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We establish minimax convergence rates for classification of functional data and for nonparametric regres-
sion with functional design variables. The optimal rates are of logarithmic type under smoothness con-
straints on the functional density and the regression mapping, respectively. These asymptotic properties are
attainable by conventional kernel procedures. The bandwidth selector does not require knowledge of the
smoothness level of the target mapping. In this work, the functional data are considered as realisations of
random variables which take their values in a general Polish metric space. We impose certain metric entropy
constraints on this space; but no algebraic properties are required.
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1. Introduction

In many statistical applications, the empirical data cannot be described by random vectors in a
Euclidean space Rd . Still one can often reasonably define a distance between the possible realisa-
tions of the observations. Then parts of the data are supposed to take their values in a non-empty
Polish metric space (X , ρ) where the corresponding probability measure has the corresponding
Borel σ -field B(X ) as its domain. Note that a separable and complete metric space is called a
Polish metric space.

Within that general framework, the analysis of functional data has attained increasing atten-
tion (see, e.g., the book of Ramsay and Silverman [22] for an introduction to the topic). Therein
X denotes some appropriate function space, for example, the set of all continuous and bounded
functions on [0,1] or the set of all measurable and squared-integrable functions on that domain.
The current work is mainly motivated by this research field; whereas, in general, the elements
of X are not imposed to be functions or equivalence classes of functions, which opens up new
perspectives for extensions to even more complex types of data. In particular, we use only topo-
logical properties of the set X ; but no algebraic structure on X is required (e.g., linear space,
group, ring, etc.). Therefore, tools from principal component analysis (e.g., Benko, Härdle and
Kneip [2]) or manifold representation (e.g., Chen and Müller [9]) cannot be applied in this set-
ting. Instead, we use arguments based on covering and packing numbers from the approximation
theory. Such techniques are frequently used in empirical process theory in order to study the
parameter set of a statistical experiment, which consists of functions in nonparametric statistics
(e.g., van der Vaart and Wellner [25], van de Geer [24]). Contrarily, they have been applied to
learn about the sample set in quite few papers.
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We focus on two widely studied problems in functional data analysis: nonparametric regres-
sion (Section 3) and classification (Section 4). A review on existing literature is provided in the
corresponding sections. While a huge amount of literature is available on these topics, only lit-
tle has been known about the aspect of asymptotic optimality of statistical procedures when the
sample size n tends to infinity. The current note intends to advance the understanding of those
problems by providing the minimax convergence rates for the statistical risks. The proofs are
deferred to Section 5. Section 2 provides some essential topological tools which are used in both
Sections 3 and 4.

2. Entropy condition

In the following, we recall two concepts from approximation theory (e.g., van der Vaart and
Wellner [25], page 83, Definition 2.1.5 and page 98, Definition 2.2.3): by NX (δ,Y, ρ) we denote
the covering number of some set Y ⊆ X , that is, the minimal number of open ρ-balls in X with
the radius δ so that Y is a subset of the union of these balls. If we stipulate in addition that the
centers of those balls lie in Y , we call this quantity the intrinsic covering number NY (δ,Y, ρ).
The packing number D(δ,Y, ρ) of the set Y describes the maximal cardinality of a subset of Y
such that ρ(x, y) > δ for all elements x �= y of this subset. Also, we learn from Kolmogorov and
Tihomirov [19] and van der Vaart and Wellner [25], page 98, that

NY (δ,Y, ρ) ≤D(δ,Y, ρ) ≤ NY (δ/2,Y, ρ) ∀δ > 0. (2.1)

Also, we easily derive that

NX (δ,Y, ρ) ≤ NY (δ,Y, ρ) ≤NX (δ/2,Y, ρ) ∀δ > 0. (2.2)

Now we classify a type of sets Y by their metric entropy, which we define by

�(s,Y, ρ) := logNX (s,Y, ρ) ∀s > 0.

Concretely, we assume that

cx,0s
−γ ≤ �(s,Y, ρ) ≤ cx,1s

−γ ∀s ∈ (0, s0), (2.3)

for some fixed constants s0 > 0, 0 < cx,0 < cx,1 and γ > 0. We write BY (x, r) := {y ∈
Y : ρ(x, y) < r} for x ∈ X and r > 0. We easily see that BY (x, r) ∈ B(X ) for all x ∈ X , r > 0
and Y ∈ B(X ). Condition (2.3) can be justified in many applications. Let us consider two exam-
ples of classes Y which satisfy this condition.

Example 2.1 (Classes of smooth functions). We assume that our functional data X1, . . . ,Xn

are located in a class of smooth functions almost surely. We write �α� for the smallest integer
which is larger or equal to α > 0. Precisely, we impose the Hölder constraints that Y consists of
functions f mapping from [0,1]d to R such that all partial derivatives of f up to the order �α�−1
are bounded by a constant M ; and that the (�α� − 1)th partial derivatives satisfy the Hölder
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condition with the exponent α−�α�+1 and again the constant M . Also, we put X = C0([0,1]d)

and ρ equal to the supremum metric.
We learn from Theorem 2.7.1, page 155 in van der Vaart and Wellner [25] that the upper bound

in condition (2.3) is satisfied with γ = d/α. Also, the corresponding lower bound can be verified
(see Kolmogorov and Tihomirov [19]).

