notation (·)j=j1,...,jm designates a vector of 2 × 2 matrices.

Lemma 4.2. For m ∈ N, let j1 < · · · < jm be a set of fixed scales j . Let B̂a(2j ), B(2j ) be as
in (4.10), (4.11), respectively, and let b̂i1,i2(2

j ), bi1,i2(2
j ) be as in (4.12). For a dyadic number

a(ν), under the assumptions (OFBM1)–(4), we can express(
W
(
a(ν)2j

))
j=j1,...,jm

d=
(

âj,a(ν) b̂j,a(ν)

b̂j,a(ν) ĉj,a(ν)

)
j=j1,...,jm

, (4.15)

where

âj,a(ν) = p2
11b̂11

(
2j
)
a(ν)2h1 + 2p11p12b̂12

(
2j
)
a(ν)h1+h2 + p2

12b̂22
(
2j
)
a(ν)2h2 ,

b̂j,a(ν) = p11p21b̂11
(
2j
)
a(ν)2h1 + (p11p22 + p12p21)b̂12

(
2j
)
a(ν)h1+h2

(4.16)
+ p12p22b̂22

(
2j
)
a(ν)2h2 ,

ĉj,a(ν) = p2
21b̂11

(
2j
)
a(ν)2h1 + 2p21p22b̂12

(
2j
)
a(ν)h1+h2 + p2

22b̂22
(
2j
)
a(ν)2h2 .

Likewise,

EW
(
a(ν)2j

)=
(

aj,a(ν) bj,a(ν)

bj,a(ν) cj,a(ν)

)
, (4.17)

where

aj,a(ν) = p2
11b11

(
2j
)
a(ν)2h1 + 2p11p12b12

(
2j
)
a(ν)h1+h2 + p2

12b22
(
2j
)
a(ν)2h2 ,

bj,a(ν) = p11p21b11
(
2j
)
a(ν)2h1 + (p11p22 + p12p21)b12

(
2j
)
a(ν)h1+h2

(4.18)+ p12p22b22
(
2j
)
a(ν)2h2 ,

cj,a(ν) = p2
21b11

(
2j
)
a(ν)2h1 + 2p21p22b12

(
2j
)
a(ν)h1+h2 + p2

22b22
(
2j
)
a(ν)2h2 .

Proof. The operator scaling properties (P6) and (P5), respectively, yield(
W
(
a(ν)2j

))
j=j1,...,jm (4.19)

d= (
P diag

(
a(ν)h1 , a(ν)h2

)
B̂a

(
2j
)

diag
(
a(ν)h1 , a(ν)h2

)
P ∗)

j=j1,...,jm
,

EW
(
a(ν)2j

)= P diag
(
a(ν)h1 , a(ν)h2

)
B
(
2j
)

diag
(
a(ν)h1 , a(ν)h2

)
P ∗, (4.20)

from which (4.16) and (4.18) follow. �
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The next theorem establishes the consistency and asymptotic normality of the estimators de-
scribed in Definition 4.1. Intuitively, the theorem states that

ĥ1
(
a(ν)2j

)≈ h1, ĥ2
(
a(ν)2j

)≈ h2 with convergence rate 2 log
(
a(ν)2j

)√
Ka,j .

Theorem 4.1. For m ∈ N, let j1 < · · · < jm be a set of fixed octaves j . Let ĥ1, ĥ2, hE
1 , hE

2 be as
in (1.7) and (4.9). Under the assumptions (OFBM1)–(4) and (4.2), as ν → ∞,

(i)

(
ĥ1
(
a(ν)2j

)
, ĥ2

(
a(ν)2j

)) P→ (h1, h2),
(4.21)(

hE
1

(
a(ν)2j

)
, hE

2

(
a(ν)2j

)) → (h1, h2),

for j = j1, . . . , jm;
(ii) (2 log

(
a(ν)2j

)√
Ka,j

[
ĥ1
(
a(ν)2j

)− hE
1

(
a(ν)2j

)]
2 log

(
a(ν)2j

)√
Ka,j

[
ĥ2
(
a(ν)2j

)− hE
2

(
a(ν)2j

)])
j=j1,...,jm

(4.22)
d→ N

(
0,�h1,h2(j1, . . . , jm)

)
.

In (4.22),

�h1,h2(j1, . . . , jm) =Q�B(j1, . . . , jm)Q∗, (4.23)

where �B(j1, . . . , jm) is the covariance matrix in (4.14), and Q = (Qjj ′)j,j ′=j1,...,jm
is a block

matrix whose blocks have dimension 2 × 3 and satisfy

Qjj =

⎛⎜⎜⎝
b22(2j )

detB(2j )
− 2b12(2j )

detB(2j )

(
b11(2j )b22(2j )

detB(2j )
− 1

)
1

b22(2j )

0 0
1

b22(2j )

⎞⎟⎟⎠ and

Qjj ′ = 0, if j �= j ′.

Proof. Fix an arbitrary j . For notational simplicity we write B = B(2j ) = (bi1,i2)i1,i2=1,2. We
also drop the subscripts j, ν in the expressions (4.16) and (4.18). Recall that the asymptotic
distribution for (B̂a(2j ))j=j1,...,jm is given by (4.13).

The statement (i) is a consequence of Lemma A.1 and Theorem 3.1. In regard to statement (ii),
the asymptotics will be written out for just one general term indexed j , but the conclusions apply
to the whole vector comprising the terms associated with j = j1, . . . , jm. Since all meaningful
limits will boil down to a function of the variables that appear on the right-hand side of (4.13),
they depend on the omitted, fixed octave j .
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Note that 2 log(a(ν)2j )[ĥi (a(ν)2j ) − hE
i (a(ν)2j )] = logλi(a(ν)2j ) − logλE

i (a(ν)2j ), i =
1,2. With probability going to 1, we can reexpress the latter for i = 1 as{

log
âĉ − b̂2

â + ĉ
− log

ac − b2

a + c

}
(4.24)

+
{

log

√
1 + (−4)(âĉ − b̂2)/(â + ĉ)2 − 1

(−4)(âĉ − b̂2)/(â + ĉ)2
− log

√
1 + (−4)(ac − b2)/(a + c)2 − 1

(−4)(ac − b2)/(a + c)2

}
.

