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We introduce a consistent estimator for the homology (an algebraic structure representing connected com-
ponents and cycles) of level sets of both density and regression functions. Our method is based on kernel
estimation. We apply this procedure to two problems: (1) inferring the homology structure of manifolds
from noisy observations, (2) inferring the persistent homology (a multi-scale extension of homology) of
either density or regression functions. We prove consistency for both of these problems. In addition to the
theoretical results, we demonstrate these methods on simulated data for binary regression and clustering
applications.
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1. Introduction

Level set estimation for probability density functions has been extensively studied in the past
few decades. The basic formulation of the problem is as follows. Let p :Rd →R be an unknown
probability density function and define DL := {x ∈ Rd : p(x) ≥ L} to be the Lth super level
set of p (from here on we will drop the word “super”). Given a sample {X1, . . . ,Xn} of i.i.d.

observations drawn from p, we would like to estimate the set DL. Recovering the level sets of
density functions have shown to be useful in various applications such as clustering and clus-
ter analysis [25,26,41,53,54,63], pattern recognition [24,32,40], anomaly detection [6,27], and
econometrics [30,31,36,47] (where recovering the support of a distribution and its boundary is
used for measuring efficiency).

Various solutions have been proposed to the level set estimation problem. Standard solutions
include the plug-in estimator [4,5,27,51,52], the excess mass estimator [42,53,54,60,63,68], and
the “naive” estimator [28,32,72]. The distance measure used to evaluate the performance of these
estimators is usually either the Hausdorff distance or the Lebesgue distance (the volume of the
difference between two sets). In this paper we wish to study level sets estimation from a topo-
logical perspective. Rather than trying to achieve an accurate recovery for the actual shape of the
level sets, we wish to recover their qualitative topological properties (such as connected compo-
nents and holes). Unfortunately, minimizing the Hausdorff or Lebesgue distance does not provide
any guarantees for the quality of the topological recovery. Therefore, we have to consider a new
type of an estimator. The sets in Figure 1 demonstrate the fact that minimizing the Hausdorff (or
Lebesgue) distance can still result in very different topological spaces.

The motivation for studying the topology of level sets comes from the clustering problem.
Given a set of observations generated by a probability density function p : Rd → R, clustering
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Figure 1. A schematic picture illustrating the difficulty in estimating the homology of level sets. Suppose
that DL is the annulus on the left and D̂L is its estimate on the right. While in both Hausdorff and Lebesgue
distance the sets DL and D̂L are close, the homology of these sets is completely different. In particular,
DL has a single connected component and a single hole, while D̂L has four of each. By taking the radius
of the small circles to be as small as we wish, we can make both the Hausdorff and the Lebesgue distance
to be arbitrarily small, while topologically we are looking at two different spaces.

can be loosely described as identifying and characterizing the connected components of either
the support of p or one of its level sets (cf. [41,48,67,70]). From a topological perspective, clus-
tering can be viewed as a question about the homology of the level sets. Briefly, the homology
of a topological space X is a set of Abelian groups, denoted by {H0(X),H1(X), . . .}, where the
elements of H0(X) contain information about the connected components of X, and for k > 0,
the group elements of Hk(X) contain information about “cycles,” or “holes” of different dimen-
sions (see Section 2 for more details). From the perspective of algebraic topology, the clustering
problem is thus equivalent to recovering H0(X) where X is either the support of the distribution
or a selected level set. A statistical perspective of the recent efforts in topological data analysis
(TDA) [7,17,34,58,59] has been to extract topological invariants, and homology in particular,
from random data. For example, recovering H1 provides information about holes or loops in the
data, which is useful in various applications such as network coverage [29] or recovering periodic
behavior [61]. The idea is that these topological summaries are useful for statistical inference and
robust under various transformations. Our goal is therefore to examine level set estimation when
the objective is not only to recover H0(X) but rather the entire set of homology groups.

The idea of characterizing points or subsets of Rd by their homology was developed in a series
of papers in the late 1990s [64,65]. Asymptotic and non-asymptotic analysis of consistency and
convergence of topological summaries as the number of observations increase has been examined
for a variety of geometric objects using a variety of statistical and probabilistic tools [2,3,7–9,
11,12,15,19,44,45,58,59]. In the statistics and empirical process community, a version of the
topology inference problem was presented as inference of the empirical geometry of data [46].

The main objective of this paper is to provide a consistent method for recovering the homol-
ogy of the level sets DL of functions f : Rd → R, where f will be either a probability density
function or a regression function. The standard plug-in idea would be to use a kernel-based es-
timator f̂ to construct an estimator D̂L to the level set. The problem with this approach is that
due to the discrete nature of homology even a tiny error in the set estimate D̂L can introduce a
significant error in homology. For example, an infinitesimally small region included by mistake
can increase the number of components, while a small region excluded by mistake might intro-
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duce a hole. Such errors in homology estimation may occur no matter how small the extraneous
components and holes are. This problem is illustrated in Figure 1.

The main result in this paper presents a robust homology estimator for the level sets of both
density and regression functions, that overcomes these difficulties. We show that instead of using
D̂L as an estimate, one should consider the inclusion map between the nested pairs – D̂L+ε ⊂
D̂L−ε (for a properly chosen ε > 0). The key object of interest is then the following induced map
between the homology groups of the two level sets:

ı∗ : H∗(D̂L+ε) → H∗(D̂L−ε),

where “∗” is a standard notation for an arbitrary degree. Inference of the homology at a single
level is noisy, however the map ı∗ serves as a filter for the homological noise (see Figure 2). In
particular, we will show that the image of this map – Im(ı∗) – is isomorphic to the homology of
DL with a high probability. This statement is formalized by Theorem 3.3.

There are two direct implications for recovering the homology of level sets: recovering the
homology of a manifold from a noisy sample and inference of the persistent homology of a
function. For both applications, we make use of kernel density estimation to infer the image of
the map ı∗ between the homology groups of different level sets. An interesting observation is
that the conditions to recover the homology of the manifold or regression function do not require
consistency of the kernel estimator.

The first application is inferring the homology of a manifold from a noisy sample. This prob-
lem was previously studied in [7,59]. In this paper, we show that for a wide class of noise models
one can recover the homology of a manifold using fewer assumptions than previous methods and
analysis. This result is stated in Theorem 3.6.

The second application is estimating the persistent homology of the function f . Persistent
homology (described in Section 2) is a multi-scale topological summary. The main idea is instead
of considering the homology of a single level DL, the entire sequence of level sets is considered
as L decreases from ∞ to −∞. One then tracks at what values of L changes in homology occur.

Figure 2. An illustration of the filtering mechanism underlying the homology estimator presented in this
paper. Suppose that the set of interest DL is the same as in Figure 1. Both estimates D̂L−ε and D̂L+ε

have the wrong homology. The dashed circles in each figure mark the locations of the extraneous features
(components and holes) in the other. We observe that none of the extraneous features exist in both sets.
Since the image of the map ı∗ contains only the topological features that exist in both D̂L+ε and D̂L−ε , it
will consist of a single component and a single hole – the correct homology of DL.
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The logic behind this computation is that homological features that persist across a wide range of
levels are stable features while the other homological features are transient or noisy. This result
is stated in Theorem 3.7.

The paper is structured as follows. In Section 2, we state the topological concepts and defi-
nitions we will use in this paper, namely homology and persistent homology. The main results
of the paper are stated in Section 3 with the proofs in the Appendix. In Section 4, we provide a
procedure to estimate the homology of level sets. Intuition about the estimator as well as results
on simulated data are given in Section 5. We close with a discussion.

2. Topological preliminaries

In this section, we introduce the basic ideas of homology and persistent homology. To help
fix ideas, we first present a particular example of persistent homology related to agglomerative
hierarchical clustering.

2.1. Homology

We develop the concept of homology intuitively, for a more rigorous and comprehensive treat-
ment see [43,55]. Let X be a topological space. The homology of X is a set of Abelian groups
{Hk(X)}∞k=0, called homology groups. In this paper, we consider homology with coefficients in
a field F, in this case Hk(X) is actually a vector space. The zeroth homology group H0(X) is
generated by elements that represent connected components of X. For example, if X has three
connected components, then H0(X) ∼= F ⊕ F ⊕ F (here ∼= denotes group isomorphism), and
each of the three generators of this group corresponds to a different connected component of X.
For k ≥ 1, the kth homology group Hk(X) is generated by elements representing k-dimensional
“holes” or “cycles” in X. An intuitive way to think about a k-dimensional hole is as the result of
taking the boundary of a (k+1)-dimensional body. For example, if X is a circle then H1(X) ∼= F,
if X is a 2-dimensional sphere then H2(X) ∼= F, and in general if X is a n-dimensional sphere,
then

Hk(X) ∼=
{
F, k = 0, n,
{0}, otherwise.

Another interesting example is the 2-dimensional torus denoted by T (see Figure 3). The torus
has a single connected component, therefore H0(T ) ∼= F, and a single 2-dimensional hole (the
void inside the surface) implying that H2(T ) ∼= F. As for 1-cycles (or closed loops) the torus has
two distinct features (see Figure 3) and therefore H1(T ) ∼= F⊕ F.

The ranks of the homology groups (the number of generators) are called the Betti numbers, and
are denoted by βk(X) � rank(Hk(X)). When we refer to all the homology groups simultaneously,
we use the notation H∗(X).

In addition to providing a summary for a single space, homology can also characterize the
topological behavior of functions. Let f : X → Y be a map between two topological spaces, then
homology theory provides a way to define the “induced map” f∗ : H∗(X) → H∗(Y ) mapping
between the homology groups of the two spaces.
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Figure 3. The 2-dimensional torus and its cycles. The torus has a single connected component and a sin-
gle 2-cycle (the void locked inside the torus). In addition, it has two distinct 1-dimensional cycles (or
closed loops) represented by the two curves in the figure. Consequently, the Betti numbers of the torus are
β0 = 1, β1 = 2, β2 = 1.

Another term we will use is homotopy equivalence (cf. [43,55]). Loosely speaking, two topo-
logical spaces X,Y are homotopy equivalent if we can continuously transform one into the
other. We denote this property by X 
 Y . If X 
 Y then they have the same homology, that
is, H∗(X) ∼= H∗(Y ).

2.2. Persistent homology

Let X = {Xt }bt=a be a filtration of topological spaces, such that Xt1 ⊂ Xt2 if t1 < t2. As the
parameter t increases, the homology of the spaces Xt may change (e.g., components are added
and merged, cycles are formed and filled up). The persistent homology of X , denoted by PH∗(X ),
keeps track of this process. Briefly, PH∗(X ) contains the information about the homology of the
individual spaces {Xt } as well as the mappings between the homology of Xt1 and Xt2 for every
t1 < t2. The birth time of an element in PH∗(X ) can be thought of as the value of t where this
element appears for the first time. The death time is the value of t where an element vanishes,
or merges with another existing element. We refer the reader to [34,35,39,74] for more details
and formal definitions. Another perspective of persistence homology is as a summary statistic
of point cloud data that is robust to certain invariances, this perspective has been developed in
[10,14,49,69].