Moreover, for any α > 0, the Hölder class Y is relatively compact with respect to the supre-
mum metric thanks to the Arzelà–Ascoli theorem, from what follows compactness of the clo-
sure Y . We deduce that

lim
δ′↓δ

NX
(
δ′,Y, ρ

) ≤ NX (δ,Y, ρ) ≤ NX (δ,Y, ρ) ∀δ > 0,

since, for any cover of Y by the union of finitely many open balls, the union of the corresponding
closed balls covers Y (and so does the union of the corresponding open balls with arbitrarily
enlarged radius). Therefore, condition (2.3) is extended from Y to Y ; and the role of Y can be
taken over by its closure.

In general, the technique of the last paragraph in Example 2.1, that is, switching to the closure
of Y , can be used to impose without loss of generality that Y is closed – and hence, Y ∈ B(X ) –
without any loss of generality when condition (2.3) is assumed.

Example 2.2 (Classes of monotonic functions). Now we consider the example of componen-
twise monotonic mappings from the cube [0,1]d to [0,1]. The collection of these functions is
denoted by Y . As the corresponding Polish metric space, we choose X = Lp([0,1]d), p ≥ 1,
that is, the Banach space of all Borel measurable functions f from [0,1]d to R which satisfies∫ |f (x)|p dx < ∞. Clearly, ρ is the metric generated by the Lp([0,1]d)-norm.

Then Theorem 1.1 in Gao and Wellner [17] yields that Y satisfies condition (2.3) with γ =
max{d, (d − 1)p} for d ≥ 2 and (d − 1)p �= d . In the univariate setting d = 1, the upper bound
part of condition (2.3) with γ = 1 follows from Theorem 2.7.5 in van der Vaart and Wellner [25],
page 159. Therein we use that the covering number is bounded from above by the bracketing
number with doubled radius for the Lp([0,1]d)-metric ρ (see page 84, van der Vaart and Wellner
[25]). On the other hand, the according lower bound can be established by Proposition 2.1 in Gao
and Wellner [17].

The following lemma provides a useful result for the upper bound proofs in the following two
sections.

Lemma 2.1. Let (X , ρ) be a Polish metric space. Take some Y ∈ B(X ) which satisfies (2.3),
and let P be any probability measure on B(X ) with P(Y) = 1. We set

ψ(x,h) := P
(
BY (x,h)

)
, h > 0.

Then we have

P
({

x ∈ Y : ψ(x,h) ≤ δ
}) ≤ δ exp

(
cx,14γ h−γ

)
,

for all δ > 0.
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3. Nonparametric regression

We observe the data set Zn = {(X1, Y1), . . . , (Xn,Yn)} where the Xj are i.i.d. random variables
taking their values in the Polish metric space (X , ρ) equipped with the corresponding Borel
σ -algebra B(X ). The Yj are defined by

Yj = g(Xj ) + εj , (3.1)

where g denotes some Borel measurable mapping from X to R; and the εj are real-valued ran-
dom variables which satisfy

E(ε1|X1) = 0, var(ε1|X1) ≤ cv, PX-a.s., (3.2)

for some uniform constant cv where PX denotes the probability measure on B(X ) which is
generated by X1. The random variables (X1, ε1), . . . , (Xn, εn) are assumed to be i.i.d. Moreover,
we assume that X1 ∈ Y holds almost surely for some subset Y ∈ B(X ). Our goal is to estimate
the regression function g based on the data set Zn.

As a usual condition in nonparametric regression, we impose some smoothness constraints on
the regression function g. Precisely, we introduce the class G = Gβ,C of all Borel measurable
mappings g from X to R such that supy∈Y |g(y)| ≤ C and

∣∣g(y) − g(z)
∣∣ ≤ Cρ(y, z)β ∀y, z ∈ Y

with C > 0, β ∈ (0,1]. Critically, we remark that our framework is restricted to smoothness de-
grees β which are smaller or equal to one. An extension to higher smoothness levels seems dif-
ficult as X is not equipped with any algebraic structure so that no common definitions of Taylor
series can be applied. Approaches to local linear methods, which should capture all smoothness
levels smaller than two, are provided in Berlinet, Elamine and Mas [3] and Mas [20]; while, in
these papers, X is assumed to be a Hilbert space – transferred to our notation.

Whereas linear models for g (along with generalizations) are popular in functional regression
problems (e.g., Hall and Horowitz [18], Meister [21]), fully nonparametric approaches to the
regression function have also received considerable attention. We refer to the book of Ferraty and
Vieu [14] for a comprehensive review on kernel methods for functional covariates. In Ferraty et
al. [15], a generic upper bound is derived for the uniform rate of convergence. Recently, Forzani,
Fraiman and Llop [16] consider consistency of nonparametric functional regression estimation in
the setting of a metric space without any imposed algebraic structure. In a similar setting, Biau,
Cérou and Guyader [5] establish upper bounds on an integrated risk for the convergence rates
of the functional k-nearest neighbor estimator when β = 1 (in our notation). The convergence
rates used in that paper are of logarithmic type. However, minimax optimality is apparently not
studied in this work.

