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We consider the L2-regularity of solutions to backward stochastic differential equations (BSDEs) with
Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a Lévy
process (Xt )t∈[0,T ]. The terminal condition may be a Borel function of finitely many increments of the
Lévy process which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. The
results are obtained by investigating how the special structure appearing in the chaos expansion of the
terminal condition is inherited by the solution to the BSDE.
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1. Introduction

The main objective of this paper consists in studying the relation between fractional smoothness
of the terminal condition of a BSDE and the L2-variation of its according solution.

A motivation to investigate this relation arises from the fact that the convergence rate of the
discretization error of BSDEs with Lipschitz generator is determined by the convergence of the
discretized terminal condition to its limit and by the L2-variation properties of the exact solution
(Y,Z).

In the Brownian scenario, the discretization of BSDEs has been studied by many authors, see,
for example, [4,10,11,14,27,28,36]. If the BSDE is given by

Yt = ξ +
∫ T

t

F (s,Ys,Zs)ds −
∫ T

t

Zs dWs, 0 ≤ t ≤ T ,

we define the Lp-variation

varp(ξ,F, τ ) := sup
1≤i≤n

sup
ti−1<s≤ti

‖Ys − Yti−1‖p +
(

n∑
i=1

∫ ti

ti−1

‖Zt − Ẑti−1‖2
p dt

)1/2

,

where τ = (ti)
n
i=0 is a deterministic time-net 0 = t0 < · · · < tn = T and

Ẑti−1 := 1

ti − ti−1
E

[∫ ti

ti−1

Zs ds|Fti−1

]
.
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Gobet and Makhlouf [21] considered L2-regularity of (Y,Z) for a terminal condition given by
ξ = g(XT ) where g does not need to be Lipschitz and X denotes the forward process. In [14],
the Lp-regularity of (Y,Z) for p ≥ 2 was shown if the terminal condition depends on the for-
ward process at finitely many time points, ξ = g(Xr1, . . . ,Xrm), and satisfies a path-dependent
Malliavin fractional smoothness condition which is weaker than the Lipschitz condition on g.
Using these results and following the ideas of [11], one can show that the convergence rate of the
error between the discretizations (Y τ ,Zτ ) and the solution (Y,Z) is of order 1

2 , that is

Errτ,2(Y,Z) :=
{

sup
0<t≤T

E
∣∣Yt − Y τ

t

∣∣2 +
∫ T

0
E

∣∣Zt − Zτ
t

∣∣2 dt

}1/2

≤ c|τ |1/2

provided that the time grid for the discretization is chosen in an appropriate way (like in [14]),
and the discretized terminal condition converges in this order. Without any assumptions on the
dependence of the terminal condition ξ on a forward process X, Hu, Nualart and Song [22] have
shown the convergence rate 1

2 supposing Malliavin differentiability properties of ξ (and of the
generator).

For a BSDE driven by a Poisson random measure, Bouchard and Elie [9] proved that the
convergence rate is of order 1

2 (in the non-degenerate case) if the terminal condition is given by
ξ = g(XT ) where g is Lipschitz.

Here we study whether the L2-variation would allow to achieve the convergence rate 1
2 with a

terminal condition ξ = g(Xr1, . . . ,Xrm) and whether the Lipschitz condition on g can be weak-
ened to a Malliavin fractional smoothness condition. The method we use allows to answer this
question in the case where X is the Lévy process itself.

In the Brownian setting, in case of a zero generator it is stated in [20], relation (8), that the
rate 1

2 is the best possible as long as ξ can not be represented as a linear function of WT . More-
over, in [20], Theorem 3.5, it is shown that for equidistant grids there is a direct connection
between the convergence rate and the index of fractional smoothness of the terminal condition.
In [15], Theorems 5 and 6, the same results are recovered for W replaced by a square integrable
Lévy process X, even if the Lévy process does not have a Brownian part.

The paper is organised as follows. In Section 2, we describe the setting and recall some
needed facts. In Section 3 we recall some basic facts about Malliavin calculus in the Lévy
setting. Furthermore, we state a result about Malliavin differentiability of the solution (Y,Z)

to a BSDE. Our method to show the L2-regularity of solutions to BSDEs exploits the fact
that their Malliavin derivative is piece-wise constant in time. This is ensured by selecting a
terminal condition which has this property. For this purpose, we introduce a space of suit-
able terminal conditions and investigate the chaos expansion of the according solution in Sec-
tion 4. Section 5 contains our main result, equivalences and implications concerning the L2-
regularity of (Y,Z). An important fact, which will be considered in Section 6, is a sufficient
condition for the L2-regularity of the solution: a certain Malliavin fractional smoothness of
the terminal condition (in addition to our standing assumption that the generator is Lips-
chitz).
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2. Setting

Let X = (Xt )t∈[0,T ] be an L2-Lévy-process on a complete probability space (�,F ,P) with
Lévy-measure ν. We will denote the augmented natural filtration of X by F := (Ft )t∈[0,T ] and
let L2 := L2(�,FT ,P).

The Lévy–Itô decomposition of an L2-Lévy-process X can be written as

Xt = γ t + σWt +
∫

]0,t]×(R\{0})
xÑ(ds,dx), (1)

where σ ≥ 0, W is a Brownian motion and Ñ is the compensated Poisson random measure
corresponding to X.

We define the random measure M by

M(dt,dx) := σ dWtδ0(dx) + xÑ(dt,dx). (2)

Then EM(B)2 = ∫
B

m(dt,dx) for B ∈ B([0, T ] ×R) where

m(dt,dx) = (λ ⊗ μ)(dt,dx)

with

μ(dx) = σ 2δ0(dx) + x2ν(dx)

and λ denotes the Lebesgue measure. For 0 ≤ t ≤ T , we consider the BSDE

Yt = ξ +
∫ T

t

F (s, Ys, Z̄s)ds −
∫

]t,T ]×R

Zs,xM(ds,dx), (3)

where

Z̄s =
∫
R

Zs,xκ(dx)

and κ(dx) := κ ′(x)μ(dx) such that κ ′ ∈ L2(R,B(R),μ). We will use the following assump-
tions:

(Aξ ) ξ ∈ L2,
(AF ) F :� × [0, T ] × R

2 → R is jointly measurable, adapted to (Ft )t∈[0,T ], Lipschitz-
continuous in the last two variables, uniformly in ω and t , that is,∣∣F(t, y1, z1) − F(t, y2, z2)

∣∣ ≤ Lf

(|y1 − y2| + |z1 − z2|
)
, (4)

and satisfies

E

∫ T

0

∣∣F(t,0,0)
∣∣2 dt < ∞.

For later use, we introduce spaces of stochastic processes.
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Definition 2.1. 1. Let S denote the space of all (Ft )-adapted and càdlàg processes (yt )0≤t≤T

such that

‖y‖2
S := E sup

0≤t≤T

|yt |2 < ∞.

2. We define H as the space of all random fields z :� × [0, T ] ×R → R which are measurable
with respect to P ⊗ B(R) (where P denotes the predictable σ -algebra on � × [0, T ] generated
by the left-continuous F-adapted processes) such that

‖z‖2
H := E

∫
[0,T ]×R

|zs,x |2m(ds,dx) < ∞.