The mean value theorem will allow us to show that the second term in the sum (4.24) does not
contribute to the asymptotic limit. Let

f1(x) = (
√

1 − x − 1)(−x)−1, f2(x) = logf1(x). (4.25)

By a second order Taylor expansion of the square root function around 1,

f ′
1(x) = 1√

1 − x

−x/2 − (
√

1 − x − 1)

x2
= 1√

1 − x

{
1

8
+ o(1)

}
→ 1

8
, x → 0. (4.26)

Therefore, limx→0 f ′
2(x) = 1

4 . Thus, the second term in the sum (4.24) can be reexpressed as

f2

(
4(âĉ − b̂2)

(â + ĉ)2

)
− f2

(
4(ac − b2)

(a + c)2

)
= f ′

2(ξabc)

{
4(âĉ − b̂2)

(â + ĉ)2
− 4(ac − b2)

(a + c)2

}
,

where the random variable ξabc lies between 4(âĉ−b̂2)

(â+ĉ)2 and 4(ac−b2)

(a+c)2 . As a consequence of

Lemma A.1, it satisfies the limit ξabc
P→ 0; hence, f ′

2(ξabc)
P→ 1

4 . By expressions (4.19) and
(4.20),

âĉ − b̂2 = a(ν)2(h1+h2) detWa

(
2j
)
, ac − b2 = a(ν)2(h1+h2) detEW

(
2j
)
. (4.27)

Thus,

(âĉ − b̂2)

(â + ĉ)2
− (ac − b2)

(a + c)2

= (âĉ − b̂2) − (ac − b2)

(a + c)2
− (

âĉ − b̂2){ 1

(a + c)2
− 1

(â + ĉ)2

}
= 1

a(ν)2(h2−h1)

{
detWa(2j ) − detEW(2j )

[O(a(ν)h1−h2) + (p2
12 + p2

22)b22]2
(4.28)

− detWa

(
2j
)[ 1

[O(a(ν)h1−h2) + (p2
12 + p2

22)b22]2

− 1

[OP (a(ν)h1−h2) + (p2
12 + p2

22)b̂22]2

]}
.
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After premultiplication by the rate factor
√

Ka,j , by (4.2) the expression (4.28) becomes

1

a(ν)2(h2−h1)

{
OP (1)

[O(a(ν)h1−h2) + (p2
12 + p2

22)b22]2
− detWa

(
2j
)

×
[

OP (1)

[O(a(ν)h1−h2) + (p2
12 + p2

22)b22]2[OP (a(ν)h1−h2) + (p2
12 + p2

22)b̂22]2

]}
(4.29)

P→ 0.

The numerators of the first and second terms appearing in the sum on the left-hand side of (4.29)
are bounded in probability as a consequence of Theorem 3.1 and of applying the mean value
theorem to the function f3(x) = x2.

We now look at the first term in the sum (4.24). In view of the relations (4.27) and by applying
the mean value theorem twice, it can be rewritten as

log
detWa(2j )

OP (a(ν)h1−h2) + (p2
12 + p2

22)b̂22
− log

detEW(2j )

O(a(ν)h1−h2) + (p2
12 + p2

22)b22
(4.30)

= 1

ξW

{
detWa

(
2j
)− detEW

(
2j
)}− 1

ξb22

{
OP

(
a(ν)h1−h2√

Ka,j

)
+ (

p2
12 + p2

22

)
(b̂22 − b22)

}
.

The random variable ξW lies between detWa(2j ) and detEW(2j ), whereas the random vari-
able ξb22 lies between OP (a(ν)h1−h2) + (p2

12 + p2
22)b̂22 and O(a(ν)h1−h2) + (p2

12 + p2
22)b22.

Moreover, these random variables display asymptotic behavior ξW
P→ detEW(2j ), ξb22

P→
(p2

12 + p2
22)b22, ν → ∞, where the latter limits stem from Theorem 3.1 and Lemma 4.1, re-

spectively. Therefore, after premultiplication by the rate factor
√

Ka,j , the expression (4.30) is
asymptotically equivalent in probability to

√
Ka,j

det B̂a(2j ) − detB(2j )

detB(2j )
−√

Ka,j

b̂22 − b22

b22
. (4.31)

Let f4(x, y, z) = xz − y2. By the mean value theorem,

det B̂a

(
2j
)− detB

(
2j
)= ∇f4(ξb11 , ξb12, ξb22)

(
vecS B̂a

(
2j
)− vecSB

(
2j
))

, (4.32)

where ∇f4(ξb11 , ξb12, ξb22)
P→ ∇f4(b11, b12, b22) as a consequence of Lemma 4.1. Reintroducing

j , from (4.29), (4.31) and (4.32), we conclude that√
Ka,j

(
logλ1

(
a(ν)2j

)− logλE
1

(
a(ν)2j

))
P∼ b22(2j )

detB(2j )

√
Ka,j

(
b̂11

(
2j
)− b11

(
2j
))

(4.33)



912 P. Abry and G. Didier

− 2
b12(2j )

detB(2j )

√
Ka,j

(
b̂12

(
2j
)− b12

(
2j
))

+
(

b11(2j )b22(2j )

detB(2j )
− 1

)√
Ka,j

(
b̂22(2j ) − b22(2j )

b22(2j )

)
.

A similar calculation can be developed for λ2(a(ν)2j ) − λE
2 (a(ν)2j ). The latter can be recast

as {
log(â + ĉ) − log(a + c)

}
(4.34)

+
{

log

(
1 +

√
1 − 4(âĉ − b̂2)

(â + ĉ)2

)
− log

(
1 +

√
1 − 4(ac − b2)

(a + c)2

)}
.