A useful way to describe persistent homology is via the notion of barcodes. A barcode for the
persistent homology of a filtration X is a collection of graphs, one for each order of homology
group. A bar in the kth graph, starting at b and ending at d (b ≤ d) indicates the existence
of a generator of Hk(Xt) (or a k-cycle) whose birth and death times are b, d , respectively. In
Figure 4, we present an example for a barcode generated in the following way. We take a sample
of n = 50 points P1, . . . ,Pn ∈ R2 sampled from a uniform distribution on an annulus. We then
define Xr = ⋃

i Br (Pi) to be the union of closed balls around the sample points. Increasing r

makes the space Xr grow. In this process connected components merge, and cycles are formed
and then filled up. In Figure 4(a), we present a few snapshots of the space Xr for different values
of r where different features show. The barcode in Figure 4(b) presents a summary of all the
homology features in this process. We can see that there are two bars that are significantly longer
than the others (one in H0 and one in H1) indicating that the underlying space has a single
connected component, and a single cycle (as the annulus does).
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Figure 4. (a) Xr is a union of balls of radius r around a random set of n = 50 points, generated from
a uniform distribution on an annulus in R2. We present five snapshots of this filtration. (b) The persistent
homology of the filtration {Xr }r≥0. The x-axis is the radius of the balls, and the bars represent the homology
features that are born and died. For H0 we observe that at radius zero the number of components is exactly n

and as the radius increases components merge (or die). Note that when two components merge, we terminate
the bar for one of them, and the merged component is represented by the bar we keep. This is a standard
representation that comes as the result of the algebraic structure underlying persistent homology (cf. [74]).
The cycles show up later in this process. There are two bars that are significantly longer than the others (one
in H0 and one in H1). These correspond to the true topological features of the annulus.

For a given space, there are many choices of filtrations (sequences of nested subspaces). In
this paper the filtrations we work with are the (super) level sets of functions. Specifically, let
f : Rd → R and let DL be a level set of f . As the level L is decreased from ∞ to −∞ the sets
DL grow, and in this process components and cycles are created and destroyed. We denote by
PH∗(f ) the persistent homology for this process.

To show later that we can recover the persistent homology structure, we will need a notion
of distance between the persistent homology of two different filtrations. If X is a filtration, the
kth persistence diagram of X , denoted by Dgmk(X ) is the set of all pairs (b, d) of birth–death
times of features in PHk(X ). The bottleneck distance between the persistent homology of the
two filtrations X and Y is defined as

dB

(
PHk(X ),PHk(Y)

) = inf
γ∈�

sup
p∈Dgmk(X )

∥∥p − γ (p)
∥∥∞.
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The set � consists of all the bijections γ : Dgmk(X ) ∪ Diag → Dgmk(Y) ∪ Diag, where Diag =
{(x, x) : x ∈R} ⊂R2 is the diagonal line, and ‖·‖∞ is the sup-norm in R2. In other words, we are
looking for a matching between the points in Dgmk(X ) and Dgmk(Y) that requires the minimal
translations of birth and death times. We add the diagonal to each diagram for two reasons. First,
we want to be able to consider diagrams with different numbers of features, and second, we want
to allow deleting points from a diagram (by matching them to the diagonal) rather than forcing
them to match.

To conclude this section, we note that the zeroth persistent homology, PH0, is closely related
to hierarchical clustering as the following example will illustrate. Let P ⊂ Rd be a finite set of
points in Euclidean space. We define the distance function from the set dP : Rd → R as

dP (x) = min
p∈P

‖x − p‖.

In this case, computing the 0th persistent homology for the sub level set filtration of dP is very
simple. We start at level 0 with just the finite set P , and as we increase the level we merge con-
nected components according to the distances between points in P . The bottom of Figure 5 is
the barcode generated by such a process, the top figure is the dendrogram generated by the same
set of points. One can observe that the end points of the bars in the barcode are the nodes in the
dendrogram.

Figure 5. Persistent homology and hierarchical clustering. The figure on top is the dendrogram generated
by a set of 10 random points in the interval [0,1]. The bottom figure is the barcode generated by the
0-persistent homology for the sub-level sets of the distance function from the same set of points. The x-axis
represents function values (distance, in our case). In this example, all the connected components are created
at distance zero, and only differ by their death point (when two components merge). Note, that one of
the components (the top bar) lives forever. The death points in the barcode correspond to nodes in the
dendrogram, we marked the bars with different colors matching the relevant part of the dendrogram.
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3. Statistical model and main results

Given a function f : Rd →R the objects we analyze in this paper are the (super) level sets of f

DL �
{
x ∈ Rd : f (x) ≥ L

}
. (3.1)

Note that for any L1 < L2 we have DL2 ⊂ DL1 .
Previous results on level set estimation usually require some assumptions on either the function

f (smooth, non-flat, etc.), or the shape of the level set (convex, star-shaped, elliptic, etc.). For the
purpose of homology estimation, our main assumption on f is “tameness” as defined in [16].

Definition 3.1. Let f : Rd → R, and DL as defined in (3.1).

1. We say that L is a homological regular value if there exists ε > 0 such that for every v2 ≤ v1
in (L − ε,L + ε) the map Hk(Dv1) → Hk(Dv2) induced by inclusion is an isomorphism
for every k ≥ 0.

Otherwise, we say that L is a homological critical value.
2. A function f is called tame if it has a finite number of homological critical values, and

rank(Hk(DL)) is finite for all L and k.

Our main goal in this paper is to present a consistent method for recovering the homology
of a given level set DL. We will examine the level sets of two classical quantities of interest in
statistics:

1. Density functions – Given Data = {X1, . . . ,Xn} i.i.d.∼ p(x), where p is a probability density
function, our objective is to recover the level sets of f = p.

2. Regression functions – Given Data = {(X1, Y1), . . . , (Xn,Yn)} i.i.d.∼ pX,Y (x, y), where
pX,Y (x, y) is a joint probability density function and we state p : Rd → R as the marginal
density of X. Our objective is to recover the level sets of the regression function f (x) �
E{Y | X = x}.

A common procedure to recover the homology of an unknown space S from a random sample
X ⊂ S is to compute the homology of a union of closed balls around the sample points

U(X , r) :=
⋃

X∈X
Br(X), (3.2)

for some choice of radius r (cf. [12,58]). In the level-set estimation literature, this procedure is
known as the “naive” estimator [28,32,72]. We can use this idea to estimate the homology of the
set DL using the following procedure (P1):

1. Use the entire data set to construct an estimator f̂ .
2. Using the estimator f̂ , define

XL = {
Xi : f̂ (Xi) ≥ L

}
,

as the set of data points lying in the Lth level set of f̂ .
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3. Consider U(XL, r) as an estimate of DL, and the homology H∗(U(XL, r)) as an estimate
of H∗(DL).

We will use kernel estimators for f̂ in both the regression and density estimation case. A key
difficulty in the above procedure is that the estimator f̂ may introduce errors in the filtering
step 2 of the above procedure. In [28,32,72] it is shown that small errors in the estimate f̂

are translated to small errors in terms of the Hausdorff or Lebesgue distances. However, since
homology is a discrete descriptor, even tiny errors in the filtering step can introduce large errors
in the homology estimates. For example, even a single point incorrectly included in the level set
assignment can form an extra connected component, and increase the zeroth Betti number by one
(see Figure 1). One of the main challenges we will address in this paper is providing an estimator
that is robust to this type of error.

Given a kernel function K : Rd → R we construct our estimators as follows. In the density
estimation case, we define

f̂n(x) = p̂n(x) � 1

n × CKrd

n∑
i=1

Kr(x − Xi),

where X1, . . . ,Xn are the observed data, Kr(x) = K(x/r), and CK is a normalizing constant
defined below. In the regression setting, we use the Nadaraya–Watson estimator [56,66,73]

f̂n(x) �
∑n

i=1 YiKr(x − Xi)∑n
i=1 Kr(x − Xi)

,

where {(X1, Y1), . . . , (Xn,Yn)} are the observed data.
The kernel functions K(x) we consider satisfy the following conditions (C1):

1. The support of the kernel function is contained within the unit ball of radius 1, that is,
supp(K) ⊂ B1(0).

2. The kernel function has a maximum at the origin, with K(0) = 1, and ∀x : K(x) ∈ [0,1].
3. The kernel function is smooth within the unit ball, and∫

Rd

K(ξ) dξ = CK for CK ∈ (0,1).

Note that the bounded support assumption is very common in level set estimation procedures
(e.g., [5,27,72]). Weak regularity conditions on the density or regression function will be required
to prove consistency of the estimates of the homology of level sets. For both density estimation
and regression, we require the density function p to be tame and bounded, and we define

pmax � sup
x∈Rd

p(x).

For density estimation, we also require that for every L the set DL ⊂ Rd is bounded. For the
regression case, we require in addition the following set of conditions (C2):

1. The marginal density of X has compact support, that is, supp(p) is compact.
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2. The marginal density of X is bounded away from zero within its support, that is, pmin �
infx∈supp(p) p(x) > 0.

3. The response variables are almost surely bounded, that is, |Yi | ≤ Ymax almost surely for
some non-random value Ymax > 0.

Next, recall step 2 in the procedure (P1), and define

XL
n �

{
Xi : f̂n(Xi) ≥ L;1 ≤ i ≤ n

}
.

The subset XL
n can be used to construct an estimator to the level set DL:

D̂L(n, r) � U
(
XL

n , r
)
. (3.3)

Note that the radius r is the same r as used for the bandwidth of the kernel function. This
connection is crucial for the proofs.

To overcome the noisiness of the estimator D̂L(n, r) discussed above, we present the follow-
ing procedure. First, note that for any ε ∈ (0,L), we have that D̂L+ε(n, r) ⊂ D̂L−ε(n, r). The
inclusion map

ı : D̂L+ε(n, r) ↪→ D̂L−ε(n, r)

induces a map in homology

ı∗ : H∗
(
D̂L+ε(n, r)

) → H∗
(
D̂L−ε(n, r)

)
. (3.4)

We use this map to define

Ĥ∗(L, ε;n) � Im(ı∗). (3.5)

We will use Ĥ∗(L, ε;n) as an estimator for H∗(DL). The intuition behind using this inclusion
map is as follows. Using Lemma A.2, we can show that with a high probability we have

DL+2ε DL DL−2ε
↪→

↪→ ↪→
↪→

D̂L+ε(n, r)
ı

↪→ D̂L−ε(n, r)

, (3.6)

where ↪→ represents inclusion. Assuming that H∗(DL+2ε) ∼= H∗(DL) ∼= H∗(DL−2ε), then all
the cycles in H∗(DL) must persist throughout this entire sequence of inclusions and in particular
they should be present in Ĥ∗(L, ε;n). In contrast, any cycles in D̂L±ε(n, r) that do not belong
to DL must be terminated as we move from D̂L+ε(n, r) to D̂L−ε(n, r) via DL, and therefore
should not be in Ĥ∗(L, ε;n). To prove that the inclusion sequence in (3.6) holds, we require the
following regularity condition on L.

