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We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional
sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers [J. R. Stat. Soc.
Ser. B. Stat. Methodol. 72 (2010) 269–342]. Our main findings are that the essential boundedness of po-
tential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the
uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric)
rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically
ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and
quantitative bounds rely on a novel non-asymptotic analysis of the expectation of a standard normalizing
constant estimate with respect to a “doubly conditional” SMC algorithm. In addition, our results for i-cSMC
imply that the rate of convergence can be improved arbitrarily by increasing N , the number of particles in
the algorithm, and that in the presence of mixing assumptions, the rate of convergence can be kept constant
by increasing N linearly with the time horizon. We translate the sufficiency of the boundedness condition
for i-cSMC into sufficient conditions for the particle Gibbs Markov chain to be geometrically ergodic and
quantitative bounds on its geometric rate of convergence, which imply convergence of properties of the par-
ticle Gibbs Markov chain to those of its corresponding Gibbs sampler. These results complement recently
discovered, and related, conditions for the particle marginal Metropolis–Hastings (PMMH) Markov chain.

Keywords: geometric ergodicity; iterated conditional sequential Monte Carlo; Metropolis-within-Gibbs;
particle Gibbs; uniform ergodicity

1. Introduction

Particle Markov chain Monte Carlo (P-MCMC) methods are a set of recently proposed sam-
pling techniques particularly well suited to the Bayesian estimation of static parameters in
general state–space models [1], although their scope extends beyond this class of models. At
an abstract level, once the likelihood function and prior are defined, inference for this class
of models relies on a probability distribution π(dθ × dx), defined on some measurable space
(� × X,B(�) × B(X)), where θ is generally a low dimensional static parameter, the static pa-
rameter, while x, the hidden state of the system, is a large vector with a non-trivial dependence
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structure. Here, B(·) denotes the σ -algebra related to the corresponding space. In practice, the
complexity of such probability distributions requires the use of sampling techniques to effec-
tively carry out inference. When θ is known sequential Monte Carlo methods (SMC), or particle
filters, are particularly suitable to carry out inference about x by approximately sampling from
the conditional distribution πθ (dx). These algorithms rely on interacting particle systems and
their performance and accuracy can be improved by increasing the number N of such particles.
P-MCMC realises the synthesis between SMC methods and classical Markov chain Monte Carlo
(MCMC) methods, that is it allows the construction of Markov transition probabilities leaving
π(dθ × dx) at least marginally invariant and from which it is possible to sample realisations
{(θi,Xi), i ≥ 0} with attractive efficiency properties.

The particle marginal Metropolis–Hastings (PMMH) method is one such algorithm, which
takes advantage of the availability of unbiased estimators of the likelihood function to provide an
exact approximation of an idealized algorithm which computes the likelihood function exactly.
The algorithm simply consists of replacing the true value of the likelihood function required to
implement the standard Metropolis–Hastings (MH) algorithm with estimators, but is nevertheless
guaranteed to be correct in that it leaves the required distribution of interest marginally invariant.
In PMMH, the estimator of the likelihood is a byproduct of a sequential Monte Carlo (SMC)
algorithm, whose accuracy can be improved by increasing N .

In contrast, the particle Gibbs (PGibbs) sampler [1] involves approximating a Gibbs sampler
which consists of constructing a Markov chain {(θi,Xi), i ≥ 0}, by repeatedly sampling from
πθ (dx) and πx(dθ) in turn. In practice, sampling from πθ (dx) may be particularly difficult and
the conditional SMC (cSMC) [1] update is a Markov transition probability PN,θ which leaves
πθ (dx) invariant, therefore allowing the implementation of a Metropolis-within-Gibbs algorithm,
that is a Markov transition probability leaving π(dθ × dx) invariant. The cSMC relies for its
construction, as suggested by its name, on an SMC-like procedure and it is expected that as N

increases PN,θ approaches πθ (dx).
While PMMH methods have been studied in a series of papers [4,5,11,14,24], a theoretical

study of the PGibbs is still missing. Indeed it has been shown that as N increases, performance
of the PMMH approaches that of the exact MH algorithm but the question of the approximation
of the Gibbs sampler by a PGibbs has not been addressed to date. We note however that a study
of one of its components, the cSMC update, has recently been undertaken in [8], in which a
coupling argument is central to their analysis. We refer to the Markov chain obtained by iterating
the cSMC algorithm for a fixed target distribution as iterated i-cSMC here in order to distinguish
it from that of the PGibbs. The present manuscript addresses questions concerning the i-cSMC
similar to those of [8], but our results differ in many respects and complement their findings in
several directions. At a technical level, our approach seems to be more straightforward in the
scenario considered, relies on weaker assumptions for uniform convergence which we prove are
necessary and sufficient and lead to quantitative bounds on performance measures in terms of
the number N of particles involved. We additionally transfer sufficient conditions for uniform
ergodicity of the i-cSMC Markov chain into sufficient conditions for geometric ergodicity of
the associated PGibbs Markov chain, the main motivation behind our work. This allows us in
particular to show that under some conditions PGibbs is asymptotically as efficient as the Gibbs
sampler as the number N of particles increases.

Contemporary to the first version of the present manuscript [3,16] have also provided essen-
tially the same sufficient conditions for the uniform convergence of the i-cSMC Markov chain
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(Theorem 1, Section 3) using a different proof technique. Here we have further established that
the aforementioned conditions are also necessary for uniform convergence in general, but also
geometric ergodicity in many realistic scenarios (Section 6). Similarly to us [16] also provide
quantitative bounds and associated scaling properties of the i-cSMC, albeit for a different set of
specialised conditions (a detailed comparison of the assumptions is provided after Theorem 3 at
the end of Section 3). We have also very recently become aware of the contribution [10] to the
analysis of the properties of the cSMC, established using the formalism of [9], but their practical
implications are unclear. Similarly to [8,16] do not attempt to address the practically important
question of how uniform ergodicity of the i-cSMC can be translated into geometric ergodicity of
the PGibbs sampler, an issue we address in Section 7. In Section 8, we contrast the results ob-
tained in this paper concerning the i-cSMC and PGibbs algorithm with known results concerned
with other particle MCMC methods and draw final conclusions.

Similarly to SMC methods, the cSMC and associated algorithms are complex mathematical
objects which require the introduction of sometimes overwhelming notation which may obscure
the main ideas. In the next section, we attempt to remedy this by presenting our results in a
simplified scenario, which captures our main ideas, before moving on to the general scenario.

2. Statement of our results in a simplified scenario

We first explain our results on a particularly simple instance of the i-cSMC algorithm. This
should provide the reader with the essence of the results proved later on in the general scenario,
while its simple structure will allow us to outline the main idea behind our proof in the general
set-up (in Section 4).

Assume we are interested in sampling from a probability distribution π on some measurable
space (X,B(X)). We define the probability distribution π̃ on {1, . . . ,N} × XN

π̃
(
k,dz1:N ) = 1

N
π

(
dzk

) N∏
j=1,j �=k

M
(
dzj

)
, (1)

for some probability distribution M defined on (X,B(X)) and such that for any S ∈ B(X) such
that π(S) > 0 then M(S) > 0. As pointed out in the authors’ discussion reply of [1], in this
simple scenario one can define an MCMC algorithm targeting π by iterating the classical sam-
pling importance resampling (SIR) procedure. More specifically, we sample alternately from
(a) Z1:N\k | (K = k,Zk = zk) ∼ ∏N

i=1,i �=k M(zi) and (b) K | (Z1:N = z1:N) ∼ π̃ (k|z1:N), where

Z1:N\k := (Z1,Z2, . . . ,Zk−1,Zk+1, . . . ,ZN). Owing to the fact that this algorithm is a Gibbs
sampler on the distribution above and from the standard interlacing property of the two stage
Gibbs sampler, one can check that the sequence {ZKi

i } defines a Markov chain with invariant
distribution π , and that its transition kernel is for any (x, S) ∈ X ×B(X)

PN(x,S) =
∫

XN−1

N∑
k=1

G(zk)∑N
j=1 G(zj )

I
{
zk ∈ S

} N∏
i=2

M
(
dzi

)
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with G(x) := π(dx)/M(dx) and the convention z1 = x. Our first results are concerned with
properties of the homogeneous Markov chain with transition probability PN , in terms of Ḡ :=
π-ess supx G(x) and N . We refer to the resulting algorithm as iterated SIR (i-SIR).

We briefly introduce notions that allow us to make quantitative statements about the Markov
chains under study. We use classical Hilbert space techniques for the analysis of reversible
Markov chains. Letting μ(·) be a probability distribution defined on some measurable space
(E,B(E)), we define the function space

L2(E,μ) := {
f : E → R : μ(

f 2) < ∞}
,

where the functions are taken to be measurable; hereafter all functions considered are assumed
to be measurable with respect to an appropriate σ -algebra. Let � : E × B(E) → [0,1] be a
μ-reversible Markov transition kernel and let {ξi, i ≥ 0} be the stationary Markov chain with
transition kernel � (such that ξ0 ∼ μ). We will use the standard notation for any probability
distribution ν on (E,B(E)) and measurable function f : E →R,

ν(f ) :=
∫

E
f (x)ν(dx), �f (x) :=

∫
E
f (y)�(x,dy),

for k ≥ 2, by induction,

�kf (x) :=
∫

E
�(x,dy)�k−1f (y).

We denote ν�kf := ν(�kf ) and refer to ν�k as either a probability measure or its corre-
sponding operator on L2(E,μ). For f ∈ L2(E,μ), we define the variance of f under μ as
varμ(f ) := μ(f 2) − μ(f )2 and the “asymptotic variance” of M−1 ∑M

i=1 f (ξi) for stationary
realizations {ξi, i ≥ 0} associated to the homogeneous Markov chain with transition � as

var(f,�) := lim
M→∞ var

(
M−1/2

M∑
i=1

[
f (ξi) − μ(f )

])
.