By the mean value theorem based on the function f5(x) = log(1 + √
1 − x), after premultiplica-

tion by the rate factor
√

Ka,j the second term in the sum (4.34) can be reexpressed as

f ′
5(ξabc)

√
Ka,j

{
4(âĉ − b̂2)

(â + ĉ)2
− 4(ac − b2)

(a + c)2

}
P→ 0,

since f ′
5(ξabc)

P→ − 1
4 and by (4.29). As for the first term in the sum (4.34), by the mean value

theorem we can rewrite it with probability going to 1 as

log
{
OP

(
a(ν)h1−h2

)+ (
p2

12 + p2
22

)
b̂22

}− log
{
O
(
a(ν)h1−h2

)+ (
p2

12 + p2
22

)
b22

}
= 1

ξb22

{
OP

(
a(ν)h1−h2√

Ka,j

)
+ (

p2
12 + p2

22

)
(b̂22 − b22)

}
,

where ξb22

P→ (p2
12 + p2

22)b22. As a consequence, and reintroducing j ,

√
Ka,j

{
log

(
λ2
(
a(ν)2j

))− log
(
λE

2

(
a(ν)2j

))} P∼√
Ka,j

(
b̂22(2j ) − b22(2j )

b22(2j )

)
. (4.35)

The expressions (4.33) and (4.35) for j = j1 < · · · < jm imply the weak limit (4.22) with asymp-
totic covariance matrix (4.23). �

Remark 4.1. At this point, we can shed more light on the apparent paradox anticipated in the
Introduction: the asymptotic behavior of each entry of the matrices W(a(ν)2j ) and EW(a(ν)2j )

(see (4.15) and (4.17)) is generally governed by the power law a(ν)2h2 , whereas that of the eigen-
values λ1(a(ν)2j ), λE

1 (a(ν)2j ) is dominated by a(ν)2h1 . For mathematical simplicity, consider
only the matrix EW(a(ν)2j ) under the instance A = P in (1.2), where the columns of P are unit
vectors. The operator scaling property (P5) of the wavelet transform yields

EW
(
a(ν)2j

)= P diag
(
w1a(ν)2h1 ,w2a(ν)2h2

)
P ∗, (4.36)
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where EW(2j ) = P diag(w1,w2)P
∗, for w1 = w1(2j ) > 0, w2 = w2(2j ) > 0. Then,

λE
1

(
a(ν)2j

)= inf
u∈S1

u∗EW
(
a(ν)2j

)
u ≤ u∗

0EW
(
a(ν)2j

)
u0 = w1a(ν)2h1

‖u0‖2
, (4.37)

where u0 = (P ∗)−1e1/‖(P ∗)−1e1‖ and e1 is the first Euclidean vector. In other words,
λE

1 (a(ν)2j ) cannot go to infinity faster than a(ν)2h1 .
Notwithstanding (4.37), it should be stressed that λE

1 (a(ν)2j ) does not generally follow an
exact power law. This can be seen based on the explicit expression for λE

1 (a(ν)2j ) (see (4.4)),
that is,

λE
1

(
a(ν)2j

)= 1
2

{
EW

(
a(ν)2j

)
11 + EW

(
a(ν)2j

)
22 −

√
�
(
a(ν)2j

)}
(4.38)

where �(a(ν)2j ) = (EW(a(ν)2j )11 − EW(a(ν)2j )22)
2 + 4(EW(a(ν)2j )12)

2. Under (4.36),
the matrix EW(a(ν)2j ) = (EW(a(ν)2j )i1,i2)i1,i2=1,2 can be expressed entry-wise as in (4.18)
with b11(2j ) = w1, b12(2j ) = 0 and b22(2j ) = w2. It is of interest to note that the quality of the
approximation λE

1 (a(ν)2j ) ∼ Ca(ν)2h1 increases with the difference h2 − h1. Indeed, by (4.5)
and a second order Taylor expansion of the function f (x) = √

x around 1,

λE
1

(
a(ν)2j

) = 2 detEW(2j )

w1a(ν)2(h1−h2) + w2
a(ν)2h1

(4.39)

×
{

1

2
+ 1

2

detEW(2j )

[w1a(ν)2(h1−h2) + w2]2

1

a(ν)2(h2−h1)
+ o

(
1

a(ν)2(h2−h1)

)}
.

The discussion and conclusions presented in this remark can be easily generalized beyond the
instance (4.36).

Remark 4.2. In practice, the choice of a(ν) involves a statistical compromise. A large value of
a(ν) with respect to ν implies that the estimator variance is relatively large and the estimator
distribution is not very close to Gaussian, but it also yields a relatively small bias. Computational
experiments suggest that the ratio ν/a(ν)2j should be no less than 23.

4.2. The weak limit of unit eigenvectors

For given j, log2 a(ν) ∈ N, consider the relation (4.7) for the eigenvector entries

v̂
(
a(ν)2j

)= (
v̂1
(
a(ν)2j

)
, v̂2

(
a(ν)2j

))∗ ∈ R
2 (4.40)

associated with the smallest eigenvalue λ1 := λ1(a(ν)2j ) of the (symmetric) sample wavelet
variance matrix Ŝ := W(a(ν)2j ). Further consider their wavelet variance counterparts
(v1(a(ν)2j ), v2(a(ν)2j ))∗, λE

1 := λE
1 (a(ν)2j ) and S := EW(a(ν)2j ). The ratios (v̂2/

v̂1)(a(ν)2j ), (v2/v1)(a(ν)2j ) represent the tangents of the angles that determine the associ-
ated eigenspaces. In the next definition, we propose to use (v̂2/v̂1)(a(ν)2j ) as an estimator of
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the tangent of the angle determined by the entries of P associated with λ1 when P ∈ O(2), that
is, tan(θ) = −p12/p22. For notational simplicity, we will just write

θ = −p12

p22
. (4.41)

Definition 4.2. Let j, log2 a(ν) ∈ N. Under the assumptions of Definition 4.1, we define the
estimator of θ (see (4.41)) at scale a(ν)2j and its wavelet spectrum counterpart as

θ̂
(
a(ν)2j

) =
(

v̂2

v̂1

)(
a(ν)2j

)= λ1(a(ν)2j ) − âj,a(ν)

b̂j,a(ν)

,

(4.42)

θ
(
a(ν)2j

) =
(

v2

v1

)(
a(ν)2j

)= λE
1 (a(ν)2j ) − aj,a(ν)

bj,a(ν)

,

where the definition of each individual term on the right-hand side of the expressions in (4.42) is
given by (4.8), (4.9), (4.15) and (4.17).