Definition 3.2. Given a level L > 0 and ε ∈ (0,L/2), we say that L is ε-regular if

∂DL+2ε ∩ ∂DL+(3/2)ε = ∂DL+(1/2)ε ∩ ∂DL = ∂DL ∩ ∂DL−(1/2)ε

= ∂DL−(3/2)ε ∩ ∂DL−2ε =∅,

where “∂” is the set boundary.
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This regularity condition basically guarantees sufficient “separation” between the level sets in-
volved in the estimation process (its importance will become clearer in the proofs). In particular,
if f is continuous in f −1([L − 2ε,L + 2ε]), then L is ε-regular. We will assume that the levels
we are studying are always ε-regular.

We now state the main result in this paper which holds for both the density estimation as well
as regression setting.

Theorem 3.3. Let L > 0 and ε ∈ (0,L/2) be such that the function f (x) has no critical values
in the range [L − 2ε,L + 2ε]. If r → 0, and nrd → ∞, then for n large enough we have

P
(
Ĥ∗(L, ε;n) ∼= H∗(DL)

) ≥ 1 − 6ne
−C	

ε/2nrd

.

In particular, if nrd ≥ D logn with D > (C	
ε/2)

−1, then

lim
n→∞P

(
Ĥ∗(L, ε;n) ∼= H∗(DL)

) = 1.

The constant value C	
ε in the theorem above is

C	
ε = ε2CK

3pmax + ε
, (3.7)

for density estimation, and

C	
ε = ε2p2

minCK

3(Y 2
max + ε2)pmax + 2εpmin(Ymax + ε)

, (3.8)

for regression (see the Appendix for more details).
Theorem 3.3 states that if we want to recover the homology of the level set DL we can compute

the image of the homology map as we move from D̂L+ε(n, r) to the slightly larger complex
D̂L−ε(n, r). We note that another possible solution to this estimation problem is to dilate the
estimated set D̂L directly (e.g., by covering the points with a slightly larger balls), as suggested
by the results in [19]. However, such a method will require further knowledge about the level
sets (such as their feature size), and the gradient of the function f , which is not required by the
method we propose here.

Remark. In order to choose D, we need to know the values of pmin,pmax and Ymax, which might
not be directly available. There are a few possible ways to address this problem:

1. Since all we need are bounds and not the precise values, one option is to make the broad
assumption that p belongs to a class of density functions bounded by some fixed values,
and use a similar assumption for Y .

2. Another option is to estimate these values from the data, taking values as high as we want
for the upper bounds pmax, Ymax (and as low as we want for the lower bound pmin), to
guarantee that the estimated values are indeed valid bounds with high probability. Using
estimated values instead of the true ones affects the theoretical validity of Theorem 3.3, but
we believe it should have a negligible effect in practice.
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3. Finally, another option is to take nrd � logn (e.g., nrd = (logn)2). Then it is guaranteed
that the probability converges to one, and we do not need to know the value of Cε .

In the following sections we describe two applications for the estimator we proposed, address-
ing problems that are of significant interest in the fields of topological data analysis and machine
learning.

3.1. An application to manifold learning

Let M be a smooth m-dimensional, closed manifold (compact and without a boundary), embed-
ded in Rd . Given a random sample Xn = {X1, . . . ,Xn} ⊂ Rd we wish to recover the homology
of M. The case where the observations are drawn directly from the manifold (i.e., Xn ⊂M), has
been extensively studied (see [12,58]). In [12], the following asymptotic result was presented.

Theorem 3.4 (Theorem 4.9 in [12]). If nrd ≥ C logn, and C > (ωdpmin)
−1, then:

lim
n→∞P

(
H∗

(
U(Xn, r)

) ∼= H∗(M)
) = 1,

where ωd is the volume of a d-dimensional unit ball, and pmin = infx∈M p(x) > 0.

In this section, we extend this result to the case where noise is present. The term “noise” in
this context refers to the fact that the observations do not necessarily lie on M, but rather in its
vicinity. As an example, consider the observations X1, . . . ,Xn defined as

Xi = Yi + Zi where Yi
i.i.d.∼ ρ(M) and Zi

i.i.d.∼ N
(
0, σ 2Id

)
, (3.9)

where Yi is drawn from a distribution ρ that is supported on a manifold M, and Zi is drawn
from the normal distribution in the ambient space Rd . For this model, the methods used to prove
consistency of the estimator in [12,58] no longer apply since the outliers produced by the noise
create their own topology, and interfere with our ability to recover H∗(M).

The seminal work in [59] studies the following special case. Let Yi
i.i.d.∼ ρ(M), for each i ∈

{1, . . . , n} let Ni be the normal space to M at Yi , and let Zi ∼ N(0, σ 2Id−m) be a multivariate
normal variable in the normal space Ni . Our observations are then taken to be Xi = Yi + Zi .
Under explicit assumptions on σ and M, they show that the homology of M can be recovered
from Xn with a high probability. The work in [7] extends this idea to a few other noise models.
The results and proofs in [7,59] are tied to specific noise models and rely on the parameters of
the noise model and the geometry of M. We wish to use the result in Theorem 3.3 to study the
same homology inference problem for a large class of distributions, and with as few assumptions
as possible.

We start by defining a general class of density functions on Rd , from which it would be possi-
ble to extract the homology of M.

Definition 3.5. Let p : Rd → R+ be a probability density function. We say that p represents a
noisy version of M, if there exist 0 < A < B < ∞ such that:
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1. For every L ∈ [A,B] we have DL 
M.
2. For every L > B , we have DL 
 M′, where M′ ⊂ M is a compact locally contractible

proper subset of M,

where “
” stands for homotopy equivalence (see Section 2).

In other words, we consider density functions p for which there is a range where the level
sets are “similar” to M. For levels higher than this range, the level sets are “similar” to nice
subsets of M. For example, the distribution in (3.9) satisfies this conditions for small enough σ .
By “locally contractible” we refer to the property that every point x has a neighborhood Nx

that is homotopy equivalent to a single point. For example, if M′ is a compact manifold with
boundary, then it is locally contractible. We need this requirement to rule out the appearance of
highly twisted topological spaces. In Figure 6, we present a sequence of level sets for a density
function that represents a noisy version of the torus. This density was generated by taking a
uniform distribution on the latitude angle, a wrapped normal distribution on the longitude angle,
and adding independent Gaussian noise. Note that the level sets are 3-dimensional whereas the
torus is 2-dimensional. Nevertheless, we can see that there is a whole range of levels where they
are topologically equivalent.

The model described in Definition 3.5 generalizes the additive Gaussian noise model discussed
in [7,59] but is essentially different than the other noise models in [7]. This model is very broad
in the sense that it is not tied to any specific assumptions on the distribution (e.g., uniform in the
“clutter” and “tubular” noise models, or having Fourier transform bounded away from zero in the
“additive” model [7]). In addition, we believe that this model is more “natural” for topological
estimation since it emphasizes the topological behavior of the density rather than making analytic
assumptions on its functional structure.

If we know a priori the values of A and B , then the recovery method would be simple.

Given a sample Xn = {X1, . . . ,Xn} i.i.d.∼ p, and setting f = p, we choose L and ε such that
[L − 2ε,L + 2ε] ⊂ (A,B), and compute Ĥ∗(L, ε;n). Theorem 3.3 guarantees that with high
probability Ĥ∗(L, ε;n) ∼= H∗(DL) ∼= H∗(M).

Figure 6. In this figure we demonstrate a sequence of level sets for a density function p that is a noisy
version of the 2-dimensional torus. The horizontal axis represents the function levels in a decreasing order.
For very high values (L > B) we see that the level sets look like a subset of the torus. Note that they are
not real subsets, since these are 3-dimensional shapes, whereas the torus is 2-dimensional. Inside the range
(A,B) the level sets look like the torus (where β0 = β2 = 1, and β1 = 2). For low levels the topology
changes again, be we no longer require any assumptions.
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However, in real problems we are not given A,B so the real challenge is to recover M without
knowing the stable range. To show that the procedure described below is consistent, we require
the following assumptions to hold.

(i) M is connected and orientable;
(ii) B − A > 8ε.

The following procedure (P2) will be used to estimate the homology of M from the a noisy
sample Xn. In this procedure, we will use the estimated Betti numbers defined as β̂k(L, ε;n) �
rank(Ĥ∗(L, ε;n)). Define

Nε := sup
x∈Rd

⌈
f (x)/2ε

⌉
, Lmax = 2εNε and Li = Lmax − 2iε. (3.10)

The procedure (P2) is as follows.

1. Compute Ĥ∗(Li, ε;n) for all i = 1, . . . ,Nε .
2. Define

i	 � 1 + min
{
i ∈ {1, . . . ,Nε} : β̂m(Li, ε;n) = 1

}
.

This index will be shown to be the first point where we are guaranteed to observe the
homology of M.

3. Our estimator for the homology of M will then be Ĥ∗(Li	 , ε;n).

Note that in this procedure a choice has to be made for the parameter r (the radius of the balls
and the bandwidth of the kernel). The following theorem states that if r is chosen appropriately
we can estimate the homology of a manifold from noisy observations with high probability.

Theorem 3.6. Let M be a m-dimensional closed, connected, orientable manifold embedded
in Rd . Let X1, . . . ,Xn be data points sampled from a density function p satisfying the conditions
in Definition 3.5. Choose r → 0 that satisfies nrd ≥ D logn with D > (C	

ε/2)
−1, where Cε is

defined in (3.7). Applying procedure (P2), we then have

lim
n→∞P

(
Ĥ∗(Li	 , ε;n) ∼= H∗(M)

) = 1.

We state here the main ideas used in proving the above, while the detailed proof is given
in the Appendix. We use Poincaré duality, a fundamental idea in algebraic topology. Poincaré
duality relates homology groups to co-homology groups of closed orientable m-dimensional
manifolds, stating that Hk(M) ∼= Hm−k(M), where Hm−k(M) is the co-homology of M (cf.
[43,55]). An important consequence of Poincaré duality is that βk(M) = βm−k(M) for every
k = 0, . . . ,m, and in particular β0(M) = βm(M). Our assumption that M is connected implies
that β0(M) = 1, and from Poincaré duality we conclude that βm(M) = 1 as well. In contrast,
if M′ ⊂ M is a proper compact locally contractible subset of M then using a different type
of duality one can show that βm(M′) = 0 (see Proposition 3.46 in [43]). Our assumptions on
A,B then implies that if Li > B we have βm(DLi

) = 0, while if Li ∈ (A,B) then βm(DLi
) = 1.

Therefore, the first Li for which the m-th Betti number switches from 0 to 1 necessarily lies in
(A,B), and we can use this Li to recover the homology of M. In practice, we defined i	 to be
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the second level at which we have β̂m(Li, ε;n) = 1. This is a precautionary measure which we
discuss in the proof.

