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Distributional identities for a Lévy process Xt , its quadratic variation process Vt and its maximal jump pro-
cesses, are derived, and used to make “small time” (as t ↓ 0) asymptotic comparisons between them. The
representations are constructed using properties of the underlying Poisson point process of the jumps of X.
Apart from providing insight into the connections between X, V , and their maximal jump processes, they
enable investigation of a great variety of limiting behaviours. As an application, we study “self-normalised”
versions of Xt , that is, Xt after division by sup0<s≤t �Xs , or by sup0<s≤t |�Xs |. Thus, we obtain nec-
essary and sufficient conditions for Xt/ sup0<s≤t �Xs and Xt/ sup0<s≤t |�Xs | to converge in probability
to 1, or to ∞, as t ↓ 0, so that X is either comparable to, or dominates, its largest jump. The former situation
tends to occur when the singularity at 0 of the Lévy measure of X is fairly mild (its tail is slowly varying
at 0), while the latter situation is related to the relative stability or attraction to normality of X at 0 (a steeper
singularity at 0). An important component in the analyses is the way the largest positive and negative jumps
interact with each other. Analogous “large time” (as t → ∞) versions of the results can also be obtained.

Keywords: distributional representation; domain of attraction to normality; dominance; Lévy process;
maximal jump process; relative stability

1. Introduction

We study relations between a Lévy process X = (Xt )t≥0, its quadratic variation process V =
(Vt )t≥0 and its maximal jump processes, with particular interest in how these processes, and
how positive and negative parts of the X process, interact. Representations of distributions re-
lated to these processes are calculated and used as a basis for making asymptotic (small time)
comparisons in their behaviours.

A convenient way of proceeding is to derive identities for the distributions of Xt modified
by subtracting a number of its largest jumps, or its jumps of largest modulus, up until time t ,
joint with Vt , modified similarly. These identities are obtained by considering the Poisson point
process of jumps of X, allowing for possible ties in the order statistics of the jumps.

The distributions thus obtained enable the study of a wide variety of small or large time
kinds of behaviour of X. As an application, we investigate “self-normalised” versions of Xt ,
giving a comprehensive analysis of the behaviour of Xt/ sup0<s≤t �Xs and Xt/ sup0<s≤t |�Xs |
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as t ↓ 0, and similarly with Xt replaced by |Xt |. Two extreme situations are considered; first,

when X is of comparable size to a maximal jump process, for example, Xt/ sup0<s≤t |�Xs | P→ 1
as t ↓ 0; or, alternatively, when X dominates a maximal jump process, in the sense that

Xt/ sup0<s≤t |�Xs | P→ ∞ as t ↓ 0; and similarly with Xt replaced by |Xt |, and/or |�Xs | re-
placed by �Xs . Complementary to these is the way the largest positive and negative jumps
interact with each other.

Such results can be seen as continuations in one way or another of a growing literature in this
area which has some classical antecedents. The original developments occurred in the context of
random walks, where the concept of “trimming” by removing extremes from a sample sum has
been studied extensively in the past. Our particular emphasis on the ratio of the process to its
extremes goes back in the random walk situation to results of Darling [10] and Arov and Bobrov
[2]. Later, Maller and Resnick [41] gave conditions for a random walk to be comparable in
magnitude to its large values (a heavy-tailed situation), while Kesten and Maller [24,25] studied
the other end of the spectrum, when the sum dominates its large values (see Table 1 of [25] for a
convenient summary).

Subsequent to these papers there was much development in the general area of trimmed sums,
especially concerning heavy tailed distributions; see, for example, Csörgő, Haeusler and Mason
[8], Berkes and Horváth [3], Berkes, Horváth and Schauer [4], and Griffin and Pruitt [21]. We
mention in this context also results of Silvestrov and Teugels [48] concerning sums and maxima
of random walks and triangular arrays, and Ladoucette and Teugels [31] for an insurance appli-
cation. There are also recent results about the St. Petersburg game; Gut and Martin-Löf [22] give
a “maxtrimmed” version of the game, while Fukker, Györfi and Kevei [18] determine the limit
distribution of the St. Petersburg sum conditioned on its maximum. Csörgő and Simons [9] give
a review of the later St. Petersburg literature.

For almost sure versions of particular kinds of sum/max relationships, see Feller [16], Kesten
and Maller [26] and Pruitt [43].

Studies of small time or local behaviour of Lévy processes go back to the work of Lévy and
Khintchine [28,29], in the 1930s. More recent work, relevant to our topic, includes that of Doney
[11], who gives conditions for a Lévy process X to remain positive near 0 with probability ap-
proaching 1, and Andrew [1], who similarly analyses the behaviours of the positive and negative
jump processes near 0. There is a connection also with results of Bertoin [6], who in studying
regularity of a Lévy process X at 0 was concerned with the dominance of the positive part of X

over its negative part, when X is of bounded variation. For further background along these lines,
we refer to Doney [12].

Despite all this activity, there seems to have been little done so far by way of relating the Lévy
process directly to its large jumps, as we do herein. Of course, our methods rely substantially
on previously developed foundational work. Our representations of the trimmed Lévy process,
for example, are inspired by those of LePage [32,33], LePage, Woodroofe and Zinn [34] and
Mori [42] for trimmed sums via order statistics, and Khintchine’s [29] inverse Lévy measure
method. (The corresponding representations are incorporated in our Lemma 1.) In another di-
rection, Rosiński [46] collects a number of alternative series representations for Lévy processes,
especially with a view to simulation of the process.

Our paper is organised as follows. The dominance results are in Sections 3 and 5. Section 4
compares the positive and negative jump processes. Before this, in Section 2, we set up notation
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and, in Theorem 2.1, derive the distribution identities using the Poisson point process structure
of the jumps. Section 2 also recalls some basic facts concerning Poisson point processes and
constructs the distribution of the relevant Poisson random measure from the jumps of X. Partic-
ular attention is paid to the possibility of tied jumps, related to atoms in the canonical measure
of X. We make brief mention of some other possible applications of the methodology in the final
discussion Section 6.

2. Distributional representations

Our object of study will be a real-valued Lévy process X = (Xt )t≥0 with canonical triplet
(γ, σ 2,�), thus having characteristic function EeiθXt = et�(θ), t ≥ 0, θ ∈ R, with character-
istic exponent

�(θ) := iθγ − 1

2
σ 2θ2 +

∫
R∗

(
eiθx − 1 − iθx1{|x|≤1}

)
�(dx). (2.1)

Here, γ ∈ R, σ 2 ≥ 0 and � is a Lévy measure on R, that is, a Borel measure on R∗ := R \ {0}
such that

∫
R∗(x

2 ∧ 1)�(dx) < ∞. Define measures �(+), �(−), and �|·| on (0,∞) such that

�(+) is � restricted to (0,∞), �(−) is �(−·) restricted to (0,∞), and �|·| := �(+) + �(−).
The positive, negative and two-sided tails of � are

�
+
(x) := �

{
(x,∞)

}
, �

−
(x) := �

{
(−∞,−x)

}
and

(2.2)
�(x) := �

+
(x) + �

−
(x), x > 0.

We are only interested in small time behaviour of Xt , so we eliminate trivial cases by assuming
�(0+) = ∞ or �

+
(0+) = ∞, as appropriate. Let ��(y) := �({y}), y ∈ R∗, and ��(y) :=

�(y−) − �(y), y > 0. Denote the jump process of X by (�Xt)t≥0, where �Xt = Xt − Xt−,
t > 0, with �X0 ≡ 0. The quadratic variation process associated with X is

Vt := σ 2t +
∑

0<s≤t

(�Xs)
2, t > 0,

with V0 ≡ 0. Recall that X is of bounded variation if
∑

0<s≤t |�Xs | < ∞ a.s. for all t > 0,
equivalently, if σ 2 = 0 and

∫
|x|≤1 |x|�(dx) < ∞. If this is the case, (2.1) takes the form

iθ dX +
∫
R

(
eiθx − 1

)
�(dx),

where dX is the drift of X.
In deriving representations for the joint distributions of Xt , Vt and the r th maximal jump

processes, it is convenient to work with the processes having the r largest jumps, or the r jumps
largest in modulus, subtracted. These “trimmed” processes are no longer Lévy processes, but we
can give useful representations for their marginal distributions. The expressions are in terms of
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a truncated Lévy process, together with one or two Poisson processes, and a Gamma random
variable, all processes and random variables independent of one another.

For any integer r = 1,2, . . . , let �X
(r)
t and �̃X

(r)
t be the r th largest positive jump and the r th

largest jump in modulus up to time t , respectively. Formal definitions of these, allowing for the
possibility of tied values (we choose the order uniformly among the ties), are given in Section 2.1
below. “One-sided” and “modulus” trimmed versions of X are then defined as

(r)Xt := Xt −
r∑

i=1

�X
(i)
t and (r)X̃t := Xt −

r∑
i=1

�̃X
(i)
t , (2.3)

with corresponding trimmed quadratic variation processes

(r)Vt := Vt −
r∑

i=1

(
�X

(i)
t

)2 and (r)Ṽt := Vt −
r∑

i=1

(
�̃X

(i)
t

)2
, t > 0.

Recall the definitions of the tails of � in (2.2). Let

�
←

(x) = inf
{
y > 0 : �(y) ≤ x

}
, x > 0,

be the right-continuous inverse of the nonincreasing function �, and similarly for �
+,←

and
�

−,←
. By convention, the inf of the empty set is taken as ∞. The following properties of the

inverse function will be used frequently (see Resnick [45], Section 0.2). For each x, y > 0,
�

←
(x) ≤ y if and only if �(y) ≤ x; �(�

←
(x)) ≤ x ≤ �(�

←
(x)−); and �

←
(�(x)) ≤ x;

similarly, for �
±

. We refer to Appendix A in Fan [15] for more details.
We introduce four families of processes, indexed by v > 0, truncating jumps from sample

paths of Xt and Vt , respectively. Let v, t > 0. When �(0+) = ∞, we set

X̃v
t := Xt −

∑
0<s≤t

�Xs1{|�Xs |≥�
←

(v)} and

(2.4)
Ṽ v

t := Vt −
∑

0<s≤t

(�Xs)
21{|�Xs |≥�

←
(v)}.

When �
+
(0+) = ∞, we set

Xv
t := Xt −

∑
0<s≤t

�Xs1{�Xs≥�
+,←

(v)} and V v
t := Vt −

∑
0<s≤t

(�Xs)
21{�Xs≥�

+,←
(v)}.

Under the assumptions �(0+) = ∞ and �
+
(0+) = ∞, (X̃v

t )t≥0 and (Xv
t )t≥0 are well-defined

Lévy processes with canonical triplets, respectively,(
γ − 1{�←

(v)≤1}
∫

�
←

(v)≤|x|≤1
x�(dx), σ 2,�(dx)1{|x|<�

←
(v)}

)
(2.5)
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and (
γ − 1{�+,←

(v)≤1}

∫
�

+,←
(v)≤x≤1

x�(dx), σ 2,�(dx)1{x<�
+,←

(v)}

)
. (2.6)

Our main result in this section gives very general representations for the joint distributions of

((r)X̃t ,
(r)Ṽt , |�̃X

(r)
t |) and of ((r)Xt ,

(r) Vt ,�X
(r)
t ), allowing for possible tied values in the large

jumps. We make the convention throughout that a Poisson random variable with parameter 0 is
0. Note that then the expressions in (2.7), (2.8) and (2.10) below are zero when � has no atoms.
But we do not assume this.

Theorem 2.1. Let r ∈ N = {1,2,3, . . .} and Sr be a Gamma(r,1) random variable. Suppose
Y± = (Y±

t )t≥0 and Y = (Yt )t≥0 are independent Poisson processes with EY±
1 = EY1 = 1. As-

sume that X, Sr , Y+, Y−, and Y are independent as random elements.

(i) Assume �(0+) = ∞. For each v > 0, let

κ±(v) := (
�
(
�

←
(v)−)− v

)��(±�
←

(v))

��(�
←

(v))
1{��(�

←
(v))�=0} (2.7)

and for v > 0, t > 0, set

G̃v
t := �

←
(v)

(
Y+

tκ+(v)
− Y−

tκ−(v)

)
and H̃ v

t := (
�

←
(v)

)2(
Y+

tκ+(v)
+ Y−

tκ−(v)

)
. (2.8)

Then, for each t > 0, we have(
(r)X̃t ,

(r)Ṽt ,
∣∣�̃X

(r)
t

∣∣) D= (
X̃v

t + G̃v
t , Ṽ

v
t + H̃ v

t ,�
←

(v)
)|v=Sr /t . (2.9)

(ii) Assume �
+
(0+) = ∞. For each v > 0, let κ(v) := �

+
(�

+,←
(v)−) − v, and for v > 0,

t > 0, set

Gv
t := �

+,←
(v)Ytκ(v) and Hv

t := (
�

+,←
(v)

)2
Ytκ(v). (2.10)

Then, for each t > 0, we have(
(r)Xt ,

(r) Vt ,�X
(r)
t

) D= (
Xv

t + Gv
t ,V

v
t + Hv

t ,�
+,←

(v)
)|v=Sr /t . (2.11)

Remark 2.1. Processes (r)X̃t and (r)Xt are not Lévy processes; their increments are not indepen-
dent, or homogeneous in distribution. But the identities (2.9) and (2.11) express their marginal
distributions in terms of distributions of Lévy processes, mixed in a sense according to their
r th largest jumps, with allowance made for ties. This opens the possibility for results obtained
from analyses of the underlying Lévy processes to be transferred to the trimmed processes. We
exemplify this procedure in a variety of ways in Sections 3 and 5.

As an immediate corollary of Theorem 2.1, the following identities will be useful.