The space S × H is equipped with the norm ‖(y, z)‖S×H := (‖y‖2
S + ‖z‖2

H )1/2.

A pair (Y,Z) ∈ S × H which satisfies (3) is called a solution to the BSDE (3).

Theorem 2.2. Assume (ξ,F ) satisfies (Aξ ) and (AF ). Then the BSDE (3) has a unique solution
(Y,Z) ∈ S × H .

This assertion can be found in Tang and Li [35], Lemma 2.4 and in Barles, Buckdahn and
Pardoux [5], Theorem 2.1. We next cite the stability result of [5] comparing the distance between
solutions to the BSDE (3) with different terminal conditions and generators.

Theorem 2.3 ([5], Proposition 2.2). Let (ξ,F ) and (ξ ′,F ′) satisfy (Aξ ) and (AF ). For the
corresponding solutions (Y,Z) and (Y ′,Z′) to (3), it holds∥∥Y − Y ′∥∥2

S
+ ∥∥Z − Z′∥∥2

H

≤ C

(∥∥ξ − ξ ′∥∥2
L2

+
∫ T

0

∥∥F(s,Ys, Z̄s) − F ′(s, Ys, Z̄s)
∥∥2

L2
ds

)
,

where C = C(T ,LF ′ ,μ).

Remark 2.4. According to [34], Proposition 3 (see also [29], Proposition 3 or [2], Lemma 2.2)
for any z ∈ L2(P⊗ m) there exists a process

pz ∈ L2
(
� × [0, T ] ×R,P ⊗B(R),P⊗ m

)
such that for any fixed x ∈ R the function (pz)·,x is a version of the predictable projection (in
the classical sense) of z·,x . In the following, we will always use this result to get predictable
projections which are measurable w.r.t. a parameter.

3. Malliavin differentiability of (Y,Z)

We will use the Malliavin derivative which is defined via chaos expansions, that is series of
multiple stochastic integrals. Following Itô [23], for n ≥ 1 we define elementary functions of the
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type

fn

(
(t1, x1), . . . , (tn, xn)

) =
m∑

k=1

ak

n∏
i=1

1Bk
i
(ti , xi),

where ak ∈ R, and for all k the sets Bk
i ∈ B([0, T ] × R), i = 1, . . . , n are disjoint and satisfy

m(Bk
i ) < ∞. The multiple stochastic integral In of order n of the elementary function fn with

respect to the random measure M is defined by

In(fn) :=
m∑

k=1

ak

n∏
i=1

M
(
Bk

i

)
.

Since the elementary functions given above are dense in Ln
2 := L2(([0, T ] ×R)n,m⊗n), by lin-

earity and continuity of In its domain extends to Ln
2. For n = 0, we set Ln

2 := R and I0(f0) := f0

for f0 ∈ R. The properties of In are very similar to those in the Brownian case, especially it holds

In(fn) = In(f̃n),

where f̃n denotes the symmetrization of f with respect to the n pairs (t1, x1), . . . , (tn, xn). More-
over,

EIn(fn)Im(gm) =
{ 〈f̃n, g̃n〉Ln

2
, n = m,

0, n �= m.

Any G ∈ L2 has a chaos expansion

G =
∞∑

n=0

In(fn)

which is unique if symmetric fn ∈ Ln
2 are used (which we will be our standing assumption from

now on), and it holds

‖G‖2 := ‖G‖2
L2

=
∞∑

n=0

n!‖fn‖2
Ln

2
.

For example, for Xs from (1) we have

Xs = I0(γ s) + I1(1[0,s]×R) = γ s + M
([0, s] ×R

)
. (5)

A straightforward generalisation of [30], Lemma 1.2.5, implies (Et stands for the conditional
expectation E[·|Ft ])

EtG =
∞∑

n=0

In(fn1[0,t]n).
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The space D1,2 consists of all random variables G ∈ L2 such that

‖G‖2
D1,2

:=
∞∑

n=0

(n + 1)!‖fn‖2
Ln

2
< ∞.

For G ∈D1,2 the Malliavin derivative

DG ∈ L2(P⊗ m) := L2
(
� × [0, T ] ×R,FT ⊗B

([0, T ] ×R
)
,P⊗ m

)
is given by

Dt,xG(ω) :=
∞∑

n=1

nIn−1
(
fn

(
(t, x), ·))(ω),

for P⊗m-a.e. (ω, t, x) ∈ �×[0, T ]×R. For example, for Xs from (1) representation (5) implies

Dt,xXs =Dt,xI1(1[0,s]×R) = 1[t,T ](s) for P⊗ m-a.e. (ω, t, x) ∈ � × [0, T ] ×R. (6)

For random variables in D1,2 there is an explicit expression for the integrand in the formula-
tion of the predictable representation property (for an introduction to stochastic integration w.r.t.
random measures see, e.g., [3]).

Lemma 3.1 (Clark–Ocone–Haussmann formula [33], Theorem 10). AssumeG ∈ D1,2. Then

G = EG +
∫

[0,T ]×R

p(DG)t,xM(dt,dx). (7)

The Malliavin derivative D·,0 can be interpreted as a Malliavin derivative in the Brownian
setting with values in the L2-space of random variables depending on the jump part of the Lévy
process (see [1,32]). On the other hand, for x �= 0, the Malliavin derivative D·,x behaves like
a difference quotient (see [1,32]). This is also illustrated by the next lemma which contains
formulae for the Malliavin derivative of differentiable Lipschitz functions depending on random
variables in D1,2.

Lemma 3.2. Let f ∈ C1(Rn;R) with bounded partial derivatives. If G1, . . . ,Gn ∈ D1,2 then
f (G1, . . . ,Gn) ∈D1,2 and

(i) for x = 0 it holds

Dt,0f (G1, . . . ,Gn) =
n∑

i=1

(∂if )(G1, . . . ,Gn)Dt,0Gi,

for P⊗ λ-a.e. (ω, t);
(ii) for x �= 0 we get the difference quotient

Dt,xf (G1, . . . ,Gn) = f (G1 + xDt,xG1, . . . ,Gn + xDt,xGn) − f (G1, . . . ,Gn)

x
,

for P⊗ m-a.e. (ω, t, x).
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Proof. Assertion (i) follows immediately from [32], Proposition 3.5, combined with [32], Propo-
sition 3.3 and [30], Proposition 1.2.3. Assertion (ii) is a straightforward extension of [16],
Lemma 5.1. �

We will make use of the following properties for the Malliavin derivative [13], Lemmas
3.1–3.3.

Lemma 3.3. (i) Let G ∈ D1,2. Then for 0 ≤ s ≤ T , EsG ∈ D1,2 and

Dt,xEsG = Es(Dt,xG)1[0,s](t), P⊗ m-a.e.