To our best knowledge, the only approach to rate-optimal nonparametric functional regression
estimation is given by Mas [20], who uses principal component analysis on X and specific con-
ditions on these components. The attained rates are faster than any logarithmic rates but slower
than any polynomial rate in the non-Gaussian case. In our setting where the design distribution
obeys the condition (2.3), the minimax convergence rates are different. We consider estimators
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ĝ of g which are Borel measurable mappings from X n+1 to R and which are squared integrable
with respect to the design measure PX after inserting the data, regardless of their realization.
Also, we impose that g ∈ L2(PX), that is, the Hilbert space of all squared integrable and measur-
able functions with respect to PX . Then we are guaranteed that ‖ĝ(·,Zn)−g‖2

PX
is a real-valued

random variable where ‖ · ‖PX
denotes the L2(PX)-norm.

We take the Nadaraya–Watson estimator for functional data,

ĝ(x) :=
{

Â(x)/B̂(x), if B̂(x) > δn,

0, otherwise,
(3.3)

where

Â(x) := 1

n

n∑
j=1

YjKh

(
ρ(x,Xj )

)
,

B̂(x) := 1

n

n∑
j=1

Kh

(
ρ(x,Xj )

)
.

However, we have modified the concept by adding the truncation to the denominator B̂(x) where
the ridge parameter δn > 0 remains to be selected. Moreover, h > 0 denotes a bandwidth param-
eter and K :R → R a kernel function. We employ the notation Kh := K(·/h) (without dividing
by h). For simplicity, we choose that K = 1[0,1). We provide the following asymptotic result.

Theorem 3.1. Let Y ∈ B(X ) such that (2.3) holds true. We consider model (3.1) under the
condition (3.2). Then, for any sequence {PX,n}n of design measures on B(X ) with PX,n(Y) = 1
for all n, the estimator ĝ in (3.3) satisfies

sup
g∈G

∫
E

∣∣ĝ(x) − g(x)
∣∣2 dPX(x) =O

({logn}−2β/γ
)
,

under the kernel choice K = 1[0,1) and the parameter selection δn = n−η, η ∈ (0,1/2) and

h = {d logn}−1/γ with d ∈ (0, ηc−1
x,14−γ ).

Remark 3.1. Under the additional assumption PX ∈RX , which says that

PX

(
BY (y, δ)

) ≥ cx,3δ exp
(−cx,4δ

−γ
) ∀δ ∈ (0,1), y ∈ Y,

which can be shown to be non-empty for some positive constants cx,3 and cx,4 and any com-
pact Y , we can also derive the following upper bound on the pointwise risk:

sup
PX∈RX

sup
g∈G

sup
x∈Y

E
∣∣ĝ(x) − g(x)

∣∣2 =O
({logn}−2β/γ

)
,

under the same conditions on K , δn and h as in Theorem 3.1 except that d ∈ (0, η/cx,4).



1734 A. Meister

We consider model (3.1) with the additional condition that the εj are i.i.d. random variables
with a continuously differentiable density function fε with finite Fisher information, that is,∫ ∣∣f ′

ε(x)
∣∣2

/fε(x)dx < ∞. (3.4)

Moreover, all the X1, ε1, . . . ,Xn, εn are independent. Also we impose compactness of the set Y
from Theorem 3.2. The following theorem provides an asymptotic lower bound for the estimation
of g with respect to the pointwise estimation error as well as the integrated risk.

Theorem 3.2. Let Y ∈ B(X ) be compact and assume that (2.3) holds true. We consider
model (3.1) under independent additive regression errors εj , j = 1, . . . , n with a density fε

which satisfies (3.4).

(a) Then there exists a sequence of design measures PX,n on B(X ) with PX,n(Y) = 1 for
all n, such that no sequence of estimators {ĝn}n based on the data Zn satisfies

sup
g∈G

∫
E

∣∣ĝ(x) − g(x)
∣∣2 dPX,n(x) = o

({logn}−2β/γ
)
.

(b) For any sequence of design measures PX,n on B(X ) with PX,n(Y) = 1 for all n and for
any sequence of estimators {ĝn}n based on the data Zn, we have

lim inf
n→∞ sup

g∈G
sup
x∈Y

P
[∣∣ĝ(x) − g(x)

∣∣2
> c · {logn}−2β/γ

]
> 0,

for some constant c depending on C and β .

Theorem 3.2 establishes minimax optimality of the convergence rate attained in Theorem 3.1
in two views. Part (a) shows that there exists a sequence of design measures such that the inte-
grated risk does not converge with faster rates. Obviously, we cannot obtain such a result for any
design measure: if PX,n was a one-point measure then just the average of the Y1, . . . , Yn would
be a consistent estimator with the usual parametric rate. In part (b), we prove that no matter
what the design measure looks like, one is not able to obtain faster pointwise convergence rates
simultaneously for all x ∈ Y , even with respect to the weak rates.