The consistency and asymptotic normality of the estimator θ̂ (a(ν)2j ) in (4.42) are precisely
stated and shown in Theorem 4.2 below. The limits themselves do not depend on the orthogonal-
ity of P . Note that the parametric assumption (4.43) below rules out diagonal wavelet spectra,
the latter being associated with entry-wise scaling instances of OFBM (as in (1.4)). For further
comments on the assumptions of Theorem 4.2, see Remark 4.4.

Theorem 4.2. Let j ∈N, and let θ̂ (a(ν)2j ), θ(a(ν)2j ) be as in (4.42). Suppose the assumptions
(OFBM1)–(4) and (4.2) hold, as well as the parametric assumption p22 �= 0.

(i) If

either p12 �= 0 or p12 = 0 and b12 �= 0, (4.43)

then

θ̂
(
a(ν)2j

) P→ θ = −p12

p22
, θ

(
a(ν)2j

)→ θ = −p12

p22
, ν → ∞; (4.44)

(ii) if

p12 �= 0 and b12 �= 0, (4.45)

then,

a(ν)h2−h1
√

Ka,j

{
θ̂
(
a(ν)2j

)− θ
(
a(ν)2j

)} d→ N
(
0, σ 2

θ

)
, ν → ∞. (4.46)

In (4.46), σ 2
θ = R∗�B(2j )R, where �B(2j ) is the 3 × 3 block, associated with j , on the main

diagonal of �B(j1, . . . , jm) (see (4.13)), and R∗ = detP
b22(2j )p2

22
(0,−1,

b12(2j )

b22(2j )
).

Proof. As in the proof of Theorem 4.1, we will drop the subscripts j and ν whenever con-
venient. To show (i) for θ(a(ν)2j ), first assume that p12 �= 0. The property (P7) ensures that
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b22 �= 0, whence b = bj,a(ν) �= 0 for large ν in expression (4.18). The same applies to a = aj,a(ν).
Therefore, v1 �= 0 in (4.7), and

v2

v1
= a

b

(
λE

1

a
− 1

)
∼ −p12

p22
, ν → ∞, (4.47)

by Lemma A.1.
Now assume that p12 = 0. Then, p11 �= 0, and a = aj,a(ν) �= 0 for large ν. Since b12 �= 0 by

assumption, then b = bj,a(ν) �= 0. Again, the limit (4.47) follows.
In regard to θ̂ (a(ν)2j ), in either case in (4.43) the relations above can be simply rewritten for

Ŝ = W(a(ν)2j ) with eigenvector v̂. Because of (4.13), B̂a(2j )
P→ B(2j ) and thus the expression

v̂2/v̂1 is well-defined with probability going to 1, as ν → ∞. Again by Lemma A.1, v̂2/v̂1
P→

−p12
p22

.

For the ensuing developments, recall that b−1
22 is well defined. So, to show (ii), reexpress

a(ν)h2−h1
√

Ka,j

[(
λ1 − â

b̂

)
−
(

λE
1 − a

b

)]
(4.48)

= a(ν)h2−h1
√

Ka,j

{
λ1

b̂
− λE

1

b

}
+ a(ν)h2−h1

√
Ka,j

{
a

b
− â

b̂

}
.

The first term on the right-hand side of (4.48) can be further developed into

a(ν)h2−h1
1

b̂

√
Ka,j

{
λ1 − λE

1

}+ a(ν)h2−h1(−1)
λE

1

b

√
Ka,j

{
b̂ − b

b̂

}
. (4.49)

In view of Lemmas A.1 and 4.1,

λE
1

b
∼ 1

a(ν)2(h2−h1)

detEW(2j )

p12p22b
2
22(p

2
12 + p2

22)
,

√
Ka,j

{
b̂ − b

b̂

}
P∼ √

Ka,j

{b̂22 − b22}
b̂22

d→ N(0, σ 2(b22(2j )))

b22(2j )
,

where σ 2(b22(2j )) comes from the matrix �B(j1, . . . , jm) in (4.13). Consequently, in regard to
the second term in the sum (4.49),

a(ν)h2−h1(−1)
λE

1

b

√
Ka,j

{
b̂ − b

b̂

}
P→ 0. (4.50)

We now look at the first term in the sum (4.49). Let r̂ = 4 âĉ−b̂2

(â+ĉ)2 and r = 4 ac−b2

(a+c)2 . Then,

√
Ka,j

{
λ1 − λE

1

} = √
Ka,j

{
2

(
âĉ − b̂2

â + ĉ

)
− 2

(
ac − b2

a + c

)}(√
1 − r̂ − 1

−r̂

)
(4.51)

+ 2

(
ac − b2

a + c

)√
Ka,j

{(√
1 − r̂ − 1

−r̂

)
−
(√

1 − r − 1

−r

)}
.
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By the same reasoning leading to (4.29),

√
Ka,j

{
2

(
âĉ − b̂2

â + ĉ

)
− 2

(
ac − b2

a + c

)}
= a(ν)2h1

{
OP (1)

O(a(ν)h1−h2) + (p2
12 + p2

22)b22
(4.52)

+ detW
(
2j
) OP (1)

[OP (a(ν)h1−h2) + (p2
12 + p2

22)b22][O(a(ν)h1−h2) + (p2
12 + p2

22)b̂22]
}
.