(ii) Let F :� × [0, T ] × R → R be a product measurable and adapted process, ρ a finite
measure on ([0, T ] ×R,B([0, T ] ×R)) such that the conditions

(a) E
∫
[0,T ]×R

|F(s, y)|2ρ(ds,dy) < ∞,

(b) F(s, y) ∈ D1,2 for ρ-a.e. (s, y) ∈ [0, T ] ×R,
(c) E

∫
[0,T ]×R

∫
[0,T ]×R

|Dt,xF (s, y)|2ρ(ds,dy)m(dt,dx) < ∞
are satisfied. Then ∫

[0,T ]×R

F(s, y)ρ(ds,dy) ∈D1,2,

and the differentiation rule

Dt,x

∫
[0,T ]×R

F(s, y)ρ(ds,dy) =
∫

[0,T ]×R

Dt,xF (s, y)ρ(ds,dy)

holds for P⊗ m-a.e. (ω, t, x) ∈ � × [0, T ] ×R.
(iii) Let F :� × [0, T ] ×R →R be a predictable process satisfying

E

∫
[0,T ]×R

∣∣F(s, y)
∣∣2m(ds,dy) < ∞.

Then conditions (a)–(c) of (ii) are satisfied for ρ = m if and only if∫
[0,T ]×R

F(s, y)M(ds,dy) ∈D1,2.

In this case, the formula

Dt,x

∫
[0,T ]×R

F(s, y)M(ds,dy) = F(t, x) +
∫

[0,T ]×R

Dt,xF (s, y)M(ds,dy)

holds P⊗ m-a.e.
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The following theorem is concerned with Malliavin differentiability of the solution to a BSDE
of the form

Yt = ξ +
∫ T

t

f (s,Xs,Ys, Z̄s)ds −
∫

]t,T ]×R

Zs,xM(ds,dx), 0 ≤ t ≤ T , (8)

where we will assume

(Af ) f ∈ C([0, T ] ×R
3) is Lipschitz-continuous in (x, y, z), uniformly in t , that is,∣∣f (t, x1, y1, z1) − f (t, x2, y2, z2)

∣∣ ≤ Lf

(|x1 − x2| + |y1 − y2| + |z1 − z2|
)
. (9)

(Af 1) f satisfies (Af ) and f ∈ C0,1,1,1([0, T ] ×R
3).

Note that (8) is a special form of (3), and F(ω, t, y, z) := f (t,Xt (ω), y, z) satisfies (AF ) if f

does satisfy (Af ).

Theorem 3.4. Let ξ ∈D1,2 and assume (Af 1). Then the following assertions hold.

(i) For m-a.e. (r, v) ∈ [0, T ] ×R, there exists a unique solution (Ur,v,V r,v) ∈ S × H to the
BSDE

U
r,v
t = Dr,vξ +

∫ T

t

Fr,v

(
s,Ur,v

s , V̄ r,v
s

)
ds −

∫
]t,T ]×R

V r,v
s,x M(ds,dx), t ∈ [r, T ],

(10)
U

r,v
t = V r,v

s,x = 0, t ∈ [0, r),

where V̄
r,v
s := ∫

R
V

r,v
s,x κ(dx),

Fr,0
(
s,Ur,0

s , V̄ r,0
s

) := 〈∇f (s,Xs,Ys, Z̄s),
(
1[r,T ](s),Ur,0

s , V̄ r,0
s

)〉
,

with ∇ = (∂x, ∂y, ∂z), and

Fr,v

(
s,Ur,v

s , V̄ r,v
s

) := 1

v

[
f

(
s,Xs + v1[r,T ](s), Ys + vUr,v

s , Z̄s + vV̄ r,v
s

) − f (s,Xs,Ys, Z̄s)
]

for v �= 0.

(ii) For the solution (Y,Z) of (8) it holds

Y ∈ L2
([0, T ];D1,2

)
, Z ∈ L2

([0, T ] ×R;D1,2
)
, (11)

and Dr,vY admits a càdlàg version for m-a.e. (r, v) ∈ [0, T ] ×R.
(iii) (DY,DZ) is a version of (U,V ), that is, for m-a.e. (r, v) it solves

Dr,vYt = Dr,vξ +
∫ T

t

Fr,v

(
s,Dr,vYs,

∫
R

Dr,vZs,xκ(dx)

)
ds

(12)

−
∫

]t,T ]×R

Dr,vZs,xM(ds,dx), t ∈ [r, T ].
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(iv) The process p((Dr,vYr )r∈[0,T ],v∈R) is a version of Z where we set

Dr,vYr(ω) := lim
t↘r

Dr,vYt (ω)

for all (r, v,ω) for which Dr,vY is càdlàg and Dr,vYr(ω) := 0 otherwise.

In the setting of time, delayed BSDEs a similar result was proved by Delong and Imkeller [13]
assuming that the time horizon T or the Lipschitz constant Lf of the generator are sufficiently
small. For the convenience of the reader a proof of Theorem 3.4 is contained in the preprint
version [17].

4. Chaotic representation of (Y,Z)

The goal of this section is to investigate properties of the chaos expansions of the solution (Y,Z)

to (8) with terminal values ξ of the following form:
Let r0 = 0 < r1 < · · · < rm = T be a partition of [0, T ]. Define �k := ]rk−1, rk] for k =

1, . . . ,m and V n
m := {1, . . . ,m}n. The set of cuboids{

�α := �α1 × · · · × �αn : α = (α1, . . . , αn) ∈ V n
m

}
forms a partition of ]0, T ]n. Furthermore, we let

H :=
{

ξ =
∞∑

n=0

In(fn) ∈ L2: ∃gα
n ∈ L2

(
R

n,μ⊗n
)

such that

fn

(
(t1, x1), . . . , (tn, xn)

) =
∑

α∈V n
m

gα
n (x1, . . . , xn)1�α(t1, . . . , tn)

}
.

Hence, on each cuboid �α the function fn is constant in (t1, . . . , tn). In particular, this space
contains random variables of the form

g(Xrm − Xrm−1, . . . ,Xr1 − X0) ∈ L2,

where g is a Borel function (see [6]).
The benefit to consider terminal conditions from H lies in the fact that t �→ Dtxξ is a.e. con-

stant as long as t is within an interval �k . This property will be used several times below, espe-
cially in the proofs of Lemmas 5.3–5.5.

Remark 4.1. By convolution with mollifiers, we construct for any function f ∈ C([0, T ] × R
3)

satisfying (Af ) a sequence (fn)n≥0 converging uniformly to f in C([0, T ] × R
3), such that for

all n ∈ N and t ∈ [0, T ] we have fn(t, ·) ∈ C∞(R3), and fn satisfies the Lipschitz-condition (9)
with the same constant Lf for all n.
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Let (ξn)n≥0 ⊆ D1,2 be a sequence converging to ξ in L2. By (Y n,Zn), we will denote the
solution to (8) with terminal condition ξn and generator fn. Then Theorem 2.3 implies that(

Yn,Zn
) → (Y,Z) if n → ∞ in S × H. (13)

If ξ ∈ H, then the solution (Y,Z) has a chaos expansion which resembles those of the elements
of H.

Theorem 4.2. Let (Af ) hold. For ξ ∈ H the chaos expansion of (Y,Z) ∈ S × H has the repre-
sentation

Yt =
∞∑

n=0

In

( ∑
α∈V n

m

ϕα
n (t)1�α∩]0,t]n

)
, P⊗ λ-a.e., (14)

where ϕα
n : [0, T ] ×R

n → R is jointly measurable, ϕα
n (t) ∈ L2(R

n,μ⊗n) and

Zt,x =
∞∑

n=0

In

( ∑
α∈V n

m

ψα
n (t, x)1�α∩]0,t]n

)
, P⊗ m-a.e., (15)

where ψα
n : [0, T ] ×R

n+1 → R is jointly measurable and ψα
n (t) ∈ L2(R

n+1,μ⊗n+1).