Some of our results involve norms of signed measures. As in, for example, [21], for any signed
measure ν on (E,B(E)) we let

‖ν‖TV := 1

2
sup

f :E→[−1,1]
ν(f )

denote the total variation distance and for ν 	 μ,

‖ν‖2
L2(E,μ)

:=
∫

E

∣∣∣∣ dν

dμ

∣∣∣∣
2

dμ = sup
f ∈L2(E,μ),‖f ‖μ>0

|ν(f )|
‖f ‖μ

(2)

denote the L2(E,μ) norm.
Our results can be summarized as follows:
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1. PN is reversible with respect to π and positive, that is the i-SIR Markov chain has non-
negative stationary autocorrelations.

2. If Ḡ < ∞, and N ≥ 2, the i-SIR Markov chain is uniformly ergodic with for any x ∈ X,

∥∥P n
N(x, ·) − π(·)∥∥TV ≤

(
1 − N − 1

2Ḡ + N − 2

)n

.

3. If Ḡ < ∞, then for any f ∈ L2(X,π),

var π (f ) ≤ var(f,PN) ≤
[

2

(
1 + 2Ḡ − 1

N − 1

)
− 1

]
var π (f ).

4. If Ḡ = ∞, then the i-SIR Markov chain cannot be geometrically ergodic for any finite N .

The second and third points provide quantitative bounds on standard measures of performance
for MCMC algorithms, where the second provides a bound on the uniform (or equivalently uni-
formly geometric) rate of convergence of the Markov chain. Interest in algorithms such as i-SIR
is motivated empirically from observed behaviour in line with the above bounds, as performance
improves as N increases, and part of our purpose here is to confirm and quantify theoretically
such empirical successes. Moreover, this improvement can often be obtained with little extra
computational effort, since on a parallel architecture one can sample from M and evaluate G in
parallel, a characteristic of SMC algorithms more generally [15].

While i-SIR can be used alone to sample from fairly general distributions, it can also be used
as a constituent element of more elaborate MCMC schemes. Assume now that we wish to sample
from a distribution π defined on some measurable space (� × X,B(�) × B(X)), often defined
for some S ∈ B(�) ×B(X) via (note the different nature of π as compared to earlier)

π(S) :=
∫
S
Gθ(x)Mθ(dx)	(dθ)∫

�×X Gθ(x)Mθ(dx)	(dθ)
,

where {Gθ, θ ∈ �} is a collection of non-negative potential functions and {Mθ, θ ∈ �} a
collection of probability measures which define for each θ ∈ � the conditional distributions
πθ (dx) := Mθ(dx)Gθ (x)/γθ with

γθ :=
∫

X
Gθ(x)Mθ(dx).

The interpretation in a statistical context is that 	 is the prior distribution for some parameter
θ of interest, whilst γθ is the likelihood function associated with some observed data and x

corresponds to the so-called latent variable(s). The form of γθ is often derived from the data
being explained by the latent variable x whose a priori distribution conditional upon θ is Mθ and
the likelihood function given the data and x is Gθ(x). Assume here that we are able to sample
from πx , the conditional distribution of θ given X = x. For any θ ∈ �, one can define the i-SIR
kernel for any (x, S) ∈ X ×B(X) via

PN,θ (x, S) =
∫

XN−1

N∑
k=1

Gθ(z
k)∑N

j=1 Gθ(zj )
I
{
zk ∈ S

} N∏
i=2

Mθ

(
dzi

)
,
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with z1 = x, so that the invariant distribution associated with PN,θ is πθ , the conditional distri-
bution of X given θ . One can sample from π(dθ × dx) with the following Markov transition,
defined for any (θ0, x, S) ∈ � × X × (B(�) ×B(X)) via

�N(θ0, x;S) :=
∫

S

PN,θ (x,dy)πx(dθ),

which can be viewed as an exact approximation of the Gibbs sampler defined via

�(θ0, x;S) :=
∫

S

πθ (dy)πx(dθ).

The term exact approximation refers to the fact that while PN,θ can be thought of as an approxi-
mation of the conditional distribution πθ the resulting algorithm converges to π and can be made
arbitrarily close to � as we increase N as explained below – we will refer to this algorithm and its
generalisation as the particle Gibbs (PGibbs) sampler. Throughout the paper, we will use the fol-
lowing convention: we will say f ∈ L2(E,π) with E = � (resp., E = X) to mean that f : E → R

is square integrable under the relevant marginal of π , or f : � × X → R does not depend on x

(resp., θ ) and is square integrable under the relevant marginal of π . This should not lead to any
possible confusion. Letting Ḡ := π-ess supθ,x

Gθ (x)
γθ

, our results for the PGibbs sampler, are as
follows:

1. Assume the � Markov chain is such that there exists β ∈ (0,1] such that for any f : X →
[−1,1] and ν 	 π ∣∣ν�n(f ) − π(f )

∣∣ ≤ ‖ν − π‖L2(X,π)(1 − β)n.

If Ḡ < ∞, and N ≥ 2, then for any f : X → [−1,1] and ν 	 π∣∣ν�n
N(f ) − π(f )

∣∣ ≤ ‖ν − π‖L2(X,π)

(
1 − β ′

N

)n
,

where β ′
N satisfies

β ′
N ≥ N − 1

2Ḡ + N − 2
β.

2. For any f ∈ L2(X,π) and N ≥ 2, the asymptotic variance var(f,�N) satisfies

var(f,�) ≤ var(f,�N) ≤ 2Ḡ − 1

N − 1
varπ (f ) +

(
1 + 2Ḡ − 1

N − 1

)
var(f,�).

3. For any f ∈ L2(�,π) and N ≥ 2, the asymptotic variance var(f,�N) satisfies

var(f,�) ≤ var(f,�N) ≤
(

1 + 2Ḡ − 1

N − 1

)
var(f,�) −

(
2Ḡ − 1

N − 1

)
varπ (f ).

In the sequel, we prove similar results in the more general (and complex) scenario where PN,θ is
defined by a general cSMC algorithm with multinomial resampling, but the key ideas and results
are similar (Section 3). The results concerning the general form of the PGibbs sampler, from
which its convergence in the sense of points 1–3 above follows, can be found in Section 7.
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3. The i-cSMC and its properties

We mostly follow the notation of [9] and use the following conventions for lists, indices and
superscripts. For N ∈ N, we denote [N ] := {1, . . . ,N}, and for any p ∈ N, k, l ∈ [N ]p and ul

k :
N

2 → E (for a generic set E dependent on the context) we will use the notation ul
k to mean

(u
l1
k1

, u
l2
k2

, . . . , u
lp
kp

), and whenever there is no dependence on l (resp., k) of ul
k we simply ignore

this superscript (resp., this index). We will also use the notation, for k, l ∈ N such that l ≥ k,
k : l := (k, k + 1, . . . , l). Let (Z,B(Z)) be a measurable space and for some T ≥ 1 define a
family of Markov transition probabilities on this space {Mt(·, ·), t ∈ [T ]} with the convention
that for t = 1 and any z ∈ Z, M1(z,du) = M1(du) and a family of measurable non-negative
functions, the potentials Gt : Z → [0,∞), again for t ∈ [T ]. We first define an inhomogeneous
Markov chain {Z1, . . . ,ZT } on X := ZT endowed with the product σ -algebra B(X) = B(Z)T and
with probability distribution P(·) and associated expectation E(·) such that for t = 1, the initial
distribution is P(Z1 ∈ dz1) := M1(dz1), and for t = 2, . . . , T the transition probability is given
by Mt , i.e.,

P(Zt ∈ dzt |Zt−1 = zt−1) := Mt(zt−1,dzt ).

We define for p ∈ [T ] and fp : Zp →R

γp(fp) := E

(
fp(Z1, . . . ,Zp)

p∏
t=1

Gt(Zt )

)
,

and can define for any S ∈ B(X) the probability distribution π (which will be the target distribu-
tion of interest)

π(S) := γT (I{· ∈ S})
γT

, (3)

where I{·} denotes the indicator function and γT := γT (1). For l > k ≥ 0, we define

Mk,l(zk,dzk+1:l ) :=
l∏

t=k+1

Mt(zt−1,dzt ).

Note in particular that with the convention above, for any l ≥ 2 and z0 ∈ Z, M0,l(z0,dz1:l ) :=
M1(dz1) × M1,l(z1,dz2:l ).

The iterated conditional SMC (i-cSMC) is a family of homogeneous Markov chains, with
state–space (X,B(X)), indexed by N ∈ N (the concrete meaning of N shall become clearer be-
low). We denote by PN(·, ·) : X × B(X) → [0,1] the corresponding Markov transition kernels,
which we now define. To that end, we first detail for any N ∈ N the probability distribution of
the conditional SMC (cSMC) algorithm, which corresponds to a process defined on the extended
space W := (ZN × [N ]N)T −1 × ZN × [N ] endowed with the corresponding product σ -algebra
B(W), of which PN is a simple by-product. Our focus is on a particular implementation of the
algorithm corresponding to “multinomial resampling” – other schemes are considered in [8]. For
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any x ∈ X and with 1 ∈ {1}T we define the process {Zt ,At , t = 1, . . . , T } on W through

P
N
1,x(Z1 ∈ dz1) := δx1

(
dz1

1

) N∏
i=2

M1
(
dzi

1

)
(4)

and for t ∈ {2, . . . , T }
P

N
1,x(Zt ∈ dzt ,At−1 = at−1|Z1:t−1 = z1:t−1,A1:t−2 = a1:t−2)

= P
N
1,x(Zt ∈ dzt ,At−1 = at−1|Zt−1 = zt−1) (5)

= δxt

(
dz1

t

)
I
{
a1
t−1 = 1

} N∏
i=2

(
N∑

k=1

Gt−1(z
k
t−1)∑N

j=1 Gt−1(z
j

t−1)
I
{
ai
t−1 = k

}
Mt

(
zk
t−1,dzi

t

))
,

where we keep k to emphasize that we are sampling from that mixture. For the last iteration,
we only require one index and point out that whereas At ∈ [N ]N for t = 1, . . . , T − 1, we have
AT ∈ [N ] following

P
N
1,x

(
AT = k|ZT = zT

) = GT (zk
T )∑N

j=1GT (z
j
T )

.