Moreover, for f1(x) as in (4.25), with probability going to 1 the mean value theorem gives√
Ka,j {f1(r̂)−f1(r)} = f ′

1(ξr )
√

Ka,j (r̂ −r), where the random variable ξr lies between r and r̂ .
Thus, by (A.3), (A.4), (4.26) and (4.29),

f ′
1(ξr )

P→ 1

8
,

√
Ka,j (r̂ − r)

P∼ OP (1)

a(ν)2(h2−h1)
. (4.53)

Therefore, by (4.52), (4.53), (A.3) and (A.4), the first term in (4.49) is asymptotically equivalent
in probability to

a(ν)h2−h1

(
1

[OP (a(ν)h1−h2) + p12p22b̂22]
1

a(ν)2h2

)
(4.54)

× a(ν)2h1

{
OP (1) + OP (1)

a(ν)2(h2−h1)

}
P→ 0.

As a consequence, in regard to the first term on the right-hand side of (4.48),

a(ν)h2−h1
√

Ka,j

{
λ1

b̂
− λE

1

b

}
P→ 0. (4.55)

We now turn to the second term on the right-hand side of (4.48). Note that

a

b
− â

b̂
= a(b̂ − b) − b(â − a)

bb̂

P∼ a(ν)−4h2
a(b̂ − b) − b(â − a)

p2
12p

2
22b

2
22(2

j )
. (4.56)

Note that the ratio on the right-hand side of (4.56) is well defined, since p12,p22 �= 0, by as-
sumption. Recall the expressions (4.16) and (4.18) and denote a(ν)−2h2a, a(ν)−2h2b, a(ν)−2h2 â

and a(ν)−2h2 b̂, respectively, by

O
(
a(ν)2(h1−h2)

)+ α12a(ν)h1−h2 + α22, O
(
a(ν)2(h1−h2)

)+ β12a(ν)h1−h2 + β22,
(4.57)

OP

(
a(ν)2(h1−h2)

)+ α̂12a(ν)h1−h2 + α̂22 and OP

(
a(ν)2(h1−h2)

)+ β̂12a(ν)h1−h2 + β̂22.

For the sake of mathematical clarity, we will henceforth omit the terms of order a(ν)2(h1−h2) in
the expressions (4.57), since the ensuing argument can be easily adapted to account for them. So,
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based on (4.57), we can rewrite the numerator in (4.56) as(
α12a(ν)h1−h2 + α22

){
(β̂12 − β12)a(ν)h1−h2 + (β̂22 − β22)

}
− (

β12a(ν)h1−h2 + β22
){

(α̂12 − α12)a(ν)h1−h2 + (α̂22 − α22)
}

(4.58)

= a(ν)h1−h2
{(

α12a(ν)h1−h2 + α22
)
(β̂12 − β12) − (

β12a(ν)h1−h2 + β22
)
(α̂12 − α12)

}
+ a(ν)h1−h2

{
α12(β̂22 − β22) − β12(α̂22 − α22)

}
,

where the equality is a consequence of the fact that α22(β̂22 − β22) − β22(α̂22 − α22) = 0. When
premultiplied by a(ν)h2−h1

√
Ka,j , the first term in the sum (4.58) is asymptotically equivalent

in probability to√
Ka,j

{
α22(β̂12 − β12) − β22(α̂12 − α12)

} d→ −p2
12b22

(
2j
)

det(P )N
(
0, σ 2(b12

(
2j
)))

, (4.59)

where σ 2(b12(2j )) is taken from the matrix �B(j1, . . . , jm) in (4.13). In turn, when premultiplied
by a(ν)h2−h1

√
Ka,j , the second term in the sum (4.58) is asymptotically equivalent in probability

to √
Ka,j

{
α12(β̂22 − β22) − β12(α̂22 − α22)

} d→ p2
12b12

(
2j
)

det(P )N
(
0, σ 2(b22

(
2j
)))

. (4.60)

In view of (4.55), and assuming p22 > 0, the relation (4.46) is obtained by dividing the sum of
the weak limits (4.59) and (4.60) by the denominator on the right-hand side of (4.56). �

Remark 4.3. From a different but mathematically equivalent perspective, the statement (4.44)
implies that W(a(ν)2j ) and EW(a(ν)2j ) have sequences of unit eigenvectors associated with
λ1(a(ν)2j ) and λE

1 (a(ν)2j ), respectively, which converge (in probability and deterministically,
respectively) to the limiting unit vector( |p22|√

p2
12 + p2

22

,
−p12 sign(p22)√

p2
12 + p2

22

)
. (4.61)

If P ∈ O(2), then eigenvectors of H in two orthogonal directions can be consistently estimated
by the eigenvectors of W(a(ν)2j ). In view of (4.61), there is also a unit eigenvector associated
with λ2(a(ν)2j ) that converges to (p21,−p11)

∗, since the latter is orthogonal to (p22,−p12)
∗. It

is easy to see that the latter vectors generate the same (eigen)spaces as (p12,p22)
∗, (p11,p21)

∗,
respectively.

Remark 4.4. In regard to the assumptions of Theorem 4.2, when p22 = 0, it is clear that (4.42)
cannot be consistent. By a similar proof to that of Theorem 4.2, asymptotic normality (with dif-
ferent variances) for {θ̂ (a(ν)2j ) − θ(a(ν)2j )} can also be established when p12 = 0 or b12 = 0.
In the former case, for instance, the convergence rate is a(ν)h2−h1

√
Ka,j or

√
Ka,j , respectively,

depending on whether b12 �= 0 or both b12 = 0 and p21 �= 0.
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Remark 4.5. In Theorem 4.2, the convergence rate is the non-standard a(ν)h2−h1
√

Ka,j ∼
a(ν)h2−h1−1/2

√
ν/2j , which depends on the parameters to be estimated h1, h2. In practice, since

a(ν) is much slower than ν (see condition (4.2)), its effect may not be noticeable (see Section 5
below).