Remark.

1. To use the result in Theorem 3.6 one needs to know the values of m and ε. We consider
these values to be crucial information required to “extract” the topology of the manifold.
Their knowledge replaces other assumptions about the geometry of the manifold which we
want to avoid. Note that for ε we do not require a precise value but any lower bound would
suffice.

2. Also required is the knowledge Lmax (or equivalently Nε). Note, that when we have a finite
sample {X1, . . . ,Xn} we can estimate Lmax using L̂max := maxi�fn(Xi)/2ε�. For every
L > L̂max we have D̂L(n, r) = ∅. Therefore, in practice, even if the true Lmax is higher
than L̂max, it does not affect the procedure, since the higher levels are empty anyway.

3. It is possible that small perturbations in the density function will generate m-dimensional
cycles at level sets with L > B . To be able to ignore these cycles when they appear,
additional information about the geometry of the underlying manifold should be pro-
vided (e.g., its feature size), otherwise it will be impossible to determine which of the
m-dimensional cycles belongs to the manifold (even if the function f is known com-
pletely), and the homology inference problem is ill-posed. If we want to limit ourselves
to use only the fact that the data is “concentrated” around a m-dimensional manifold, then
we need to assume the density function allows us to identify it properly, and that is the
essence of Definition 3.5.

3.2. Persistent homology and application to clustering

A common topological summary used in TDA is persistent homology (see Section 2). Given a
function f the persistent homology of f , PH∗(f ), tracks when the homology of (super) level-
sets of f changes and serves as a summary of the function. This summary contains information
about the creation and destruction of connected components and cycles of the level sets. In the
case where f = p is a density function, the zeroth persistent homology PH0(f ) can viewed a
summary of the evolution of clusters in the data, and can be useful for clustering algorithms as
discussed in Section 2.2. By definition, PH∗(f ) is computed from the continuous filtration D =
{DL}L∈R as L decreases from ∞ to −∞. Note that the persistent homology PH∗(f ) contains
much more information than just the homology at each level DL. It also contains information
about mappings between different levels, and hence enables us to track the evolution of cycles.

In this section, we wish to address the estimation of PH∗(f ) where f : Rd → R is either a
density function (tame and bounded) or a regression function (satisfying the conditions (C2) as
well). In both cases, we have shown that the estimator Ĥ∗(L, ε,n) defined in (3.5), can recover
the homology of DL for every L. In order to recover the persistent homology we also need to
make sure that the mappings between different levels are recovered as well. The error measure
we use is the commonly used “bottleneck distance” (see Section 2). To estimate PH∗(f ), recall
the definitions of Nε,Lmax, and Li in (3.10) and consider the following discrete filtration

D̂ε �
{
D̂Li

(n, r)
}
i∈Z,
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where D̂Li
(n, r) is defined by (3.3). Denoting the persistent homology of D̂ε by P̂Hε

∗(f ), and
using the methods presented in this section we prove the following.

Theorem 3.7. If r → 0 and nrd → ∞, then

P
(
dB

(
P̂Hε

∗(f ),PH∗(f )
) ≤ 5ε

) ≥ 1 − 3Nεne
−C	

ε/2nrd

,

where C	
ε is defined in (3.7) (density) and (3.8) (regression). In particular, if nrd ≥ D logn with

D > (C	
ε/2)

−1, we have

lim
n→∞P

(
dB

(
P̂Hε

∗(f ),PH∗(f )
) ≤ 5ε

) = 1.

In other words, we state that the estimator P̂Hε
∗(f ) is “consistent” up to a given precision of 5ε.

Note that we will always have some discretization error since our estimator is discrete (having an
inherent step size ε) while the filtration we wish to study is continuous. However, one can make
ε arbitrarily small to achieve higher precision. The smaller value of ε we choose the smaller C	

ε/2

will be and the convergence of P̂Hε
∗(f ) to PH∗(f ) will be slower.

To prove this theorem (see Appendix), we invoke Lemma A.2 M times in order to form a
sequence of inclusions alternating between level sets DL and their estimates D̂L(n, r). This al-
ternating sequence is called “interleaving” and the work in [18] provides means to bound the
distance between the persistent homology computed for these two types of filtrations. In Sec-
tion 5, we provide several examples for the estimation of persistent homology using P̂Hε

∗(f ).
As we discuss in Section 4, Theorem 3.7 can be adjusted to use the filtration of Rips com-

plexes {RLi
(n, r)}i∈Z instead of {D̂Li

(n, r)}i∈Z. The work in [20,21] studies a different method
to recover the persistent homology of f using Rips complexes. In order to recover PH∗(f ), [20]
considers the maps ıL∗ : H∗(RL(n, r)) ↪→ H∗(RL(n,2r)) induced by inclusion for all values of
L and for a fixed r . The persistence module for the family of images – {Im(ıL∗ )}L is then used as
an approximation for PH∗(f ). In a way, one can think of the transition RL(n, r) ↪→ RL(n,2r) as
playing the same role as the transition RL+ε(n, r) ↪→ RL−ε(n, r) we study in this paper, “filter-
ing” the noisy homology. Changing the radius rather than the level, allows one to avoid the level
discretization that our method relies on, which leads to a more accurate approximation. On the
other hand, this method requires further assumptions on the model parameters, and computing
the estimator is more complicated. It remains future work to study whether these two methods
could be combined into a more powerful and robust one.

In a different line of work [15,22,37] persistent homology is recovered by constructing a
kernel-based estimator f̂ for the function at hand and then computing the persistent homology of
the estimator PH(f̂ ). The work in [62] presents a different approach by recovering the sublevel
sets of distance-like functions called “kernel distance” functions. The validity of these methods is
established by using the stability theorem [23] stating that dB(PH∗(f ),PH∗(f̂ )) ≤ ‖f − f̂ ‖∞.
There are two significant advantages to the estimator we propose in this paper. First, we do not
require assumptions about the global sup-norm convergence of the estimator. Second, computing
the estimator PH(f̂ ) in practice involves discretizing the space, and this may have a significant
effect on the ability to recover small features in the data (see, e.g., the clustering examples in
Section 5). The estimator we propose does not require such a discretization.
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4. Computing the homology estimator

The estimator we propose in Section 3 requires the computation of the image between the homol-
ogy groups of D̂L+ε(n, r) and D̂L−ε(n, r) (defined in (3.3)). As a review for a more statistical
audience, we state the fundamental tools required to compute this estimator. In general, algo-
rithms for computing homology of unions of balls require two steps. The first step is to obtain
a combinatorial representation of the geometric object that is either equivalent in homology or
approximately equivalent in homology to the original geometric object. This step is outlined in
Section 4.1. The combinatorial representation reduces homology computation to a linear algebra
problem. The second step is to apply a set of linear transformations to this combinatorial repre-
sentation to compute the image of the homology groups under the inclusion map between two
complexes. This step is outlined in Section 4.2.

4.1. The Čech and Vietoris–Rips complex

Let S be a set, and  ⊂ 2S be a collection of finite subsets of S. We say that  is an abstract sim-
plicial complex if for every A ∈  and B ⊂ A we also have B ∈ . In this section we introduce
two special types of abstract simplicial complex that can be useful for computing the estimators
presented in this paper.

Let X = {x1, . . . , xn} be a set of points in Rd , and suppose that we wish to compute the
homology of the union of balls U(X , r) (see (3.2)) for some r > 0. The Čech complex is an
abstract simplicial complex that allows us to convert the homology computation problem into
linear algebra. The Vietoris–Rips (or just Rips) complex can be thought of as an approximation to
the Čech complex. This approximation offers computational advantages over the Čech complex
but suffers from not sharing the same direct relation to the homology of U(X , r) as the Čech
complex. We first provide the definitions for these complexes.

Definition 4.1 (Čech complex). Let X = {x1, x2, . . . , xn} be a collection of points in Rd , and let
r > 0. The Čech complex C(X , r) is constructed as follows:

1. The 0-simplices (vertices) are the points in X .
2. A k-simplex [xi0, . . . , xik ] is in C(X , r) if

⋂k
j=0 Br(xij ) �=∅.

Definition 4.2 (Rips complex). Let X = {x1, x2, . . . , xn} be a collection of points in Rd , and let
r > 0. The Rips complex R(X , r) is constructed as follows:

1. The 0-simplices (vertices) are the points in X .
2. A k-simplex [xi0, . . . , xik ] is in R(X , r) if ‖xij − xil‖ ≤ 2r for all 0 ≤ j, l ≤ k.

Figure 7 depicts a simple example of a Čech and Rips complex in R2. The figure also high-
lights the contrast between the two complexes. The main difference is that the Rips complex
is constructed simply from pairwise intersection information while the Čech complex requires
high-order information. This difference is realized in Figure 7 in the far left triangle in either
complex. In the Rips complex, the left triangle is filled in to be a face, since all three pairwise
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Figure 7. On the left – the Čech complex C(X , r), on the right – the Rips complex R(X , r) with the same
set of vertices and the same radius. We see that the three left-most balls do not have a common intersection
and therefore do not generate a 2-dimensional face in the Čech complex. However, since all the pairwise
intersections occur, the Rips complex does include the corresponding face.

intersections occur. In the Čech complex higher-order interactions are also computed, in this case
one observes that the three pairwise intersections do not overlap resulting in three edges rather
than a filled in face. The main advantage of the Rips complex is computational – all we need in
order to construct the Rips complex is to compute the pairwise distances between all the points,
rather than to check for all possible orders of intersections of balls as we would have to for the
Čech complex.

The Rips complex can be considered as an approximation to the Čech complex. It is clear
from the definitions that C(X , r) ⊂ R(X , r). In addition, it is shown in [29] that R(X , r) ⊂
C(X ,

√
2r). Combining these two statements we have that

R(X , r) ⊂ C(X ,
√

2r) ⊂ R(X ,
√

2r).

An important result in algebraic topology called the “Nerve lemma” (cf. [13]) states that the
Čech complex C(X , r) is homotopy equivalent to the neighborhood set U(X , r). In particular it
follows H∗(C(X , r)) ∼= H∗(U(X , r)). As a consequence, any statement made about the homol-
ogy of U(X , r) applies to C(X , r) and vice versa.

Denote the Čech complex generated by the filtered point set XL
n as CL(n, r) � C(XL

n , r). We
can then define

ı∗ : H∗
(
CL+ε(n, r)

) → H∗
(
CL−ε(n, r)

)
to be the map induced by the inclusion map between the simplicial complexes. Defining

ĤC∗ (L, ε;n)� Im(ı∗),

then by the Nerve lemma, since D̂L±ε(n, r) and CL±ε(n, r) are completely equivalent structures
(in terms of homology), Theorem 3.3 holds without changes for ĤC∗ (L, ε;n).