Corollary 1. Using the notation in Theorem 2.1, we have, for x ∈R, y ≥ 0, t > 0, r = 1,2, . . . :
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(i) when �(0+) = ∞,

P
(
(r)X̃t ≤ x

∣∣�̃X
(r)
t

∣∣, (r)Ṽt ≤ y
∣∣�̃X

(r)
t

∣∣2)
(2.12)

=
∫ ∞

0
P
(
X̃v

t + G̃v
t ≤ x�

←
(v), Ṽ v

t + H̃ v
t ≤ y

(
�

←
(v)

)2)
P(Sr ∈ t dv);

(ii) when �
+
(0+) = ∞,

P
(
(r)Xt ≤ x�X

(r)
t , (r)Vt ≤ y

(
�X

(r)
t

)2)
(2.13)

=
∫ ∞

0
P
(
Xv

t + Gv
t ≤ x�

+,←
(v),V v

t + Hv
t ≤ y

(
�

+,←
(v)

)2)
P(Sr ∈ t dv).

In proving Theorem 2.1, we make use of the underlying Poisson point process (PPP) structure
of the jumps of a Lévy process. We begin in Section 2.1 with a precise definition of the order
statistics of a PPP when tied values may be present. In Section 2.2, we review basic properties of
standard PPPs and in Section 2.3 construct the distribution of a Poisson random measure (PRM)
from the jumps of a Lévy process through a series of marking and deterministic transformations.
Also, in Section 2.3, we derive the joint distribution of the trimmed point process using the
point process order statistics. This machinery allows us to complete the proof of Theorem 2.1 in
Section 2.4.

2.1. Order statistics with ties

Introduce X as the point measure associated with the jumps of X:

X=
∑

s

δ(s,�Xs).

X is a Poisson point process1 (PPP) on [0,∞) ×R∗ with intensity measure ds ⊗ �(dx). Analo-
gously, the PPPs of positive and negative jumps and jumps in modulus associated with X are

X
+ =

∑
s

1(0,∞)(�Xs)δ(s,�Xs), X
− =

∑
s

1(0,∞)(−�Xs)δ(s,−�Xs),

X
|·| = X

+ +X
− =

∑
s

δ(s,|�Xs |),

having intensity measures ds ⊗ �±,|·|(dx), respectively. For t > 0, we consider restrictions of
these processes to the time interval [0, t] by introducing

Xt (·) := X
([0, t] ×R∗ ∩ ·) and X

±,|·|
t (·) =X

±,|·|([0, t] × (0,∞) ∩ ·).
1For necessary material on point processes, we refer to Chapter 12 in Kallenberg [23] or Chapter 5 in Resnick [44].
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Assume �(0+) = ∞ and t > 0. Our first task is to specify the points with maximum modulus
in Xt .

Let T̃ (1)(Xt ) be randomly chosen, independently of (Xt )t≥0, according to the discrete uniform
distribution in the set {0 ≤ s ≤ t : |�Xs | = sup0≤u≤t |�Xu|}, which is almost surely finite. Then

define �̃X
(1)
t = �̃X

(1)
(Xt ) := �XT̃ (1)(Xt )

. Define the maximum modulus trimmed point process
on [0, t] ×R∗ by

(1)
X̃t := Xt − δ

(T̃ (1)(Xt ),�̃X
(1)
t )

.

Let r = 2,3, . . . . Iteratively, we define T̃ (r)(Xt ) := T̃ (1)((r−1)
X̃t ) and �̃X

(r)
t := �XT̃ (r)(Xt )

. The
r-fold modulus trimmed point process of modulus jumps is then defined by

(r)
X̃t := Xt −

r∑
i=1

δ
(T̃ (i)(Xt ),�̃X

(i)
t )

.

In a similar way, under the assumption �
+
(0+) = ∞, we can define the ordered pairs(

T (1)
(
X

+
t

)
,�X

(1)
t

)
,
(
T (2)

(
X

+
t

)
,�X

(2)
t

)
,
(
T (3)

(
X

+
t

)
,�X

(3)
t

)
, . . . ∈ [0, t] × (0,∞),

such that �X
(1)
t ≥ · · · ≥ �X

(r)
t are the r th largest order statistics of positive jumps of X sampled

on time interval [0, t]. By subtracting the points corresponding to large jumps, analogously as
we did for (r)

X̃t , we then define the r-positive trimmed point process of positive jumps by

(r)
X

+
t := X

+
t −

∑
1≤i≤r

δ
(T (i)(X+

t ),�X
(i)
t )

.

2.2. Standard Poisson point process

In this section, we provide alternative constructions of Xt ,
(r)
X̃t ,X

+
t , (r)

X
+
t , this time starting

from homogeneous processes.
Let (Ui ), (U′

i ) and (Ei ) be independent, where (Ui ) and (U′
i ) are i.i.d. sequences of uniformly

distributed random variables in (0,1), and (Ei ) is an i.i.d. sequence of exponentially distributed
random variables with common parameter EEi = 1. Then Sr =∑r

i=1 Ei is a Gamma(r,1) ran-
dom variable, r ∈ N.

For t > 0, we introduce

Vt :=
∑
i≥1

δ(tUi ,Si /t) and V
′
t :=

∑
i≥1

δ(tUi ,U
′
i ,Si /t).

Then Vt and V
′
t are homogeneous PPPs on [0, t] × (0,∞) and [0, t] × (0,1) × (0,∞) with

intensity measures ds ⊗ dv and ds ⊗ du′ ⊗ dv, respectively. For r ∈ N := {0,1,2, . . .}, we define
their r-fold trimmed counterparts by

(r)
Vt :=

∑
i>r

δ(tUi ,Si /t) and (r)
V

′
t :=

∑
i>r

δ(tUi ,U
′
i ,Si /t).
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When �(0+) = ∞, we consider the transformation(
I, I,�

←) : [0, t]× (0,1)× (0,∞) → [0, t]× (0,1)× (0,∞),
(
s, u′, v

) �→ (
s, u′,�←

(v)
)
.

Still assuming �(0+) = ∞, by the Radon–Nikodym theorem, there exist Borelian functions
g± : (0,∞) → (0,∞) with g+ + g− ≡ 1 such that d�± = g± d�|·| and, in particular,

�
±
(x) =

∫
(x,∞)

g±(y)�|·|(dy), x > 0. (2.14)

We use g+ to return the sign to the process by a second transformation m : [0, t] × (0,1) ×
(0,∞) → [0, t] ×R∗, defined by

m
(
s, u′, x

) :=
{

(s, x), if u′ < g+(x),
(s,−x), if u′ ≥ g+(x).

(2.15)

In summary, let V′m◦(I,I,�←
)

t be the point process on [0, t] ×R
∗, being the image of the compo-

sition of the above transformations applied to V
′
t :

V
′
t

(
I,I,�

←)
−→ V

′(I,I,�←
)

t :=
∑
i≥1

δ(tUi ,U
′
i ,�

←
(Si /t))

m−→ V
′m◦(I,I,�←

)
t :=

∑
i≥1

δm(tUi ,U
′
i ,�

←
(Si /t)).

Their trimmed counterparts are similarly defined by setting, for r ∈N,

(r)
V

′
t

(
I,I,�

←)
−→ (r)

V
′(I,I,�←

)
t :=

∑
i>r

δ(tUi ,U
′
i ,�

←
(Si /t))

m−→ (r)
V

′m◦(I,I,�←
)

t :=
∑
i>r

δm(tUi ,U
′
i ,�

←
(Si /t)).

When �
+
(0+) = ∞ we can contrive �

+,←
as a transformation of (0,∞) into (0,∞) and we

will consider the image measures of Vt and (r)
Vt under (I,�

+,←
) : [0, t] × (0,∞) → [0,∞) ×

(0,∞), defined by

V
(I,�

+,←
)

t :=
∑
i≥1

δ
(tUi ,�

+,←
(Si /t))

and (r)
V

(I,�
+,←

)
t :=

∑
i>r

δ
(tUi ,�

+,←
(Si /t))

.

2.3. Representations for r-trimmed PPPs

In this section, the original point process X, its ordered jumps, and the trimmed point process, is
related to a corresponding standard version V.
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Lemma 1. Let t > 0 and r ∈N.

(i) If �(0+) = ∞, we have the following distributional equivalences:

Xt
D=V

′m◦(I,I,�←
)

t , (2.16)(
T̃ (i)(Xt ), �̃X

(i)
t

)
i≥1

D= (
m
(
tUi ,U

′
i ,�

←
(Si/t)

))
i≥1, (2.17){(

T̃ (i)(Xt ), �̃X
(i)
t

)
1≤i≤r

, (r)
X̃t

}
(2.18)

D= {(
m
(
tUi ,U

′
i ,�

←
(Si/t)

))
1≤i≤r

, (r)
V

′m◦(I,I,�←
)

t

}
.

(ii) If �
+
(0+) = ∞, we have the following distributional equivalences:

X
+
t

D= V
(I,�

+,←
)

t ,(
T (i)

(
X

+
t

)
,�X

(i)
t

)
i≥1

D= (
tUi ,�

+,←
(Si/t)

)
i≥1,{(

T (i)
(
X

+
t

)
,�X

(i)
t

)
1≤i≤r

, (r)
X

+
t

} D= {(
tUi ,�

+,←
(Si/t)

)
1≤i≤r

, (r)
V

(I,�
+,←

)
t

}
.

Proof. (i) Assume �(0+) = ∞, and introduce

m̃ : (0,1) × (0,∞) → R∗, m̃
(
u′, x

) := x1u′<g+(x) − x1u′≥g+(x).

(The mapping m̃ is the same as the m in (2.15) without the time component.)
Let μT := μ◦T −1 denote the image measure of a measure μ under a transformation T . Using

this notation, and in view of (2.14), we get from (dv)�
← = d�|·| that(

du′ ⊗ dv
)m̃◦(I,�←

)(
(x,∞)

) = (
du′ ⊗ d�|·|)(m̃−1((x,∞)

))
=
∫

(x,∞)

g+(v)�|·|(dv) (2.19)

= �
+
(x), x > 0,

and similarly with (x,∞) replaced by (−∞,−x), and g+, �
+

, replaced by g−, �
−

. With m as
in (2.15), and since the tail functions determine the corresponding measures, (2.19) extends to(

ds ⊗ du′ ⊗ dv
)m◦(I,I,�←

) = ds ⊗ d�. (2.20)

Let h := m ◦ (I, I,�
←

). It follows from (2.20) that Xt and V
′m◦(I,I,�←

)
t =V

′h
t share a common

intensity measure ds ⊗ d�. Since both X and V
′h are simple PPPs, this completes the proof

of (2.16).
In order to show (2.17), introduce record times, defined recursively by

Rn := min
{
i > Rn−1 : �←

(Si/t) > �
←

(SRn−1/t)
}
, R1 := 1, n = 2,3,4, . . . .
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Observe that (Rn)n≥1 is independent of (Ui ) and (U′
i ).

Construct the sequence (T̃ (i)(V′h
t ), �̃X

(i)
(V′h

t ))i≥1 associated with trimming the process V′h
t

by choosing a sequence of independent permutations (σn)n≥1, where

σn : {Rn−1, . . . ,Rn − 1} 1:1−→ {Rn−1, . . . ,Rn − 1}, n = 2,3,4, . . . ,

are chosen according to the discrete uniform distribution amongst the finitely many candi-
dates, independently of (Xt )t≥0. By our construction of trimming, the pairs ({Rn}, {σn}) and
({Ui}, {U′

i}) are also independent. Consequently,{
T̃ (i)

(
V

′h
t

)
, �̃X

(i)(
V

′h
t

)}
i≥1

= {(
T̃ (i)

(
V

′h
t

)
, �̃X

(i)(
V

′h
t

))
Rn−1≤i<Rn

}
n≥2

= {
m
(
tUσn(i),U

′
σn(i),�

←
(SRn−1/t)

)
Rn−1≤i<Rn

}
n≥2

D= {
m
(
tUi ,U

′
i ,�

←
(SRn−1/t)

)
Rn−1≤i<Rn

}
n≥2

= {
m
(
tUi ,U

′
i ,�

←
(Si/t)

)}
i≥1.

In view of (2.16), this completes the proof of (2.17). Note that (2.18) follows from (2.17). Part (ii)
is shown analogously. �

Next is our main theorem giving the representation for trimmed PPPs. For x > 0, write X
+·<x
t

and X
|·|<x
t for point processes generated by deleting all points in X

+
t and Xt not lying in the

regions [0, t] × (0, x) and [0, t] × (−x, x)∗, respectively:

X
+·<x
t (·) := X

+([0, t] × (0, x) ∩ ·)
and

X
|·|<x
t (·) := X

([0, t] × (−x, x)∗ ∩ ·).
Theorem 1. Assume that X, (Ui ), (U′

i ), Sr , Y± = (Y±(t))t≥0, Y = (Y (t))t≥0, are independent
processes, with Y± and Y being standard Poisson processes.

(i) Assume �(0+) = ∞. Then, for all t > 0, r ∈N,(∣∣�̃X
(r)
t

∣∣, (r)
X̃t

)
(2.21)

D=
(

�
←

(v),X
|·|<�

←
(v)

t +
Y+(tκ+(v))∑

i=1

δ(tUi ,�
←

(v)) +
Y−(tκ−(v))∑

i=1

δ(tU′
i ,−�

←
(v))

)
v=Sr /t

,

where κ±(v) are the quantities in (2.7).
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(ii) Assume �
+
(0+) = ∞. Then for all t > 0, r ∈N,

(
�X

(r)
t , (r)

X
+
t

) D=
(

�
+,←

(v),X
+·<�

+,←
(v)

t +
Y(tκ(v))∑

i=1

δ
(tUi ,�

+,←
(v))

)
v=Sr /t

,

where κ(v) = �
+
(�

+,←
(v)−) − v.

Proof. Let t > 0, r ∈ N, and introduce a point measure Ṽ
′
t as follows:

Ṽ
′
t :=

∑
i≥1

δ(tUi+r ,U
′
i+r ,(Si+r−Sr )/t).