An important and widely studied issue in nonparametric regression is bandwidth selection.
The minimax convergence rates are of slow logarithmic type. However, the bandwidth selector
in Theorem 3.1 leads to the optimal rates while it can be used without knowing the smoothness
degree β . This selector is fully deterministic, which means that no data-driven procedure (e.g.,
cross validation, Lepski’s method, etc.) is required in order to achieve the optimal convergence
rates. It is remarkable that the same effects occur in nonparametric deconvolution from super-
smooth error distributions (see, e.g., Fan [13]) and other severely ill-posed inverse problems.
We face a bias-dominating problem, that is, the variance term is asymptotically negligible un-
der the optimal bandwidth selection. In other bias-dominating problems, sharp asymptotics have
been studied (Butucea and Tsybakov [7]). It is an interesting question for future research if those
results apply to the current problem as well.
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4. Classification

The problem of classifying functional data has also stimulated great research activity (e.g., Fer-
raty and Vieu [14], Carroll, Delaigle and Hall [8], Delaigle and Hall [10,11], Biau, Bunea and
Wegkamp [4]). It has its applications in the fields of biometrics, genetics, recognition of sounds,
technometrics, etc. Classification problems are closely linked to the field of statistical learn-
ing theory (e.g., Vapnik [26]). We choose the model of supervised classification. Concretely,
we observe some random variable Z taking its values in some Polish metric space X – and in
Y ∈ B(X ) almost surely. We assume that we have two groups 0 and 1 and our goal is to decide
whether Z should be categorized as a member of group 0 or 1. The groups 0 and 1 are charac-
terized by the probability measures PX and PY on B(X ), respectively. One does not know these
measures; however, i.i.d. a training sample (Zj ,Wj ), j = 1, . . . , n is available where the Wj are
binary random variables and Wj = b, b = 0,1, indicates that Zj has the probability measure PX

and PY , respectively. Moreover, Z is independent of all training data.
In order to specify all admitted probability measures PX and PY , we impose that

(PX,PY ) ∈ Pκ := {
(P,Q): P and Q are probability measures on B(X ) so that

(4.1)
P(Y) = Q(Y) = 1,TV(P,Q) ≥ κ

}
,

for some κ > 0 where TV(P,Q) denotes the total variation distance between some measures P

and Q,

TV(P,Q) := sup
A∈B(X )

∣∣P(A) − Q(A)
∣∣.

With respect to the set Y, we assume condition (2.3).
Unlike in classification problems for data in R

d , d ∈ N, we face the problem that no spatially
homogeneous measure (e.g., Lebesgue–Borel measure, Haar measure) exists on B(X ) so that no
density of PX and PY can be defined with respect to such a measure. Nevertheless, PX and PY are
dominated by their sum measure Q := PX + PY . We write pX and pY for the Radon–Nikodym
derivatives pX := dPX/dQ and pY := dPY /dQ = 1 − pX . We impose some smoothness con-
straints on both pX and pY via

(PX,PY ) ∈ PC,β,κ := {
(PX,PY ) ∈ Pκ : ∃Y0 ∈P(Y) ∩B(X ) with [PX + PY ](Y0) = 2 s.t.

(4.2)∣∣pX(y) − pX(z)
∣∣ ≤ Cρβ(y, z),∀y, z ∈ Y0

}
,

with C > 0 and β ∈ (0,1] – analogously as in Section 3 in the regression setting. Therein P(Y)

denotes the power set of Y .
A (supervised) classifier ϕ is defined as a Borel measurable mapping from X n × {0,1}n ×X

to {0,1}. Clearly, the sample (Z1, . . . ,Zn,W1, . . . ,Wn,Z) is inserted into ϕ and ϕ = b, b = 0,1,
means categorizing Z as a member of group b. We define the excess risk of classification by

En(ϕ) := sup
(PX,PY )∈PC,β,κ

(
PX,Y,X[ϕ = 1] + PX,Y,Y [ϕ = 0] − 1 + TV(PX,PY )

)
,
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in order to evaluate the accuracy of some classifier ϕ. The excess risk is the sum of the probabil-
ities of misclassification into group 0 and 1, respectively, reduced by 1 − TV(PX,PY ). Therein
PX,Y,X and PX,Y,Y indicate that Z has the probability measure PX or PY , respectively. It is well
known that the excess risk of the Bayes classifier

ϕB(z,w, z) :=
{

0, if pX(z) ≥ 1/2,

1, otherwise,

vanishes if PC,β,κ was replaced by some two-element set {PX,PY }, that is, if PX and PY were
known.

Our goal is to find a classifier ϕ which minimizes the excess risk asymptotically as n,m tend
to infinity. To our best knowledge optimal convergence rates for classification of functional data
have been unexplored so far; whereas for finite-dimensional data they have been studied, for
example, in Yang [27,28] and Audibert and Tsybakov [1]. Considering the Bayes classifier, it is
reasonable to mimic the unknown densities pX and pY by some appropriate estimators based on
the data Z1,W1, . . . ,Zn,Wn (also see, e.g., Biau, Bunea and Wegkamp [4] or Ferraty and Vieu
[14]). We employ the classifier

ϕ(Z1, . . . ,Zn,W1, . . . ,Wn,Z) =
{

0, if p̂X(Z) ≥ p̂Y (Z),

1, otherwise,
(4.3)

where

p̂X(z) :=
n∑

j=1

(1 − Wj) · K(
ρ(z,Zj )/h

)/ n∑
j=1

(1 − Wj),

p̂Y (z) :=
n∑

j=1

Wj · K(
ρ(z,Zj )/h

)/ n∑
j=1

Wj,

if
∑n

j=1(1 − Wj) ∈ (0, n); otherwise put p̂X(z) = 0 or p̂Y (z) = 0 by convention. Therein we
apply some kernel K and bandwidth parameter h > 0 as in Section 3. We stipulate that enough
data Zj from both PX and PY are available; concretely, we impose

P [W1 = 1] = w for some fixed value w ∈ (0,1). (4.4)

The asymptotic performance of the classifier (4.3) is studied in the following theorem.