Next, we denote the Rips complex constructed from the filtered sample as RL(n, r) �
R(XL

n , r) and define the following inclusion map for any ε ∈ (0,L/2)

ı : RL+ε(n, r) ↪→ RL−ε(n, r).

This inclusion induces a map in homology

ı∗ : H∗
(
RL+ε(n, r)

) → H∗
(
RL−ε(n, r)

)
,
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and we denote

ĤR∗ (L, ε;n)� Im(ı∗).

Note that the Nerve lemma applies only to the Čech complex and not the Rips. Nevertheless, the
following theorem states that we can compute the homology of DL using the Rips complex as
well. The importance of providing a consistent estimator for H∗(DL) that uses the Rips complex
is due to its computational efficiency.

Theorem 4.3. Let L > 0 and ε ∈ (0,L/2) be such that the function f (x) has no critical values
in the range [L − 2ε,L + 2ε]. If r → 0 and nrd → ∞, then for n large enough we have

P
(
ĤR∗ (L, ε;n) ∼= H∗(DL)

) ≥ 1 − 6ne
−C	

ε/2nrd

.

In particular, if nrd ≥ D logn with D > (C	
ε/2)

−1, then

lim
n→∞P

(
ĤR∗ (L, ε;n) ∼= H∗(DL)

) = 1.

In the next subsection, we provide an algorithm for computing the image of the inclusion map
using either the Čech or Rips complex.

4.2. Computing the homology of the image

Our estimator for Hk(DL) requires the computation of the image of the map between the homol-
ogy of two nested simplicial complexes �(1) ⊂ �(2) (either Čech or Rips). This map is denoted
by ık : Hk(�

(1)) → Hk(�
(2)). In this section, we present an algebraic algorithm to compute the

rank of this image, namely the estimated Betti number βk . Note that there are several efficient al-
gorithms to compute persistent homology that can also be used here (see [1,35,50]). We present a
relatively simple algorithm, in the interest of clarity for a statistical audience, for the case where F
is a field of characteristic zero (e.g., R,Q). For a fixed homology degree 0 ≤ k ≤ d the algorithm
will consist of two steps:

(1) Finding a basis for the kernel of a square matrix defined later as L
(1)
k .

(2) Computing the rank of two matrices, defined later as ∂
(2)
k+1 and ∂̂

(2)
k+1, and then we will have

that

rank
(
Im(ık)

) = rank
(
∂̂

(2)
k+1

) − rank
(
∂

(2)
k+1

)
.

In the following, we provide more details about homology computation for simplicial complexes,

and in particular the definitions of the matrices L
(1)
k , ∂

(2)
k+1, and ∂̂

(2)
k+1 mentioned above.

4.2.1. Computing the homology of a simplicial complex

Let � be a simplicial complex, let �k be the set of k-simplexes in �, and let nk = |�k|, so we
can write

�k = {σ1, σ2, . . . , σnk
}.
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We assume that every k-simplex σi ∈ �k is attached with a unique orientation (an ordering on its
set of vertices), denoted by σi = [xi

0, . . . , x
i
k]. Defining Ck � Fnk , we wish to map the simplexes

of �k into a basis of Ck in a way that preserves orientation information. To do that we first define
�π

k to be the set containing all the simplexes in �k in all possible orientations. We then define
the map Tk : �π

k → Ck in the following way. For every simplex σi ∈ �k we define Tk(σi) = ei ,
where ei consists of one at the ith entry, and zero elsewhere. For every permutation π on 0, . . . , k,
we then define

Tk

([
xi
π(0), . . . , x

i
π(k)

]) = sign(π)ei ,

where sign(π) = (−1)P (π), and P(π) is the parity of the permutation π . The vector space Ck is
usually referred to as the “space of k-chains” of �.

Next, using the map Tk , we define the matrix ∂k to be a nk−1 ×nk matrix where the ith column
is given by

(∂k)i =
∑

σ∈�k−1

is a face of σi

Tk−1(σ ).

We note that the orientation of σ used in the sum is the one inherited from the orientation of σi .
In other words, the nonzero entries in the ith column correspond to the (k −1)-dimensional faces
of σi ∈ �k (with the proper sign representing their orientation). The matrix ∂k can be thought of
as a linear transformation from Ck to Ck−1 and is referred to as “the boundary operator.” The kth
homology of � is then defined to be the quotient space given by

Hk(�) � ker(∂k)/ Im(∂k+1). (4.1)

One way to find a basis for Hk(�) is via the combinatorial Laplacian, defined as the following
nk × nk matrix

Lk � ∂k+1∂
T
k+1 + ∂T

k ∂k.

Note that L0 is the well-known graph Laplacian. If F is a field with characteristic zero (e.g. R,Q)
then it is shown in [38] that the kernel of Lk is isomorphic to Hk(�) and in particular, the Betti
numbers of � are given by βk(�) = dim(ker(Lk)).

4.2.2. The homology of the map

Our goal is not only to compute the homology of �(1) and �(2) separately, but rather to compute
the image of the map ık : Hk(�

(1)) → Hk(�
(2)). For j = 1,2 let �

(j)
k be the set of k-simplexes

in �(j), and let n
(j)
k = |�(j)

k |. Since �(1) ⊂ �(2) we can list the simplexes in the following way:

�
(1)
k = {σ1, σ2, . . . , σn

(1)
k

},

�
(2)
k = {σ1, σ2, . . . , σn

(1)
k

, σ
n

(1)
k +1

, . . . , σ
n

(2)
k

}.
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Using this ordering on the simplexes, we define the boundary operators ∂
(j)
k and the combinato-

rial Laplacians L
(j)
k for each of the complexes. It is then easy to see that

∂
(2)
k =

(
∂

(1)
k · · ·
0

. . .

)
. (4.2)

Now, if {v1, . . . , vm} ⊂ C
(1)
k is a basis for ker(L(1)

k ) then it represents a basis for Hk(�
(1)), such

that βk(�
(1)) = m. Let v̂i ∈ C

(2)
k be a zero padded version of vi ∈ C

(1)
k . From (4.1), we know

that vi ∈ ker(∂(1)
k ), and thus from (4.2) it is clear that v̂i ∈ ker(∂(2)

k ) as well. This implies that
the vectors in {v̂1, . . . , v̂m} are candidates to form a basis for Im(ık). Note, however, that while
v̂i ∈ ker(∂(2)

k ), it is possible that some linear combinations of v̂1, . . . , v̂m are in Im(∂
(2)
k+1), which

means that they are considered as trivial in Hk(�
(2)). This means that {v̂1, . . . , v̂m} might be

larger than a basis for Im(ık), and we need to reduce this set. This can be done by solving several
sets of linear equations, which we avoid describing here. However, the rank of Im(ık) can be
computed easily by

rank
(
Im(ık)

) = rank
(
∂̂

(2)
k+1

) − rank
(
∂

(2)
k+1

)
,

where

∂̂
(2)
k+1 = (

∂
(2)
k+1, v̂1, . . . , v̂m

)
is a n

(2)
k × (n

(2)
k+1 + m) matrix we get by concatenating the boundary matrix ∂

(2)
k+1 with the column

vectors v̂i . In other words, we measure how many vectors from the set {v̂1, . . . , v̂m} can be added
to the set of columns vectors of ∂

(2)
k+1 without generating linear dependency.

5. Results on simulated data

In this section, we illustrate how we can use the methods in Section 3 for data analysis using
some simulated examples. The examples we chose relate to classical problems in statistics: clas-
sification, non-parametric regression, and clustering. We use these examples to demonstrate the
novelty and strength of the methods proposed in this paper.

5.1. Binary regression

We illustrate how we can recover the homology of a classification function. The marginal density
of the explanatory variables is uniform in the unit square X ∼ U([− 1

2 , 1
2 ]2). We then set the

conditional probability of the binary response Y as

P(Y = 1 | X = x) = f (x) � C
(
1 + sin

(
4π‖x‖2))e−100(‖x‖−1/4)2

, (5.1)

where C is a normalization factor guaranteeing that f (x) is indeed a conditional probability. The
graph of this conditional probability is given in Figure 8.
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Figure 8. (a) The graph of the conditional probability on the unit square. (b) The level sets of the image of
the conditional probability. (c) For a set of points drawn from the marginal distribution on the unit square
we label them red or green based on the conditional probability given by (5.1). The green points are those
assigned to a response of one and the red points are those assigned zeros.

We generate i.i.d. observations {(X1, Y1), . . . , (Xn,Yn)} from the joint distribution and our
objective is to recover the topology of the level set DL for L = 0.5 which is used as the binary
classifier in this case, and has the shape of an annulus. We use the Rips construction presented
in Theorem 4.3, with n = 50,000, r = 0.01, and ε = 0.2. This gives us two complexes: S1 =
R0.3(n, r) and S2 = R0.7(n, r). Figure 9 shows the sets of disks used to create the two Rips
complexes. The light blue disks are the ones corresponding to S1 and the orange ones corresponds
to S2. Computing the Betti numbers yields:

S1 S2 S1 ↪→ S2

β0 34 53 1
β1 23 49 1

Indeed, while the homology of each of the complexes S1, S2 is extremely noisy, the image of
the map between them looks exactly like an annulus.

5.2. Kernel regression

In this example, we consider a regression function on the unit square f : [−1,1]2 → R with
additive noise

Yi = f (Xi) + ξi . (5.2)

Our objective will be to recover the barcode or persistent homology of the above function from
noisy observations.

The regression function f was generated from a random mixture of Gaussians, and its graph
is presented in Figure 10(a). The “true” barcode of the function f is presented in Figure 11(a).
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Figure 9. Computing the homology of a level set for a regression function. We generated {(Xi,Yi)}50,000
i=1

i.i.d. observations from the marginal and conditional distributions given in equation (5.1). For L = 0.5 and
ε = 0.2 we present the following: (a) the set D̂L+ε(n, r), (b) the set D̂L−ε(n, r), (c) the two sets combined.
Note that both individual sets in (a) and (b) contain many connected components and cycles. However, in
(c) we observe that most of these homological features do not survive the transition. All the extra connected
components in (a) are merged into the large component in (b). Similarly, all the extra cycles in (a) are filled
up in (b).

This barcode was computed by evaluating f directly on a dense grid and computing the persistent
homology of this discretized version. The independent variables Xi are generated from a uniform
distribution in the box [−1,1]2. The noise ξi is independent of Xi , and generated by a normal
distribution with σ = 0.2 truncated at 5σ (we require in (C2) for the response variables to be
bounded). To estimate this barcode, we used P̂Hε

∗(f ) (defined in Section 3.2) with n = 5000, r =
0.1, ε = 0.001. The result is presented in Figure 11(b).