Remark 4.6. Substituting λ2(a(ν)2j ) for λ1(a(ν)2j ) in (4.42) does not provide information on
p11 or p21. Under mild assumptions on the parameters, Lemma A.1 yields

a

b

(
λ2(a(ν)2j )

a
− 1

)
P→ p22

p12
.

5. Simulation studies

In this section, we lay out and discuss a broad computational study of the performance of the
proposed estimators. OFBM was simulated by means of the Hermir Toolbox, devised in Hel-
gason et al. [25,26] and available at www.hermir.org. When describing the results, we drop the
asymptotic scaling factor a(ν) used in Theorems 4.1 and 4.2 and only speak of shifting scales
2j ∈ N.

The chosen sample path size was ν = 216. The purpose of picking a large ν was to provide a
compelling illustration of the estimators’ ability to capture both Hurst eigenvalues. In biomedical
applications, typical recordings can be much shorter (of the order ν = 210; see, for instance,
Ivanov [28]). Nevertheless, sample paths of size ν = 216 are, indeed, encountered in Internet
traffic analysis (Abry et al. [1]) and hydrodynamic turbulence (Frisch [24]).

In the wavelet analysis, we used least asymmetric orthogonal Daubechies wavelets with Nψ =
2 (Daubechies [13], Chapters 6–8). It was verified that similar conclusions can be obtained when
using Nψ > 2 or some other wavelet with a large enough number of vanishing moments.

Remark 5.1. In practice, a continuous time OFBM sample path is not available and thus the
theoretical wavelet coefficient D(2j , k) cannot be computed. Instead, one approximates the latter
by means of the classical recursive (or pyramidal) discrete filter bank algorithm (Mallat [35],
Chapter 7). The algorithm’s main input is a discrete time sequence, which, following Veitch
et al. [49], can be a discrete OFBM sample {BH (k)}k∈T , T ⊆ Z. In Section C of Abry and
Didier [2], we lay out in detail the mathematical framework for estimation based on discretized
wavelet coefficients. In the main result of the section, Theorem C.1, we establish that, under
mild conditions, the estimated Hurst eigenvalues and eigenvector stemming from the pyramidal
algorithm also satisfy the weak limits (4.22) and (4.46), respectively.

5.1. Entry-wise vs eigenvalue-based estimation

A matrix W(2j ) was computed from a single sample path (of size ν = 216) of a synthetic OFBM
with matrix parameters P = (0.98 0.57

0.20 0.82

)
, JH = diag(0.25,0.85). In the spirit of the entry-wise

http://www.hermir.org
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approach, the wavelet-based estimation of the Hurst eigenvalues relies on performing a linear
regression on a log2 W(2j ) vs j = log2 2j diagram, motivated by the log-transformed scalar
version of EW(2j ) as in (P5), i.e., EW(2j ) = C(H)2j2H for some C(H) > 0. This is shown
for each auto- and cross-wavelet components of the bivariate OFBM in Figure 1. The top row
displays, in order, plots for log2 W(2j )1,1 vs j = log2 2j , log2 W(2j )1,2 vs j = log2 2j and
log2 W(2j )2,2 vs j = log2 2j . The asymptotic behavior j2h2 is superimposed on each of these
plots. In view of the expression (4.16), it is unsurprising that at coarse scales all auto- and cross-
components end up driven by the dominant Hurst eigenvalue h2. In other words, the conspicuous
prevalence of the latter precludes the estimation of the Hurst eigenvalue h1. By contrast, Fig-
ure 1, bottom row, displays, in order, plots for log2 λ1(2j ) vs j = log2 2j and log2 λ2(2j ) vs
j = log2 2j , as well as the superimposed asymptotic behaviors j2h1 and j2h2, respectively. The
eigenvalue-based procedure leads to two scaling laws individually driven by each of the Hurst
eigenvalues h1 and h2.

5.2. Estimation performance and asymptotic normality

We also numerically synthesized 10,000 bivariate OFBM sample paths to study the finite-sample
effectiveness of the normal approximation described in Theorem 4.1. For each path, the esti-
mates W(2j ), λ1(2j ), λ2(2j ) and v̂2(2j )/v̂1(2j ) were computed. Averaging over realizations
yields Monte Carlo estimates Êλ1(2j ), Êλ2(2j ) and Êp12(2j )/p22(2j ) of the ensemble av-
erages Eλ1(2j ), Eλ2(2j ) and −Eθ̂(2j ), together with estimates of the variances V̂arλ1(2j ),
V̂arλ2(2j ), V̂arθ(2j ).

In Figures 2, 3 and 4, the simulated OFBM has parameter JH = diag(0.25,0.85) and path
size ν = 216 for the three cases, but different mixing matrices of the general form P =(1/

√
1+γ 2 β/

√
1+β2

γ /
√

1+γ 2 1/
√

1+β2

)
. In this parametrization, β = −θ (see (4.41)). The simulated instances are

representative of different parametric settings. The choice β = 0.7, γ = 0.2 (Figure 2) illustrates
the situation of a general mixing matrix P . The choice β = −γ and β/

√
1 + β2 = sinπ/6 (Fig-

ure 3) represents the case P ∈ O(2), whereas γ = 0 and β = 0.2 (Figure 4) portrays the case
often referred to as fractional cointegration. A comparison of the estimates (black solid lines
with ‘o’) with the theoretical values (red dashed lines) in Figures 2, 3, and 4 reveals the robust-
ness of the proposed estimators (top row). The qq-plots (bottom row) also show that no deviation
from a N (0,1) distribution can be observed within ±2 standard deviations for log2 λ1(2j ) and
log2 λ1(2j ), and within ±2 standard deviations for p12/p22.