Theorem 4.1. We consider the model of supervised classification. Let Y ∈ B(X ) such that (2.3)
holds true. Moreover, we assume (4.4). Then the excess risk of the classifier ϕ in (4.3) attains the
following uniform upper bound:

En(ϕ) =O
(
(logn)−β/γ

)
,

under the kernel choice and the bandwidth selection from Theorem 3.1.
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While Theorem 4.1 can be proved directly, it follows from Theorem 3.1 by the general argu-
ment that the excess mass is bounded from above by the integrated squared regression risk (see,
e.g., Devroye, Györfi and Lugosi [12], page 104). Furthermore, we mention that, in the setting
of Theorem 4.1, we could relax the assumptions contained in PC,β,κ to κ = 0. Still the condition
κ > 0 is realistic as PX and PY should not become too close to each other; otherwise, the clas-
sification problem makes no sense. Finally, in Theorem 4.2 we will establish optimality of the
convergence rates from Theorem 4.1 with respect to an arbitrary sequence of classifiers.

Theorem 4.2. We consider the model of supervised classification. Let Y ∈B(X ) such that (2.3)
holds true. Moreover, we assume (4.4). Fix some κ > 0 sufficiently small (but independent of n).
Let {ϕn}n be an arbitrary sequence of (supervised) classifiers where ϕn is based on the data
(Z1, . . . ,Zn,W1, . . . ,Wn,Z). Then we have

lim inf
N→∞ (logn)β/γ En(ϕn) > 0.

The optimal convergence rates in Theorems 4.1 and 4.2 correspond to those established in
Section 3 in the regression problem. Note that there we consider the squared risk. Again, we
realize that the bandwidth selector in Theorem 4.1 does not require knowledge of the smoothness
level β and, still, it leads to the optimal speed of convergence.

5. Proofs

Proof of Lemma 2.1. Let X, Y be some independent random variables with the induced mea-
sure P . Note that ψ(X,h) can be viewed as the conditional expectation of the random variable
1[0,h)(ρ(X,Y )) given X so that the random mapping ψ(X,h) is measurable, thus a random
variable. By the factorization lemma of the conditional expectation, the mapping x �→ ψ(x,h),
x ∈X , is measurable so that Yh,δ := {x ∈ Y : ψ(x,h) ≤ δ} lies in B(X ). Furthermore, we obtain
that

Yh,δ =
NY (h/2,Y,ρ)⋃

j=1

{
y ∈ BY (yj , h/2): ψ(y,h) ≤ δ

}
,

where {y1, . . . , yNY (h/2,Y,ρ)} ⊆ Y denotes an intrinsic h/2-cover of Y with respect to the
metric ρ. By J we denote the collection of all j = 1, . . . ,NY (h/2,Y, ρ) such that the set
{y ∈ BY (yj , h/2): ψ(y,h) ≤ δ} is not empty. For any j ∈ J , there exists some y ∈ BY (yj , h/2)

with P(BY (y,h)) ≤ δ. We have BY (yj , h/2) ⊆ BY (y,h) so that P(BY (yj , h/2)) ≤ δ. We de-
duce that

P(Yh,δ) ≤
∑
j∈J

P
(
BY (yj , h/2)

) ≤ δNY (h/2,Y, ρ) ≤ δ exp
(
cx,14γ h−γ

)
,

when combining (2.2) and (2.3). �
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Proof of Theorem 3.1. For any g ∈ G we derive that

E
{∣∣ĝ(x) − g(x)

∣∣2|X1, . . . ,Xn

}
≤ 1

{
B̂(x) > δn

}
B̂−2(x)E

{∣∣Â(x) − g(x)B̂(x)
∣∣2|X1, . . . ,Xn

} + g2(x) · 1
{
B̂(x) ≤ δn

}
(5.1)

≤ 2C2h2β + 2cv · 1
{
B̂(x) > δn

}
B̂−2(x)n−2

n∑
j=1

1[0,h)

(
ρ(Xj , x)

) + C2 · 1
{
B̂(x) ≤ δn

}

≤ 2C2h2β + 2cvn
−1δ−2

n + C2 · 1
{
B̂(x) ≤ δn

}
,

holds almost surely under the convention 0 · ∞ = 0. We realize that EB̂(x) = ψn(x,h) :=
PX,n(BY (x,h)). By the inequality,

1
{
B̂(x) ≤ δn

} ≤ 1
{∣∣B̂(x) − ψn(y,h)

∣∣ ≥ δn

} + 1
{
ψn(x,h) ≤ 2δn

}
,

applying the expectation to both sides of (5.1) leads to

E
∣∣ĝ(x) − g(x)

∣∣2 ≤ 2C2h2β + 2cvn
−1δ−2

n + C2 · δ−2
n var B̂(x) + C2 · 1

{
ψn(x,h) ≤ 2δn

}
, (5.2)

where var B̂(x) ≤ n−1ψn(x,h). Putting x = Xn+1 (i.e., an independent copy of X1, . . . ,Xn) and
applying the expectation to both sides of (5.2) leads to

E
∣∣ĝ(Xn+1) − g(Xn+1)

∣∣2 ≤ 2C2h2β + (
2cv + C2)n−1δ−2

n + C2P
[
ψn(Xn+1, h) ≤ 2δn

]
.