The stochastic process defined by P
N
1,x

is referred to as the conditional SMC algorithm because
it is closely related to a standard SMC algorithm, but where x is a “fixed path” with lineage 1.
However, as remarked in [1], PN

1,x
is not a conditional distribution of PN(·), the standard SMC

algorithm whose definition here is deferred to [2], Appendix F. We note further that in order to
simplify presentation we have focused here on the scenario where the lineage of x was 1 but
that we could also use, as in [2], the cSMC with k ∈ [N ]T (with associated symbol PN

k,x
and

E
N
k,x

) corresponding to the process above, but where δxt (dz1
t )I{a1

t−1 = 1} in (5) is replaced with

δxt (dz
kt
t )I{akt

t−1 = kt−1} and δx1(dz1
1) with δx1(dz

k1
1 ) in (4).

For any i := (i1, i2, . . . , iT ) ∈ [N ]T , z1:T ∈ (ZN)T , a1:T := (a1, . . . , aT ) ∈ ([N ]N)T −1 × [N ]
and S ∈ B(X) define

Ii(z1:T , a1:T , S) := I
{
zi

1:T ∈ S, iT = aT

} T −1∏
t=1

I
{
it = a

it+1
t

}
. (6)

Then the transition kernel of the iterated conditional SMC (i-cSMC), in the multinomial sampling
scenario, is given for any x ∈ X and S ∈ B(X) by

PN(x,S) := E
N
1,x

[ ∑
i∈[N ]T

Ii(Z1:T ,A1:T , S)

]
, (7)

that is, conditional upon x we consider the probability distribution of those trajectories Zi
1:T

generated by the cSMC which form a lineage compatible with the lineages defined by the random
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variables A1:T . Our main results concerning the i-cSMC algorithm are the following (our results
concerning the particle Gibbs sampler are provided in Section 7). We will denote by πt the
corresponding marginal distribution of π (see (8) for a precise definition).

Theorem 1. For N ≥ 2, the i-cSMC algorithm with kernel PN

(a) is reversible with respect to π and defines a positive operator,
(b) if for all t ∈ {1, . . . , T } πt -ess supzt

Gt (zt ) < ∞ then there exists εN > 0 such that
(i) for any (x, S) ∈ X ×B(X),

PN(x,S) ≥ εNπ(S),

where 1 − εN = O(1/N),
(ii) for any probability distribution ν 	 π on (X,B(X)) and k ≥ 1∥∥νP k

N(·) − π(·)∥∥
L2(X,π)

≤ ‖ν − π‖L2(X,π)(1 − εN)k,

(iii) for any x ∈ X ∥∥δxP
k
N(·) − π(·)∥∥TV ≤ (1 − εN)k,

(iv) for any f ∈ L2(X,π)

var π (f ) ≤ var(f,PN) ≤ [
2ε−1

N − 1
]

var π (f ),

(c) if πt -ess supzt
Gt (zt ) = ∞ for some t ∈ [T ], then, the i-cSMC kernel PN is not uniformly

ergodic for any N ∈N,
(d) if πt -ess supzt

Gt (zt ) = ∞ for some t ∈ [T ] then, the i-cSMC kernel PN cannot be geo-
metrically ergodic for any N ∈ N if π is equivalent to a Lebesgue or counting measure
on X.

Remark 2. From Lemma 22, statement (d) holds under a more abstract assumption, but we
have chosen this explicit simplified statement for clarity at this point. In fact we suspect that
(d) holds under the assumption πt -ess supzt

Gt (zt ) = ∞ for some t ∈ [T ] only, that is essential
boundedness is a necessary condition for geometric ergodicity; see Conjecture 24.

With additional conditions on {Mt,Gt , t = 1, . . .} one can characterize εN in Theorem 1(b)
further, and in particular characterize the rate at which N should grow in terms of T in order to
maintain a set level of performance. This also requires additional notation and following [9] we
define for any z ∈ Z, p,q ∈N, p ≤ q and fq : Z →R,

Qp,q(fq)(z) := E

[
fq(Zq)

q−1∏
k=p

Gk(Zk)

∣∣∣Zp = z

]
,

and with the convention Q0,p(fp)(x) = M1Q1,p(fp) for any fp : Z →R, and

ηp(fp) := Q0,p(fp)

Q0,p(1)
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and M̄p,p+1(z, ·) = Mp+1(z, ·) and for q > p ≥ 0 we have the recursive definition, for any
zp ∈ Z,

M̄p,q(zp, ·) =
∫

Mp+1(zp,dzp+1)M̄p+1,q (zp+1, ·).

The first condition is rather abstract, and can be viewed as a condition on the h-functions inves-
tigated in [25] in the context of stability properties of standard SMC algorithms.

(A1). There exists a constant α > 0 such that for any p,k ∈ N,

sup
z∈Z

Qp,p+k(1)(z)

ηpQp,p+k(1)
≤ α.

One can however show that (A1) is implied by the following stronger assumption (see
Lemma 16).

(A2) (Strong mixing conditions). There exists m ∈ Z+ such that

(a) There exists a constant 1 ≤ β < ∞ such that for any p ≥ 1 and any (z, z′) ∈ Z and S ∈
B(Z),

M̄p,p+m(z,S) ≤ βM̄p,p+m

(
z′, S

)
.

(b) The potential functions Gp satisfy, for some δ < ∞,

1 ≤ sup
z,z′∈Z2,p∈{1,...,T }

Gp(z)

Gp(z′)
≤ δ1/m.

Theorem 3. Assume that for all t ∈ N πt -ess supzt
Gt (zt ) < ∞ and (A1) (or the stronger as-

sumption (A2)) holds. Then with εN as in Theorem 1(b) for any N ≥ 2, there exists C,ε > 0 such
that with N = C × T , then for any T ≥ 1, εN ≥ ε > 0.

Remark 4. Similar results for the PGibbs sampler are provided in Section 7.

Proof of Theorem 1 . The proofs of the various results are the subject of the following sections.
More specifically, statement

(a) follows from Lemma 8 (the latter property was established in [8] and the former
noted/proved in [1,8]),

(b) all parts follow from Corollary 12 and [2], Proposition 32, which gathers generic results
on π -invariant Markov chains satisfying (b)(i),

(c) follows from Proposition 17,
(d) follows from Proposition 20 and Lemma 22; Remark 23. �

Proof of Theorem 3 . Follows from Proposition 13, Corollary 14 and Lemma 16. �
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As pointed out in the Introduction, soon after completing this work we have become aware
of [16], where a subset of our results have also been independently discovered. This motivates
the following comparison. Result (b)(i) of Theorem 1 is identical to Theorem 1 of [16], but relies
on a different proof. Results (b)(ii)–(iv) rely on standard arguments, although (iv) does not seem
to be well known and establishes informative quantitative bounds. The study of the necessity of
our conditions to imply uniform or geometric ergodicity is not addressed in [16]. The result of
Theorem 3 corresponds to Proposition 5 of [16]. The conditions under which Theorem 3 holds
are rather stringent for some applications, in particular in the state–space model scenario. As
discussed by [16] in that scenario (A2) will essentially only hold in the case where X is compact.
The condition (A1) is weaker and more natural in our analysis, but is not currently easy to verify
in applications except through (A2).

In an attempt to relax (A2), the authors of [16] investigate another set of specialised assump-
tions guaranteeing that the result of Theorem 3 holds even in some non-compact scenarios pro-
vided the number of particles N grows at a rate T 1/γ for any γ ∈ (0,1), a result in line with what
is obtained with the stronger assumption (A2), for which γ = 1 is permissible. This requires the
specification of a “moment assumption” which aims at controlling the variations of the various
quantities involved under the law of the observation process {Yt , t ≥ 0}. Their approach, how-
ever, does not seem to allow one to consider the scaling properties of the PGibbs sampler (i.e.,
not just the i-cSMC); see their Theorem 6 and Remark 7. More importantly, we note that their
results require the law of the data to coincide with that of the specified model for some θ� ∈ �

which, although suggestive of what may happen in practice, is always an idealization. This del-
icate work is the main focus of the remainder of their investigation while here, in addition to
establishing the necessity of some of the conditions, we have focused on the transference of
the results obtained for the i-cSMC to the PGibbs sampler (Section 7) with the aim of showing
that the PGibbs has performance inferior to that of the Gibbs sampler, but arbitrarily close if we
increase N .

4. Establishing the uniform minorization condition

Before proceeding, we turn to the i-SIR which is particularly simple to analyze. The reason for
detailing the short analysis of this simple scenario is to provide the reader with an overview
of the developments which are to follow – the remainder of the paper essentially replicates the
key steps of the argument below, albeit in the more complex SMC framework. Notice that in
this scenario X = Z since T = 1. We let G(x) := π(dx)/M(dx) for any x ∈ X and assume that
Ḡ := supx∈X G(x) < ∞. Then for (x, S) ∈ X ×B(X) we can rewrite

PN(x,S) =
N∑

k=1

∫
XN

π(dzk)/M(dzk)∑N
j=1 G(zj )

I
{
zk ∈ S

}(
δx

(
dz1) N∏

i=2

M
(
dzi

))

=
∫

XN

1∑N
j=1 G(zj )

π(dz1)

M(dz1)
I
{
z1 ∈ S

}(
δx

(
dz1) N∏

i=2

M
(
dzi

))
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+
N∑

k=2

∫
XN

1∑N
j=1 G(zj )

I
{
zk ∈ S

}
π

(
dzk

)(
δx

(
dz1) N∏

i=2,i �=k

M
(
dzi

))

=
N∑

k=1

∫
X
E1,x,k,y

[
I{y ∈ S}∑N
j=1 G(Zj )

](
I{k = 1} π(dx)

M(dx)
δx(dy) + I{k �= 1}π(dy)

)
,

where E1,x,k,y(·) defines an expectation for the random variables Z1, . . . ,ZN associated to the
probability distribution

δx

(
dz1) N∏

i=2

M
(
dzi

)
for k = 1 and x = y ∈ X, and

δx,y

(
dz1 × dzk

) N∏
i=2,i �=k

M
(
dzi

)

for k �= 1 and x, y ∈ X. This auxiliary process turns out to be central to our analysis, and will
be generalised to the general scenario and called “doubly” cSMC (c2SMC). Indeed, omitting the
term k = 1 in the representation of PN and by application of Jensen’s inequality to the convex
mapping x �→ (x + a)−1 for x, a ∈ R+ we obtain

PN(x,S) ≥
N∑

k=2

∫
X
I{y ∈ S}E1,x,k,y

[
1

G(x) + G(y) + ∑N
j=2,j �=k G(Zj )

]
π(dy)

≥
N∑

k=2

∫
X

I{y ∈ S}
G(x) + G(y) + N − 2

π(dy)

≥ N − 1

2Ḡ + N − 2
π(S).