The simulations indicate that, beyond asymptotics, Theorem 4.1 for ĥ1(2j ) and ĥ2(2j ),
and Theorem 4.2 for θ̂ (2j ) = −β̂(2j ) provide effective normal approximations to the finite-
sample estimator distributions. Whether or not P ∈ O(2) does not impact the performance of
log2 λ1(2j )/2j , log2 λ2(2j )/2j and β̂(2j ). However, assuming P ∈ O(2) additionally allows
for the full estimation of P , and thus of H , as discussed in Remark 4.3 and illustrated in Fig-
ure 5.
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Figure 2. Estimation performance and asymptotic normality: OFBM with γ = 0.2 and β = 0.7. Top

row: black solid lines with “o” show Êϑ̂ ±
√

V̂arϑ̂/n for ϑ̂ = log2 λ1(2j )/2j , log2 λ2(2j )/2j and

p12(2j )/p22(2j ) (target parameters: h1 (left plots), h2 (center plots), p12/p22 (right plots), respectively),
red dashed lines corresponding to theoretical values. Bottom row, the corresponding qq-plots (against
N (0,1) distributions) for j = 10.

5.3. Beyond the bivariate setting

It is natural to ask whether in higher dimension the eigenvalues of the sample wavelet variance
are good estimators of the Hurst eigenvalues. Figure 6 shows eigenvalue-based estimation at
work for n = 4, with log2 λp(2j )/2j , for p = 1,2,3,4, averaged over 2000 realizations of an
OFBM with parameters

P =

⎛⎜⎜⎜⎝
0.90 −0.22 −0.30 −0.22

0.43 0.45 0.63 0.46

0 −0.85 0.40 0.30

0 0 −0.59 0.81

⎞⎟⎟⎟⎠
and JH = diag(0.20,0.40,0.70,0.90), N = 216. The computational results indicate that the
smallest and largest eigenvalues of W(2j ) are still good estimators of the smallest and largest
entries of JH . Furthermore, there is evidence that the method produces reasonable estimates of
all the intermediate-valued entries of JH based on the corresponding intermediate eigenvalues
of W(2j ). In regard to eigenvector estimation under the assumption P ∈ O(4), unreported nu-
merical studies suggest that the sample wavelet variance eigenvectors are also good estimators
of P .
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Figure 3. Estimation performance and asymptotic normality: OFBM with γ = −β and

β/
√

1 + β2 = sinπ/6. Top row: black solid lines with “o” show Êϑ̂ ±
√

V̂arϑ̂/n for ϑ̂ = log2 λ1(2j )/2j ,

log2 λ2(2j )/2j and p12(2j )/p22(2j ) (target parameters: h1 (left plots), h2 (center plots), p12/p22 (right
plots), respectively), red dashed lines correspond to theoretical values. Bottom row, corresponding qq-plots
(against N (0,1) distributions) for j = 10.

6. Perspectives and open issues

OFBM constitutes the natural multivariate extension of the univariate FBM, allowing a different
Hurst eigenvalue in each coordinate, in an arbitrary coordinate system. When the mixing ma-
trix P is non-diagonal, the problem of estimating H becomes distinctively multivariate and is
not easily amenable to approaches inspired in the univariate context. In this work, we propose
a change of perspective from univariate-like, entry-wise scaling relations to the eigenstructure
of the sample wavelet variance W(2j ) across scales. In the bivariate setting, this methodology
is mathematically shown to yield consistent and asymptotically normal estimates of the Hurst
eigenvalues as well as of the eigenspace angle parameter −p12/p22. Consequently, the matrix
Hurst parameter H can be fully estimated when P ∈ O(2). Large sample size simulation was
used to illustrate and shed further light on the weak limits obtained. The research contained
in this paper has lead to five open issues, currently under investigation: (i) the quantitative as-
sessment of the performance of the estimators as a function of sample size; how much data is
demanded by the difficult problem of estimating operator-scaling systems, especially in high
dimension?; (ii) is there an advantage to using multiple scales in a regression, as in univari-
ate wavelet-based estimation?; (iii) mathematical extensions to OFBM in higher dimension; (iv)
the estimation of non-orthogonal coordinate systems; (v) applications in real data. In the near
future, a MATLAB toolbox for the estimators proposed in this paper will be made publicly avail-
able.
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Figure 4. Estimation performance and asymptotic normality: OFBM with γ = 0 and β = 0.2. Top

row: black “o” in solid lines show Êϑ̂ ±
√

V̂arϑ̂/n for ϑ̂ = log2 λ1(2j )/2j , log2 λ2(2j )/2j and

p12(2j )/p22(2j ) (target parameters: h1 (left plots), h2 (center plots), p12/p22 (right plots), respectively),
red dashed lines correspond to theoretical values. Bottom row, corresponding qq-plots (against N (0,1)

distributions) for j = 10.

Appendix: Additional results

Proof of Proposition 3.1. We first show (P1). Since the covariance function EBH (s)BH (t)∗ is
continuous, by Cramér and Leadbetter [12], page 86, it suffices to show that∫

R

∫
R

∥∥EBH (s)BH (t)∗
∥∥

l1

∣∣ψ(s)
∣∣∣∣ψ(t)

∣∣ds dt < ∞. (A.1)

In fact, ∥∥EBH (s)BH (t)∗
∥∥

l1

=
n∑

i1=1

n∑
i2=1

∣∣EBH (s)i1BH (t)i2

∣∣ (A.2)

≤
(

n∑
i1=1

√
EBH (s)2

i1

)(
n∑

i2=1

√
EBH (t)2

i2

)
.