Putting ψn = ψ , Xn+1 = X and 2δn = δ, Lemma 2.1 yields that

P
[
ψn(Xn+1, h) ≤ 2δn

] ≤ 2n4γ cx,1d−η.

Due to the constraint on d the term 2C2h2β is asymptotically dominating, which provides the
desired upper bound on the considered risk with uniform constants on g ∈ G. �

Proof of Theorem 3.2. (a) We introduce some sequence (δn) ↓ 0. As Y satisfies (2.3), the pack-
ing number has the lower bound

D(δn,Y, ρ) ≥ mn := exp
(
cx,0δ

−γ
n

)
,

due to (2.1) and (2.2). This implies the existence of some z1,n, . . . , zmn,n ∈ Y such that the balls
Bj,n := BY (zj,n, δn/4), j = 1, . . . ,mn are pairwise disjoint. This statement can be strengthened
to the result that the ρ-distance between the sets Bj,n and

⋃
k �=j Bk,n is even bounded from below

by δn/2. We specify PX = PX,n as the discrete uniform distribution on the grid {z1,n, . . . , zmn,n}.
We use the function ϑ(t) = exp{1/(t2 − 1)} · 1(−1,1)(t), t ∈ R. Thus, ϑ is differentiable in-

finitely often on the whole real line, yielding that∣∣ϑ(t) − ϑ(s)
∣∣ ≤ min

{‖ϑ‖∞,
∥∥ϑ ′∥∥∞|t − s|} ≤ max

{‖ϑ‖∞,
∥∥ϑ ′∥∥∞

} · |t − s|β .
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We construct the regression curves

gθ (x) =
mn∑
j=1

θj dhβ
nϑ

(
ρ(zj,n, x)/hn

)
,

with the vector θ = (θ1, . . . , θmn) ∈ {0,1}mn and hn := δn/4, for some d > 0. As (hn)n is
bounded from above, the constraint supg∈G ‖g‖∞ ≤ C can be satisfied by choosing d > 0 small
enough. For all y1, y2 ∈ Y there exist at most one j1 and one j2 such that yl ∈ Bjl,n, l = 1,2.
Therefore, we have

∣∣gθ (y1) − gθ (y2)
∣∣ ≤ d

mn∑
j=1

hβ
n

∣∣ϑ(
ρ(zj,n, y1)/hn

) − ϑ
(
ρ(zj,n, y2)/hn

)∣∣
≤ 2dρ(y1, y2)

β max
{‖ϑ‖∞,

∥∥ϑ ′∥∥∞
}
,

so that a sufficiently small choice of d guarantees that gθ ∈ G uniformly for all θ ∈ {0,1}mn .
Now we use Assouad’s lemma, which is based on the common Bayesian approach of imposing

the uniform distribution on {0,1}mn to be the a-priori distribution of θ . We refer to the book of
Tsybakov [23], in particular, Section 2.7.2 for a detailed review and proof of these results. From
there, it follows that

sup
g∈G

Eg

∥∥ĝ − g
∥∥2

PX

≥ 1

4
d2h2β

n

mn∑
j=1

∫
Bj,n

ϑ2(ρ(zj,n, x)/hn

)
dPX(x)

{
1 − EH 2(Eθfθ,j,0(y|Xn),Eθfθ,j,1(y|Xn)

)}
,

where H 2(f1, f2) := ∫
(
√

f1 − √
f2)

2 denotes the squared Hellinger distance between two den-
sities f1 and f2. We consider that∫

Bj,n

ϑ2(ρ(zj,n, x)/hn

)
dPX(x) = ϑ2(0)m−1

n .

Therefore, we realize that the uniform squared risk is bounded from below by a global constant
times h

2β
n whenever we can show that

lim
n→∞ max

j=1,...,mn

EH 2(Eθfθ,j,0(y|Xn),Eθfθ,j,1(y|Xn)
) = 0. (5.3)

By the Cauchy–Schwarz inequality with respect to Eθ we deduce that

EH 2(Eθfθ,j,0(y|Xn),Eθfθ,j,1(y|Xn)
) ≤ EθEH 2(fθ,j,0(y|Xn), fθ,j,1(y|Xn)

)
.