This is a uniform minorization condition which immediately implies uniform geometric conver-
gence (see the outline of our results in Section 1), but in the present situation the result is even
stronger in that, in particular, it provides us with quantitative bounds on the dependence of the
performance of the algorithm on N . Indeed it is a standard result that the minorization constant

εN = N − 1

2Ḡ + N − 2
= 1 − 2Ḡ − 1

2Ḡ + N − 2
,

provides the upper bound 1 − εN on the (geometric) rate of convergence of the algorithm, which
here vanishes at an asymptotic rate N−1 as N increases. As we shall see the fact that the minoriza-
tion measure is the invariant distribution leads to a direct lower bound on associated Dirichlet
forms associated to PN which in turn provide quantitative bounds on the spectral gap and the
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associated asymptotic variance. In the remainder of the section, we generalize the representa-
tion of PN in terms of the c2SMC algorithm and “the estimator of the normalizing constant”
which suggests applying Jensen’s inequality as above. This requires us to consider estimates of
the resulting expectation in Section 5.

In order to proceed further it is required to define the c2SMC process, which is essentially
similar to the cSMC process but where conditioning is now upon two trajectories x, y ∈ X. The
definition is therefore similar, but for reasons which will become clearer below the second fixed
trajectory is set to have a lineage of the general form k := k1:T ∈ [N ]T . We will use below the
convention that δa,b(dz1 ×dzk) reduces to δa(dz1) whenever k = 1. The definition of this process
is similar to that of the cSMC algorithm and the distributions involved are defined for x, y ∈ X
and k ∈ [N ]T as follows

P
N
1,x,k,y(Z1 ∈ dz1) = δx1,y1

(
dz1

1 × dz
k1
1

) N∏
i=2,i �=k1

M1
(
dzi

1

)
,

and for t = 2, . . . , T − 1 (with the convention a
k,l
t−1 := (ak

t−1, a
l
t−1))

P
N
1,x,k,y

(
Zt ∈ dzt ,At−1 = at−1|Zt−1 = zt−1

)
= δxt ,yt

(
dz1

t × dz
kt
t

)
× I

{
a

1,kt

t−1 = (1, kt−1)
} N∏

i=2,i �=kt

(
N∑

l=1

Gt−1(z
l
t−1)∑N

j=1 Gt−1(z
j

t−1)
I
{
ai
t−1 = l

}
Mt

(
zl
t−1,dzi

t

))

and

P
N
1,x,k,y

(
AT = l|ZT = zT

) = GT (zl
T )∑N

j=1GT (z
j
T )

.

We note that although the transitions and the initial distributions are, by the convention, well
defined for kt = 1 and xt �= yt the distribution above will never be used in such a context. Just
as PN

1,x
is not a conditional distribution of PN(·), the law of the SMC algorithm, the same holds

between P
N
1,x,k,y

(·) and P
N
1,x

(·). However we now provide an important property relating these
two probability distributions, which together with (7) will allow us to decompose this transition
into key quantities and establish the sought minorization condition. The proof of the following
Lemma is in [2], Appendix A.

Lemma 5. For i ∈ {2, . . . ,N}T and x ∈ X,

E
N
1,x

[
Ii(Z1:T ,A1:T , S)

] = γT

NT

∫
X
π(dy) × I{y ∈ S} ×E

N
1,x,i,y

[
1∏T

t=1(1/N)
∑N

j=1Gt(Z
j
t )

]
.
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As we shall see, the concentration properties of the “estimator of the normalizing constant”
plays a central role for any z1:T ∈ (ZN)T

γ̂ N
T (z1:T ) :=

T∏
t=1

1

N

N∑
j=1

Gt

(
z
j
t

)
.

We first obtain a uniform minorization condition for the cSMC transition probability. This sim-
ple result establishes the expectation of γ̂ N

T (Z1:T ) with respect to a c2SMC algorithm as a key
quantity of interest, and motivates the non-asymptotic analysis and bounds of Section 5.

Proposition 6. For any (x, S) ∈ X ×B(X) and N ≥ 2, we have

PN(x,S) ≥
∫

S

γT × (1 − 1/N)T

E
N
1,x,2,y

[γ̂ N
T (Z1:T )]π(dy).

Proof. Using (7), we only keep the trajectories for which there is no coalescence with the first
trajectory, that is, we exclude terms such that it = 1 for some t ∈ [T ] and obtain

PN(x,S) ≥
∑

i∈{2,...,N}T
E

N
1,x

[
Ii(Z1:T ,A1:T , S)

]
.

Consequently, using Lemma 5,

PN(x,S) ≥
∑

i1:T ∈[2:N ]T

γT

NT

∫
X
π(dy) × I{y ∈ S} ×E

N
1,x,i,y

[
1∏T

t=1(1/N)
∑N

j=1Gt(Z
j
t )

]

= γT (N − 1)T

NT

∫
S

E
N
1,x,2,y

[
1∏T

t=1(1/N)
∑N

j=1Gt(Z
j
t )

]
π(dy1:T ),

using invariance by permutation of i1, . . . , iT of the expectations. We conclude by application of
Jensen’s inequality for the convex function u �→ 1/u for u ∈R+. �

Corollary 7. Let N ≥ 2 and assume that

εN := γT × (1 − 1/N)T

supx,y∈X E
N
1,x,2,y

[γ̂ N
T (Z1:T )] > 0,

then for any (x, S) ∈ X × B(X), PN(x,S) ≥ εNπ(S) and from Proposition 6 all the properties
of [2], Proposition 32, apply to the i-cSMC with ε = εN .

The next section is dedicated to finding a useful expression for the expectation
E

N
1,x,2,y

[γ̂ N
T (Z1:T )] and establishing explicit bounds on this quantity, and therefore εN in Corol-

lary 7, under additional assumptions.
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Before proceeding to novel analysis, for completeness we gather two known properties of
the i-cSMC (in the general set-up) in the following lemma which will be exploited throughout
the remainder of the paper. Both results are immediate upon noticing that the i-cSMC is a two
stage Gibbs sampler on an artificial joint distribution (see (B.1) in [2], Appendix B, which is
a generalization of (1)). The results have also been shown in detail in [8]. A proof is included
in [2], Appendix B, for completeness.

Lemma 8. PN , viewed as an operator on L2(X,π), is self-adjoint and positive.

5. Quantitative bounds for the doubly conditional i-cSMC
expectation

In this section, we first find an exact expression for EN
1,x,2,y

[γ̂ N
T (Z1:T )] in terms of quantities

underpinning the definition of π given in Section 3 and then move on to provide various estimates
of the conditional expectation involved in the minorization established in Proposition 6, under
various assumptions on the aforementioned quantities. Throughout, we use the usual convention
that

∑
∅

= 0 and
∏

∅
= 1. We let Gp,q(z) := Qp,q(1)(z) and G1+2

p,q := Gp,q(xp) + Gp,q(yp).
We note that Gp,p+1(z) = Gp(z) for p ∈ [T ] and we use the convention throughout that for
any z ∈ Z, G0(z) = 1 and Q0,p(fp)(z) := M1(Q1,p(fq)). We write G0,p := M1(Q1,p(1)) since
G0,p(z) is independent of z. Our first result, whose proof can be found in [2], Appendix D, is:

Proposition 9. Let x, y ∈ X and N ≥ 2. Then,

E
N
1,x,2,y

[
γ̂ N
T (Z1:T )

] = 1

NT

T +1∑
s=1

(N − 2)T +1−s
∑

i∈IT +1,s

G0,i1CT,s(i, x, y),

where for any s = 1, . . . , k,

Ik,s := {
i1, . . . , is ∈ N

s : T − k + 1 < i1 < · · · < is = T + 1
}
,

and for i ∈ Ik,s

Ck,s(i, x, y) :=
s−1∏
m=1

[
Gim,im+1(xim) + Gim,im+1(yim)

]
.

Remark 10. While the expectation of interest here has been hitherto uninvestigated, the form
of Proposition 9 is reminiscent of non-asymptotic results in [7], in which second moments of
γ̂ N
T (Z1:T ) are analyzed with respect to the law of a standard SMC algorithm.

We now turn to estimates of the expectation above, starting with very minimal assumptions
which allow us to establish the minorization condition required to apply [2], Proposition 32, and
deduce most of our results, without the need for assumptions on the dynamic of the system –
the number of particles is however required to grow exponentially in order to maintain a set
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level of performance. We show subsequently that with stronger assumptions on {Mt,Gt }Tt=1 it is
possible to show that N should grow linearly with T to ensure that a set level of performance is
maintained.

Proposition 11. Assume that for all t ∈ {1, . . . , T }, Ḡt := supz∈Z Gt(z) < ∞, then for any N ≥ 2

E
N
1,x,2,y

[
γ̂ N
T (Z1:T )

] ≤ γT

{
1 +

[
1 −

(
1 − 2

N

)T ][∏T
t=1 Ḡt

γT

− 1

]}
.

Proof. The assumption on the potentials implies that for any p,q ∈ N with p < q we have
Gp,q ≤ ∏q−1

k=p Ḡk , and from Proposition 9 we have

E
N
1,x,2,y

[
γ̂ N
T (Z1:T )

] =
T +1∑
s=1

(
N − 2

N

)T +1−s 2s−1

Ns−1

∑
IT +1,s

G0,i1

s−1∏
m=1

1

2
G1+2

im,im+1

≤ γT

(
N − 2

N

)T

+
T∏

k=1

Ḡk ×
T +1∑
s=2

(
T

s − 1

)(
N − 2

N

)T +1−s 2s−1

Ns−1

= γT

(
N − 2

N

)T

+
[

1 −
(

N − 2

N

)T ] T∏
k=1

Ḡk,

and the result follows. �

Corollary 12. Propositions 6 and 11 together imply that for any x,S ∈ X ×B(X),

PN(x,S) ≥ εNπ(S) with εN = (1 − 1/N)T

1 + [1 − (1 − 2/N)T ][(∏T
t=1 Ḡt )/γT − 1]

and limN→∞ εN = 1.