Proof. We may use Remark 4.1 and approximate ξ ∈ H by a sequence (ξn)n ⊆ H ∩D1,2 and f

by (fn)n satisfying (Af 1). Since the convergence in S × H implies convergence w.r.t. the norm

∣∣∥∥(y, z)
∣∣∥∥ := (‖y‖2

L2(P⊗λ) + ‖z‖2
H

)1/2
, (16)

and the space of processes (y, z) with representations (14) and (15) is closed with respect to the
norm (16) we only need to show that the assertion holds for any solution (Y n,Zn) w.r.t. (ξn, fn).
Hence we may assume that ξ ∈ H ∩ D1,2 and f ∈ C0,1,1,1([0, T ] × R

3) such that ∂xf, ∂yf and
∂zf are bounded by Lf . According to Theorem 3.4, we can differentiate (8) and obtain for m-a.e.
(t, x) and all s ∈ [t, T ] that

Dt,xYs =Dt,xξ +
∫ T

s

Dt,xf (r,Xr,Yr , Z̄r )dr −
∫

]s,T ]×R

Dt,xZr,yM(dr,dy).

Theorem 3.4 yields that Z is a version of p(Dt,xYt ), hence

Zt,x =Dt,xYt , P⊗ m-a.e.

We define the recursion

Y 0
s := 0, Z0

s,y := 0,
(17)

Yk+1
s := ξ +

∫ T

s

f
(
r,Xr,Y

k
r , Z̄k

r

)
dr, Y k+1 := o

(
Yk+1),
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where o denotes the optional projection, which is according to [12], Theorem 47 and Remark 50,
càdlàg. Since Y k+1

u = EuYk+1
u P-a.s. one gets by Lemma 3.3

Ds,yY
k+1
u = Ds,yEuξ +Ds,yEu

∫ T

u

f
(
r,Xr,Y

k
r , Z̄k

r

)
dr

(18)

= EuDs,yξ +Eu

∫ T

u

Ds,yf
(
r,Xr,Y

k
r , Z̄k

r

)
dr, u ∈ [s, T ].

Since Ds,yξ + ∫ T

u
Ds,yf (r,Xr,Y

k
r , Z̄k

r )dr, u ∈ [s, T ], has continuous paths for a.e. (s, y) we can
again apply [12], Theorem 47 and Remark 50, to get a càdlàg optional projection. Hence, we
may define the set

Ak := {
(s, y) ∈ [0, T ] ×R: the RHS of (18) is càdlàg on [s, T ] P-a.s.

}
and assume a pathwise càdlàg version of Ds,yY

k+1 for any (s, y) ∈ Ak while we let Ds,yY
k+1

be zero otherwise. In this sense, we can set

Zk+1
s,y := lim

t↘s
Ds,yY

k+1
t , Zk+1 := p

(
Zk+1) (19)

for k = 0,1,2, . . . .
The process Y k+1 has a càdlàg version, therefore, (Y k,Zk) ∈ S ×H for all k ∈N. In the proof

of [35], Theorem 2.2, it is shown that (Y k,Zk) converges to (Y,Z) with respect to the norm (16).
Consequently, we only need to show that (14) and (15) hold for (Y k,Zk).
For fixed t ∈]0, T [, we describe (14) by introducing the space

Ht :=
{ ∞∑

n=0

In

( ∑
α∈V n

m

gα
n1�α∩]0,t]n

)
∈ L2: gα

n ∈ L2
(
R

n,μ⊗n
)}

.

From [6], one can conclude the following fact.

Lemma 4.3. For any Borel function h :Rd → R and ξ1, . . . , ξd ∈ Ht such that h(ξ1, . . . , ξd) ∈
L2 it holds h(ξ1, . . . , ξd) ∈Ht .

Assume now that (14) and (15) hold for Y k and Zk , respectively. We have

Z̄k
t =

∫
R

∞∑
n=0

In

( ∑
α∈V n

m

ψα
n (t, x)1�α∩[0,t]⊗n

)
κ(dx)

=
∞∑

n=0

In

( ∑
α∈V n

m

∫
R

ψα
n (t, x)κ(dx)1�α∩[0,t]⊗n

)
(20)

=
∞∑

n=0

In

( ∑
α∈V n

m

ψ̄α
n (t)1�α∩[0,t]⊗n

)
∈Ht .
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From Lemma 4.3, it follows that f (t,Xt , Y
k
t , Z̄k

t ) ∈ Ht that is,

f
(
t,Xt , Y

k
t , Z̄k

t

) =
∞∑

n=0

In

( ∑
α∈V n

m

gα
n (t)1�α∩]0,t]⊗n

)
,

with gα
n (t) ∈ L2(R

n,μ⊗n). Because f (·,X·, Y k· , Z̄k· ) is square integrable w.r.t. P ⊗ λ on � ×
[0, T ] one can show that the gα

n can be chosen jointly measurable. This implies

Et

∫ T

t

f
(
r,Xr,Y

k
r , Z̄k

r

)
dr =

∫ T

t

∞∑
n=0

In

( ∑
α∈V n

m

gα
n (r)1�α∩]0,t]⊗n

)
dr

=
∞∑

n=0

In

( ∑
α∈V n

m

∫ T

t

gα
n (r)dr1�α∩]0,t]⊗n

)
.

From (17), we have that Y k+1
t = EtYk+1

t P-a.s. and since Et ξ ∈ Ht we conclude repre-
sentation (14) for Y k+1

t . To find out the representation of Zk+1, we will use (19). Let α :=
(α2, . . . , αn). Assuming ξ = ∑∞

n=0 In(
∑

α∈V n
m

ĝα
n1�α) with symmetric fn = ∑

α∈V n
m

ĝα
n1�α we

get by Lemma 3.3 for P⊗ m-a.e. (t, y,ω) ∈]0, s] ×R× � that

Dt,yY
k+1
s = Dt,yEsξ +Dt,yEs

∫ T

s

f
(
r,Xr,Y

k
r , Z̄k

r

)
dr

= Dt,yEsξ +Dt,y

∫ T

s

∞∑
n=0

In

( ∑
α∈V n

m

gα
n (r)1�α∩]0,s]⊗n

)
dr

=
∞∑

n=1

nIn−1

( ∑
α∈V n

m

ĝα
n (y, ·)1�α1

(t)1�α∩]0,s]⊗(n−1)

)

+
∫ T

s

∞∑
n=1

nIn−1

( ∑
α∈V n

m

gα
n (r, y, ·)1�α1

(t)1�α∩]0,s]⊗(n−1)

)
dr,

where we again have chosen symmetric integrands
∑

α∈V n
m

gα
n (r)1�α∩]0,s]⊗n . One easily checks

the L2-convergence

lim
s↘t

Dt,yY
k+1
s =

∞∑
n=1

nIn−1

( ∑
α∈V n

m

ĝα
n (y, ·)1�α1

(t)1�α∩]0,t]⊗(n−1)

)

+
∫ T

t

∞∑
n=1

nIn−1

( ∑
α∈V n

m

gα
n (r, y, ·)1�α1

(t)1�α∩]0,t]⊗(n−1)

)
dr.
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If we consider the càdlàg version of Dt,yY
k+1, we obtain the same expression for the pathwise

limit, that is, P-a.s.