Figure 10. A regression function in R2. (a) The graph of the function in the box [−1,1]2. (b) The level sets
of the function. It is easy to spot five peaks and three valleys in this image, which in persistent homology
correspond to five features in PH0 and three in PH1. (c) Generating {(Xi,Yi)}5000

i=1 i.i.d. observations from
the model presented in (5.2).
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Figure 11. (a) The “true” barcode of the persistent homology of the regression function f presented in
Figure 10. (b) The estimated persistent homology P̂Hε

∗(f ), with n = 5000, r = 0.1, ε = 0.001, is very close
to the true barcode. For visualization purposes, we left bars with length less than 0.05 out of the figure.
In both the true and the estimated barcodes we observe five significant features in H0 and three in H1,
corresponding to the five peaks and three valleys in the graph of the function f .

5.3. Dataset related to spectral clustering

Spectral clustering uses spectral graph theory to cluster observations (see the review papers in
[57,71]). It is mostly useful in cases where the clusters are not necessarily concentrated close to
a single point, but have a more complicated shape (such as the data in Figure 12). We revisit a
simulated example from the spectral clustering literature to illustrate how well we can recover
the number of clusters and cluster features using our level sets approach. We generate n = 10,000
points from three concentric circles (of radii 1,2,3) and added multivariate Gaussian noise with
σ = 0.2. The result is presented in Figure 12(a). The topological features we wish to recover here

Figure 12. (a) A sample set generated from three concentric circles. (b) The barcode for P̂Hε
0(f ), where

we indeed observe three dominating components. (c) The barcode for P̂Hε
1(f ), where we indeed observe

three dominating cycles. The parameters used in this simulation are n = 10,000, r = 0.125, ε = 0.005.
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are the three connected components and the three cycles (spectral clustering would find the three
connected components). The parameters we used are r = 0.125, ε = 0.005. Figure 12(b) displays
P̂Hε

0(f ). Here we see that there are indeed three dominating features (bars that persist over a long
period of time). The rest of the features are generated by the fluctuations in the estimated density
function. Similarly, in Figure 12(c) we observe three dominating features as well, representing
the three cycles in the data.

5.4. Hierarchical clustering

This example will be used to show how using our method we can capture features of a density
function with hierarchical structure. Consider a probability density f on R2 that consists of two
concentrated densities that are far apart and centered at (±0.25,0), see Figure 13(a). Once we
zoom into the two densities we realize there is a finer structure in this problem. The density
around (0.25,0) is a mixture of four Gaussians that are very near each other, see Figure 13(b).
The density around (−0.25,0) is one density that looks like a volcano crater (made of a mixture
of 100 Gaussians), see Figure 13(c). The result of this finer structure is that when we examine

Figure 13. A hierarchical density function. (a) The density function at a coarse level, consisting of two
sharp peaks. (b) Zooming in on the density around (0.25,0) we observe that this sharp peak actually consists
of four adjacent peaks. (c) Zooming in on the density around (−0.25,0) we observe that the peak has a
crater-like structure with small fluctuation around the rim. (d)–(f) A sample of n = 5000 points generated
by f .
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Figure 14. Estimating the persistent homology of the density function f presented in Figure 13. (a) The
“true” barcode for the function f , that is, PH∗(f ) (computed by sampling the density function on a fine
grid). (b) The barcode computed from the estimator P̂Hε

∗(f ). The parameters used are n = 5000, r = 0.001,
ε = 3.5. (c) The barcode computed for the kernel density estimator – PH∗(f̂ ). The kernel parameters are
the same as for P̂Hε

∗(f ), the grid size taken is 500 × 500. Note that the estimator P̂Hε
∗(f ) gives a result that

is very similar to the true barcode. In both cases there are five significant features in H0 and two significant
features in H1. The barcode for PH∗(f̂ ) only recover the coarse features, namely the two clusters, but
completely ignores the finer structures. We note that for visualization purposes we filtered out the very
small bars before drawing the barcodes here.

the persistence homology of f we expect to see: (1) five dominating features in PH0 – the four
bumps on the right, and the entire volcano on the left, (2) two dominating features in PH1 –
one coming from the cycle along the rim of the volcano, and another one from the cycle that
surrounds the four bumps, (3) fluctuations on the rim will introduce features in PH0(f ) but these
will have low persistence. We will show how we can accurately capture the homology of this
hierarchical structure.

The barcode in Figure 14(a) displays the “true” persistent homology PH∗(f ) that was com-
puted by evaluating the function values directly on a very fine grid around the peaks. Looking
at the barcode of PH0(f ), we see two dominant features, with death time close to zero. These
two features correspond to the two clusters represented by the peaks seen in Figure 13(a). The
other three dominant features correspond to the three additional peaks we have in Figure 13(b).
The rest of the bars (as well as other shorter bars we kept out of the figure for visualization pur-
poses) correspond to the fluctuation along the rim of the crater in Figure 13(c). In PH1(f ), we
see exactly two features corresponding to the two cycles described above.

We can compare the true barcode to the barcode generated by our estimator for PH∗(f ) using
P̂Hε

∗(f ). The parameters we used in the estimator are n = 5000, r = 0.001, ε = 3.5. The barcode
for P̂Hε

∗(f ) is presented in Figure 14(b). The global picture is very consistent with that of the
true function. As expected our estimates have extra variation in the endpoints of the bars.

In Fasy et al. [37], an alternate approach is developed to estimate PH∗(f ). Their idea is to use
a kernel density estimation to obtain an estimate f̂n of the density f . Then they compute the per-
sistent homology of f̂n, denoted by PH∗(f̂n). They are able to provide a theoretical bound on the
bottleneck distance between PH∗(f ) and PH∗(f̂n). This result is similar in spirit to Theorem 3.7
in our paper. The main difference in their method versus our method is that they focus on getting
a good estimate of the function values or ensuring f̂n ≈ f (x) everywhere, whereas we compute
P̂Hε

∗(f ) by approximating the level sets directly.
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In the case of a density function with hierarchical structure, these two approaches often have
different empirical performance. In particular, we argue that the estimator P̂Hε

∗(f ) is favorable
to PH∗(f̂ ). The crux of the argument in favor of computing P̂Hε

∗(f ) is that in evaluating the
fit of f̂ there is a resolution parameter of how fine in R2 one measures f , which we denote
as � (in addition to the bandwidth parameter of the kernel – r). The problem arises in that one
needs to know what value of � is small enough to capture fine structure in f . This raises two
issues: (1) how to adaptively estimate � from data and (2) taking a finer resolution parameter
will result in an increase in the sample complexity of the inference problem. Our approach of
directly estimating P̂Hε

∗(f ) avoids these difficulties, since we only work with the original sample
points rather than f̂ . In Figure 14(c), we present the barcode for PH∗(f̂ ), computed using the
same kernel, on a grid of size 500 × 500 (i.e., � = 1/250).

6. Conclusion

In this paper, we introduce a consistent estimator for the homology of level sets for both density
and regression functions. We apply this procedure to infer the homology of a manifold from
noisy observations, and infer the persistent homology of either density or regression functions.
The conditions we require are weaker than previous results in this direction.

We view this work as an important step in closing the gap between topological data analysis
and statistics. For topological data analysis, we provide a consistent estimator for the homology
and persistent homology of spaces underlying random data. As future work, we will consider
refinements of our analysis to obtain convergence rates and confidence intervals of the estimates.
We suspect this will require more assumptions on the geometry of the underlying spaces. From
a statistical perspective, this work suggests that topological summaries of density and regression
functions are of interest and provide insights in statistical modeling. We suspect these characteris-
tics or topological summaries will be very useful in classification or hypothesis testing problems,
when the assumptions on different decision regions can be naturally captured by coarse geometry
or topology.

Appendix: Proofs

In this section we provide the proofs for Theorems 3.3, 3.6, 3.7, and 4.3.

A.1. Some definitions and lemmas

Recall that

XL
n �

{
Xi : f̂n(Xi) ≥ L;1 ≤ i ≤ n

}
.

Our first step would be to assign some probabilistic quantification of the accuracy of the assign-

ments XL
n with respect to DL. We will do this by first defining two sets: the set D

↑
L,r corresponds
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to “inflating” DL by a radius r and D
↓
L,r corresponds to “deflating” DL by a radius r . To define

these sets, we first define the tube of radius r around the boundary of DL

∂Dr
L =

⋃
x∈∂DL

Br(x), ∂DL is the boundary of DL.

We then define D
↑
L,r and D

↓
L,r as follows

D
↑
L(r) = DL ∪ ∂Dr

L, D
↓
L(r) = DL \ ∂Dr

L.

Using these definitions the following lemma provides a bound on the false positive and false
negative error of the set XL

n with respect to DL.

Lemma A.1. Assume that constraint (C1) on the kernel function holds and either condition (C2)
holds for the regression case or in the density estimation case the density is bounded and tame.
For every L > 0, and ε ∈ (0,L), if r → 0 and nrd → ∞, then there exists a constant C	

ε such
that for n large enough we have

P
(∃Xi /∈ D

↑
L−ε(r) : f̂n(Xi) ≥ L

) ≤ ne−C	
εnrd

, (A.1)

and

P
(∃Xi ∈ D

↓
L+ε(r) : f̂n(Xi) ≤ L

) ≤ ne−C	
εnrd

. (A.2)

Equation (A.1) bounds the probability of a false-positive error, and equation (A.2) bounds the
probability of a false-negative error. The value of C	

ε is different for density estimation versus
regression and is given by (3.7) and (3.8).

Next, recall that

D̂L(n, r) � U
(
XL

n , r
)
.

We would like to prove that with a high probability this empirical set is sandwiched by two sets
which should be “close” to DL. The following lemma states the precise result.

Lemma A.2. For every L > 0, and ε ∈ (0,L), if r → 0 and nrd → ∞, then for large enough n

we have

P
(
D

↓
L+ε(2r) ⊂ D̂L(n, r) ⊂ D

↑
L−ε(2r)

) ≥ 1 − 3ne−C	
εnrd

,

In other words, our estimator D̂L(n, r) is sandwiched between the two non-random approxi-
mations of DL.

The last ingredient we need for the proving the theorems is the following purely algebraic
lemma.
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Lemma A.3. Consider the following commutative diagram of groups,

(by “commutative” we mean that all paths with the same endpoints lead to the same result), and
for every i, j define Gij = Im(gij ) ⊂ Gj .

If g35 : G3 → G5 is an isomorphism from G3 to G15. Then the map g34 : G3 → G4 is an
isomorphism from G3 to G24 ⊂ G4. In particular, we have G3 ∼= G24.

A.2. Proving the theorems

Proof of Theorem 3.3. Using Lemma A.2 for D̂L+ε(n, r) and D̂L−ε(n, r) we have that for n

large enough

P
(
D

↓
L+(3/2)ε(2r) ⊂ D̂L+ε(n, r) ⊂ D

↑
L+(1/2)ε(2r)

) ≥ 1 − 3ne
−C	

ε/2nrd

,
(A.3)

P
(
D

↓
L− 1

2 ε
(2r) ⊂ D̂L−ε(n, r) ⊂ D

↑
L−(3/2)ε(2r)

) ≥ 1 − 3ne
−C	

ε/2nrd

.