It should be clear that despite Corollary 12, the term
∏T

t=1 Ḡt /γT typically grows exponen-
tially fast with T whenever the potentials are not constant functions. Therefore, Proposition 11
suggests that the number of particles N should grow exponentially with T in general. However,
stronger assumptions on the system under consideration will allow us to maintain a given lower
bound on εN by increasing N only linearly with T . We first state our main result using the
abstract condition (A1) and then show that classical strong mixing conditions (A2) imply (A1).

Proposition 13. Assume (A1), then for any N ≥ 2

E
N
1,x,2,y

[
γ̂ N
T (Z1:T )

] ≤ γT

(
1 + 2(α − 1)

N

)T

.
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Proof. First, notice that for any 1 ≤ k ≤ n

Q0,n(1) = Q0,k(1)
Q0,n(1)

Q0,k(1)
= Q0,k(1)ηkQk,n(1),

and therefore for any s ∈ {1, . . . , T } and 0 < i1 < · · · < is−1 < is = T + 1 with the notation
defined earlier,

Q0,T (1) = Q0,i1(1)

s−1∏
k=1

ηikQik,ik+1(1) = G0,i1

s−1∏
k=1

ηikGik,ik+1,

and from (A1), with Ḡp,q := supz∈Z Gp,q(z), and applying Proposition 9 yields the following
upper bound for EN

1,x,2,y
[γ̂ N

T (Z1:T )]:

T +1∑
s=1

(
N − 2

N

)T +1−s 2s−1

Ns−1

∑
0<i1<···<is−1<is=T +1

G0,i1

s−1∏
m=1

1

2
G1+2

im,im+1

≤ γT

(
N − 2

N

)T

+ γT

T +1∑
s=2

(
N − 2

N

)T +1−s 2s−1

Ns−1

∑
IT +1,s

G0,i1

G0,i1

s−1∏
m=1

Ḡim,im+1

ηikGik,ik+1

≤ γT

T +1∑
s=1

(
T

s − 1

)(
N − 2

N

)T +1−s 2s−1

Ns−1
αs−1,

and we conclude by an application of the binomial theorem. �

Corollary 14. Propositions 6 and 11 together imply that for any (x, S) ∈ X ×B(X),

PN(x,S) ≥ εNπ(S) with εN =
(

1 − 1/N

1 + 2(α − 1)/N

)T

.

Now, let N − 1 ≥ CT for some C > 0. Then εN ≥ exp(− 2α−1
C

).

Proof. Propositions 6 and 13 together imply that

εN ≥
(

1 + 2α − 1

N − 1

)−T

.

Since (N − 1) ≥ CT for some C > 0, and log(1 + x) ≤ x for all x ≥ 0,

(
1 + 2α − 1

N − 1

)T

≤
(

1 + 2α − 1

CT

)T

≤ exp

(
2α − 1

C

)
. �
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Remark 15. The combination of the upper bound of var(f,PN) in Theorem 1 with Corol-
lary 14 suggests a rough rule of thumb to select N for the i-cSMC Markov kernel. In particular,
there is generally a tradeoff between iterating a less computationally intensive Markov kernel
more times and iterating a more computationally intensive expensive fewer times. This suggests
that one should minimize the function f (N) := N var(f,PN). While an analytic expression for
var(f,PN) is not available, we can minimize its upper bound

(CT + 1)

{
2 exp

(
2α − 1

C

)
− 1

}
,

with respect to C. Assuming that we are in the scenario where N  1 and therefore CT + 1 ≈
CT , one then finds the unique minimum

C∗ = 2α − 1

LambertW(−1/(2 exp(1))) + 1
≈ 1.302(2α − 1),

(where LambertW is the principal branch of the Lambert W function) or correspondingly

ε∗
N ≈ 0.464.

Hence, under (A1) it is only required for N to scale linearly with T in order to maintain a non-
vanishing ergodicity rate. Following, for example, [7,9] we make the following assumptions on
{Mt } and the potentials {Gt } which combined define an m-step “strong mixing” condition which
automatically implies (A1). The following result relies on classical arguments [7], Lemma 4.3,
[9],

Lemma 16. Assume (A2). Then for any k ∈ Z+ we have

sup
z,z′∈Z2

Qp,p+k(1)(z)

Qp,p+k(1)(z′)
≤ βδ,

i.e., (A1) is satisfied.

6. Necessity of the boundedness assumption and a conjecture

Proposition 11 showed that the i-cSMC kernel is uniformly ergodic if the potentials are bounded.
We study here the opposite case, where at least one of the potentials is unbounded. We discover
that then the algorithm cannot be uniformly ergodic (Proposition 17), and in many cases the
algorithm cannot be geometrically ergodic (Proposition 20 and Lemma 22; Remark 23). We
believe that the latter holds in general (Conjecture 24), but a proof has remained elusive. This
dichotomy of algorithms which are uniformly ergodic and sub-geometrically ergodic would be in
perfect analogy with the behaviour of the independent Metropolis–Hastings [17], Theorem 2.1.

We will denote hereafter the marginal densities of π by

πt :u(A) := π
(
Zt−1 × A × ZT −u

)
for A ∈ B

(
Zu−t+1), (8)
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where 1 ≤ t ≤ u ≤ T and we use the shorthand πt (A) := πt :t (A).
In this section, we will assume that S ∈ B(Z)T is a fixed set such that for all x ∈ S,∏T
t=1 Gt(xt ) > 0 and π(S) = 1. Further, S contains all possible starting points of the algorithm,

that is, we assume that the state space of the i-cSMC is S. In the discrete case, the minimal S con-
sists of the points of positive π -measure, and in the continuous case where π admits a density,
the set S can be taken as the set where the density is positive.

Further, we will assume that π1 is not concentrated on a single point. We can do this without
loss of generality, because if π1, . . . , πt were concentrated on single points of the state space, the
algorithm would be deterministic until πt+1 and we could consider the i-cSMC for π ′ = πt+1:T .

Proposition 17. Suppose πt -ess supxt
Gt (xt ) = ∞ for some t ∈ [T ]. Then, the i-cSMC kernel

PN is not uniformly ergodic for any N ∈ N.

Proof. If the i-cSMC kernel is uniformly ergodic, then there exist K < ∞ and ρ ∈ (0,1) such
that

sup
x∈S

∥∥P n
N(x, ·) − π(·)∥∥TV ≤ Kρn for all n ∈ N.

Fix ε′ > 0 and let n ∈ N be such that Kρn ≤ ε′. We will prove that there exists a set Bε′ ∈
B(Z) such that π1(Bε′) > 0 and infx∈Bε′ P

n
N(x, {x1} × ZT −1) ≥ 1 − ε′. For all x ∈ Bε′ , we have

|P n
N(x, {x1} × ZT −1) − π1({x1})| ≤ Kρn ≤ ε′. This, with ε′ > 0 small enough, will contradict

π1({x1}) < 1.
Lemma 18 shows that there exists φ : R+ → R+ such that limg→∞ φ(g) = 0, and

PN

(
x, {x1}� × ZT −1) ≤ φ

(
G(xt )

)
.

Denote the level set Lt(G) := {xt ∈ Z : Gt(xt ) ≤ G}. Lemma 18 shows that there exists c2 =
c2(N) ∈ [1,∞) such that for Gt(xt ) ≥ G

PN

(
x,Zt−1 × Lt(G) × ZT −t

) ≤ c2G/Gt(xt ).

Let ε ∈ (0,1) and define δ := ε/c2 and let G∗ be large enough so that φ(δnG∗) ≤ ε. Define
the (sub-probability) kernels μḠ(x,dy) := PN(x,dy)δx1(y1)I{Gt(yt ) ≥ Ḡ} on (S,B(S)) for any
Ḡ > 0 and observe that we may estimate

I
{
Gt(xt ) ≥ G∗

}
P n

N

(
x, {x1} × ZT −1)

≥ I
{
Gt(xt ) ≥ G∗

}∫
μδG∗

(
x,dy(2)

)∫
μδ2G∗

(
y(2),dy(3)

) · · ·
∫

μδn−1G∗
(
y(n−1),dy(n)

)
.

We may estimate for any i ∈ [n] and all x ∈ S such that Gt(xt ) ≥ δi−1G∗,∫
μδiG∗(x,dy) ≥ 1 − PN

(
x, {x1}� × ZT −1) − PN

(
x,Zt−1 × Lt

(
δiG∗

) × ZT −t
)

≥ 1 − 2ε.
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We conclude that for x ∈ S such that Gt(xt ) ≥ G∗,

P n
N

(
x, {x1} × ZT −1) ≥ (1 − 2ε)n.

This proves the claim, as ε > 0 was arbitrary. �

Lemma 18. For all x ∈ S and all G ∈R+,

1. PN(x, {x1}� × ZT −1) ≤ φ(G(xt )),
2. PN(x,Zt−1 × Lt(G) × ZT −t ) ≤ (N − 1)2G/Gt(xt ) whenever Gt(xt ) ≥ G,

where φ : R+ →R+ is a function such that limg→∞ φ(g) = 0.

Proof. In both cases, we consider the case t < T ; the special case t = T can be treated similarly.
In order to facilitate the theoretical analysis, we introduce a non-standard implementation of
the cSMC which relies on the remark that at any time instant a given particle can only have a
maximum number N of children. Hence, when implementing the cSMC it is always possible to
draw N children first and then decide who is carried forward according to the standard selection
mechanism. It is in fact possible to push this idea further and, given a fixed x ∈ S, to sample the
following N -ary tree of random variables first

Ẑ1
1 = x1, Ẑi

1 ∼ M1(·), i ∈ [N ] \ {1}
Ẑ

1,1
2 = x2, Ẑ

i,j

2 ∼ M2
(
Ẑi

1, ·
)
, (i, j) ∈ [N ]2 \ {

(1,1)
}

...