Then Ṽ
′
t is independent of V := Sr/t with Ṽ

′
t

D=V
′
t . Observe that

E exp

{
−λV−

∫
f d

{
δ(0,0,V) � Ṽ′

t

}}
= E exp

{
−λV−

∫ t

0

∫ 1

0

∫ ∞

V

(
1 − e−f (s,u′,v)

)
ds du′ dv

}
(2.22)

= E exp

{
−λV−

∫
f dṼ′

t
·≥V

}
,

for all nonnegative Borelian f and λ ≥ 0. Here Ṽ
′·≥v
t (·) := Ṽ

′
t ([0, t] × (0,1) × [v,∞) ∩ ·).

Assume �(0+) = ∞. Combining (2.18) and (2.22) yields(∣∣�̃X
(r)
t

∣∣, (r)
X̃t

) D= (
�

←
(V),

{
δ(0,0,V) � Ṽ′

t

}m◦(I,I,�←
))

(2.23)
D= (

�
←

(V),
{
Ṽ

′
t
·≥V

}m◦(I,I,�←
))

.

Next, set Yt := {Ṽ′
t
·≥V}m◦(I,I,�←

), and let Y|·|<y
t , Y·≥y

t , Y·≤y
t be the point processes obtained

from Yt by removal of points not lying in the regions [0, t] × (−y, y)∗, [0, t] × [y,∞), [0, t] ×
(−∞, y], respectively.

Let λ ≥ 0 and f−1, f0, f1 : [0, t] ×R∗ → [0,∞] be Borel functions. Define � : [0, t] ×R∗ ×
(0,∞) → [0,∞] by setting

�[s, x, y] := f0(s, x)1(0,y)

(|x|)+ f1(s, x)1[y,∞)(x) + f−1(s, x)1(−∞,−y](x).

Observe that ∫ t

0

∫
R∗

(
f0 dY|·|<�

←
(V)

t + f1 dY·≥�
←

(V)
t + f−1 dY·≤−�

←
(V)

t

)
(2.24)

=
∫ t

0

∫
R∗

�
[·, ·,�←

(V)
]

dYt
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and

E exp

{
−λV−

∫ t

0

∫
R∗

�
[
s, x,�

←
(V)

]
Yt (ds,dx)

}
= E exp

{
−λV−

∫ t

0

∫ 1

0

∫ ∞

V

�
[
m
(
s, u′,�←

(v)
)
,�

←
(V)

]
Ṽ

′
t

(
ds,du′,dv

)}
(2.25)

= E exp

{
−λV−

∫ t

0

∫ 1

0

∫ ∞

V

(
1 − exp

{−�
[
m
(
s, u′,�←

(v)
)
,�

←
(V)

]})
ds du′ dv

}
.

As {v > 0 : �
←

(v) < �
←

(V)} ⊆ (V,∞) and �
←

(v) = �
←

(V) for v ∈ [V,�(�
←

(V)−)],
the last integral in the exponent equals∫ t

0

∫ 1

0

∫ ∞

0
1(0,�

←
(V))

(
�

←
(v)

)(
1 − e−f0(m(s,u′,�←

(v)))
)

ds du′ dv

(2.26)

+ κ+(V)

∫ t

0

(
1 − e−f1(s,�

←
(V))

)
ds + κ−(V)

∫ t

0

(
1 − e−f−1(s,−�

←
(V))

)
ds,

with κ±(v) as in (2.7). It follows from (2.20) and a change of variables that∫ t

0

∫ 1

0

∫ ∞

0
1(0,�

←
(V))

(
�

←
(v)

)(
1 − e−f0(m(s,u′,�←

(v)))
)

ds du′ dv

=
∫ t

0

∫
(−�

←
(V),�

←
(V))

(
1 − e−f0(s,x)

)
ds�(dx).

We get from (2.24), (2.25) and (2.26)

E exp

{
−λV−

∫ t

0

∫
R∗

(
f0 dY|·|<�

←
(V)

t + f1 dY·≥�
←

(V)
t + f−1 dY·≤−�

←
(V)

t

)}

= E exp

{
−λV−X

′
t
|·|<�

←
(V)(f0) (2.27)

−
Y+(tκ+(V))∑

i=1

f1
(
tUi ,�

←
(V)

)−
Y−(tκ−(V))∑

i=1

f−1
(
tU′

i ,−�
←

(V)
)}

,

completing the proof of the following identity in law:(
V,Y

|·|<�
←

(V)
t ,Y

·≥�
←

(V)
t ,Y

·≤−�
←

(V)
t

)
D=
(
V,X′

t
|·|<�

←
(V),

Y+(tκ+(V))∑
i=1

δ(tUi ,�
←

(V)),

Y−(tκ−(V))∑
i=1

δ(tU′
i ,−�

←
(V))

)
,

where V,X′
t , Y

+, Y−, (Ui ), (U
′
i ) are independent with X

′
t

D= Xt . The proof of part (i) is com-
pleted by combining (2.23) and (2.27). The proof of part (ii) is similar. �
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2.4. Representations for the r-trimmed Lévy processes

By the Lévy–Itô decomposition (Sato [47], Theorem 19.2, page 120), we can decompose a real-
valued Lévy process Xt , defined on the probability space (,F,P ), as

Xt = γ t + σZt + X
(J)
t , t ≥ 0, (2.28)

where γ ∈ R, σ ≥ 0, (Zt )t≥0 is a standard Brownian motion, and (X
(J )
t )t≥0, the jump process of

X, is independent of (Zt )t≥0. It satisfies, locally uniform in t ≥ 0,

X
(J)
t = a.s. lim

ε↓0

( ∑
0<s≤t

�Xs1{|�Xs |>ε} − t

∫
ε<|x|≤1

x�(dx)

)
. (2.29)

Now we can complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We will prove part (i), the identity for the r-fold modulus trimmed Lévy
process. Trimming of positive jumps as in part (ii) follows similarly. Let t > 0, r ∈ N be fixed.
By (2.28) and the definition of (r)X̃t , the r-fold modulus trimmed Lévy process is

(r)X̃t = γ t + σZt + X
(J)
t −

r∑
i=1

�̃X
(i)
t , t > 0.

Note that the jump process of (r)X̃t and its quadratic variation are obtained by applying the
summing functional to the r-fold modulus trimmed point process (r)

X̃ and to the squared jumps
of (r)

X̃. Using (2.29), we can write

X
(J)
t −

r∑
i=1

�̃X
(i)
t = a.s. lim

ε↓0

(∫
[0,t]×{|x|>ε}

x(r)
X̃(ds,dx) − t

∫
ε<|x|≤1

x�(dx)

)
. (2.30)

The corresponding r-trimmed quadratic variation is simply

(r)Ṽt =
∫

[0,t]×R∗
x2(r)

X̃(ds,dx).

Recall from Lemma 1 and Theorem 1 that the distribution of (r)
X̃t can be decomposed as the

superposition of three independent point measures, as in (2.21). Splitting the integral in (2.30)
into these components gives

a.s. lim
ε↓0

(∫
[0,t]×{|x|>ε}

x(r)
X̃(ds,dx) − t

∫
ε<|x|≤1

x�(dx)

)
D= a.s. lim

ε↓0

(∫
[0,t]×{|x|>ε}

xX|·|<�
←

(Sr /t)(ds,dx) − t

∫
ε<|x|≤1

x�(dx)

)
+ �

←
(Sr/t)

(
Y+(tκ+(Sr/t)

)− Y−(tκ−(Sr/t)
))

.
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A similar expression holds for (r)Ṽt . Thus, we conclude(
(r)X̃t ,

(r)Ṽt ,
∣∣�̃X

(r)
t

∣∣) D= {
X̃v

t + �
←

(v)
(
Y+

tκ+(v)
− Y−

tκ−(v)

)
,

Ṽ v
t + �

←
(v)2(Y+

tκ+(v)
+ Y−

tκ−(v)

)
,�

←
(v)

}
v=Sr /t

.

This is (2.9) and completes the proof of part (i). �

This completes our derivation of the trimming identities. In the next sections, we turn to ap-
plications of them.

3. X comparable with its large jump processes

In this section, we apply Theorem 2.1 to complete a result of Maller and Mason [38] concern-
ing the ratio of the process to its jump of largest magnitude. Note that when �(0+) = ∞,

we have |�̃X
(1)
t | = sup0<s≤t |�Xs | > 0 a.s. for all t > 0; similarly, when �

+
(0+) = ∞,

�X
(1)
t = sup0<s≤t �Xs > 0 a.s. for all t > 0. Recall that �(x) is said to be slowly varying

(SV) as x ↓ 0 if limx↓0 �(ux)/�(x) = 1 for all u > 0 (e.g., Bingham, Goldie and Teugels [7]).

Theorem 2. Suppose σ 2 = 0 and �(0+) = ∞. Then

Xt

�̃X
(1)
t

P→ 1, as t ↓ 0, (3.1)

iff �(x) ∈ SV at 0 (so that X is of bounded variation) and X has drift 0. These imply

|�̃X
(2)
t |

|�̃X
(1)
t |

P→ 0, as t ↓ 0; (3.2)

and conversely (3.2) implies �(x) ∈ SV at 0.

For the proof, we need two preliminary lemmas. The first calculates a distribution related to
the large jumps, and the second applies Theorem 2.1 to derive a useful inequality.

Lemma 2. Assume �(0+) = ∞. Then for t > 0, 0 < u < 1,

P
(∣∣�̃X

(2)
t

∣∣≤ u
∣∣�̃X

(1)
t

∣∣)= t

∫
(0,∞)

e−t�(u�
←

(v)) dv. (3.3)

A similar expression to (3.3) is true when �
+
(0+) = ∞, with |�̃X

(1)
t | and |�̃X

(2)
t | replaced by

�X
(1)
t and �X

(2)
t , and � and �

←
replaced by �

+
and �

+,←
.
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Proof. Assume �(0+) = ∞ and take t > 0. We get from (2.17) that(∣∣�̃X
(1)
t

∣∣, ∣∣�̃X
(2)
t

∣∣) D= (
�

←
(E1/t),�

←(
(E1 +E2)/t

))
, (3.4)

where E1 and E2 are independent unit exponential random variables. Take 0 < u < 1 and v > 0
and let yt,u(v) := t�(u�

←
(v/t)). Then, in view of (3.4),

P
(∣∣�̃X

(2)
t

∣∣≤ u
∣∣�̃X

(1)
t

∣∣) = P
(
�

←(
(E1 +E2)/t

)≤ u�
←

(E1/t)
)

= P
(
E1 +E2 ≥ yt,u(E1)

)
=
∫

(0,∞)

e−(yt,u(v)−v)e−v dv

=
∫

(0,∞)

exp
{−t�

(
u�

←
(v/t)

)}
dv.

Changing the variable from v/t to v gives (3.3). The version for large jumps, rather than jumps
large in modulus, is proved similarly. �

Lemma 3. Assume �(0+) = ∞, and let at be any nonstochastic function in R. Then for t > 0
and 0 < u < 1/4,

4P
(∣∣(1)X̃t − at

∣∣> u
∣∣�̃X

(1)
t

∣∣)≥ P
(∣∣�̃X

(2)
t

∣∣> 4u
∣∣�̃X

(1)
t

∣∣). (3.5)

Assuming �
+
(0+) = ∞, the same inequality (3.5) holds with (1)Xt , �X

(1)
t and �X

(2)
t in place

of (1)X̃t , |�̃X
(1)
t | and |�̃X

(2)
t |.

Proof. Let E be an exponential random variable with EE = 1, thus, E
D= S1. Using the identity

in (2.12) with r = 1, the left-hand side of (3.5) is, for u > 0,∫ ∞

0
4P

(∣∣X̃v
t + G̃v

t − at

∣∣> uyv

)
P(E ∈ t dv), (3.6)

where we abbreviate yv := �
←

(v), v > 0. For each v > 0, let (X
v

t )t≥0 and (G
v

t )t≥0 be inde-
pendent copies of (X̃v

t )t≥0 and (G̃v
t )t≥0, with (G

v

t )t≥0 also independent of (X
v

t )t≥0. Define the
symmetrised process (Ŷ v

t )t≥0 by

Ŷ v
t = (

X̃v
t + G̃v

t

)− (
X

v

t + G
v

t

)
, t > 0,

with jump process �Ŷ v
t = Ŷ v

t − Ŷ v
t−, t > 0. Then the integrand in (3.6) satisfies

4P
(∣∣X̃v

t + G̃v
t − at

∣∣> uyv

) = 2P
(∣∣X̃v

t + G̃v
t − at

∣∣> uyv

)+ 2P
(∣∣Xv

t + G
v

t − at

∣∣> uyv

)
≥ 2P

(∣∣(X̃v
t + G̃v

t − at

)− (
X

v

t + G
v

t − at

)∣∣> 2uyv

)
(3.7)

= 2P
(∣∣Ŷ v

t

∣∣> 2uyv

)
.



2340 B. Buchmann, Y. Fan and R.A. Maller

Substitute the inequality (3.7) in (3.6) and equate to the left-hand side of (3.5) to get

4P
(∣∣(1)X̃t − at

∣∣> u
∣∣�̃X

(1)
t

∣∣)≥ 2
∫ ∞

0
P
(∣∣Ŷ v

t

∣∣> 2uyv

)
P(E ∈ t dv), u > 0. (3.8)

Take u ∈ (0,1/4). Applying Lévy’s maximal inequality for random walks (Feller ([17],
Lemma 2, page 147), we have

2P
(∣∣Ŷ v

t

∣∣> 2uyv

) = 2 lim
n→∞P

(∣∣∣∣∣
2n∑
i=1

(
Ŷ v

it/2n − Ŷ v
(i−1)t/2n

)∣∣∣∣∣> 2uyv

)

≥ lim
n→∞P

(
max

1≤j≤2n

∣∣(Ŷ v
j t/2n − Ŷ v

(j−1)t/2n

)∣∣> 2uyv

)
(3.9)

≥ P
(

sup
0<s≤t

∣∣�Ŷ v
s

∣∣> 4uyv

)
.