Since we assume L is ε-regular, if r is small enough, we have

DL+2ε ⊂ D
↓
L+(3/2)ε(2r) ⊂ D

↑
L+(1/2)ε(2r) ⊂ DL ⊂ D

↓
L−(1/2)ε(2r) ⊂ D

↑
L−(3/2)ε(2r) ⊂ DL−2ε,

and from (A.3) we conclude that

P
(
DL+2ε ⊂ D̂L+ε(n, r) ⊂ DL ⊂ D̂L−ε(n, r) ⊂ DL−2ε

) ≥ 1 − 6ne
−C	

ε/2nrd

.

Denote

S1 = DL+2ε, S2 = D̂L+ε(n, r), S3 = DL, S4 = D̂L−ε(n, r), S5 = DL−2ε,

and let Gi = H∗(Si). Since we assume that f (x) has no critical values in [L − 2ε,L + 2ε],
and using the notation of Lemma A.3 we have that the maps g13, g35 and g15 induced by the
inclusions S1 ⊂ S3 ⊂ S5 are all isomorphisms. If, in addition, S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5, then
using Lemma A.3 we conclude that G24 ∼= G3. Observing that G24 = Im(ı∗) (see (3.4)) we have
that Im(ı∗) ∼= H∗(DL) which completes the proof. �

Proof of Theorem 3.6. Recall that Nε = supx∈Rd �f (x)/2ε�, and Lmax = 2εNε . Let E be the
event that for every 1 ≤ i ≤ Nε the following inclusion holds:

DLi−1 = DLi+2ε ↪→ D̂Li+ε(n, r) ↪→ DLi
↪→ D̂Li−ε(n, r) ↪→ DLi−2ε = DLi+1 . (A.4)
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Applying Lemma A.2 (as in the proof of Theorem 3.3) Nε times we can show that if r → 0 and
nrd → ∞ then for n large enough

P(E) ≥ 1 − 3nNεe
−C	

ε/2nrd

.

From here on we will assume that (A.4) is true for all 1 ≤ i ≤ Nε . Choosing i	 as

i	 � 1 + min
{
i ∈ {1, . . . ,Nε} : β̂m(Li, ε;n) = 1

}
,

our goal is to show that [Li	 − 2ε,Li	 + 2ε] ⊂ (A,B), and therefore the arguments used in the
proof of Theorem 3.3 guarantee that Ĥ∗(Li	 , ε;n) ∼= H∗(DLi	

) ∼= H∗(M).
Since M is assumed to be connected, we have that β0(M) = 1, and by Poincaré duality (cf.

[43,55]) we conclude that βm(M) = 1. If Li ∈ (A,B) then from Definition 3.5 we have that
DLi


 M and thus βm(DLi
) = 1 as well. On the other hand, if Li > B then DLi


 M′ where
M′ is a compact locally contractible proper subset of the M. Using Proposition 3.46 in [43] we
have that βm(M′) = βm(DLi

) = 0.
Our requirement that Li−1 − Li = 2ε and B − A ≥ 8ε guarantees that there are at least four

consecutive levels Li such that Li ∈ (A,B). Let Li1 > Li2 > Li3 > Li4 be the first (highest)
such levels. For k = 2,3 we have that [Lik − 2ε,Lik + 2ε] ⊂ (A,B), and from the proof of
Theorem 3.3 and the previous paragraph we conclude that β̂m(Lik , ε;n) = 1. For i1 however, it
is not true that [Li1 − 2ε,Li1 + 2ε] ⊂ (A,B) and therefore, β̂m(Li1, ε;n) might be either zero
or one. Finally, defining i	 the way we did, i	 might be either i2 or i3. In both cases we have
[Li	 − 2ε,Li	 + 2ε] ⊂ (A,B), and that completes the proof. �

Proof of Theorem 3.7. Recall that D = {DL}L∈R is the continuous filtration of the (super) level
sets of f , and D̂ε = {D̂Li

(n, r)}i∈Z is a discrete approximation. To prove that the corresponding
persistent homologies PH∗(f ), P̂Hε

∗(f ) satisfy

dB

(
P̂Hε

∗(f ),PH∗(f )
) ≤ 5ε,

we will use the language of ε-interleaving introduced in [18]. The first step would be to define a
discrete version of the filtration D given by

Dε � {DLi+ε}i∈Z,

where Li is defined in (3.10). Denote the persistent homology of Dε by PHε∗(f ). Since Dε is a
discrete approximation of the continuous filtration D, with step size 2ε, the maximum difference
between PH∗(f ) and PHε∗(f ) would be the step size, and thus we have

dB

(
PHε∗(f ),PH∗(f )

) ≤ 2ε.

To prove the theorem, it is therefore enough to show that with a high probability we have
dB(P̂Hε

∗(f ),PHε∗(f )) ≤ 3ε.
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Let E be the event that we have the following sequence of inclusions:

DL0+ε DL1+ε DL2+ε · · ·
↪→

↪→ ↪→
↪→ ↪→

↪→
D̂L0(n, r) D̂L1(n, r) D̂L2 (n, r)

. (A.5)

Applying Lemma A.2 Nε times we can show that if n is large enough

P(E) ≥ 1 − 3nNεe
−C	

ε/2nrd

.

Using the notation in [18] (A.5) implies that Dε and D̂ε are weakly ε-interleaving. Denoting the
persistent homology of D̂ε by P̂Hε

∗(f ), using Theorem 4.3 in [18] yields

dB

(
P̂Hε

∗(f ),PHε∗(f )
) ≤ 3ε. (A.6)

This completes the proof. �

Proof of Theorem 4.3. Consider the following sequence of simplicial complexes,

CL±ε(n, r) ↪→ RL±ε(n, r) ↪→ CL±ε(n,
√

2r).

This sequence induces the following sequence in homology

H∗
(
CL±ε(n, r)

) → H∗
(
RL±ε(n, r)

) → H∗
(
CL±ε(n,

√
2r)

)
,

or equivalently,

H∗
(
D̂L±ε(n, r)

) → H∗
(
RL±ε(n, r)

) → H∗
(
D̂L±ε(n,

√
2r)

)
. (A.7)

From the proof of Lemma A.2 (see (A.16),(A.17)) we have that

P
(
D

↓
L+(3/2)ε(2r) �⊂ D̂L+ε(n, r)

) ≤ 2ne
−C	

ε/2nrd

,

P
(
D

↓
L−(1/2)ε(2r) �⊂ D̂L−ε(n, r)

) ≤ 2ne
−C	

ε/2nrd

,

P
(
D̂L+ε(n,

√
2r) �⊂ D

↑
L+(1/2)ε(2

√
2r)

) ≤ ne
−C	

ε/22d/2nrd

,

P
(
D̂L−ε(n,

√
2r) �⊂ D

↑
L−(3/2)ε(2

√
2r)

) ≤ ne
−C	

ε/22d/2nrd

.

Therefore, for n large enough we have

P
(
D

↓
L+(3/2)ε(2r) ⊂ D̂L+ε(n, r) ⊂ D̂L+ε(n,

√
2r) ⊂ D

↑
L+(1/2)ε(2

√
2r)

) ≥ 1 − 3ne
C	

ε/2nrd

,

P
(
D

↓
L−(1/2)ε(2r) ⊂ D̂L−ε(n, r) ⊂ D̂L−ε(n,

√
2r) ⊂ D

↑
L−(3/2)ε(2

√
2r)

) ≥ 1 − 3ne
C	

ε/2nrd

.
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Since we assume that all the levels we study are ε-regular, if r is small enough we can order them
in the following way

DL+2ε ⊂ D
↓
L+(3/2)ε(2r) ⊂ D

↑
L+(1/2)ε(2

√
2r) ⊂ DL ⊂ D

↓
L−(1/2)ε(2r)

⊂ D
↑
L−(3/2)ε

(2
√

2r) ⊂ DL−2ε.

Combining that with (A.7), we conclude that with a high probability we have the following
sequence in homology (induced by composing inclusion maps),

� H∗(DL+2ε) → H∗
(
D

↓
L+(3/2)ε(2r)

) → H∗
(
D̂L+ε(n, r)

)
↓

H∗
(
RL+ε(n, r)

)
�

↓
← H∗

(
D

↑
L+(1/2)ε

(2
√

2r)
) ← H∗

(
D̂L+ε(n,

√
2r)

)
� H∗(DL)

→ H∗
(
D

↓
L−(1/2)ε(2r)

) → H∗
(
D̂L−ε(n, r)

)
↓

H∗
(
RL−ε(n, r)

)
�

↓
� H∗(DL−2ε) ← H∗

(
D

↑
L−(3/2)ε(2

√
2r)

) ← H∗
(
D̂L−ε(n,

√
2r)

)
Taking out the spaces marked in � we have

H∗(DL+2ε) → H∗
(
RL+ε(n, r)

) → H∗(DL) → H∗
(
RL−ε(n, r)

) → H∗(DL−2ε).

Since f (x) has no critical values in [L − 2ε,L + 2ε], using Lemma A.3 completes the proof. �

A.3. Proving the lemmas

One of the main probability tools we use is Bernstein’s inequality [33], basically a law of large
numbers bound. If Z1, . . . ,Zn are i.i.d., with E{Zi} = 0,Var(Zi) = σ 2 such that |Zi | ≤ M al-
most surely, then

P

(
n∑

i=1

Zi ≥ t

)
≤ exp

(
− t2/2

nσ 2 + Mt/3

)
. (A.8)

Proof of Lemma A.1 (Density estimation). To reconstruct the level sets of the density, we will
use a kernel density estimator. Recall that the kernel function K : Rd → R we use satisfies the
following:

• supp(K) ⊂ B1(0),
• K(x) ∈ [0,1], and K(0) = 1,
• ∫

K(ξ)dξ = CK , for some CK ∈ (0,1).
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In this case, our kernel estimator is

f̂n(x) =
∑n

i=1 Kr(x − Xi)

CKnrd
,

where Kr(x) = K(x/r). We start by proving (A.1). Using a simple union bound we have

P
(∃Xi /∈ D

↑
L−ε(r) : f̂n(Xi) ≥ L

) ≤ nP
(
X1 ∈ (

D
↑
L−ε(r)

)c : f̂n(X1) ≥ L
)

(A.9)

= n

∫
(D

↑
L−ε(r))

c

fX(x)P
(
f̂n(X1) ≥ L | X1 = x

)
dx.

Next,

P
(
f̂n(X1) ≥ L | X1 = x

) = P

(
Kr(0) +

n∑
i=2

Kr(x − Xi) ≥ LCKnrd

)
(A.10)

= P

(
n∑

i=2

Zi ≥ n
(
LCKrd − pr(x)

) + pr(x) − 1

)
,

where

pr(x) � E
{
Kr(x − Xi)

}
,

and Zi = Kr(x −Xi)−pr(x) are independent variables with E{Zi} = 0. Note that pr(x) ∈ [0,1]
since Kr(x) ∈ [0,1]. Also, since x ∈ (D

↑
L−ε(r))

c , we have that

pr(x) =
∫

Br(x)

f (ξ)Kr(x − ξ) dξ ≤ (L − ε)CKrd, (A.11)

and therefore from (A.10) we have,

P
(
f̂n(X1) ≥ L | X1 = x

) ≤ P

(
n∑

i=2

Zi ≥ εCKnrd − 1

)
. (A.12)

We would like to apply the inequality in (A.8) for t = εCKnrd − 1. Note that |Zi | ≤ 1, and also
that

Var(Zi) ≤ E
{
K2

r (x − Xi)
} ≤ pmaxCKrd.