Ẑ1
T = xT , Ẑ

i1,...,iT
T ∼ MT

(
Ẑ

i1,...,iT −1
T −1 , ·), (i1, . . . , iT ) ∈ [N ]T \ {1},

and then prune the tree using the selection mechanism of the cSMC algorithm with fixed path
x ∈ S. As a result, each Z

j
t in the cSMC is associated with some Ẑi

t . The construction above
permits the bound

U :=
∑

i∈[N ]t
Gt

(
Z

it
t

)
I{i1 �= 1}

t∏
p=2

I
{
ip−1 = A

ip
p−1

} ≤
∑

i∈{2,...,N−1}t
Gt

(
Ẑi

t

) =: V,

where U corresponds to the sum of potentials associated with those Z
j
t whose ancestral lineage

does not contain the value 1. It therefore follows that

PN

(
x, {x1}� × ZT−1) = E

N
1,x

[
U

Gt(xt ) + ∑N
j=2 Gt(Z

j
t )

]
≤ E

N
1,x

[
U

Gt(xt ) + U

]

≤ E
N
1,x

[
V

Gt(xt ) + V

]
,
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because u �→ u/(g + u) is increasing. Now, V is a finite non-negative random variable indepen-
dent of x. We may define

φ(g) := E
N
1,x

[
V

g + V

]
,

which satisfies limg→∞ φ(g) = 0 by the monotone convergence theorem.
For the second inequality, we can show similarly that for Gt(xt ) ≥ G

P
N
1,x

[
Gt

(
Z

Ai
t

t

) ≤ G
] = E

N
1,x

[∑N
k=2 Gt(Z

k
t )I{Gt(Z

k
t ) ≤ G}

Gt(xt ) + ∑N
k=2 Gt(Z

k
t )

]
≤ (N − 1)G

Gt(xt )

and so

PN

(
x,Zt−1 × Lt(G) × ZT −t

) ≤
N∑

i=2

P
N
1,x

[
Gt

(
Z

Ai
t

t

) ≤ G
] = (N − 1)PN

1,x

[
Gt

(
Z

Ai
t

t

) ≤ G
]
.
�

To establish that PN cannot be even geometrically ergodic whenever πt -ess supxt
Gt (xt ) = ∞

for some t ∈ [T ] in many settings, we use Proposition 19. This allows for the developments of
Proposition 20 and Lemma 22, leading to the desired result under assumptions satisfied in many
applications; see Remark 23.

Proposition 19. Suppose P is an ergodic Markov kernel on a state space (X,B(X)) with in-
variant distribution π . Suppose that for any ε, δ > 0 there exists a set A ∈ B(X) such that
π(A) ∈ (0, δ) and infx∈A P (x,A) ≥ 1 − ε. Then P is not geometrically ergodic.

Proof. The result follows directly by following the proof of [23], Theorem 3.1, or by a conduc-
tance argument [14], Theorem 1. �

Proposition 20. Assume that for at least one t ∈ [T ]

π-ess sup
x

E
N
1,x

[
Gt(xt )∑N

k=1 Gt(Z
k
t )

]
= 1. (9)

Then PN cannot be geometrically ergodic.

Proof. Because of Proposition 19 it suffices to establish that

π1:t -ess sup
x1:t∈S

{
inf

xt+1:T
PN

(
x1:T ; {x1:t } × ZT −t

)} = 1. (10)

We note that

inf
xt+1:T

PN

(
x1:T , {x1:t } × ZT −t

) ≥ P
N
1,x

(
A1:N

t = 1
)

≥ 1 −
N∑

i=2

P
N
1,x

(
Ai

t �= 1
)
,
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because A1
t = 1 by construction. We emphasize that Ai

t are independent of xt+1:T . Now (10)
follows directly from (9) because for i ∈ {2, . . . ,N},

P
N
1,x

(
Ai

t = 1
) = E

N
1,x

[
Gt(xt )∑N

j=1 Gt(Z
j
t )

]
.

�

Lemma 21. Assume that for any ε > 0

π-ess inf
x
P

N
1,x

(
Gt(Z

2
t )

Gt (xt )
≥ ε

)
= 0.

Then, (9) holds.

Proof. For any ε, δ > 0 there exists Aε,δ such that π(Aε,δ) > 0 and for x ∈ Aε,δ

P
N
1,x

(
Gt(Z

2
t )

Gt (xt )
≥ ε

)
< δ.

Because of exchangeability, for any x and 2 ≤ k ≤ N ,

P
N
1,x

(
Gt(Z

k
t )

Gt (xt )
≥ ε

)
= P

N
1,x

(
Gt(Z

2
t )

Gt (xt )
≥ ε

)
.

Denote B = {
∑N

k=2 Gt (Z
k
t )

Gt (xt )
≥ (N − 1)ε}, then for x ∈ Aε,δ also

P
N
1,x(B) ≤

N∑
k=2

P
N
1,x

(
Gt(Z

k
t )

Gt (xt )
≥ ε

)
< (N − 1)δ.

We may bound for any x ∈ Aε,δ ,

E
N
1,x

[
Gt(xt )∑N

k=1 Gt(Z
k
t )

]
≥ E

N
1,x

[
I
{
B�} Gt(xt )∑N

k=1 Gt(Z
k
t )

]

≥ E
N
1,x

[{
B�} 1

1 + (N − 1)ε

]

≥ 1 − (N − 1)δ

1 + (N − 1)ε
.

Letting ε, δ → 0 completes the proof. �

Lemma 22. Assume that there exists t ∈ [T ] such that πt -ess supxt
Gt (xt ) = ∞, and if t ≥ 2,

suppose also that for any A ∈ B(Z1:t−1) and B ∈ B(Z),

π1:t−1(A) > 0 and πt (B) > 0 ⇒ π1:t (A × B) > 0.

Then, the assumption of Lemma 21 and consequently (9) holds for t .
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Proof. Assume that t ∈ {2, . . . , T }, and for any x1:t−1 ∈ Zt−1 let μx1:t−1 denote the distribution of
Gt(Z

2
t ) under PN

1,x1:t−1
. By [2], Lemma 35, there exists A ∈ B(Zt−1) such that π1:t−1(A) ≥ 1/2

and the family {μx1:t−1}x1:t−1∈A is tight. Therefore, for any ε, δ > 0 there exists Ḡt < ∞ such that
P

N
1,x

(Gt (Z
2
t )/Ḡt ≥ ε) < δ for all x1:t−1 ∈ A. Because πt -ess supxt

Gt (xt ) = ∞, the set A × {xt :
Gt(xt ) ≥ Ḡt } × ZT −t−1 is of positive π -measure. The case t = 1 follows similarly because the
distribution of G1(Z

2
1) is independent of x. �

Remark 23. An immediate implication of Propositions 20 and 11 and Lemma 22 is that if π

is equivalent to a Lebesgue or counting measure on X then PN is geometrically ergodic for any
N ≥ 2 if and only if πt -ess supxt

Gt (xt ) < ∞ for all t ∈ [T ]. This covers many applications in
statistics, where often the potentials Gt are strictly positive and for any xt ∈ Z, the Markov kernel
Mt(xt , ·) is equivalent to a Lebesgue or counting measure on Z.

Proposition 20 does not characterize all situations in which PN fails to be geometrically er-
godic. Indeed, in the following example (9) does not hold, and PN still fails to be geometrically
ergodic.

Example. Let Z =N, T = 2, G1(z) ≡ 1 and M1(z1) be any probability distribution supported on
N (e.g., a Poisson distribution). Define M2(z1, z2) = 1

2δ2z1(z2) + 1
2δ2z1+1(z2) and G2(z2) = z2.

It is not difficult to see that this example does not satisfy (9), but π2-ess supz2
G2(z2) = ∞. It

is easy to observe as well that the sets An := {(n,2n), (n,2n + 1)} satisfy π(An) > 0 and that
infx∈A PN(x,An) ≥ 1 − δn where δn → 0 as n → ∞.

Our findings above suggest that the essential boundedness of the potentials could in fact be a
necessary condition for geometric ergodicity. We have considered also various other examples,
and it seems that in any specific scenario it is easy to identify “sticky” sets and conclude by
Lemma 19. However, we have yet to identify such sets in general, and so have resorted to stating
the following.

Conjecture 24. Suppose πt -ess supxt
Gt (xt ) = ∞ for some t ∈ [T ]. Then, the i-cSMC kernel is

not geometrically ergodic for any N ∈N.

7. The particle Gibbs sampler

In numerous situations of practical interest, one is interested in sampling from a probability
distribution π(dθ × dx) defined on some measurable space (� × X,B(�) ×B(X)) for which di-
rect sampling is difficult, but sampling from the associated conditional probability distributions
πθ (dx) and πx(dθ) for any (θ, x) ∈ � × X turns out to be easier. In fact, when sampling ex-
actly from these conditionals is possible one can define the two stage Gibbs sampler [20] which
alternately samples from these conditional distributions. More precisely, let us define, for any
(θ, x) ∈ � × X and S ∈ B(�) ×B(X),

�(θ, x;S) :=
∫

S

πx(dϑ)πϑ(dy). (11)
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This can be interpreted as a Markov transition probability, and is precisely the Markov ker-
nel underpinning the standard two stage Gibbs sampler. The corresponding Markov chain
{(θi,Xi), i ≥ 0} on � × X leaves π invariant and is ergodic under fairly general and natu-
ral conditions. In fact, it can be shown that {Xi, i ≥ 0} and {θi, i ≥ 0} are themselves Markov
chains leaving the marginals π(dx) and π(dθ) invariant respectively. For reasons which will
appear clearer below, we define for any (x0, S) ∈ X × B(X) the Markov transition probability
�x(x0, S) := �(x0,� × S) corresponding to the Markov chain {Xi, i ≥ 0} (we point out that
the index x in this notation is a name, not a variable). In some situations, however, while sam-
pling from the conditional distribution πx(dθ) may be routine, sampling from πθ (dx) may be
difficult and this step is instead replaced by a Markov transition probability �θ(x,dy) leaving
πθ (dx) invariant for any θ ∈ �. The resulting algorithm, whose transition kernel � is given be-
low, is often referred to as “Metropolis-within-Gibbs” in the common situation where �θ is a
Metropolis–Hastings transition kernel – we will however use this name in order to refer to the
general scenario. In the particular situation where �θ is a cSMC transition kernel, the result-
ing algorithm is known as the particle Gibbs (PGibbs) sampler [1]. We note that in the general
scenario, for any (θ0, x, S) ∈ � × X × (B(�) ×B(X))