The Lévy measure of X̃v
t is �(dx)1{|x|<yv}, x ∈R, having tail function(

�(x) − �(yv−)
)
1{x<yv}, x > 0.

Suppose at first that ��(yv) > 0. Then G̃v
t is nonzero. Its Lévy measure consists of point masses

at ±yv with magnitudes κ±(v), given by (2.7). Hence, it has tail

(
�(yv−) − v

) (��(yv) + ��(−yv))

��(yv)
1{x<yv} = (

�(yv−) − v
)
1{x<yv}, x > 0.

Adding the two tails gives the tail of X̃v
t + G̃v

t as (�(x) − v)1{x<yv}, x > 0. The symmetrisation
Ŷ v

t has Lévy tail being twice the magnitude of this. This result remains true when ��(yv) = 0,
as G̃v

t ≡ 0 and �(yv−) = v then.
We can now calculate the right-hand side of (3.9) and deduce from it that

2P
(∣∣Ŷ v

t

∣∣> 2uyv

) ≥ 1 − e−2t (�(4uyv)−v)

(3.10)
≥ 1 − e−t (�(4uyv)−v).

Finally, (3.8), (3.10) and Lemma 2 give

4P
(∣∣(1)X̃t − at

∣∣> u
∣∣�̃X

(1)
t

∣∣) ≥ t

∫ ∞

0

(
e−tv − e−t�(4uyv)

)
dv

= P
(∣∣�̃X

(2)
t

∣∣> 4u
∣∣�̃X

(1)
t

∣∣).
This proves (3.5). To derive the version for (1)Xt , define the one-sided Lévy process X∗

t having

triplet (γ, σ 2,�∗(dx) = �(dx)1(x>0)), and let �̃X
∗,(r)
t be the jump of r th largest modulus up

until time t for (X∗
t )t≥0, r ∈ N. Then �̃X

∗,(r)
t = �X

(r)
t and (1)Xt = (1)X̃∗

t = X∗
t − �̃X

∗,(1)
t .
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Assuming �
+
(0+) = ∞, inequality (3.5) with (1)Xt , �X

(1)
t and �X

(2)
t replacing (1)X̃t , |�̃X

(1)
t |

and |�̃X
(2)
t | then follows from (3.5) itself, applied to X∗

t . �

Lemma 4. Assume �(0+) = ∞. Then

|�̃X
(2)
t |

|�̃X
(1)
t |

P→ 0, as t ↓ 0, (3.11)

implies �(x) is SV at 0.

Proof. From (3.3), for 0 < u < 1, with yv := �
←

(v),

P
(∣∣�̃X

(2)
t

∣∣> u
∣∣�̃X

(1)
t

∣∣) = t

∫ ∞

0

(
e−tv − e−t�(uyv)

)
dv

(3.12)

=
∫ ∞

0

(
e−v − e−t�(uyv/t )

)
dv.

Assume (3.11), so the integral on the right-hand side of (3.12) tends to 0 as t ↓ 0. Take any
sequence tk ↓ 0 and by Helly’s theorem select for each u > 0 a subsequence tk′ = tk′(u) ↓ 0
such that tk′�(uyv/tk′ ) converges vaguely to gu(v), as k′ → ∞, where gu(v) is a monotone
function of v. Since t�(uyv/t ) ≥ t�(yv/t−) ≥ v, we have gu(v) ≥ v. Fatou’s lemma applied to
(3.12) shows then that gu(v) = v for v > 0, thus tk′�(uyv/tk′ ) → v, and since this is true for all
subsequences we deduce

lim
t↓0

t�(uyv/t ) = v, v > 0,0 < u < 1.

Given x > 0, v > 0, let t (x) = v/�(x). Then yv/t (x) = �
←

(�(x)) ≤ x, implying �(uyv/t (x)) ≥
�(ux). So we get, for 0 < u < 1,

1 ≤ �(ux)

�(x)
≤ t (x)�(uyv/t (x))

v
→ v

v
= 1, as x ↓ 0,

and � ∈ SV at 0. �

Proof of Theorem 2. Observe that (3.1) is equivalent to

|(1)X̃t |
|�̃X

(1)
t |

P→ 0, as t ↓ 0,

and this implies (3.11) by Lemma 3. Thus, by Lemma 4, � ∈ SV at 0. Hence,
∫ 1

0 �(x)dx < ∞
and X is of bounded variation, with drift dX . By, for example, Bertoin ([5], Proposition 11,

page 167), Xt/t
P→ dX as t ↓ 0, while, for any δ > 0,

P
(

sup
0<s≤t

|�Xs | > δt
)

= 1 − e−t�(δt) → 0,



2342 B. Buchmann, Y. Fan and R.A. Maller

thus �̃X
(1)
t /t

P→ 0 as t ↓ 0. But

|Xt |
t

= |Xt |
|�̃X

(1)
t |

· |�̃X
(1)
t |

t

P→ (1)(0) = 0,

showing that dX = 0.
Conversely, (3.1) holds when � ∈ SV at 0 and dX = 0, as shown in Lemma 5.1 of Maller and

Mason [38]. �

The next result follows by applying Theorem 2 to the Lévy process (
∑

0<s≤t |�Xs |)t>0, when
Xt is of bounded variation.

Corollary 2. Suppose σ 2 = 0 and �(0+) = ∞. Xt is of bounded variation and∑
0<s≤t |�Xs |

sup0<s≤t |�Xs |
P→ 1, as t ↓ 0,

iff �(x) ∈ SV at 0 (so that X is of bounded variation) and X has drift 0.

Remark 1. As another corollary of Theorem 2, it is not hard to show that �(x) ∈ SV at 0 implies

t�(|Xt |) D−→ E as t ↓ 0. The variance gamma model, widely used in financial modelling, has
Lévy measure whose tail is slowly varying at 0 (Madan and Seneta ([35], page 519)). Our results
for such processes provide useful intuition and, more specifically, may be of immediate use in
applications, such as for estimation of � or simulation, and so forth.

The next theorem gives a one-sided version of Theorem 2. Condition (3.13) reflects a kind of
dominance of the positive part of X over its negative part. We defer the proof of Theorem 3 to
the following section, where we study such dominance ideas in detail.

Theorem 3. Suppose �
+
(0+) = ∞. Then

Xt

�X
(1)
t

P→ 1, as t ↓ 0 (3.13)

iff �
+
(x) ∈ SV at 0, X is of bounded variation with drift 0, and limx↓0 �

−
(x)/�

+
(x) = 0.

4. Comparing positive and negative jumps

In this section, we are concerned with comparing magnitudes of positive and negative jumps of
X, in various ways. Define �X+

t = max(�Xt ,0), �X−
t = max(−�Xt,0), and(

�X+)(1)

t
= sup

0<s≤t

�X+
s and

(
�X−)(1)

t
= sup

0<s≤t

�X−
s , t > 0.
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In the Poisson point process of jumps (�Xt)t>0, the numbers of jumps and their magnitudes in
disjoint regions are independent. Thus, the positive and negative jump processes are independent.
When the integrals are finite, define

A±(x) :=
∫ x

0
�

±
(y)dy = x

∫ 1

0
�

±
(xy)dy.

We obtain the following.

Theorem 4. Suppose �
±
(0+) = ∞. For (4.1) assume

∑
0<s≤t �X−

s is finite a.s., and for (4.2)
assume

∑
0<s≤t �X+

s is finite a.s. For (4.3), assume both are finite a.s. Then

∑
0<s≤t �X−

s

sup0<s≤t �X+
s

P→ 0, as t ↓ 0 if and only if lim
x↓0

∫ x

0 �
−
(y)dy

x�
+
(x)

= 0; (4.1)

also

sup0<s≤t �X−
s∑

0<s≤t �X+
s

P→ 0, as t ↓ 0 if and only if lim
x↓0

x�
−
(x)∫ x

0 �
+
(y)dy

= 0; (4.2)

and ∑
0<s≤t �X−

s∑
0<s≤t �X+

s

P→ 0, as t ↓ 0 if and only if lim
x↓0

∫ x

0 �
−
(y)dy∫ x

0 �
+
(y)dy

= 0. (4.3)

Finally,

sup0<s≤t �X−
s

sup0<s≤t �X+
s

P→ 0, as t ↓ 0 if and only if lim
x↓0

�
−
(εx)

�
+
(x)

= 0 for all ε > 0. (4.4)

Proof. To prove the equivalence in (4.1), note that, for any λ > 0,

E exp

(
−λ

∑
0<s≤t �X−

s

sup0<s≤t �X+
s

)
= EE

[
exp

(
− λ

(�X+)
(1)
t

∑
0<s≤t

�X−
s

)∣∣∣(�X+)(1)

t

]

= E

[
exp

(
−t

∫
(0,∞)

(
1 − e−λx/(�X+)

(1)
t
)
�(−)(dx)

)]
(4.5)

=
∫

(0,∞)

exp

(
−t

∫
(0,∞)

(
1 − e−λx/y

)
�(−)(dx)

)
λ+

t (dy),

where

λ+
t (x) := P

(
sup

0<s≤t

�Xs ≤ x
)

= e−t�
+

(x), x > 0, t > 0.
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By (4.5), the left-hand relation in (4.1) holds if and only if, for all λ > 0,

lim
t↓0

∫
(0,∞)

(
1 − e

−t
∫
(0,∞)(1−e−λx/y)�(−)(dx))

λ+
t (dy) = 0. (4.6)

Use the lower bound in the inequalities (cf. Bertoin [5], Proposition 1, page 74)

(λ/3y)A−(y/λ) ≤
∫

(0,∞)

(
1 − e−λx/y

)
�(−)(dx) ≤ (λ/y)A−(y/λ), y > 0, λ > 0, (4.7)

with λ = 1 to get a lower bound for the integral in (4.6) of∫
(0,∞)

(
1 − e−tA−(y)/3y

)
λ+

t (dy) ≥
∫

(0,z]
(
1 − e−tA−(y)/3y

)
λ+

t (dy) (4.8)

for any z > 0. It is easily checked that A−(z)/z is nonincreasing for z > 0, so the last integral in
(4.8) is not smaller than(

1 − e−tA−(z)/3z
)
λ+

t (z) = (
1 − e−tA−(z)/3z

)
e−t�

+
(z).

Now choose t = 1/�
+
(z) and let t ↓ 0 (so z ↓ 0) to get the righthand relation in (4.1).

Conversely, assume the right-hand relation in (4.1). Then the upper bound in (4.7) shows that
the integral in (4.6) is no larger than∫

(0,∞)

(
1 − e−λtA−(y/λ)/y

)
λ+

t (dy).

This is a nondecreasing function of λ so it suffices to show that it tends to 0 as t ↓ 0 for λ > 1.
Then since A− is nondecreasing, for any z > 0 the integral is bounded above by∫

[z,∞)

(
1 − e−λtA−(y)/y

)
λ+

t (dy) + λ+
t (z−) ≤ 1 − e−λtA−(z)/z + e−t�

+
(z−).

Take t > 0 and a > 0 and let z = �
+,←

(a/t). Then the last expression is no larger than

1 − e−aλA−(z)/z�
+

(z) + e−a.

Letting t ↓ 0, so z ↓ 0, then a → ∞, this tends to 0 by the right-hand relation in (4.1).
The equivalence in (4.2) is proved similarly to that in (4.1), by reversing the numerator and

denominator and interchanging +/− and noting that the left-hand relation in (4.2) holds if and
only if the Laplace transform of the ratio on the left of (4.2) tends to 1 as t ↓ 0.

The equivalence in (4.3) can be inferred from that in (4.2) with the following device. The
left-hand relation in (4.3) holds if and only if

lim
t↓0

E exp

(
−λ

∑
0<s≤t

�X−
s

/ ∑
0<s≤t

�X+
s

)
= 1 for all λ > 0. (4.9)
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The Laplace transform on the left-hand side of (4.9) equals∫
(0,∞)

exp

(
−t

∫
(0,∞)

(
1 − e−x/y

)
�(−)(dx)

)
P

( ∑
0<s≤t

�X+
s ∈ λdy

)
. (4.10)

Define a measure ρ(·) on (0,∞) in terms of its tail:

ρ(y) =
∫

(0,∞)

(
1 − e−x/y

)
�(−)(dx), y > 0.

Then ρ(y) is nonincreasing, ρ(0+) = ∞, ρ(+∞) = 0, and
∫ 1

0 yρ(y)dy < ∞. So ρ is a Lévy
measure and we can define a Lévy process (Ut )t≥0, independent of (Xt )t≥0, having Lévy char-
acteristics (0,0, ρ) and jump process �Ut := Ut − Ut−, t > 0. Then

P
(

sup
0<s≤t

�Us ≤ y
)

= e−tρ(y), y > 0,

and the right-hand side of (4.10) is∫
(0,∞)

e−tρ(y)P

( ∑
0<s≤t

�X+
s ∈ λdy

)
=
∫

(0,∞)

P
(

sup
0<s≤t

�Us ≤ y
)
P

( ∑
0<s≤t

�X+
s ∈ λdy

)

= P

(
sup

0<s≤t

�Us

/ ∑
0<s≤t

�X+
s ≤ λ−1

)
.

Thus (4.9) holds if and only if

sup0<s≤t �Us∑
0<s≤t �X+

s

P→ 0, as t ↓ 0.

Applying (4.2), with Ut in the role of the negative jump process, this is so if and only if

lim
y↓0

yρ(y)

A+(y)
= 0. (4.11)

The estimates in (4.7) give

A−(y)

3y
≤ ρ(y) ≤ A−(y)

y
,

so the equivalence in (4.3) follows from (4.11).
Finally, for the equivalence in (4.4), use

P
(

sup
0<s≤t

�X−
s > u sup

0<s≤t

�X+
s

)
=
∫

(0,∞)

(
1 − e−t�

−
(uy)

)
λ+

t (dy),

and similar calculations as above. �
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To complete this section, we give the deferred proof of Theorem 3.