Zk+1
t,y = lim

s↘t
Dt,yY

k+1
s

=
∞∑

n=1

nIn−1

( ∑
α∈V n

m

[
ĝα

n (y, ·) +
∫ T

t

gα
n (r, y, ·)dr

]
1�α1

(t)1�α∩]0,t]⊗(n−1)

)
.

�

5. L2-variation of (Y,Z)

The next theorem is our main statement, which allows conclusions on the L2-regularity of the
solutions to BSDE (8) by observing regularity properties of Yrk for fixed time points r0 = 0 <

r1 < · · · < rm = T .

Theorem 5.1. Assume that (Af ) is satisfied and ξ ∈ H. Let k ∈ {1, . . . ,m} and θk ∈]0,1]. For
the solution (Y,Z) of (8), consider the following assertions:

(i) There is some c1 > 0 such that for all s ∈ [rk−1, rk],
‖Yrk −EsYrk‖2 ≤ c1(rk − s)θk .

(ii) There is some c2 > 0 such that for all rk−1 ≤ s < t ≤ rk ,

‖Yt − Ys‖2 ≤ c2

∫ t

s

(rk − r)θk−1 dr.

(iii) There is some c3 > 0 such that for λ-a.e. s ∈ [rk−1, rk[,
‖Zs,·‖2

L2(P⊗μ) ≤ c3(rk − s)θk−1.

(iv) There is some c4 > 0 and a Borel set Nk with λ(Nk) = 0 such that for all s, t ∈
[rk−1, rk[\Nk with s < t and for all h ∈ L2(μ) it holds

∥∥∥∥
∫
R

(Zt,x − Zs,x)h(x)μ(dx)

∥∥∥∥
2

≤ ‖h‖2
L2(μ)c4

∫ t

s

(rk − r)θk−2 dr.

Then it holds that

(i) ⇔ (ii) ⇔ (iii) ⇒ (iv).

Remark 5.2. (i) Analogously to [14], Definition 1, we may introduce the concept of path-
dependent fractional smoothness: fix � = (θ1, . . . , θm) ∈]0,1[m. If (Y, Z) is the solution to
BSDE (8) with generator f and terminal condition ξ ∈ H, we let

(ξ, f ) ∈ B�
2,∞(X)
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provided that there is some c > 0 such that

‖Yrk −EsYrk‖2 ≤ c(rk − s)θk , rk−1 ≤ s < rk, k = 1, . . . ,m.

If f = 0 we simply write ξ ∈ B�
2,∞(X). If, moreover, T = 1 and m = 1 then the space B�

2,∞(X)

can be understood as the real interpolation space (L2,D1,2)θ1,∞ which describes fractional
smoothness. For ξ = ∑∞

n=0 In(fn) ∈ H set Tξ (t) := ‖Et ξ‖2 = ∑∞
n=0 ‖In(fn)‖2tn, and using

the ideas of [19], Proposition 3.2 and [20], formula (13), one can conclude that

‖ξ‖(L2,D1,2)θ1,∞ ∼c ‖ξ‖ + sup
0≤t<1

(1 − t)−θ1/2
√

Tξ (1) − Tξ (t)

= ‖ξ‖ + sup
0≤t<1

(1 − t)−θ1/2‖ξ −Et ξ‖.

By assumption, we have ‖ξ −Et ξ‖2 ≤ c(1 − t)θ1 hence the RHS is finite. From the lexicograph-
ical scale of the real interpolation spaces (see [8] or [7]), it follows

(L2,D1,2)θ ′
1,2

⊇ (L2,D1,2)θ1,∞ for all θ ′
1 ∈]0, θ1[.

Especially, ‖ξ −Et ξ‖2 ≤ c(1− t)θ1 implies that
∑∞

n=0 nθ ′
1‖In(fn)‖2 < ∞ for all θ ′

1 ∈]0, θ1[ (see
[20], Remark A.1).

(ii) In general (iv) � (iii): let (pn)
∞
n=1 be an ONB in L2(μ). For simplicity, assume T =

1,m = 1, f ≡ 0 and ξ = ∑∞
n=0 In(gn1

⊗n
]0,T ]) so that

Zs,x =
∞∑

n=1

nIn−1
(
gn(x, ·)1⊗(n−1)

]0,s]
)
.

Setting gn := βn(n!)−1/2p⊗n
n we have

‖Zs,·‖2
L2(P⊗μ) =

∞∑
n=1

nβ2
nsn−1.

For a sequence (βn) such that β2
1 := 1, β2

2 := 0, β2
n := 1

n(log(n−1))2 , n ≥ 3, we use Lemma A.1 of
[31] which states that

1 +
∞∑

n=2

(logn)−2sn ∼c

1

(1 − s)(1 − log(1 − s))2

(where for some c ≥ 1 and A,B > 0 the expression A ∼c B is a short notation for c−1A ≤ B ≤
cA). Hence

‖Zs,·‖2
L2(P⊗μ) ∼c

1

(1 − log(1 − s))2
(1 − s)−1,

so that there does not exist any θ ∈ ]0,1] for which property (iii) holds.
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But for any h = ∑∞
n=1 αnpn such that ‖h‖2

L2(μ) = ∑∞
n=1 α2

n = 1 we have

∥∥∥∥
∫
R

(Zt,x − Zs,x)h(x)μ(dx)

∥∥∥∥
2

=
∞∑

n=3

α2
n

1

(log(n − 1))2

(
tn−1 − sn−1) ≤ 1

(log 2)2
,

which means that (iv) is fulfilled for any θ ∈ ]0,1].

We prepare some lemmas to prove Theorem 5.1.

Lemma 5.3. Let η ∈ H ∩D1,2 and k ∈ {1, . . . ,m}. Then for λ-a.e. s, t ∈ ]rk−1, rk[ with s < t it
holds

‖EtDt,·η −EsDs,·η‖2
L2(P⊗μ) ≤ 4

∫ t

s

‖Erk η −Erη‖2

(rk − r)2
dr.

Proof. Let η ∈ H ∩ D1,2 be given by η = ∑∞
n=0 In(

∑
α∈V n

m
gα

n1�α) where we assume that the
functions fn((t1, x1), . . . , (tn, xn)) are symmetric. In the following, we use again the notation
α := (α2, . . . , αn). Since

Dt,xη =
∞∑

n=1

nIn−1

( ∑
α∈V n

m

gα
n (x, ·)1�α1

(t)1�α

)

and since there exists a version of Dη which is constant on ]rk−1, rk[ we get for s, t ∈]rk−1, rk[
that

‖EtDt,·η −EsDs,·η‖2
L2(P⊗μ)

=
∥∥∥∥∥

∞∑
n=1

nIn−1

( ∑
α∈V n

m

gα
n1�α1

(t)1�α

(
1⊗(n−1)

]0,t] − 1⊗(n−1)
]0,s]

))∥∥∥∥∥
2

L2(P⊗μ)

(21)

=
∞∑

n=2

nn!
∑

α∈V n
m

α1=k

∥∥gα
n

∥∥2
L2(μ

⊗n)
λ⊗(n−1)

(
�α ∩ (]0, t]n−1 \ ]0, s]n−1)).