�(x,S) = �(θ0, x;S) :=
∫

S

πx(dθ)�θ (x,dy). (12)

Similarly to above, one can show that {Xi, i ≥ 1} defines a Markov chain, with transition kernel,
for (x0, S) ∈ X × B(X), �x(x0, S) := �(x0,� × S) which is π(dx)-reversible, and positive as
soon as �θ defines a positive operator for any θ ∈ �. Indeed since for any f,g ∈ L2(X,π),∫

X
f (x)π(dx)

∫
�×X

πx(dθ)�θ(x,dy)g(y) =
∫

�

π(dθ)

∫
X2

f (x)g(y)πθ (dx)�θ(x,dy)

=
∫

�

π(dθ)

∫
X2

f (x)g(y)πθ (dy)�θ(y,dx),

we deduce the reversibility from the choice f (x) = I{x ∈ S1} and g(x) = I{x ∈ S2} for S1, S2 ∈
B(X) and the positivity by letting g = f . This motivates the following simple result, which again
draws on the standard Hilbert space techniques outlined in [2], Appendix C, and is to the best of
our knowledge not available in the literature. We naturally remark that � is a particular instance
of � corresponding to the case where for any (θ, x) ∈ � × X, �θ(x, ·) = πθ (·), therefore also
implying that �x is self-adjoint. Our first result, Theorem 25, takes advantage of the fact that
�x is reversible, and therefore focuses on the asymptotic variance of functions f ∈ L2(X,π).
Corollary 26 follows from this result, providing a sufficient condition for geometric ergodicity of
the PGibbs Markov chain. Our second result, Theorem 27, focuses on functions g ∈ L2(�,π),
but the same technique is not directly applicable in this scenario. Some of our results concern
Dirichlet forms: for a generic μ-reversible Markov kernel and a function f ∈ L2(E,μ) we define
the Dirichlet form E�(f ) := 〈f, (I − �)f 〉μ.

Theorem 25. Let π be a probability distribution defined on (� × X,B(�) × B(X)) and let
{�θ, θ ∈ �} be a family of Markov transition probabilities {�θ, θ ∈ �} such that for any θ ∈ �
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the Markov kernel �θ is reversible with respect to πθ , and let � and � be as in (11) and (12).
Define

� := inf
f ∈L2(X,π)

∫
�

π(dθ)varπθ (f )Gap(�θ )∫
�

π(dθ)varπθ (f )
. (13)

Then, for any f ∈ L2(X,π) we have the following inequalities,

(a) for the Dirichlet forms,

2E�x (f ) ≥ E�x (f ) ≥ � × E�x (f ),

(b) for the right spectral gaps

2Gap(�x) ≥ Gap(�x) ≥ � × Gap(�x),

(c) if the asymptotic variances,

0 ≤ var(f,�x) − varπ (f )

2
≤ var(f,�x) ≤ (

�−1 − 1
)

varπ (f ) + �−1 var(f,�x),

where the latter inequality holds for � > 0.
(d) In addition if

(i) there exist ε > 0 such that for all θ ∈ � and all (x,B) ∈ X × B(X), the minorisation
inequality �θ(x,B) ≥ επθ (B) holds, then for any f ∈ L2(X,π)

var(f,�x) − (1 − ε)varπ (f )

(2 − ε)
≤ var(f,�x),

(ii) for all θ ∈ �, �θ is a positive operator then for any f ∈ L2(X,π)

var(f,�x) ≤ var(f,�x).

Proof. We prove the first point. Without loss of generality, we consider any f ∈ L2
0(X,π) and

notice that

E�x (f ) =
∫

�

π(dθ)E�θ (f ),

since ∫
�×X2

π(dx)πx(dθ)�θ (x,dy)
[
f (x) − f (y)

]2

=
∫

�

π(dθ)

∫
X2

πθ (dx)�θ(x,dy)
[
f (x) − f (y)

]2
.
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Now using that E�x (f ) = 1
2

∫
�×X2 π(dx)πx(dθ)πθ (dy)[f (x)−f (y)]2 = ∫

�
π(dθ)varπθ (f ) and

letting f̄θ := f − πθ (f ) for any θ ∈ �, we obtain

E�x (f ) =
∫

�

π(dθ)varπθ (f )

∫
�

π(dθ)E�θ (f )∫
�

π(dθ)varπθ (f )

= E�x (f ) ×
∫
�

π(dθ)I{varπθ (f ) > 0}varπθ (f )
E�θ

(f̄θ )

varπθ
(f̄θ )∫

�
π(dθ)varπθ (f )

≥ E�x (f ) ×
∫
�

π(dθ)varπθ (f )Gap(�θ )∫
�

π(dθ)varπθ (f )

≥ E�x (f ) × inf
g∈L2

0(X,π)

∫
�

π(dθ)varπθ (g)Gap(�θ )∫
�

π(dθ)varπθ (g)
,

where we have used that for any g ∈ L2
0(X,π), E�θ (g) ≤ 2 varπθ (g) and that the set A := {θ ∈

� : varπθ (f̄θ ) = ∞} satisfies π(A × X) = 0. The latter result follows from varπ (f ) < ∞ and
the variance decomposition identity: ‖f ‖2

π = ‖f − f̄θ‖2
π + ‖f̄θ‖2

π . We deduce (a) from the last
inequality. Points (b) and (c) then follow from [2], Lemma 33.

We next turn into (d). As above, we find that

E�x (f ) ≤ E�x (f ) ×
∫
�

π(dθ)I{varπθ (f ) > 0}varπθ (f ) supg∈L2
0(X,πθ )(E�θ (g)/varπθ (g))∫

�
π(dθ)varπθ (f )

.

Under the uniform minorisation condition, we have E�θ (g) ≤ (2 − ε)varπθ (g) [2], Proposi-
tion 32, and consequently E�x (f ) ≤ (2 − ε)E�x (f ). When �θ is a positive operator for any
θ ∈ �, we have E�θ (g) ≤ varπθ (g) and consequently E�x (f ) ≤ E�x (f ). �

Remark 26. In relation to Theorem 25:

(a) it may be easier in practice to use the lower bound � := infθ∈� Gap(�θ ) ≤ � which leads

to Gap(�x) ≥ � × Gap(�x) and var(f,�x) ≤ (�−1 − 1)varπ (f ) + �−1 var(f,�x) when � > 0,
(b) one could suggest iterating �θ sufficiently many times, say kθ times, in order to ensure

that �
kθ

θ satisfies the uniform in θ properties of the type suggested above. This would require
however a computable quantitative bound on the spectral gap of �θ ,

(c) the lower bound in (c) is motivated by the fact that {�θ, θ ∈ �} may be a family with non-
positive elements, which may introduce negative correlations. On the contrary in the situation
where {�θ, θ ∈ �} is a collection of positive operators (e.g., cSMC kernels) then (b) implies that
�x is geometrically ergodic as soon as �x is geometrically ergodic and � > 0 (and of course �x

is always positive) and (d)(ii) that �x is always inferior to �x in terms of asymptotic variance. In
the context of the PGibbs sampler the latter result parallels what is known for pseudo-marginal
algorithms [5],

(d) we note that from [22], Theorem 1; Proposition 1, � is geometrically ergodic as soon as
�x is geometrically ergodic.
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Now we show how these results can be transferred to the {θi} chain.

Theorem 27. Let the notation be as in Theorem 25. Then,

(a) assume that for some class of functions G ⊂ {g : X → R : π(|g|) < ∞} there exists a func-
tion | · |G : G → [0,∞] and ρ ∈ [0,1) such that for any probability distribution ν on (X,B(X))

there exist Wν ∈ [0,∞] such that for all g ∈ G and any k ≥ 1∣∣ν�k
x(g) − π(g)

∣∣ ≤ |g|GWνρ
k,

then for any f : � →R such that f̄ (x) := πx(f ) ∈ G and any k ≥ 2∣∣ν�k(f ) − π(f )
∣∣ ≤ |f̄ |GWνρ

k−1,

(b) for any f ∈ L2(�,π), letting for any x ∈ X f̄ (x) := πx(f ) ∈ L2(X,π), we have for any
k ≥ 1 〈

f,�kf
〉
π

= 〈
f̄ ,�k−1

x f̄
〉
π

and

var(f,�) = varπ (f ) + varπ (f̄ ) + var(f̄ ,�x),

(c) if � > 0 defined in (13), then for f ∈ L2(�,π)

var(f,�) ≤ varπ (f ) + �−1 varπ (f̄ ) + �−1 var(f̄ ,�x)

≤ (
1 − �−1)varπ (f ) + �−1 var(f,�),

(d) if for all θ ∈ �, �θ is a positive operator, then for f ∈ L2(�,π) var(f,�) ≥ var(f,�).

Proof. We remark that without loss of generality we can let f ∈ L2
0(�,π) throughout. First note

that for f ∈ L2
0(�,π) and any (θ, x0) ∈ � × X

�(θ, x0;f ) = �(x0;f ) = πx0(f ) = f̄ (x0),

and for g ∈ L2(X,π) and any p ≥ 1, �p(θ, x0;g) = �
p
x (x0;g). The first result is straightforward

upon remarking that for k ≥ 1

�k+1(x0, f ) − π(f ) = �k
x(x0, f̄ ) − π(f̄ ).

For the second and third point, using the remarks above, for f ∈ L2
0(�,π) and k ≥ 1

〈
f,�kf

〉
π

= 〈
f,�k−1f̄

〉
π

= 〈
f̄ ,�k−1

x f̄
〉
π
.