Proof of Theorem 3. Assume �
+
(0+) = ∞ and suppose first that (3.13) holds. Then the same

proof as used for showing that (3.1) is equivalent to �(x) ∈ SV at 0, shows here that �
+
(x) ∈ SV

at 0. This implies that the Lévy process
∑

0<s≤t �X+
s is of bounded variation, and so∑

0<s≤t �X+
s

sup0<s≤t �X+
s

P→ 1, (4.12)

by Theorem 2 applied to
∑

0<s≤t �X+
s . Now, �

+
(x) ∈ SV at 0 implies

∫ 1
0 �

+
(y)dy < ∞ hence

limx↓0 x�
+
(x) = 0. This means

P
(

sup
0<s≤t

�X+
s > δt

)
≤ 1 − e−t�

+
(δt) → 0, as t ↓ 0 for δ > 0,

thus sup0<s≤t �X+
s /t

P→ 0. So by (3.13)

Xt

t
= Xt

�X
(1)
t

· �X
(1)
t

t

P→ 0. (4.13)

Then σ 2 = 0 and x�(x) → 0 as x ↓ 0, by Doney and Maller ([13], Theorem 2.1).
Use the Lévy–Itô decomposition (2.28) (with σ 2 = 0) to write Xt as

Xt = γ t + a.s. lim
ε↓0

( ∑
0<s≤t

�Xs1{ε<|�Xs |≤1} − t

∫
ε<|x|≤1

x�(dx)

)
+ X

(B,1)
t

(4.14)

= γ t +
∑

0<s≤t

�X+
s − t

∫
0<x<1

x�(dx) − X
(−)
t + oP (t).

Here,

X
(B,1)
t =

∑
0<s≤t

�Xs1{|�Xs |>1} = oP (t), as t ↓ 0,

because P(|X(B,1)
t | > δt) ≤ 1 − e−t�(1) → 0, as t ↓ 0, for δ > 0, and

X
(−)
t := a.s. lim

ε↓0

( ∑
0<s≤t

�X−
s 1{ε<�X−

s ≤1} − t

∫
−1≤x<−ε

x�(dx)

)
.

In view of (4.13) and (4.14), we see that X
(−)
t /t has a finite limit in probability as t ↓ 0, and so

by Doney and Maller [13], Theorem 2.1 (see also Doney [11]), the integral
∫
(x,1)

y�(−)(dy) has

a finite limit as x ↓ 0. This means that X
(−)
t , and hence Xt are of bounded variation, with drift

dX = 0 by (4.13) and Lemma 4.1 of Doney and Maller [13].
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So we can write

1 + oP (1) = Xt

sup0<s≤t �X+
s

=
∑

0<s≤t �X+
s −∑

0<s≤t �X−
s

sup0<s≤t �X+
s

(4.15)

= 1 −
∑

0<s≤t �X−
s

sup0<s≤t �X+
s

+ oP (1).

From this, we see that ∑
0<s≤t �X−

s

sup0<s≤t �X+
s

P→ 0, (4.16)

thus by (4.1)

lim
x↓0

∫ x

0 �
−
(y)dy

x�
+
(x)

= 0.

Since
∫ x

0 �
−
(y)dy ≥ x�

−
(x), we have limx↓0 �

−
(x)/�

+
(x) = 0, so we have proved the for-

ward part of Theorem 3.
For the converse, assume �

+
(x) ∈ SV at 0, X is of bounded variation with drift dX = 0,

and limx↓0 �
−
(x)/�

+
(x) = 0. Now �

+
(x) ∈ SV at 0 implies (4.12) by Theorem 2, and also∫ x

0 �
+
(y)dy ∼ x�

+
(x) as x ↓ 0. In addition, �

−
(x) = o(�

+
(x)) implies∫ x

0
�

−
(y)dy = o

(∫ x

0
�

+
(y)dy

)
= o

(
x�

+
(x)

)
, as x ↓ 0,

and then (4.16) follows as in (4.1). Thus, we get (3.13) from (4.15). �

5. X dominating its large jump processes

In this section, we characterise divergences like2

Xt

sup0<s≤t |�Xs |
P→ ∞, as t ↓ 0; (5.1)

and similarly with |�Xs | replaced by �Xs . We think of these kinds of conditions as expressing
the “dominance” of X over its largest jump processes, at small times.

These conditions will be shown to be related to the relative stability of the process X, and to
its attraction to normality, as t ↓ 0. Relative stability is the convergence of the normed process to

2Recall that �(0+) = ∞ implies sup0<s≤t |�Xs | > 0 a.s. for all t > 0 when writing ratios like that in (5.1), and similarly
for one-sided versions.
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a finite nonzero constant which, by rescaling of the norming function, can be taken as ±1. Thus,
we are concerned with the property

Xt

bt

P→ ±1, as t ↓ 0, (5.2)

where bt > 0 is a nonstochastic function. The concept is important in a variety of contexts, in
particular, with reference to the stability at 0 of certain passage times for the process, as we
discuss in more detail later. When Xt is replaced by |Xt | in (5.1), we also bring into play the idea
of X being in the domain of attraction of the normal distribution, as t ↓ 0; that is, when there are

nonstochastic functions at ∈ R, bt > 0, such that (Xt − at )/bt
D−→ N(0,1), a standard normal

random variable, as t ↓ 0.
Before proceeding, we quote some preliminary results, including in the next subsection a the-

orem originally due to Doney [11] giving necessary and sufficient conditions for Xt to stay
positive with probability approaching 1 as t ↓ 0. The main result concerning relative stability is
in Section 5.2, while Section 5.3 deals with 2-sided versions. The domain of attraction of the
normal is needed here. Subsequential versions of the results are in Sections 5.4 and 5.5.

5.1. X staying positive near 0, in probability

Versions of truncated first and second moment functions, we will use are

ν(x) = γ −
∫

x<|y|≤1
y�(dy) and V (x) = σ 2 +

∫
0<|y|≤x

y2�(dy), x > 0. (5.3)

Variants of ν(x) and V (x) are Winsorised first and second moment functions defined by

A(x) = γ + �
+
(1) − �

−
(1) −

∫ 1

x

(
�

+
(y) − �

−
(y)

)
dy (5.4)

and

U(x) = σ 2 + 2
∫ x

0
y�(y)dy for x > 0. (5.5)

A(x) and U(x) are continuous for x > 0. Using Fubini’s theorem, we can show that

A(x) = ν(x) + x
(
�

+
(x) − �

−
(x)

)
(5.6)

and

U(x) = V (x) + x2(�+
(x) + �

−
(x)

)= V (x) + x2�(x). (5.7)

These functions are finite for all x > 0 by virtue of property
∫

0<|y|≤1 y2�(dy) < ∞ of the Lévy

measure �, which further implies that limx↓0 x2�(x) = 0, and, as is easily verified,

lim
x↓0

xν(x) = lim
x↓0

xA(x) = 0. (5.8)
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Also, limx→∞ A(x)/x = limx→∞ U(x)/x2 = 0. We have the obvious inequality

U(x) ≥ σ 2 + x2�(x) ≥ x2�(x), x ≥ 0.

This can be amplified to

U(x) ≥ σ 2 + x2�(x−) ≥ x2�(x−), x > 0. (5.9)

Another calculation gives (recall ��(x) = �{x})

ν(x) − x
(
��(x) − ��(−x)

)= A(x) − x
(
�

+
(x−) − �

−
(x−)

)
. (5.10)

Lemma 5. Suppose σ 2 > 0. Then Xt/
√

t
D−→ N(0, σ 2) and P(Xt > 0) → 1/2, as t ↓ 0.

Proof. The asymptotic normality of Xt/
√

t when σ 2 > 0 is proved in Doney and Maller ([13],
Theorem 2.5 and its corollary, page 760), and then limt↓0 P(Xt > 0) = 1/2 is immediate. �

Next, we quote the (slightly modified) theorem originally due to Doney [11]. It shows that X

remains positive with probability approaching 1 iff X dominates its large negative jumps, and
explicit equivalences for this are given in terms of the functions A(x), U(x) and the negative tail
of �. The latter conditions reflect the positivity of X in that the function A(x) remains positive
for small values of x; and A(x) dominates U(x) and the negative tail of � in certain ways. Recall
the notation �X+

t = max(�Xt ,0), �X−
t = max(−�Xt,0), and (�X+)

(1)
t = sup0<s≤t �X+

s ,

(�X−)
(1)
t = sup0<s≤t �X−

s .

Theorem 5. Suppose �
+
(0+) = ∞.

(i) Suppose also that �
−
(0+) > 0. Then the following are equivalent:

lim
t↓0

P(Xt > 0) = 1; (5.11)

Xt

(�X−)
(1)
t

P→ ∞, as t ↓ 0; (5.12)

σ 2 = 0 and lim
x↓0

A(x)

x�
−
(x)

= ∞; (5.13)

lim
x↓0

A(x)√
U(x)�

−
(x)

= ∞; (5.14)

there is a nonstochastic nondecreasing function �(x) > 0, which is slowly varying at 0, such that

Xt

t�(t)

P→ ∞, as t ↓ 0. (5.15)



2350 B. Buchmann, Y. Fan and R.A. Maller

(ii) Suppose X is spectrally positive, so �
−
(x) = 0 for x > 0. Then (5.11) is equivalent to

σ 2 = 0 and A(x) ≥ 0 for all small x, (5.16)

and this happens if and only if X is a subordinator. Furthermore, we then have A(x) ≥ 0, not
only for small x, but for all x > 0.

Remark 2. We adopt the convention that (5.12) is taken to hold when (5.11) holds but
sup0<s≤t �X−

s = 0 a.s. for all small t > 0. This is the case when �
−
(0+) < ∞.

Lemma 6. If �
−
(0+) > 0, then

lim sup
x↓0

A(x)√
�

−
(x)

< ∞. (5.17)

If �
−
(0+) = 0 and �

+
(0+) > 0, then

lim sup
x↓0

A(x)√
�

+
(x)

< ∞. (5.18)

Proof of Lemma 6. (i) Assume �
−
(0+) > 0 and, by way of contradiction, that there is a non-

stochastic sequence xk ↓ 0 as k → ∞ such that

A(xk)√
�

−
(xk)

= γ + �
+
(1) − �

−
(1) − ∫ 1

xk
�

+
(y)dy + ∫ 1

xk
�

−
(y)dy√

�
−
(xk)

→ ∞.

Since �
−
(0+) > 0, we deduce from this that

−�
−
(1) + ∫ 1

xk
�

−
(y)dy√

�
−
(xk)

→ ∞.

Thus, integrating by parts,

−xk�
−
(xk) + ∫

xk<y≤1 y�(−)(dy)√
�

−
(xk)

→ ∞.

But by the Cauchy–Schwarz inequality,

(
∫
xk<y≤1 y�(−)(dy))2

�
−
(xk)

≤
∫
xk<y≤1 y2�(−)(dy)

∫
xk<y≤1 �(−)(dy)

�
−
(xk)

≤
∫
xk<|y|≤1 y2�(dy)(�

−
(xk) − �

−
(1))

�
−
(xk)

≤
∫

0<|y|≤1
y2�(dy) < ∞,



Distributional representations of a Lévy process 2351

giving a contradiction. Thus, (5.17) holds.
(ii) Alternatively, suppose �

−
(0+) = 0 and �

+
(0+) > 0. Then, for 0 < x < 1,

A(x)√
�

+
(x)

= γ + �
+
(1) − ∫ 1

x
�

+
(y)dy√

�
+
(x)

≤ γ + �(1)√
�

+
(x)

,

and since �
+
(0+) > 0 the RHS is finite as x ↓ 0, so (5.18) is proved. �

Proof. Theorem 5 only differs from Theorem 1 in Doney [11] (and his remark following the
theorem, regarding part (ii) of our Theorem 5) in that he assumes a priori that σ 2 = 0. Clearly,
(5.11), (5.12) and (5.15) imply this by Lemma 5. (5.14) also implies σ 2 = 0. To see this, suppose
on the contrary that σ 2 > 0. Then U(x) ≥ σ 2 for all x ≥ 0 and by Lemma 6, (5.17) contradicts
(5.14). �

We have the following subsequential version of Theorem 5. We omit the proof which is along
the lines of Doney’s proof, together with similar ideas as in Theorem 9.

Theorem 6. Suppose �
+
(0+) = ∞.

(i) Suppose also that �
−
(0+) > 0. Then the following are equivalent: there is a nonstochastic

sequence tk ↓ 0 such that

P(Xtk > 0) → 1; (5.19)

there is a nonstochastic sequence tk ↓ 0 such that

Xtk

(�X−)
(1)
tk

P→ ∞, as k → ∞; (5.20)

lim sup
x↓0

A(x)√
U(x)�

−
(x)

= ∞. (5.21)

(ii) Suppose X is spectrally positive, that is, �
−
(x) = 0 for all x > 0. Then (5.19) is equivalent

to limt↓0 P(Xt > 0) → 1, thus to (5.16), equivalently, Xt is a subordinator, and A(x) ≥ 0 for all
x > 0.

Remark 3. We get equivalences for

Xt

(�X+)
(1)
t

P→ −∞

(or the subsequential version) by applying Theorem 5 (or Theorem 6) with X replaced by −X.

In the next two subsections, we characterise when X dominates its large positive jumps and
its jumps large in modulus, while remaining positive in probability, and when |X| dominates
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its jumps large in modulus. These kinds of behaviour require more stringent conditions on X,
namely, relative stability or attraction to normality, in the respective cases.