We consider that

H 2(fθ,j,0(y|Xn), fθ,j,1(y|Xn)
)

= 2 − 2
n∏

k=1

(
1 − 1

2
H 2(fε

(· − gθ,j,0(Xk)
)
, fε

(· − gθ,j,1(Xk)
)))

,
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almost surely. Applying the expectation yields that

EH 2(Eθfθ,j,0(y|Xn),Eθfθ,j,1(y|Xn)
)

≤ 2 − 2Eθ

(
1 − 1

2
EH 2(fε

(· − gθ,j,0(X1)
)
, fε

(· − gθ,j,1(X1)
)))n

≤ 2 − 2Eθ

(
1 − 1

8
E

∣∣gθ,j,1(X1) − gθ,j,0(X1)
∣∣2 ·

∫ ∣∣f ′
ε(t)

∣∣2
/fε(t)dt

)n

,

where, for all θ ∈ {0,1}mn and j = 1, . . . ,mn, we have

E
∣∣gθ,j,1(X1) − gθ,j,0(X1)

∣∣2 = d2h2β
n

∫
Bj,n

ϑ2(ρ(zj,n, x)/hn

)
dPX(x) = d2h2β

n ϑ2(0)m−1
n .

Therefore, recalling that hn = δn/4 we put δn = {ch logn}−1/γ for some ch > 1/cx,0 so that
h

2β
n m−1

n = o(1/n) and (5.3) is fulfilled. This provides the desired lower bound.
(b) We take mn, the z1,n, . . . , zmn,n ∈ Y and the balls Bj,n from the proof of part (a). As the

Bj,n are pairwise disjoint we have that

mn∑
j=1

PX,n(Bj,n) = PX,n

(
mn⋃
j=1

Bj,n

)
≤ 1,

so that, for at least one kn ∈ {1, . . . ,mn}, we have PX,n(Bkn,n) ≤ 1/mn where zkn,n ∈ Y . To
simplify the notation, we write wn := zkn,n.

We consider the mappings g0: ≡ 0 and gn(z) := dh
β
nϑ(ρ(wn, z)/hn) with hn = δn/4 on the

domain X with ϑ as in the proof of (a). Again, choosing d small enough ensures that g0, gn ∈ G
for all n.

We define

αn := ∣∣gn(wn) − g0(wn)
∣∣/2 = dϑ(0)hβ

n/2,

and the events

Hn(g) := {
ω ∈ (X ×R)n:

∣∣ĝn(wn,ω) − g(wn)
∣∣ ≥ αn

}
.

Also we write Xn := (X1, . . . ,Xn). We deduce that

sup
g∈G

sup
y∈Y

Pg

[∣∣ĝn(y,Zn) − g(y)
∣∣ > dϑ(0)hβ

n/2
]

≥ sup
g∈G

EPg

(
H(g)|Xn

)
(5.4)

≥ 1

2
· E{

Pg0

(
H(g0)|Xn

) + Pgn

(
H(gn)|Xn

)}
≥ 1

2
− 1

2
· E TV(Pg0 |Xn,Pgn |Xn),



Optimal classification and nonparametric regression for functional data 1741

where TV(P,Q) denotes the total variation distance between some probability measures P

and Q. Note that the conditional probability measure Pg|Xn just turns out to be the probabil-
ity measure of independent random variables δj , j = 1, . . . , n, with the density fε(· − g(Xj ))

conditionally on Xn. By LeCam’s inequality, we have

TV(Pg0 |Xn,Pgn |Xn) ≤
{

1 −
n∏

j=1

(
1 − 1

2
H 2(fε

(· − g0(Xj )
)
, fε

(· − gn(Xj )
)))2

}1/2

,

almost surely, where H(f1, f2) denotes the Hellinger distance between two densities f1 and f2.
Applying the expectation to both sides, Jensen’s inequality and some information theoretic argu-
ments yield that

E TV(Pg0 |Xn,Pgn |Xn) ≤
{

1 −
(

1 − 1

8
E

(
gn(X1) − g0(X1)

)2
∫ ∣∣f ′

ε(x)
∣∣2

/fε(x)dx

)2n}1/2

.

Since the restrictions of gn and g0 to the domain Y coincide on Y \ BY (wn,hn) we deduce that

E
(
gn(X1) − g0(X1)

)2 ≤ d2h2β
n ‖ϑ‖2∞PX,n

(
BY (wn,hn)

) ≤ d2h2β
n m−1

n ‖ϑ‖2∞,

so that (5.4) is bounded away from zero whenever h
2β
n m−1

n =O(1/n). Under the selection of hn

and δn as in part (a) this condition is satisfied. That completes the proof. �

Proof of Theorem 4.2. The inequality (2.3) yields that the set Y contains infinitely many ele-
ments. Fix three different y1, y2, y3 ∈ Y . We introduce the sets Yj , j = 1,2,3, with

Yj := {
y ∈ Y : ρ(y, yj ) ≤ ρ(y, yk),∀k ∈ {1,2,3}},

whose union includes Y as a subset. Note that

1
3NX (δ,Y, ρ) ≤NX (δ,Yj , ρ) ≤ NX (δ,Y, ρ), (5.5)

holds true for all δ > 0 for at least one j = 1,2,3. Select j = 1,2,3 such that Y ′ := Yj satisfies
the above inequality; and put z−1, z0 equal to the other yk , k �= j . Note that