For β ∈ V n
m and 1 ≤ l ≤ m, we define

γl(β) := #{i | βi = l, i = 1, . . . , n}.
Notice that the intersection �α ∩ (]0, t]n−1 \ ]0, s]n−1) is empty if

∑m
d=k+1 γd(α) > 0. There-

fore, setting

δα := 1{0}

(
m∑

d=k+1

γd(α)

)
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we have

λ⊗(n−1)
(
�α ∩ (]0, t]n−1 \ ]0, s]n−1))

= (
(t − rk−1)

γk(α) − (s − rk−1)
γk(α)

) ∏
1≤l<k

(rl − rl−1)
γl(α)δα.

Using the symmetry of the functions in the chaos decomposition, we get that

gα
n (x1, . . . , xn) = gπ(α)

n (xπ(1), . . . , xπ(n))

and hence ‖gα
n‖2

L2(μ
⊗n)

= ‖gπ(α)
n ‖2

L2(μ
⊗n)

for all π ∈ S(n) where we used the notation π(α) :=
(απ(1), . . . , απ(n)). Applying this fact, we reduce our summation over α ∈ V n

m to a summation
over equivalence classes [α] ∈ V n

m/∼ where

α ∼ β ⇔ ∃π ∈ S(n): α = π(β).

Thus, since in (21) we fixed α1, by taking equivalence classes for V n−1
m we obtain

‖EtDt,·η −EsDs,·η‖2
L2(P⊗μ)

=
∞∑

n=2

nn!
∑

[α]∈V n−1
m /∼

(n − 1)!
γ1(α)! · · ·γk(α)!

∥∥g
(k,α)
n

∥∥2
L2(μ

⊗n)
(22)

× (
(t − rk−1)

γk(α) − (s − rk−1)
γk(α)

) ∏
1≤l<k

(rl − rl−1)
γl(α)δα,

because the cardinality of the equivalence class [α] is (n−1)!
γ1(α)!···γk(α)! and γl(α) is invariant of

permutations of α. For γ ≥ 1, we estimate

(t − rk−1)
γ − (s − rk−1)

γ =
∫ t

s

γ (r − rk−1)
γ−1 dr

using for the integrand on the right-hand side the inequality

(r − rk−1)
γ−1 ≤ 1

(rk − u)(u − r)

∫ rk

u

∫ ρ

r

(v − rk−1)
γ−1 dv dρ, rk−1 ≤ r < u < rk.

For u = rk+r
2 this leads to

(t − rk−1)
γ − (s − rk−1)

γ ≤ 4

(γ + 1)

∫ t

s

(rk − rk−1)
γ+1 − (r − rk−1)

γ+1

(rk − r)2
dr.
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This yields

‖EtDt,·η −EsDs,·η‖2
L2(P⊗μ)

≤ 4
∫ t

s

∞∑
n=1

n!
∑

[α]∈V n−1
m /∼

n!
γ1(α)! · · ·γk−1(α)!(γk(α) + 1)!

∥∥g
(k,α)
n

∥∥2
L2(μ

⊗n)

× (rk − rk−1)
γk(α)+1 − (r − rk−1)

γk(α)+1

(rk − r)2

∏
1≤l<k

(rl − rl−1)
γl(α)δα dr,

where for γk(α) = 0 we have used

0 = (t − rk−1)
γk(α) − (s − rk−1)

γk(α) ≤
∫ t

s

(rk − rk−1) − (r − rk−1)

(rk − r)2
dr.

Because of

γl(α) = γl(α), 0 < l < k and γk(α) = γk(α) + 1

if α = (k,α) we finally get

‖EtDt,·η −EsDs,·η‖2
L2(P⊗μ)

≤ 4
∫ t

s

∞∑
n=1

n!
∑

[α]∈V n
m/∼

n!
γ1(α)! · · ·γk(α)!

∥∥gα
n

∥∥2
L2(μ

⊗n)

× (rk − rk−1)
γk(α) − (r − rk−1)

γk(α)

(rk − r)2

∏
l<k

(rl − rl−1)
γl(α)δα dr

= 4
∫ t

s

∞∑
n=1

n!
∑

α∈V n
m

∥∥gα
n

∥∥2
L2(μ

⊗n)

λ⊗n(�α ∩ (]0, rk]n \ ]0, r]n))
(rk − r)2

dr

= 4
∫ t

s

‖Erk η −Erη‖2

(rk − r)2
dr. �

Lemma 5.4. If η ∈ H∩D1,2 and k ∈ {1, . . . ,m} then for λ-a.e. t ∈ ]rk−1, rk[

‖EtDt,·η‖2
L2(P⊗μ) ≤ ‖Erk η −Et η‖2

rk − t
.

Proof. Similar to the proof of the previous lemma, we get (using the same notation)

‖EtDt,·η‖2
L2(P⊗μ)

=
∥∥∥∥∥

∞∑
n=1

nIn−1

( ∑
α∈V n

m

gα
n1�α1

(t)1�α1⊗(n−1)
]0,t]

)∥∥∥∥∥
2

L2(P⊗μ)
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=
∞∑

n=1

nn!
∑

α∈V n
m

α1=k

∥∥gα
n

∥∥2
L2(μ

⊗n)
(t − rk−1)

γk(α)
∏
l<k

(rl − rl−1)
γl(α)δα

≤
∞∑

n=1

n!
∑

α∈V n
m

∥∥gα
n

∥∥2
L2(μ

⊗n)

(rk − rk−1)
γk(α) − (t − rk−1)

γk(α)

rk − t

∏
l<k

(rl − rl−1)
γl(α)δα

= ‖Erk η −Et η‖2

rk − t
. �

Lemma 5.5. Suppose u ∈]rk−1, T ], η ∈Hu ∩D1,2 and h ∈ L2(μ). Then the equation

Es[ηI1(1]s,a]h)]
a − s

= Es[η
∫
]s,a]×R

h(x)M(dt,dx)]
a − s

=
∫
R

EsDs,xηh(x)μ(dx)

is satisfied P-a.s. for λ-a.e. rk−1 < s < a ≤ rk ∧ u.

Proof. By the Clark–Ocone–Haussmann formula (7), we express η as

η = Eη +
∫

]0,u]×R

p(Dη)t,xM(dt,dx).