5.2. Relative stability and dominance

Recall that X is said to be relatively stable (RS) at 0 if (5.2) holds. X is positively relatively
stable (PRS) at 0 if (5.2) holds with a “+” sign, and negatively relatively stable (NRS) at 0 if
(5.2) holds with a “−” sign. In either case, the function bt > 0 is regularly varying at 0 with
index 1. In Griffin and Maller ([20], Proposition 2.1) it is shown (when �(0+) = ∞) that there
is a measurable nonstochastic function bt > 0 such that

|Xt |
bt

P→ 1, as t ↓ 0, (5.22)

iff X ∈ RS at 0, equivalently, iff

σ 2 = 0 and lim
x↓0

|A(x)|
x�(x)

= ∞. (5.23)

The following conditions characterise the convergence in (5.2) (Kallenberg [23], Theo-
rem 15.14): for all x > 0,

lim
t↓0

t�(xbt ) = 0, lim
t↓0

tA(xbt )

bt

= ±1, lim
t↓0

tU(xbt )

b2
t

= 0. (5.24)

Obvious modifications of these characterise convergence through a subsequence tk in (5.2).
Next is our main result relating “one-sided” dominance to positive relative stability. The iden-

tity (2.12) supplies a key step in the proof.

Theorem 7. Assume �
+
(0+) = ∞. Then the following are equivalent:

Xt

(�X+)
(1)
t

P→ ∞, as t ↓ 0; (5.25)

Xt

|�̃X
(1)
t |

P→ ∞, as t ↓ 0; (5.26)

σ 2 = 0 and lim
x↓0

A(x)

x�(x)
= ∞; (5.27)

X ∈ PRS at 0; (5.28)

lim
x↓0

A(x)√
U(x)�(x)

= ∞; (5.29)

lim
x↓0

xA(x)

U(x)
= ∞. (5.30)
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Before proving the theorem, we record the following moment formulae. Recall that X̃v
t is

defined in (2.4).

Lemma 7. When �
←

(v) < 1 and t > 0:

t−1EX̃v
t = ν

(
�

←
(v)

)− �
←

(v)
(
��

(
�

←
(v)

)− ��
(−�

←
(v)

))
(5.31)

= A
(
�

←
(v)

)− �
←

(v)
(
�

+(
�

←
(v)−)− �

−(
�

←
(v)−)).

For all t > 0, v > 0,

E
(
X̃v

t

)2 = t

(
σ 2 +

∫
|x|<�

←
(v)

x2�(dx)

)
+ (

EX̃v
t

)2
. (5.32)

Proof. Let (Ut )t≥0 be a Lévy process with triplet (γU ,σ 2
U ,�U). Provided the participating in-

tegrals are finite (see Example 25.11 in Sato [47]), for instance, we have

EUt = t

(
γU +

∫
|y|>1

y�U(dy)

)
and E(Ut)

2 = t

(
σ 2

U +
∫
R∗

y2�U(dy)

)
+ (EUt)

2.

Apply these to X̃v
t with triplet as in (2.5) to get, when �

←
(v) < 1 and t > 0,

t−1EX̃v
t = γ −

∫
�

←
(v)≤|x|≤1

x�(dx)

= γ −
∫

�
←

(v)<|x|≤1
x�(dx) − �

←
(v)

(
��

(
�

←
(v)

)− ��
(−�

←
(v)

))
,

which gives the first equation in (5.31). For the second equation in (5.31), use (5.10). (5.32) is
proved similarly. �

Proof of Theorem 7. Assume �
+
(0+) = ∞ throughout.

Case (i). Suppose �
−
(0+) > 0.

(5.25) �⇒ (5.26): Assume (5.25). This implies limt↓0 P(Xt > 0) = 1, so by Theorem 5, (5.12)

holds. (5.12) together with (5.25) implies (5.26), because |�̃X
(1)
t | = max((�X+)

(1)
t , (�X−)

(1)
t ).

(5.26) �⇒ (5.27): Assume (5.26). Then limt↓0 P(Xt > 0) = 1, so (5.13) holds. Since

�
−
(0+) > 0, (5.13) implies limx↓0 A(x)/x = ∞; in particular, A(x) > 0 for all small x. Since

limt↓0 P(Xt > 0) = 1, Lemma 5 in Doney [11] gives

U(x) ≤ 3xA(x) for all small x, x ≤ x0, say. (5.33)

Without loss of generality, assume x0 < 1.
Note that (5.26) also implies

(1)X̃t

|�̃X
(1)
t |

P→ ∞, as x ↓ 0
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(recall (2.3)), so we have

lim
t↓0

P
(
(1)X̃t ≤ a

∣∣�̃X
(1)
t

∣∣)= 0 for some a > 0. (5.34)

(In fact, this holds for all a > 0. But it will be enough to assume (5.34).) Without loss of gener-
ality, take a ≤ 1.

We will abbreviate �
←

(v) to yv throughout this proof. Then by (2.12), we can write

P
(
(1)X̃t ≤ a

∣∣�̃X
(1)
t

∣∣)=
∫ ∞

0
P
(
X̃v

t + G̃v
t ≤ ayv

)
P(E ∈ t dv), (5.35)

where E =S1 is a unit exponential r.v. By (2.7) and (2.8),∣∣EG̃v
t

∣∣ = yv

∣∣EY+
tκ+(v)

− EY−
tκ−(v)

∣∣
≤ tyv

(
�(yv−) − v

)��(yv) + ��(−yv)

��(yv)
1{��(yv)�=0}

(5.36)
≤ tyv�(yv−) ≤ tU(yv)/yv

(
by (5.9)

)
≤ 3tA(yv)

(
by (5.33)

)
and similarly

Var
(
G̃v

t

)≤ ty2
v�(yv−). (5.37)

With x0 as in (5.33), keep v ≥ �(x0), so yv ≤ x0 < 1. Then

EX̃v
t = t

(
A(yv) − yv

(
�

+
(yv−) − �

−
(yv−)

)) (
by (5.31)

)
≤ t

(
A(yv) + yv�

−
(yv−)

)
(5.38)

≤ 4tA(yv)
(
by (5.9) and (5.33)

)
.

Apply (5.36) and (5.38) to obtain from (5.35)

P
(
(1)X̃t ≤ a

∣∣�̃X
(1)
t

∣∣)
(5.39)

≥
∫ ∞

�(x0)

P
(
X̃v

t − EX̃v
t + G̃v

t − EG̃v
t ≤ ayv − 7tA(yv)

)
P(E ∈ t dv).

For t > 0 and a as in (5.34) define

bt := sup

{
x > 0 : A(x)

x
>

a2

56t

}
, (5.40)

with b0 := 0. Recall that limx↓0 A(x)/x = ∞, limx→∞ A(x)/x = 0, and A(x) is continuous. So
0 < bt < ∞, bt is strictly increasing, bt ↓ 0 as t ↓ 0, and

tA(bt )

bt

= a2

56
. (5.41)
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Assume t is small enough for bt ≤ x0 and keep v < �(bt ). Then yv ≥ bt , and so 7tA(yv) ≤
a2yv/8 by definition of bt . This implies 7tA(yv) ≤ ayv/2. Thus, by Chebyshev’s inequality
and (5.39)

P
(
(1)X̃t ≤ a

∣∣�̃X
(1)
t

∣∣) ≥
∫ �(bt )

�(x0)

P
(
X̃v

t − EX̃v
t + G̃v

t − EG̃v
t ≤ ayv/2

)
P(E ∈ t dv)

(5.42)

≥
∫ �(bt )

�(x0)

(
1 − 4(Var(X̃v

t ) + Var(G̃v
t ))

a2y2
v

)
P(E ∈ t dv).

Also

Var
(
X̃v

t

)+ Var
(
G̃v

t

) ≤ t
(
V (yv) + y2

v�(yv−)
) (

by (5.32) and (5.37)
)

≤ 2tU(yv)
(
see (5.7) and (5.9)

)
(5.43)

≤ 6tyvA(yv)
(
by (5.33), since yv ≤ x0

)
≤ a2y2

v/8.

The last inequality holds since yv ≥ bt . Hence, from (5.42),

P
(
(1)X̃t ≤ a

∣∣�̃X
(1)
t

∣∣) ≥ t

∫ �(bt )

�(x0)

e−tv dv/2

= e−t�(x0)
(
1 − e−t (�(bt )−�(x0))

)
/2.

Since the left-hand side tends to 0 as t ↓ 0 by (5.34), we see from (5.41) that

t�(bt ) = a2bt�(bt )

56A(bt )
→ 0, as t ↓ 0. (5.44)

Now take λ > 1 and write, by (5.41),

bλt

bt

= 56λtA(bλt )

a2bt

= 56λtA(bt )

a2bt

+ 56λt(A(bλt ) − A(bt ))

a2bt

= λ + 56λt
∫ bλt

bt
(�

+
(y) − �

−
(y))dy

a2bt

= λ + O
(
t�(bt )

)(bλt − bt

bt

)
= λ + o

(
bλt

bt

)
.

Thus, bt is regularly varying with index 1 as t ↓ 0. Also, (5.44) implies A(bt )/bt�(bt ) → ∞
as t ↓ 0. From those we obtain (5.27) as follows. Given x > 0 choose t = t (x) so that
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bt− ≤ x ≤ bt+. Then, for any ε ∈ (0,1), bt(1−ε) ≤ x ≤ bt(1+ε), while bt(1+ε) ∼ (1 + ε)bt ∼
(1 + ε)b(1−ε)t /(1 − ε) as t ↓ 0. So

A(x) = A(bt(1−ε)) +
∫ x

bt(1−ε)

(
�

+
(y) − �

−
(y)

)
dy

≥ A(bt(1−ε)) − bt(1+ε)�(bt(1−ε))

≥ (
1 + o(1)

)
A(bt(1−ε))

(
by (5.44)

)
.

Hence, as x ↓ 0,

A(x)

x�(x)
≥ (1 + o(1))A(bt(1−ε))

bt (1−ε)�(bt(1−ε))
× bt(1−ε)

bt (1+ε)

→ ∞, (5.45)

and (5.27) is proved.
(5.27) ⇐⇒ (5.28) is in Theorem 2.2 of Doney and Maller [13].
(5.28) �⇒ (5.29): (5.28) implies A(bt )/

√
U(bt )�(bt ) → ∞ by (5.24) and then (5.29) follows

from the regular variation of bt (noted prior to (5.22)), by similar arguments as we used in proving
(5.45) from (5.44).

(5.29) ⇐⇒ (5.30): (5.29) implies X ∈ PRS at 0, so btA(bt )/U(bt ) → ∞ by (5.24), and bt

is regularly varying with index 1 at 0. Then (5.30) follows by similar arguments as we used in
proving (5.45) from (5.44). Conversely, (5.30) implies (5.29) because U(x) ≥ x2�(x).

In the reverse direction, we will show that (5.29) �⇒ (5.27) �⇒ (5.26) �⇒ (5.25).
(5.29) �⇒ (5.27): (5.29) implies (5.14), hence σ 2 = 0 by Theorem 5. Then (5.27) follows

from (5.29) since U(x) ≥ x2�(x).

(5.27) �⇒ (5.26): Assume (5.27). This implies X ∈ PRS, so Xt/bt
P→ +1 as t ↓ 0 for some

bt > 0. By (5.24), limt↓0 t�(εbt ) = 0 for all ε > 0. This implies

P
(

sup
0<s≤t

|�Xs | > εbt

)
= 1 − e−t�(εbt ) → 0,

thus sup0<s≤t |�Xs |/bt
P→ 0 as t ↓ 0. So we get (5.26).

(5.26) �⇒ (5.25) is true since |�̃X
(1)
t | ≥ (�X+)

(1)
t . So we have shown the equivalence of

(5.25)–(5.30) for case (i).
Case (ii). Suppose �

−
(0+) = 0. By part (ii) of Theorem 5, each of (5.25)–(5.28) implies X

is a subordinator (with drift) and A(x) ≥ 0 for all x ≥ 0. (5.25) and (5.26) are the same thing in
this case.

(5.26) �⇒ (5.27): Assume (5.26). Since X is a subordinator, we can write

A(x) = dX +
∫ x

0
�

+
(y)dy, x ≥ 0,

where dX ≥ 0 is the drift of X and
∫ x

0 �
+
(y)dy < ∞. The latter implies limx↓0 x�

+
(x) = 0. Of

course σ 2 = 0 and if dX > 0 then (5.27) clearly holds. So suppose dX = 0. As in (5.38), we get
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EX̃v
t ≤ tA(yv) and (5.36) and (5.37) remain true. Since �

+
(0+) = ∞,

lim
x↓0

A(x)

x
≥
∫ 1

0
lim inf

x↓0
�

+
(xy)dy = ∞.

Define bt again by (5.40). Then the same working as in case (i) gives t�(bt ) → 0 and bt regularly
varying with index 1, so again we get (5.27).

(5.27) ⇐⇒ (5.28) is in Theorem 2.2 of Doney and Maller [13] in this case also; their theorem
only requires �(0+) > 0.

The remaining equivalences in case (ii) follow exactly as in case (i). This completes the proof
of Theorem 7.

�

The domain of attraction of the normal distribution, as t ↓ 0, appears in the next result, which
is a corollary to Theorem 7. We say X ∈ D(N) at 0 if there are functions at ∈R, bt > 0, such that

(Xt − at )/bt
D−→ N(0,1) (a standard normal random variable ) as t ↓ 0. If at may be taken as 0,

we write X ∈ D0(N) (no centering required). The following condition characterises the domain
of attraction of the normal at 0 (Doney and Maller [13], Theorem 2.5):

lim
x↓0

U(x)

x2�(x)
= ∞; (5.46)

in fact, D(N) (at 0) equals D0(N) (at 0) (Maller and Mason [38], Theorem 2.4). A characterisa-
tion for D0(N) at 0 (equivalent to (5.46)) is

lim
x↓0

U(x)

x|A(x)| + x2�(x)
= ∞. (5.47)

The following conditions are also equivalent to Xt/bt
D−→ N(0,1) (Kallenberg [23], Theo-

rem 15.14): for all x > 0,

lim
t↓0

t�(xbt ) = 0, lim
t↓0

tA(xbt )

bt

= 0, lim
t↓0

tU(xbt )

b2
t

= 1. (5.48)

Obvious modifications of these characterise the convergence Xt/bt
D−→ N(0,1) through a sub-

sequence tk ↓ 0.