Now ‖f ‖2
π = 〈f − f̄ + f̄ , f − f̄ + f̄ 〉π = ‖f̄ ‖2

π + ‖f − f̄ ‖2
π , which is the variance decom-

position identity and by noting that π(f̄ ) = 0 lets us deduce that f ∈ L2
0(�,π) implies that
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f̄ ∈ L2
0(X,π). Now,

var(f,�) = ‖f ‖2
π + 2

∞∑
k=1

〈
f,�kf

〉
π

= ‖f ‖2
π + 2

∞∑
k=1

〈
f̄ ,�k−1

x f̄
〉
π

= ‖f ‖2
π + 2‖f̄ ‖2

π + 2
∞∑

k=1

〈
f̄ ,�k

xf̄
〉
π

= ‖f ‖2
π + ‖f̄ ‖2

π + var(f̄ ,�x).

We conclude by noting that for f ∈ L2(X,π) then varπ (f ) = ‖f − π(f )‖2
π and varπ (f̄ ) =

‖f̄ − π(f )‖2
π = ‖f − π(f )‖2

π . We will also use the equality above for � and �x , since again
the latter corresponds to a particular instance of the above. We can now use the bound from
Theorem 25, which leads, for f ∈ L2

0(�,π), to

var(f,�) ≤ ‖f ‖2
π + ‖f̄ ‖2

π + (
�−1 − 1

)‖f̄ ‖2
π + �−1 var(f̄ ,�x)

= ‖f ‖2
π + �−1‖f̄ ‖2

π + �−1 var(f̄ ,�x).

From the remark above, we deduce that

‖f ‖2
π + �−1‖f̄ ‖2

π + �−1 var(f̄ ,�x) ≤ ‖f ‖2
π + �−1‖f̄ ‖2

π + �−1[var(f,�) − ‖f ‖2
π − ‖f̄ ‖2

π

]
= (

1 − �−1)‖f ‖2
π + �−1 var(f,�).

We conclude as above. The final statement follows from var(f̄ ,�x) ≥ var(f̄ ,�x) (see Theo-
rem 25) and the equality established above for � and �x and � and �x . �

Corollary 28. Consider the PGibbs sampler with N ≥ 2 particles with kernel �N defined as
in (12) such that for any θ ∈ �, �θ = Pθ,N is the i-cSMC kernel as defined in Section 3 for
the families {Mθ,t }and {Gθ,t } of kernels and potentials on Z × B(Z) and Z respectively. For any
θ ∈ � we let γθ,T be the corresponding normalizing constant as defined below (3). Then, the
results of Theorems 25 and 27 hold as follows:

(a) if

π-ess sup
θ

∏T
t=1 Ḡθ,t

γθ,T

< ∞,

then � ≥ εN as defined in Corollary 12,
(b) or we have the uniform mixing condition, for some 0 ≤ α < ∞,

π-ess sup
θ,z

Qθ,p,p+k(1)(z)

ηθ,pQθ,p,p+k(1)
≤ α,

then � ≥ εN as defined in Corollary 14.

In particular, in both cases � convergences to one as N → ∞, implying that the spectral gaps
and the asymptotic variances associated with the PGibbs sampler converge to those of the related
Gibbs sampler.
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Remark 29. It is worth noting that terms related to γθ,T appear in all these bounds. So, for
example, in the first part it is not sufficient that our potentials {Gθ,t } are essentially bounded, but
it is sufficient if, for all t ∈ [T ], πt -ess supθ,xt

Gθ,t (xt )/ηθ,t (Gt ) is bounded.

8. Discussion

The developments above go some way in characterizing the behaviour of i-cSMC and associated
PGibbs Markov chains, and raise a number of possible future directions for research. We have
already embarked upon investigating some potentially practical uses of the minorization condi-
tions and spectral properties for these chains. Of particular interest in practice is how to choose
N in the i-cSMC algorithm so as to balance the trade off between mixing properties of PN and
the total number of iterations that can be performed with limited computational resources. Re-
mark 15, for example, can be used to find approximately good values of N in this spirit, but can
only serve as a heuristic. In particular, while Proposition 6 may provide a fairly accurate bound
in the large N regime, it is unclear how much is lost in applying Jensen’s inequality, and con-
sequently how accurate estimates such as those in Remark 15 can be. It is possible that results
such as those in [6] may provide a way to exploit additional structure often found in statistical
applications.

The results for the i-cSMC and PGibbs Markov chains developed here can be compared and
contrasted with similar results for the Particle Independent Metropolis–Hastings (PIMH) and
PMMH Markov chains [1]. We summarize here the detailed comparison provided in [2], Ap-
pendix F. Like i-cSMC, PIMH is an exact approximation of an independent sampler but PMMH
is an exact approximation of an idealized Metropolis–Hastings kernel, rather than a Gibbs sam-
pler. Just as i-cSMC can be viewed as a constituent element of PGibbs, PIMH can be viewed
as playing the same role within PMMH. Central to the analysis of PIMH is the essential supre-
mum of the normalizing constant estimate γ̂ N

T (Z1:T ) introduced in Section 4 with respect to the
law of a standard SMC algorithm and indeed the PIMH Markov chain is (uniformly) geomet-
rically ergodic if and only if this supremum is finite as a consequence of the characterisation
of independent Metropolis–Hastings chains in [17]. However, it can also be seen that the rate of
convergence of PIMH will typically not improve as N increases, in contrast with the convergence
for the i-cSMC (see Propositions 11 and 13).

For PMMH, [5] show that if the essential supremum of the relative normalizing constant es-
timate γ̂ N

θ,T (Z1:T )/γθ,T is moreover bounded essentially uniformly in θ then the existence of a
spectral gap of the idealized Metropolis–Hastings Markov kernel it approximates is inherited by
PMMH. However, the rate of convergence of the PMMH Markov chain when this occurs does
not improve in general as N increases, in contrast to our results for PGibbs Markov chains. In
this context, weak convergence in N of the asymptotic variance of estimates of π(f ) to the corre-
sponding asymptotic variance of the Metropolis–Hasting kernel is nevertheless provided by [5],
Proposition 19, for all f ∈ L2(�,π) but this can be contrasted with quantitative bounds obtained
in Theorem 27.

The one step uniform minorization condition in Corollary 7, where the minorization measure is
the invariant distribution of the Markov chain, suggests that it may be possible to apply coupling
from the past techniques (see, e.g., [12,18,19]) in order to produce samples from exactly this
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distribution. It is, however, not clear how to implement such an algorithm in general, although
[13] provides a perfect simulation algorithm motivated by Theorem 1. Finally, our analysis has
focused mainly on the case where the essential boundedness condition holds. However, a refined
analysis may permit characterization of the i-cSMC and hence the PGibbs Markov chains even
in the absence of this condition, with parallels to [5].

Acknowledgements

C. Andrieu’s research was supported by EPSRC EP/K009575/1 Bayesian Inference for Big Data
with Stochastic Gradient Markov Chain Monte Carlo and EP/K014463/1 Intractable Likelihood:
New Challenges from Modern Applications (ILike). M. Vihola was supported by Academy of
Finland grants 250575 and 274740.

Supplementary Material

Proofs (DOI: 10.3150/15-BEJ785SUPP; .pdf). The supplementary material contains proofs, in-
termediate results and a more detailed comparison of the i-cSMC and PGibbs with the PIMH and
PMMH.

References

[1] Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 72 269–342. MR2758115

[2] Andrieu, C., Lee, A. and Vihola, M. Supplement to “Uniform ergodicity of the iterated conditional
SMC and geometric ergodicity of particle Gibbs samplers.” DOI:10.3150/15-BEJ785SUPP.

[3] Andrieu, C., Lee, A. and Vihola, M. (2013). Uniform ergodicity of the iterated conditional SMC and
geometric ergodicity of particle Gibbs samplers. Preprint. Available at arXiv:1312.6432.

[4] Andrieu, C. and Roberts, G.O. (2009). The pseudo-marginal approach for efficient Monte Carlo com-
putations. Ann. Statist. 37 697–725. MR2502648

[5] Andrieu, C. and Vihola, M. (2015). Convergence properties of pseudo-marginal Markov chain Monte
Carlo algorithms. Ann. Appl. Probab. 25 1030–1077. MR3313762

[6] Bérard, J., Del-Moral, P. and Doucet, A. (2013). A lognormal central limit theorem for particle ap-
proximations of normalizing constants. Electron. J. Probab. 19.

[7] Cérou, F., Del Moral, P. and Guyader, A. (2011). A nonasymptotic theorem for unnormalized
Feynman–Kac particle models. Ann. Inst. Henri Poincaré Probab. Stat. 47 629–649. MR2841068

[8] Chopin, N. and Singh, S.S. (2013). On the particle Gibbs sampler. Bernoulli 21 1855–1883.
[9] Del Moral, P. (2004). Feynman–Kac Formulae. Probability and Its Applications (New York). New

York: Springer. MR2044973
[10] Del Moral, P., Kohn, R. and Patras, F. (2014). On Feynman–Kac and particle Markov chain Monte

Carlo models. Preprint. Available at arXiv:1404.5733.
[11] Doucet, A., Pitt, M.K., Deligiannidis, G. and Kohn, R. (2015). Efficient implementation of

Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102 295–313.
MR3371005

http://dx.doi.org/10.3150/15-BEJ785SUPP
http://www.ams.org/mathscinet-getitem?mr=2758115
http://dx.doi.org/10.3150/15-BEJ785SUPP
http://arxiv.org/abs/arXiv:1312.6432
http://www.ams.org/mathscinet-getitem?mr=2502648
http://www.ams.org/mathscinet-getitem?mr=3313762
http://www.ams.org/mathscinet-getitem?mr=2841068
http://www.ams.org/mathscinet-getitem?mr=2044973
http://arxiv.org/abs/arXiv:1404.5733
http://www.ams.org/mathscinet-getitem?mr=3371005


872 C. Andrieu, A. Lee and M. Vihola

[12] Hobert, J.P. and Robert, C.P. (2004). A mixture representation of π with applications in Markov chain
Monte Carlo and perfect sampling. Ann. Appl. Probab. 14 1295–1305. MR2071424
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