Thus we can write

Es

[
η

∫
]s,a]×R

h(x)M(dt,dx)

]

= Es

[∫
]0,u]×R

p(Dη)t,xM(dt,dx)

∫
]s,a]×R

h(x)M(dt,dx)

]

(the constant Eη multiplied with
∫
]s,a]×R

h(x)M(dt,dx) gives zero when applying Es ). Using
now the conditional Itô-isometry, we arrive at

Es

[∫
]0,u]×R

p(Dη)t,xM(dt,dx)

∫
]s,a]×R

h(x)M(dt,dx)

]

= Es

∫
]s,a]×R

EtDt,xηh(x)m(dt,dx)

=
∫

]s,a]×R

EsDt,xηh(x)m(dt,dx)

= (a − s)

∫
R

EsDs,xηh(x)μ(dx)

since Dη is P ⊗ m-a.e. constant on the interval ]rk−1, rk ∧ u[ with respect to the time variable
because η is in Hu. �
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Proof of Theorem 5.1. In the following, we will indicate the dependency of the constants on
certain parameters but nevertheless the constants may vary from line to line.

(iii) ⇒ (ii): This step is analogous to the proof of [14], Theorem 1, (C2l ) ⇒ (C3l ). It holds

‖Yt − Ys‖2 ≤ 2(t − s)

∫ t

s

∥∥f (r,Xr,Yr , Z̄r )
∥∥2 dr + 2

∫ t

s

‖Zr,·‖2
L2(P⊗μ) dr

≤ c
(
Lf ,μ(R), κ ′)∫ t

s

(
1 + ‖Yr‖2 + ‖Zr,·‖2

L2(P⊗μ)

)
dr

≤ c
(
Lf ,μ(R), κ ′, c3

)∫ t

s

(rk − r)θk−1 dr

since
∫ T

0 ‖Yr‖2 dr < ∞ and ‖Z̄r‖ ≤ ‖κ ′‖L2(μ)‖Zr,·‖L2(P⊗μ).
(ii) ⇒ (i): The argument of [14], Theorem 1, (C3l ) ⇒ (C4l ), works here as well so that we

have

‖Yrk −EsYrk‖2 ≤ 4‖Yrk − Ys‖2 ≤ 4c2

θk

(rk − s)θk .

(i) ⇒ (iii): Step 1. We first assume that

ξ ∈H∩D1,2 and f satisfies (Af 1). (23)

Because of the relation

Yr = ErYrk +Er

∫ rk

r

f (u,Xu,Yu, Z̄u)du, rk−1 < r < rk, (24)

Lemma 3.3 and Theorem 3.4(iv) we have P-a.s. for m-a.e. (t, x) ∈]rk−1, rk[×R that

Zt,x = lim
r↘t

Dt,xYr

= lim
r↘t

Dt,x

(
ErYrk +Er

∫ rk

r

f (u,Xu,Yu, Z̄u)du

)

= lim
r↘t

(
ErDt,xYrk +ErDt,x

∫ rk

r

f (u,Xu,Yu, Z̄u)du

)
(25)

= lim
r↘t

(
ErDt,xYrk +Er

∫ rk

r

Dt,xf (u,Xu,Yu, Z̄u)du

)

= EtDt,xYrk +Et

∫ rk

t

Dt,xf (u,Xu,Yu, Z̄u)du,

where we assumed the right continuous versions of the according expressions: Since Yrk ∈
H ∩ D1,2 the expression DYrk can be realized such that it is constant in t on ]rk−1, rk[ and
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(EsDt,xYrk )s∈]rk−1,rk[ is a martingale (for fixed x). From Lemma 5.4, we conclude that

‖Zt,·‖L2(P⊗μ) ≤ ‖Yrk −Et Yrk‖√
rk − t

+
∫ rk

t

∥∥Dt,·f (u,Xu,Yu, Z̄u)
∥∥

L2(P⊗μ)
du. (26)

Since Lemma 3.2, the Lipschitz condition and relation (6) imply∣∣Dt,yf (r,Xr,Yr , Z̄r )
∣∣ ≤ Lf

(
1[t,T ](r) + |Dt,yYr | + |Dt,yZ̄r |

)
, y �= 0,

and

Dt,0f (r,Xr,Yr , Z̄r ) = (
1[t,T ](r)∂x +Dt,0Yr∂y +Dt,0Z̄r∂z

)
f (r,Xr,Yr , Z̄r ),

we have∥∥Dt,·f (r,Xr,Yr , Z̄r )
∥∥

L2(P⊗μ)
≤ Lf

(√
μ(R) + ‖Dt,·Yr‖L2(P⊗μ) + ‖Dt,·Z̄r‖L2(P⊗μ)

)
. (27)

We take the Malliavin derivative of (24), and by Lemmas 3.3 and 5.4, we get

‖Dt,·Yr‖L2(P⊗μ) ≤ ‖Yrk −ErYrk‖√
rk − r

+
∫ rk

r

∥∥Dt,·f (u,Xu,Yu, Z̄u)
∥∥

L2(P⊗μ)
du. (28)

In order to estimate ‖Dt,·Z̄r‖L2(P⊗μ), we will use the representation

Z̄r = Er [(EuYrk )I1(1]r,u]κ ′)]
u − r

+
∫ rk

r

Er [f (a,Xa,Ya, Z̄a)I1(1]r,a]κ ′)]
a − r

da,

for λ-a.e. u such that rk−1 < r < u ≤ rk , which is a consequence of equation (25), the fact that
EuYrk ∈ Hu, f (a,Xa,Ya, Z̄a) ∈ Ha and Lemma 5.5.

Hence for rk−1 < t < r < u < rk the ‘conditional’ Hölder inequality implies

‖Dt,·Z̄r‖L2(P⊗μ)

≤
∥∥∥∥Er [(Dt,·(EuYrk ))I1(1]r,u]κ ′)]

u − r

∥∥∥∥
L2(P⊗μ)

+
∫ rk

r

∥∥∥∥Er [(Dt,·f (a,Xa,Ya, Z̄a))I1(1]r,a]κ ′)]
a − r

∥∥∥∥
L2(P⊗μ)

da

≤ ‖Dt,·(EuYrk )‖L2(P⊗μ)‖κ ′‖L2(μ)√
u − r

+ c
(
Lf ,μ(R), κ ′)∫ rk

r

1 + ‖Dt,·Ya‖L2(P⊗μ) + ‖Dt,·Z̄a‖L2(P⊗μ)√
a − r

da,

where we used that (Er I1(1]r,u]κ ′)2)1/2 ≤ c(κ ′)
√

u − r a.s., and from (27) one gets the estimate
for the integral. Choosing u = rk+r

2 , we conclude by Lemma 5.4 the inequality

‖Dt,·(EuYrk )‖L2(P⊗μ)√
u − r

≤ 2
‖Yrk −ErYrk‖

rk − r
.
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From the estimate (28) for Dt,·Yr and the above one for Dt,·Z̄r , we obtain

‖Dt,·Yr‖L2(P⊗μ) + ‖Dt,·Z̄r‖L2(P⊗μ)

≤ c
(
κ ′)‖Yrk −ErYrk‖

rk − r

+ c
(
Lf ,μ(R), κ ′)∫ rk

r

1 + ‖Dt,·Ya‖L2(P⊗μ) + ‖Dt,·Z̄a‖L2(P⊗μ)√
a − r

da

which can be treated using an iteration and Gronwall’s lemma (see the proof of Lemma 4 in [14])
in order to get

‖Dt,·Yr‖L2(P⊗μ) + ‖Dt,·Z̄r‖L2(P⊗μ) ≤ c
(
Lf ,μ(R), κ ′)‖Yrk −ErYrk‖

rk − r
. (29)

Hence from (26) and (27), it follows

‖Zt,·‖L2(P⊗μ) ≤ ‖Yrk −Et Yrk‖√
rk − t

(30)

+ c
(
Lf ,μ(R), κ ′)∫ rk

t

(
1 + ‖Yrk −ErYrk‖

rk − r

)
dr.