Corollary 3 (Corollary to Theorem 7). Assume �
+
(0+) = ∞. Then the following are equiva-

lent:

there is a nonstochastic function ct > 0 such that
Vt

ct

P→ 1, as t ↓ 0; (5.49)

Vt

sup0<s≤t |�Xs |2
P→ ∞, as t ↓ 0; (5.50)

X is in the domain of attraction of the normal distribution, as t ↓ 0.
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Proof. Vt is a subordinator with drift dV = σ 2 and Lévy measure �V , where �V (x) =
�(

√
x)1{x>0}. Let the triplet of Vt be (γV ,0,�V (·)). Then dV = γV + ∫ 1

0 y�V (dy). Thus, in
obvious notation

AV (x) = γV + �V (1) −
∫ 1

x

�V (y)dy = dV +
∫ x

0
�V (y)dy

= σ 2 + 2
∫ √

x

0
y�(y)dy = U(

√
x), x > 0.

Hence,

AV (x)

x�V (x)
= U(

√
x)

(
√

x)2�(
√

x)

tends to ∞ iff (5.46) holds. By Theorem 7 these are equivalent to (5.49) and (5.50), and (5.46)
characterises the domain of attraction of the normal, as noted. �

Remark 4. (i) Another interesting kind of “self-normalisation” of a Lévy process is to divide
Xt by

√
Vt , possibly after removal of one or the other kind of maximal jump. See, for example,

Maller and Mason [36,39]. Our methods can be used to extend these results in a variety of
directions, but we omit further details here.

(ii) Relative stability of X is directly related to the stability of the “one-sided” and “two-sided”
passage times over power law boundaries defined by

T b(r) := inf
{
t ≥ 0 : Xt > rtb

}
, r ≥ 0,

and

T ∗
b (r) := inf

{
t ≥ 0 : |Xt | > rtb

}
, r ≥ 0,

when3 0 ≤ b < 1. Griffin and Maller [20] show that, then, T b(r) is relatively stable as r ↓ 0, in the

sense that T b(r)/C(r)
P→ 1 as r ↓ 0 for a nonstochastic function C(r) > 0, iff X ∈ PRS, while

T ∗
b (r) is relatively stable as r ↓ 0, in the sense that T ∗

b (r)/C(r)
P→ 1 as r ↓ 0 for a nonstochastic

function C(r) > 0, iff X ∈ RS. Further connections made in Griffin and Maller [20] are that
X ∈ PRS iff Xt := sup0<s≤t Xs is relatively stable, while X ∈ RS iff X∗

t := sup0<s≤t |Xs | is
relatively stable. Auxiliary results are (i) there is a nonstochastic function b∗

t > 0 and constants
0 < c1 < c2 < ∞ such that limt↓0 P(c1 < |Xt |/b∗

t < c2) = 1 iff X ∈ RS, and (ii) there is a
nonstochastic function b

†
t > 0 such that each sequence tk ↓ 0 contains a subsequence tk′ ↓ 0 with

|Xtk′ |/b†
tk′

P→ c′, where 0 < |c′| < ∞, iff X ∈ RS. See also Griffin and Maller [19].

5.3. Relative stability, attraction to normality and dominance

The next theorems look at two-sided results, concerning stability and dominance of |X|. Now the
domain of attraction of the normal enters as an alternative to relative stability.

3Griffin and Maller [20] show that relative stability of T b(r) or T ∗
b

(r) cannot obtain when b ≥ 1.
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Theorem 8. Assume �(0+) = ∞. Then the following are equivalent:

|Xt |
|�̃X

(1)
t |

P→ ∞, as t ↓ 0; (5.51)

lim
x↓0

x|A(x)| + U(x)

x2�(x)
= ∞; (5.52)

lim
x↓0

U(x)

x|A(x)| + x2�(x)
= +∞, or lim

x↓0

|A(x)|
x�(x)

= +∞; (5.53)

X ∈ D0(N) ∪ RS at 0. (5.54)

Proof. Assume �(0+) = ∞. (5.51) �⇒ (5.52): Assume (5.51). This implies

|(1)X̃t |
|�̃X

(1)
t |

P→ ∞, as t ↓ 0,

so we have

lim
t↓0

P
(∣∣(1)X̃t

∣∣≤ a
∣∣�̃X

(1)
t

∣∣)= 0 for some a > 0. (5.55)

Without loss of generality take a ≤ 1.
We again abbreviate �

←
(v) to yv throughout. Then by (2.12), we can write

P
(∣∣(1)X̃t

∣∣≤ a
∣∣�̃X

(1)
t

∣∣)=
∫ ∞

0
P
(∣∣X̃v

t + G̃v
t

∣∣≤ ayv

)
P(E ∈ t dv). (5.56)

By (5.36), we have ∣∣EG̃v
t

∣∣≤ tyv�(yv−) ≤ tU(yv)/yv, (5.57)

and (5.37) remains true. Also, as in (5.38),∣∣EX̃v
t

∣∣ = t
∣∣A(yv) − yv

(
�

+
(yv−) − �

−
(yv−)

)∣∣
≤ t

(∣∣A(yv)
∣∣+ yv�(yv−)

)
(5.58)

≤ t
(∣∣A(yv)

∣∣+ U(yv)/yv

)
.

Apply (5.57) and (5.58) to obtain from (5.56)

P
(∣∣(1)X̃t

∣∣≤ a
∣∣�̃X

(1)
t

∣∣)
≥
∫ ∞

0
P
(∣∣X̃v

t − EX̃v
t + G̃v

t − EG̃v
t

∣∣≤ ayv − ∣∣EX̃v
t

∣∣− ∣∣EG̃v
t

∣∣)P(E ∈ t dv) (5.59)

≥
∫ ∞

0
P
(∣∣X̃v

t − EX̃v
t + G̃v

t − EG̃v
t

∣∣≤ ayv − 2t
(∣∣A(yv)

∣∣+ U(yv)/yv

))
P(E ∈ t dv).
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For t > 0, define

bt := sup

{
x > 0 : x|A(x)| + U(x)

x2
>

a2

56t

}
, (5.60)

with b0 := 0. Since �(0+) = ∞, we have limx↓0(x|A(x)| + U(x))/x2 = ∞. In addition,
limx→∞(x|A(x)| + U(x))/x2 = 0. Then 0 < bt < ∞, bt is strictly increasing, b(t) ↓ 0 as t ↓ 0,
and

t (bt |A(bt )| + U(bt ))

b2
t

= a2

56
, t > 0. (5.61)

Now keep v < �(bt ). Then yv ≥ bt , and so

t
(∣∣A(yv)

∣∣+ U(yv)/yv

)≤ a2yv

56
≤ ayv

4
,

by definition of bt . Thus, by Chebyshev’s inequality and (5.59)

P
(∣∣(1)X̃t

∣∣≤ a
∣∣�̃X

(1)
t

∣∣)
≥
∫ �(bt )

0
P
(∣∣X̃v

t − EX̃v
t + G̃v

t − EG̃v
t

∣∣≤ ayv/2
)
P(E ∈ t dv)

≥
∫ �(bt )

0

(
1 − 4(Var(X̃v

t ) + Var(G̃v
t ))

a2y2
v

)
P(E ∈ t dv).

Also, as in (5.43),

Var
(
X̃v

t

)+ Var
(
G̃v

t

) ≤ a2y2
v/8,

giving

P
(∣∣(1)X̃t

∣∣≤ a
∣∣�̃X

(1)
t

∣∣)≥ t

∫ �(bt )

0
e−tv dv/2 = (

1 − e−t�(bt )
)
/2. (5.62)

Since the left-hand side tends to 0 as t ↓ 0 by (5.55) we see that

t�(bt ) = a2b2
t �(bt )

56(bt |A(bt )| + U(bt ))
→ 0, as t ↓ 0. (5.63)

We need to replace bt by a continuous variable x ↓ 0 in this. By (5.61), for λ > 1 and t > 0

b2
tλ

b2
t

= 56tλ(btλ|A(btλ)| + U(btλ))

a2b2
t

= 56tλ(btλ|A(bt )| + U(bt ))

a2b2
t

+ 56tλbtλ(|A(btλ)| − |A(bt )|)
a2b2

t

(5.64)
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+ 56tλ(U(btλ) − U(bt ))

a2b2
t

≤ λ + 56tλ(btλ − bt )|A(bt )|
a2b2

t

+ 56tλbtλ(btλ − bt )�(bt )

a2b2
t

+ 56tλ(b2
tλ − b2

t )�(bt )

a2b2
t

.

Observe that 56tλ(bλt − bt )|A(bt )|/a2b2
t ≤ λ(bλt − bt )/bt . Since t�(bt ) = o(1), (5.64) implies

b2
tλ

b2
t

≤ λ + λ

(
btλ

bt

− 1

)
+ o

(
b2
tλ

b2
t

)
≤ λ + λ

btλ

bt

+ o

(
b2
tλ

b2
t

)
.

From this, we deduce that lim supt↓0 btλ/bt < ∞.
Now return to (5.63) and take x > 0. Choose t = t (x) such that bt ≤ x ≤ bλt , λ > 1. It is

shown in Klass and Wittmann [30] that the function x|A(x)| + U(x) is nondecreasing4 in x > 0.
Thus,

x|A(x)| + U(x)

x2�(x)
≥ bt |A(bt )| + U(bt )

b2
t �(bt )

× b2
t

b2
λt

.

The first factor on the right tends to ∞ as t ↓ 0 by (5.63), and lim inft↓0 bt/btλ > 0, so we get
(5.52).

(5.52) ⇐⇒ (5.53) is proved in Lemma 4 of Doney and Maller [14].
(5.53) �⇒ (5.54): Assume (5.53). If σ 2 > 0 then by Lemma 5, X ∈ D0(N) hence X ∈

D0(N) ∪ RS. So suppose σ 2 = 0. Then the left-hand side of (5.53) is equivalent to X ∈ D0(N)

at 0 by (5.47), and the right-hand side of (5.53) is equivalent to Xt ∈ RS at 0 by (5.23). Thus
again, X ∈ D0(N) ∪ RS.

(5.54) �⇒ (5.51): Finally, if X ∈ D0(N) ∪ RS then Xt/bt
D−→ N(0,1) for some bt > 0 with

�̃X
(1)
t = oP (bt ) or Xt/ct

P→ ±1 for some ct > 0 with �̃X
(1)
t = oP (ct ), and in either case (5.51)

holds. This completes Theorem 8. �

5.4. Subsequential relative stability and dominance

We say that X is subsequentially relatively stable (SRS) at 0 if there are nonstochastic sequences
tk ↓ 0 and bk > 0 such that

Xtk

bk

P→ ±1, as k → ∞. (5.65)

Define positive and negative subsequential relative stability (PSRS and NSRS) in the obvious
ways.

4Klass and Wittmann prove this for versions of A and U defined for distribution functions. But their proof is easily
modified to apply to the present A and U .



2362 B. Buchmann, Y. Fan and R.A. Maller

Theorem 9. Assume �
+
(0+) = ∞. Then the following are equivalent: there is a nonstochastic

sequence tk ↓ 0 such that

Xtk

|�̃X
(1)
tk

|
P→ ∞, as k → ∞; (5.66)

there is a nonstochastic sequence tk ↓ 0 such that

Xtk

(�X+)
(1)
tk

P→ ∞, as k → ∞; (5.67)

X ∈ PSRS at 0; (5.68)

lim sup
x↓0

A(x)√
U(x)�(x)

= ∞; (5.69)

lim sup
x↓0

xA(x)

U(x)
= ∞. (5.70)

Proof. Assume �
+
(0+) = ∞. Each of (5.66)–(5.70) implies σ 2 = 0; by Lemma 5 in the case

of (5.66) and (5.67), by Lemma 6 in the case of (5.69), and by (5.8) and U(x) ≥ σ 2, in the case
of (5.70). So we assume throughout that σ 2 = 0.

(5.66) ⇐⇒ (5.67): clearly, (5.66) implies (5.67). Conversely, assume (5.67). From (5.20), we

have that Xtk/(�X−)
(1)
tk

P→ ∞, as k → ∞, when limk→∞ P(Xtk > 0) = 1. Together with (5.67)

and |�̃X
(1)
t | = max((�X+)

(1)
t , (�X−)

(1)
t ), this implies (5.66).

(5.69) ⇐⇒ (5.70): Assume (5.69), so there is a nonstochastic sequence xk ↓ 0 such that

A(xk)√
U(xk)�(xk)

→ ∞, as k → ∞.

Define

tk = 1

A(xk)

√
U(xk)

�(xk)
.

Then

tk�(xk) =
√

U(xk)�(xk)

A(xk)
→ 0

and so, since �(0+) > 0, tk → 0. Also

U(xk)

tkA2(xk)
= 1

A(xk)

√
�(xk)U(xk) → 0.
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Let bk = tkA(xk), then

bk

xk

= tkA(xk)

xk

=
√

U(xk)

x2
k�(xk)

≥ 1.

Now since bk ≥ xk we have

tkU(bk)

b2
k

= U(xk)

tkA2(xk)
+ 2tk

∫ bk

xk
y�(y)dy

b2
k

≤ o(1) + O
(
tk�(xk)

)= o(1).