However, by operator self-similarity, ‖EBH (t)BH (t)∗‖l∞ = ‖tH �tH
∗‖l∞ ≤ C|t |2 max� eig(H)

for t ∈ R. Therefore, (A.2) is bounded by C|t |max� eig(H)|s|max� eig(H). By conditions (2.6), (2.7)
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Figure 5. Estimation performance when P ∈ O(2): OFBM with γ = −β and β/
√

1 + β2 = sinπ/6. Es-
timates p̂k,l (2

j ), k, l ∈ {1,2}2 (black solid lines with ‘o’) of the entries of P , pk,l (red dashed line), from
the eigenvectors of the W(2j ). When P ∈ O(2), both P and JH can be estimated, and the matrix exponent
H is fully estimated.

and (2.8), (A.1) holds. The former three conditions and the fact that E‖BH (t)‖l1 < ∞ yield

E

∫
R

∣∣ψ(t)
∣∣∥∥BH

(
2j t + 2j k

)∥∥
l1

dt

≤ C

∫
R

∣∣ψ(t)
∣∣E∥∥BH (t + k)

∥∥
l1

dt

≤ CE
∥∥BH (1)

∥∥∫
R

∣∣ψ(s − k)
∣∣∥∥sH

∥∥
l1

ds < ∞,

where we used the change of variables s = t +k. By Fubini, this yields ED(2,k) = 0, as claimed.
In view of (P1), the properties (P2), (P3) and (P5) and can be established by arguments similar

to those for the univariate case (see, for instance, the argument in Delbeke and Abry [16], The-
orem 3 for the former two, and Bardet [6], Proposition II.1, for the latter). The property (P6) is
a consequence of (P3). Note that

∫
R

ei2j xtψ(t) dt = Cψ̂(2j x) for some constant C > 0. There-
fore, the property (P4) is a consequence of the harmonizable representation (1.2), and also of
the conditions (2.6), (2.7) and (2.8); the latter ensure that the integrand in (3.2) is well-defined

in R. We now show (P7). Since ψ ∈R, then ψ̂(−2j x) = ψ̂(2j x). Thus, by a change of variables
y = −x over the integration domain x < 0 we can rewrite (3.2) as

EW
(
2j
)= C2j

∫ ∞

0
x−D2�(AA∗)x−D∗ |ψ̂(2j x)|2

x2
dx

for some C > 0. Since supp ψ̂(x) has positive Lebesgue measure, then (2.10) yields
v∗EW(2j )v > 0, v ∈ C

n \ {0}. �
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Figure 6. Estimation performance and asymptotic normality: OFBM in dimension 4. Top row: black solid lines with “o” show Êϑ̂ ±
√

V̂arϑ̂/n

for ϑ̂ = log2 λ1(2j )/2j , log2 λ2(2j )/2j , log2 λ3(2j )/2j and log2 λ4(2j )/2j (target parameters: h1, h2, h3, h4, respectively, with the plots in the
same order), red dashed lines correspond to theoretical values. Bottom row, corresponding qq-plots (against N (0,1) distributions) for j = 10.
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Lemma A.1. Fix j ∈ N. Under (OFBM1)–(4) and (4.2), let EW(a(ν)2j ) and W(a(ν)2j ) be as
in Lemma 4.2. Then, the following limits hold, as ν → ∞:

4(ac − b2)

a + c
∼ 4 detEW(2j )

(p2
12 + p2

22)b22(2j )
a(ν)2h1 ,

(A.3)
4(ac − b2)

(a + c)2
∼ 4 detEW(2j )

((p2
12 + p2

22)b22(2j ))2

1

a(ν)2(h2−h1)
,

4(âĉ − b̂2)

â + ĉ

P∼ 4 detW(2j )

(p2
12 + p2

22)b̂22(2j )
a(ν)2h1 ,

(A.4)
4(âĉ − b̂2)

(â + ĉ)2

P∼ 4 detW(2j )

((p2
12 + p2

22)b̂22(2j ))2

1

a(ν)2(h2−h1)
,

(1 −√
1 − 4(ac − b2)/(a + c)2)

4(ac − b2)/(a + c)2
→ 1

2
,

(1 −
√

1 − 4(âĉ − b̂2)/(â + ĉ)2)

4(âĉ − b̂2)/(â + ĉ)2

P→ 1

2
, (A.5)

λE
1 ∼ detEW(2j )

(p2
12 + p2

22)b22(2j )
a(ν)2h1 , λ1

P∼ detW(2j )

(p2
12 + p2

22)b̂22(2j )
a(ν)2h1 , (A.6)

λE
2 ∼ (

p2
12 + p2

22

)
b22

(
2j
)
a(ν)2h2 , λ2

P∼ (
p2

12 + p2
22

)
b̂22

(
2j
)
a(ν)2h2 . (A.7)

Proof. In regard to λ1 and λE
1 , consider the relation (4.5). By Lemma 4.2,

4(ac − b2)

a + c
(A.8)

= 4a(ν)2(h1+h2) detEW(2j )

(p2
11 + p2

21)b11a(ν)2h1 + 2(p11p12 + p21p22)b12a(ν)h1+h2 + (p2
12 + p2

22)b22a(ν)2h2
,

where the determinant is non-trivial due to the property (P7). Again from Lemma 4.2 and by ap-
plying Theorem 3.1, an analogous expression holds for 4(âĉ− b̂2)/(â+ ĉ). Then, the expressions
(A.3), (A.4), (A.5), (A.6) follow.

An analogous reasoning applied to λ2 and λE
2 leads to (A.7), since the relation (4.6),

Lemma 4.2 and Theorem 3.1 show that λE
2 ∼ a + c, λ2

P∼ â + ĉ. �
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Supplementary Material

Supplement to “Wavelet estimation for operator fractional Brownian motion” (DOI:
10.3150/15-BEJ790SUPP; .pdf). In Section B of the supplementary file Abry and Didier [2],
we provide several additional auxiliary results and proofs. In Section C, the performance of the
estimators is established under the assumption that only discrete observations are available, in-
stead of a full sample path.
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