ρ(y, zl) ≥ M := min
{
ρ(yr , ys): r �= s

}
/2,

holds for all y ∈ Y ′ and l = 0,−1. Clearly, we have ρ(z0, z−1) ≥ M as well. The inequali-
ties (2.1), (2.2), (2.3) and (5.5) yield the existence of z1, . . . , zdn ∈ Y ′ with some even number
dn ≥ �exp(cx,0δ

−γ
n )/3� − 1 such that ρ(zj , zk) > δn for any sequence (δn)n ↓ 0. Therefore, the

balls BY (zj , δn/4), j = 1, . . . , dn are pairwise disjoint. By Rn we denote the discrete probability
measure which fulfills

Rn

({z0}
) = Rn

({z−1}
) = 2κM

−β

0 /C,

Rn

({zj }
) = (

1 − 4κM
−β

0 /C
)
/dn, j = 1, . . . , dn,
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and M0 := min{C−1/β,M}. We define the functions

fθ (y) := 1 + θ0
1

2
CM

β

0

(
1{z−1}(y) − 1{z0}(y)

) + 1

2
Cδβ

n

dn/2∑
j=1

θj

(
1{z2j−1}(y) − 1{z2j }(y)

)
,

where θ := (θ0, . . . , θdn/2) denotes some binary vector. Therein we stipulate that

κ ∈ (
0,M

β

0 C/8
)
, (5.6)

which does not depend on n. For n sufficiently large, fθ is bounded by 1/2 from below and
by 3/2 from above – uniformly with respect to the vector θ . Furthermore, the functions fθ

integrate to one with respect to the probability measure Rn so that the functions fθ are probability
densities. The probability measure generated by fθ is denoted by Pθ .

We write θ ′ for the corresponding vector θ ′ := (1 − θ0, . . . ,1 − θdn/2). Then

TV(Pθ ,Pθ ′) = 1

2

∫ ∣∣fθ (y) − fθ ′(y)
∣∣dRn(y) ≥ 1

4

(
CM

β

0 Rn

({z0}
) + CM

β

0 Rn

({z−1}
)) = κ,

so that (Pθ ,Pθ ′) ∈Pκ . Furthermore, we have

dPθ

d(Pθ + Pθ ′)
(y) = fθ (y)

fθ (y) + fθ ′(y)
,

so that

sup
θ ′′=θ,θ ′

∣∣∣∣ dPθ ′′

d(Pθ + Pθ ′)
(y) − dPθ ′′

d(Pθ + Pθ ′)
(x)

∣∣∣∣ ≤ max
{∣∣fθ (x) − fθ (y)

∣∣, ∣∣fθ ′(x) − fθ ′(y)
∣∣}.

For n sufficiently large (precisely, for δn < 2−1/βM0), we can verify that∣∣fθ (x) − fθ (y)
∣∣ ≤ Cρ(x, y)β,

for all x, y ∈ Y0 = {z−1, z0, . . . , zdn} and all θ ∈ {0,1}dn/2+1. This provides that (Pθ ,Pθ ′) ∈
PC,β,κ for all θ ∈ {0,1}dn/2+1 for n large enough.

The underlying statistical experiment is less informative than the model, in which exactly n

i.i.d. training data are drawn for each group, that is, we observe the samples X1, . . . ,Xn from
PX and Y1, . . . , Yn from PY . Therefore, as we are proving a lower bound, we may switch to the
latter statistical model. As in the proof of Theorem 3.2(a), we apply Assouad’s lemma (see, e.g.,
Tsybakov [23]) and the Bretagnolle–Huber inequality (see Bretagnolle and Huber [6]), which
yield that

En(ϕn) ≥ 1

4

1∑
b=0

dn/2∑
l=0

Rn

({z2l}
) · C(

M
β

0 1{0}(l) + δβ
n 1(0,∞)(l)

)

× (
1 − Eθ

{
1 − exp

(−nK(fθ,l,1, fθ,l,0) − nK(fθ ′,l,0, fθ ′,l,1)
)}1/2)

,
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where K denotes the Kullback–Leibler distance between some densities. For l ≥ 1, we deduce
that

K(fθ,l,1, fθ,l,0) =
∫ {

log
fθ,l,1(x)

fθ,l,0(x)

}
fθ,l,1(x)dRn(x)

≤
∫

fθ,l,1(x)

fθ,l,0(x)

∣∣fθ,l,1(x) − fθ,l,0(x)
∣∣dRn(x) (5.7)

≤ 3Cδβ
n Rn

({z2l}
) ≤ 3C

(
1 − 4κM

−β

0 /C
)
δβ
n d−1

n ,

almost surely. The same upper bound can be established for K(fθ ′,l,0, fθ ′,l,1) analogously. Now
we specify

δn = (cδ logn)−1/γ ,

for some constant cδ > 0. Choosing cδ sufficiently large, (5.7) yields that

lim inf
n→∞ δ−β

n En(ϕn) ≥ lim inf
n→∞

1

4
C

1∑
b=0

dn/2∑
l=1

Rn

({z2l}
)

≥ 1

4

(
1 − 4κM

−β

0 /C
) ≥ 1

8
,

when using (5.6) in the last step. The selection of δn completes the proof. �
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