Therefore, we have

P
(
f̂n(X1) ≥ L | X1 = x

) ≤ exp

(
− t2/2

(n − 1)pmaxCKrd + t/3

)
= exp

(
− t/2

t−1(n − 1)pmaxCKrd + 1/3

)
.
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Since nrd → ∞, we have

(1/2)t (nrd)−1

t−1(n − 1)pmaxCKrd + 1/3
→ 3ε2CK

6fmax + 2ε
>

ε2CK

3pmax + ε
.

Thus, for n large enough we have

P
(
f̂n(X1) ≥ L | X1 = x

) ≤ e−C	
εnrd

,

where

C	
ε = ε2CK

3pmax + ε
. (A.13)

Which completes the proof of (A.1)
To prove (A.2) we start the same way, and similarly to (A.12) we have,

P
(
f̂n(X1) ≤ L | X1 = x

) ≤ P

(
n∑

i=2

Zi ≤ −εCKnrd

)
,

where we used the fact that x ∈ D
↓
L+ε,r , and therefore we have (L+ ε)CKrd ≤ pr(x) ≤ 1. Thus,

to complete the proof we should use (A.8) for the variables (−Zi) and t = εCKnrd . Similarly to
the proof above, we then have that

P
(
f̂n(X1) ≤ L | X1 = x

) ≤ e−C	
εnrd

,

which completes the proof. �

Proof of Lemma A.1 (Kernel regression). Recall that in the kernel regression model, we have
a set of pairs (X1, Y1), . . . , (Xn,Yn), where the pairs are i.i.d., Xi ∈ Rd , Yi ∈ R, and they have a
common density function fX,Y : Rd ×R → R. Our estimation target is the conditional expecta-
tion

f (x) = E{Y | X = x}.
The estimator we use is given by

f̂n(x) =
∑n

i=1 YiKr(x − Xi)∑n
i=1 Kr(x − Xi)

,

where the assumptions on Kr are the same as above. In addition we have the following assump-
tions:

• fX has a compact support – supp(f ).
• pmin � infx∈supp(f ) fX(x) > 0,
• |Yi | ≤ Ymax almost surely, for some non-random value Ymax > 0.
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We start by proving (A.1). We use the union bound again to have

P
(∃Xi /∈ D

↑
L−ε(r) : f̂n(Xi) ≥ L

)
(A.14)

≤ n

∫
(D

↑
L−ε(r))

c

∫
R

fX,Y (x, y)P
(
f̂n(X1) ≥ L | X1 = x,Y1 = y

)
dy dx.

Note that writing f̂n(x) ≥ L is equivalent to

n∑
i=1

YiKr(x − Xi) ≥
n∑

i=1

LKr(x − Xi).

Using the fact that x ∈ (D
↑
L−ε(r))

c , similar derivations to the ones used for density functions can
be applied to show that

P
(
f̂n(X1) ≥ L | X1 = x,Y1 = y

) ≤ P

(
n∑

i=2

Zi ≥ ε(n − 1)pr(x) + L − y

)

≤ P

(
n∑

i=2

Zi ≥ εfminCK(n − 1)rd + L − y

)
,

where here

Zi �
(
Yi − f (Xi)

)
Kr(x − Xi) − ε

(
Kr(x − Xi) − pr(x)

)
,

and pr(x) = E{Kr(x − Xi)}, and we used the fact that pr(x) ≥ pminCKrd . We would like to use
Bernstein’s inequality to bound this probability. First, denote

Z
(1)
i = (

Yi − f (Xi)
)
Kr(x − Xi),

Z
(2)
i = ε

(
Kr(x − Xi) − pr(x)

)
.

Then it is easy to show that E{Z(1)
i } = E{Z(2)

i } = E{Z(1)
i Z

(2)
i } = 0, which implies that Z

(1)
i and

Z
(2)
i are uncorrelated, and therefore

σ 2 = Var(Zi) = Var
(
Z1

i

) + Var
(
Z2

i

)
.

Also, it is easy to show that

Var
(
Z

(1)
i

) = E
{
Var(Yi | Xi)K

2
r (x − Xi)

}
.

Therefore, we have:

• Var(Z(1)
i ) ≤ Y 2

maxE{K2
r (x − Xi)} ≤ Y 2

maxCKpmaxr
d ,

• Var(Z(2)
i ) ≤ ε2E{K2

r (x − Xi)} ≤ ε2CKpmaxr
d ,
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• and almost surely:

|Zi | ≤ |Yi | +
∣∣f (Xi)

∣∣ + ε
(
1 + pr(x)

) ≤ 2Ymax + ε
(
1 + CKpmaxr

d
)
< 2(Ymax + ε).

Using Bernstein’s inequality (A.8), for t = εfminCK(n − 1)rd + L − y, we then have

P
(
f̂n(X1) ≥ L | X1 = x,Y1 = y

)
≤ exp

(
− t/2

t−1(Y 2
max + ε2)CKpmax(n − 1)rd + (2/3)(Ymax + ε)

)
.

Since nrd → ∞, we have that

(1/2)t (nrd)−1

t−1(Y 2
max + ε2)CKpmax(n − 1)rd + (2/3)(Ymax + ε)

→ 3ε2p2
minCK

6(Y 2
max + ε2)pmax + 4εpmin(Ymax + ε)

>
ε2p2

minCK

3(Y 2
max + ε2)pmax + 2εpmin(Ymax + ε)

.

Thus, for n large enough we have

P
(
f̂n(X1) ≥ L | X1 = x,Y1 = y

) ≤ e−C	
εnrd

,

where

C	
ε = ε2p2

minCK

3(Y 2
max + ε2)pmax + 2εpmin(Ymax + ε)

. (A.15)

Putting this back into (A.14) completes the proof of (A.1). The proof of (A.2) is similar, with
some adjustments, and we omit it here. �

To prove Lemma A.2 we need the following lemma.

Lemma A.4. If nrd → ∞, then

P
(
D

↓
L+ε(2r) �⊂ D̂L(n, r)

) ≤ 2ne−C	
εnrd

,

where C	
ε is the same as in Lemma A.1.

Proof. Note that in both cases (density estimation and kernel regression) we have that the set
D

↓
L+ε(2r) is bounded. Let δ ∈ (0,1), and let S ⊂ D

↓
L+ε(2r) be a finite set of points satisfying

that for every x ∈ D
↓
L+ε(2r) there exists s ∈ S such that ‖x−s‖ ≤ δr . Then there exists a constant

c > 0 such that we can construct S with |S| ≤ c(δr)−d points. Note that if there is x ∈ D
↓
L+ε(2r)
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that is not covered by the balls of radius r , it necessarily means that there is s ∈ S that is not
covered by the balls of radius (1 − δ)r . Therefore,

P
(
D

↓
L+ε(2r) �⊂ D̂L(n, r)

) ≤ P
(∃s ∈ S : B(1−δ)r (s) ∩XL

n =∅
)

= P
(∃s ∈ S : B(1−δ)r (s) ∩XL

n =∅;D↓
L+ε(r) ∩Xn ⊂XL

n

)
+ P

(∃s ∈ S : B(1−δ)r (s) ∩XL
n =∅;D↓

L+ε(r) ∩Xn �⊂XL
n

)
≤ P

(∃s ∈ S : B(1−δ)r (s) ∩Xn =∅
) + P

(
D

↓
L+ε(r) ∩Xn �⊂XL

n

)
,

where the last inequality is due to the fact that for every two events A,B we have P(A ∩ B) ≤
P(A). In other words the event of not covering D

↓
L+ε(2r) might occur for two different reasons.

Either the original sample (before filtering) Xn does not cover D
↓
L+ε(2r) (the first term), or our

filtering method got rid of too many points (second term). The second term can be bounded using
Lemma A.1. For the first term we have

P
(∃s ∈ S : B(1−δ)r (s) ∩Xn =∅

) ≤
∑
s∈S

P
(
B(1−δ)r (s) ∩Xn =∅

)
=

∑
s∈S

(
1 − F

(
B(1−δ)r (s)

))n

≤
∑
s∈S

e−nF(B(1−δ)r (s)),

where F(A) = ∫
A

fX(x)dx. For the density estimation, s ∈ D
↓
L+ε(2r) implies that

F
(
B(1−δ)r (s)

) ≥ (L + ε)(1 − δ)dωdrd ≥ L(1 − δ)dωdrd .

For the kernel regression model, we have that

F
(
B(1−δ)r (s)

) ≥ pmin(1 − δ)dωdrd .

Thus, if we choose C1 = cδ−d , and

C2 =
{

L(1 − δ)dωd, density estimation,

pmin(1 − δ)dωd, kernel regression,

we have that

P
(∃s ∈ S : B(1−δ)r (s) ∩Xn =∅

) ≤ C1r
−de−C2nrd

.

From Lemma A.1 we know that

P
(
D

↓
L+ε(r) ∩Xn �⊂XL

n

) ≤ ne−C	
εnrd

.
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Note that for both models we have that C	
ε < C2 (see (A.13), (A.15)), and also that r−d = o(n).

Therefore the latter probability is necessarily the dominant one in the bound we have. This com-
pletes the proof. �

Proof of Lemma A.2. If nrd → ∞, then by Lemma A.4 we have

P
(
D

↓
L+ε(2r) �⊂ D̂L(n, r)

) ≤ 2ne−C	
εnrd

. (A.16)

In addition, from Lemma A.1 we have

P
(
D̂L(n, r) �⊂ D

↑
L−ε(2r)

) ≤ P
(
XL

n ∩ (
D

↑
L−ε(r)

)c �=∅
) ≤ ne−C	

εnrd

. (A.17)

Using the union bound completes the proof. �

The last piece of the puzzle is the proof of the algebraic Lemma A.3.

Proof of Lemma A.3. We need to show that g34 is injective and that Im(g34) = G24.

1. The assumption that g35 is an isomorphism from G3 to G15 implies that g35 is injective.
Since g35 = g45 ◦ g34 we have that g34 is injective as well.

2. Since (a) g15 : G1 → G15 is surjective, (b) g35 : G3 → G15 is an isomorphism, and (c)
g15 = g35 ◦ g13, we conclude that g13 : G1 → G3 is surjective. Since g13 = g23 ◦ g12, we
have that g23 is surjective as well.

Finally, since (a) Im(g24) = G24, (b) g24 = g34 ◦g23, and (c) g23 : G2 → G3 is surjective,
we have that Im(g34) = G24 as well.

�
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