This implies tkU(xbk)/b
2
k = o(1) for all x ∈ (0,1], hence

lim
k→∞ tk�(xbk) = 0 for all x ∈ (0,1], (5.71)

because U(x) ≥ x2�(x). But then since � is nonincreasing, (5.71) holds for all x > 0. Thus,
also, for x > 1,

tkU(xbk)

b2
k

= tkU(bk)

b2
k

+ O
(
tk�(bk)

)= o(1). (5.72)

Again since bk ≥ xk , we can write

tkA(bk)

bk

= 1 + tk
∫ bk

xk
(�

+
(y) − �

−
(y))dy

bk

= 1 + O
(
tk�(xk)

)= 1 + o(1). (5.73)

(5.72) and (5.73), hence (5.69), imply (5.70). Conversely, (5.70) implies (5.69) because U(x) ≥
x2�(x).

(5.69) ⇐⇒ (5.68): (5.69) implies (5.71)–(5.73), as just shown, and these together imply
(5.65) (with a “+” sign) by the subsequential version of (5.24). Thus, (5.68) holds. Conversely,
assuming (5.68), we get (5.71)–(5.73) by the subsequential version of (5.24). But then (5.69)
holds because

A(bk)√
U(bk)�(bk)

= tkA(bk)

bk

√(
b2
k

tkU(bk)

)(
1

tk�(bk)

)
→ ∞.

So we have proved the equivalence of (5.68)–(5.70).
(5.66) �⇒ (5.69): Assume (5.66).

Case (i). Suppose �
−
(0+) > 0. Then, using Theorem 6, we have limk→∞ P(Xtk > 0) = 1,

σ 2 = 0, and (5.21). Since �
−
(0+) > 0 and U(x) ≥ x2�

−
(x), (5.21) implies lim supx↓0 A(x)/

x = ∞. (5.66) also implies

(1)X̃tk

|�̃X
(1)
tk

|
P→ ∞, as k → ∞,
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so we have

lim
k→∞P

(
(1)X̃tk ≤ a

∣∣�̃X
(1)
tk

∣∣)= 0 for some a ∈ (0,1).

Define bk similarly as in (5.60):

bk := sup

{
x > 0 : x|A(x)| + U(x)

x2
>

a2

56tk

}
. (5.74)

Then by the same calculation as in (5.60)–(5.62), we find, for large k,

P
(
(1)X̃tk ≤ a

∣∣�̃X
(1)
tk

∣∣)≥ tk

∫ �(bk)

0
e−tkv dv

/
2 = (

1 − e−tk�(bk)
)
/2.

From this, we conclude that tk�(bk) → 0. Take a subsequence k′ → ∞ if necessary so that

tk′A(bk′)

bk′
→ A and

tk′U(bk′)

b2
k′

→ B, (5.75)

where B ≥ 0 and |A| + B = a2/56.
Now A ≤ 0 is not possible in (5.75). To see this, take a further subsequence of k′ if necessary

so that, for some functions �
±
(x) and B(x),

lim
k′→∞

tk′�
±
(xbk′) = �

±
(x) and lim

k′→∞
tk′U(xbk′)

b2
k′

= B(x)

at continuity points x > 0 of these functions. Let � be the measure having positive and negative
tails �

±
. Then �(x) := �

+
(x) + �

−
(x) = 0 for all x ≥ 1. Fatou’s lemma gives

∞ > B = lim
k′→∞

tk′U(bk′)

b2
k′

= 2 lim
k′→∞

∫ 1

0
ytk′�(ybk′)dy ≥ 2

∫ 1

0
y�(y)dy,

and shows that the integral on the right is finite. This means that � is a Lévy measure on R

and by Kallenberg ([23], Theorem 15.14), as k′ → ∞ we have (Xtk′ − tk′ν(bk′))/bk′
D−→ Y ′,

an infinitely divisible r.v. with canonical measure �. Since �(x) = 0 for all x ≥ 1, Y ′ has fi-
nite variance. Further, since tk�(bk) → 0 we have limk′→∞ tk′ν(bk′)/bk′ = A (recall (5.6)). The
Lévy–Itô decomposition can equivalently be written as

Xt = tν(b) + σZt + X
(S,b)
t + X

(B,b)
t , t ≥ 0, (5.76)

where b > 0, X
(S,b)
t is the compensated small jump component of X, that is, having jumps less

than or equal to b in modulus, and X
(B,b)
t is the sum of jumps larger in modulus than b; see, for

example, Doney and Maller ([13], Lemma 6.1). Choose b = bk in (5.76), and notice that the sum
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of jumps larger in modulus than bk is o(bk) as k → ∞ because tk�(bk) → 0. Also, σ 2 = 0. So
we deduce

X
(S,bk′ )
tk′ − tk′ν(bk′)

bk′
= Xtk′ − tk′ν(bk′)

bk′
+ oP (1)

D−→ Y ′. (5.77)

From the inequality,

E(X
(S,bk′ )
tk′ )2

b2
k′

≤ tk′U(bk′)

b2
k′

≤ a2

56

we see that (X
(S,bk′ )
tk′ /bk′) is uniformly integrable. Thus, we deduce from (5.77) that

E(X
(S,bk′ )
tk′ )

bk′
→ EY ′ + A.

The expectation on the left equals 0, so this implies EY ′ = −A. Now argue that

lim
k′→∞

P(Xtk′ ≤ 0) = lim
k′→∞

P

(
Xtk′ − tk′ν(bk′)

bk′
≤ − tk′ν(bk′)

bk′

)
= P

(
Y ′ ≤ −A

)
.

But since Y ′ + A has mean 0 and finite variance, P(Y ′ ≤ −A) = P(Y ′ + A ≤ 0) > 0, in contra-
diction to (5.66). Thus, A ≤ 0 is not possible.

We conclude that A > 0 and B < ∞. It follows from (5.75) that

A(bk′)√
U(bk′)�(bk′)

→ ∞,

which implies (5.69).
Case (ii). Still assuming (5.66), suppose �

−
(0+) = 0. (5.66) implies P(Xtk > 0) → 1, hence

by Theorem 6, X is a subordinator and A(x) ≥ 0 for all x ≥ 0. Then

x−1A(x) = x−1
(

dX +
∫ x

0
�

+
(y)dy

)
≥
∫ 1

0
�

+
(xy)dy → ∞, as x ↓ 0,

so we can define bk by (5.74) and proceed as before to get tk�(bk) → 0, and hence (5.69).
Conversely, in either cases (i) or (ii), we know (5.69) �⇒ (5.68), and (5.68) �⇒ (5.66) follows

easily from the subsequential version of (5.24). �

The following corollary to Theorem 9 is also proved in Theorem 4 of Maller [40].

Corollary 4. Assume �(0+) > 0. The following are equivalent:

(i) Xt ∈ SRS at 0;
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(ii) there are nonstochastic sequences tk ↓ 0 and bk > 0, such that, as k → ∞,

|Xtk |
bk

P→ 1; (5.78)

(iii)

σ 2 = 0 and lim sup
x↓0

|A(x)|√
�(x)U(x)

= ∞; (5.79)

(iv)

lim sup
x↓0

x|A(x)|
U(x)

= ∞. (5.80)

Proof. Assume �(0+) > 0. First, Xt ∈ SRS at 0 �⇒ (5.78) is obvious by definition.
(5.78) �⇒ (5.79) and (5.80): Let (5.78) hold with tk ↓ 0 and bk > 0. Take a further sub-

sequence tk′ ↓ 0 if necessary so that Xtk′ /bk′
D−→ Z′. Z′ is infinitely divisible by Lemma 4.1

of Maller and Mason [36]. Then |Z′| = 1 a.s., thus, as a bounded infinitely divisible random
variable, Z′ is degenerate at a constant which must be ±1. When Z = +1, X ∈ PSRS. Apply
Theorem 9 to get (5.79) and (5.80). If Z = −1, −X ∈ PSRS. Then apply Theorem 9 to −X to
get (5.79) and (5.80) again.

(5.79) or (5.80) �⇒ Xt ∈ SRS at 0: Let (5.79) or (5.80) hold. Then there is a sequence xk ↓ 0
as k → ∞ such that |A(xk)| > 0. By taking a further subsequence, we may assume that A(xk) >

0 for all k or A(xk) < 0 for all k. Suppose the former; then (5.69) or (5.70) holds, so we get
X ∈ PSRS by Theorem 9. If the latter, then by applying Theorem 9 to −X, we get X ∈ NSRS. �

5.5. Subsequential attraction to normality and dominance

We can also have subsequential convergence to normality, as t ↓ 0. The next theorem gives an
“uncentered” version of this. We describe (5.81) as “X ∈ DP 0(N) at 0”.

Theorem 10. Assume σ 2 > 0 or �(0+) = ∞. Then there are nonstochastic sequences tk ↓ 0
and bk ↓ 0 such that, as k → ∞,

Xtk

bk

D−→ N(0,1); (5.81)

iff

lim sup
x↓0

U(x)

x2�(x) + x|A(x)| = ∞. (5.82)

Proof. Both conditions hold when σ 2 > 0, so we can assume σ 2 = 0, thus, �(0+) = ∞. Let
(5.82) hold and choose xk ↓ 0 such that

U(xk)

x2
k�(xk)

→ ∞ and
U(xk)

xk|A(xk)| → ∞. (5.83)
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Then define

tk = min

{√
x2
k

�(xk)U(xk)
,

√
x3
k

|A(xk)|U(xk)

}
. (5.84)

(If A(xk) = 0 interpret the second component in (5.84) as +∞.) Thus,

tk�(xk) ≤
√

x2
k�(xk)

U(xk)
→ 0,

and since �(0+) > 0, we have tk → 0 as k → ∞. Now let

b2
k = tkU(xk).

Since σ 2 = 0, U(xk) = 2
∫ xk

0 y�(y)dy → 0 as k → ∞. Then bk → 0 as k → ∞. Also

b2
k

x2
k

= min

{√
U(xk)

x2
k�(xk)

,

√
U(xk)

xk|A(xk)|
}

→ ∞ (
by (5.83)

)
.

Given x > 0 choose k so large that xbk ≥ xk . Then

tk�(xbk) ≤ tk�(xk) → 0,

and

tkU(xbk)

b2
k

= 1 + tk(U(xbk) − U(xk))

b2
k

= 1 + 2tk
∫ xbk

xk
y�(y)dy

b2
k

(5.85)
= 1 + O

(
tk�(xk)

)= 1 + o(1).

Also

tk|A(xk)|
xk

≤
√

xk|A(xk)|
U(xk)

→ 0,

while

tk|A(bk)|
bk

≤ o

(
tk|A(xk)|

xk

)
+ tk|

∫ bk

xk
(�

+
(y) − �

−
(y))dy|

bk
(5.86)

≤ o(1) + tk�(xk) = o(1).

It follows from (5.85), (5.86) and the subsequential version of (5.48) that Xtk/bk
D−→ N(0,1).

Conversely, if there is a tk ↓ 0 such that Xtk/bk
D−→ N(0,1), then by the subsequential version

of (5.48) we get (5.82). �
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Our final result in this section shows that a 2-sided version of (5.66) holds iff X ∈ DP 0(N) at
0 or X ∈ SRS at 0.

Theorem 11. Assume �(0+) = ∞. Then the following are equivalent:

there is a nonstochastic sequence tk ↓ 0
(5.87)

such that
|Xtk |

|�̃X
(1)
tk

|
P→ ∞, as k → ∞;

lim sup
x↓0

x|A(x)| + U(x)

x2�(x)
= ∞; (5.88)

(a) lim sup
x↓0

U(x)

x|A(x)| + x2�(x)
= +∞, or (b) lim sup

x↓0

x|A(x)|
U(x)

= +∞; (5.89)

X ∈ DP 0(N) ∪ SRS at 0. (5.90)

Proof. Assume �(0+) = ∞.
(5.87) �⇒ (5.88): Assume (5.87). Then just as in the proof of Theorem 8, we find tk�(bk) → 0

as k → ∞ where bk satisfies (5.61). Thus, (5.88) holds.
(5.88) �⇒ (5.89) follows from Theorem 3 of Maller [40].
(5.89) ⇐⇒ (5.90): follows from Theorem 10 and Corollary 4.

(5.90) �⇒ (5.87): (5.90) implies that there are tk ↓ 0, bk ↓ 0 such that Xtk/bk
D−→ N(0,1)

or |Xtk |/bk
P→ 1 as k → ∞. Either of these implies tk�(bk) → 0 as k → ∞ and hence

sup0<s≤tk
|�Xs |/bk

P→ 0 as k → ∞. Thus, (5.87) holds. �

Remark 5. (i) Theorems 10 and 11 have deep connections to generalised iterated logarithm laws
for Xt as t ↓ 0. It is shown in Theorem 3 of Maller [40] that (5.88) is equivalent to the existence
of a nonstochastic function Bt > 0 such that

lim sup
t↓0

|Xt |
Bt

= 1 a.s.

Maller [40] also gives a.s. equivalences for (5.46) and (5.89)(a). We hope to consider a.s. results
related to those in Sections 3–5 elsewhere.

(ii) We note that in many conditions such as (5.88) and (5.89) we may replace the functions
A(x) and U(x) in (5.4) and (5.5) by the functions ν(x) and V (x) in (5.3). This is because

x
∣∣A(x) − ν(x)

∣∣≤ x2�(x) and 0 ≤ U(x) − V (x) = x2�(x), x > 0.

But there is some advantage to working with the continuous functions A(x) and U(x), and
sometimes it is essential, for example, in Theorem 5.
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6. Related large time results

Most of the small time results derived herein have exact or close analogues for large times (i.e.,
allowing t → ∞ rather than t ↓ 0), some of them having been suggested by such analogies.
In fact, many of the identities hold generally, for all t > 0; this is the case for all results in
Section 2, as well as Lemmas 2 and 3. Some analogous large time results for Lévy processes can
be found in Kevei and Mason [27], and Maller and Mason [37,39], and we expect that others
can be derived by straightforward modification of our small time methods. These would include
compound Poisson processes as special cases.
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