Step 2. Here we use Remark 4.1 and approximate ξ ∈ H by a sequence (ξn)n ⊆ H ∩D1,2 and
f such that (Af ) is fulfilled by (fn)n satisfying (Af 1). The convergence (13) implies that we
can find a subsequence (Znk ) which we will again denote by (Zn) such that for λ-a.e. t ∈ [0, T ]

∥∥Zn
t,· − Zt,·

∥∥2
L2(P⊗μ)

→ 0 as n → ∞. (31)

From the first step, we conclude that (30) holds for Zn and therefore

‖Zt,·‖L2(P⊗μ) ≤ ∥∥Zt,· − Zn
t,·

∥∥
L2(P⊗μ)

+ ∥∥Zn
t,·

∥∥
L2(P⊗μ)

≤ ∥∥Zt,· − Zn
t,·

∥∥
L2(P⊗μ)

+ ‖Yn
rk

−Et Y
n
rk

‖√
rk − t

+ c
(
Lf ,μ(R), κ ′)∫ rk

t

(
1 + ‖Yn

rk
−ErY

n
rk

‖
rk − r

)
dr

≤ ‖Yrk −Et Yrk‖√
rk − t

+ c
(
Lf ,μ(R), κ ′)∫ rk

t

(
1 + ‖Yrk −ErYrk‖

rk − r

)
dr

+ ∥∥Zt,· − Zn
t,·

∥∥
L2(P⊗μ)

+ 2‖Yrk − Yn
rk

‖√
rk − t

+ c
(
Lf ,μ(R), κ ′)∫ rk

t

‖Yrk −ErYrk − (Y n
rk

−ErY
n
rk

)‖
rk − r

dr.
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For sufficiently large n the terms in the second last line are arbitrarily small. For the last term,
we use the relation (24) and get∫ rk

t

‖Yrk −ErYrk − (Y n
rk

−ErY
n
rk

)‖
rk − r

dr

≤
∫ rk

t

∫ rk
r

‖f (u,Xu,Yu, Z̄u) − f (u,Xu,Y
n
u , Z̄n

u)‖du

rk − r
dr

=
∫ rk

t

∫ u

t

1

rk − r
dr

∥∥f (u,Xu,Yu, Z̄u) − f
(
u,Xu,Y

n
u , Z̄n

u

)∥∥du (32)

≤
[∫ rk

t

(∫ u

t

1

rk − r
dr

)2

du

]1/2

×
[∫ rk

t

∥∥f (u,Xu,Yu, Z̄u) − f
(
u,Xu,Y

n
u , Z̄n

u

)∥∥2 du

]1/2

,

where the last factor is arbitrarily small for sufficiently large n.
(i) ⇒ (iv): Step 1. We assume first that (23) holds for (ξ, f ). In the following, we use the

notation f(r) := f (r,Xr,Yr , Z̄r ). Then equation (25) allows us to write∥∥∥∥
∫
R

(Zt,x − Zs,x)h(x)μ(dx)

∥∥∥∥
≤

∥∥∥∥
∫
R

(EtDt,xYrk −EsDs,xYrk )h(x)μ(dx)

∥∥∥∥
+

∥∥∥∥
∫
R

[
Et

∫ rk

t

Dt,xf(r)dr −Es

∫ rk

s

Ds,xf(r)dr

]
h(x)μ(dx)

∥∥∥∥
≤ ‖EtDt,·Yrk −EsDs,·Yrk‖L2(P⊗μ)‖h‖L2(μ)

+
∥∥∥∥
∫
R

[
Et

∫ rk

t

Dt,xf(r)dr −EsEt

∫ rk

t

Dt,xf(r)dr

]
h(x)μ(dx)

∥∥∥∥
+

∥∥∥∥
∫
R

Es

∫ t

s

Ds,xf(r)drh(x)μ(dx)

∥∥∥∥,

where we have used that Df(r) can be chosen to be constant on ]rk−1, rk ∧ r[ that is, we may
exchange Ds,xf(r) by Dt,xf(r) in the second term.

From Lemma 5.3, we obtain that

‖EtDt,·Yrk −EsDs,·Yrk‖2
L2(P⊗μ) ≤ 4

∫ t

s

‖Yrk −ErYrk‖2

(rk − r)2
dr.

We combine (27) with (29) to get

∥∥Du,·f(r)
∥∥2

L2(P⊗μ)
≤ c

(
Lf ,μ(R), κ ′)‖Yrk −ErYrk‖2

(rk − r)2
, (33)
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which is used to estimate

∥∥∥∥
∫
R

Es

∫ t

s

Ds,xf(r)drh(x)μ(dx)

∥∥∥∥
≤ ‖h‖L2(μ)

∫ t

s

∥∥Ds,·f(r)
∥∥

L2(P⊗μ)
dr

≤ ‖h‖L2(μ)

√
c
(
Lf ,μ(R), κ ′)∫ t

s

‖Yrk −ErYrk‖
rk − r

dr.

From Lemma 5.5, we conclude that

∫
R

EtDt,xf(r)h(x)μ(dx) = Et [I1(1]t,r]h)f(r)]
r − t

.

Applying the Clark–Ocone–Haussmann formula (7) and (33) yields

∥∥∥∥
∫
R

EtDt,xf(r)h(x)μ(dx) −Es

∫
R

EtDt,xf(r)h(x)μ(dx)

∥∥∥∥
2

= 1

(r − t)2

∥∥∥∥
∫

]s,t]×R

p
[
Du,yEt

(
I1(1]t,r]h)f(r)

)]
M(du,dy)

∥∥∥∥
2

≤ 1

(r − t)2

∫ t

s

∫
R

E
∣∣Et

[
I1(1]t,r]h)Du,yf(r)

]∣∣2m(du,dy)

≤ 1

r − t
‖h‖2

L2(μ)

∫ t

s

∥∥Du,·f(r)
∥∥2

L2(P⊗μ)
du

≤ 1

r − t
‖h‖2

L2(μ)c
(
Lf ,μ(R), κ ′)∫ t

s

‖Yrk −ErYrk‖2

(rk − r)2
du.

For the first inequality, we have used that for u < t < r it holds P⊗ m-a.e.

Du,y

[
I1(1]t,r]h)f(r)

] = I1(1]t,r]h)Du,yf(r)

since Du,yI1(1]t,r]h) = 0. This can be proved, for example, applying [16], Corollary 3.1, and
approximation. Hence,

∥∥∥∥∥
∫ rk

t

[∫
R

EtDt,xf(r)h(x)μ(dx) −Es

∫
R

EtDt,xf(r)h(x)μ(dx)

]
dr

∥∥∥∥∥
≤ ‖h‖L2(μ)

√
c
(
Lf ,μ(R), κ ′)∫ rk

t

‖Yrk −ErYrk‖
(rk − r)

√
r − t

dr
√

t − s.
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Consequently, we infer

∥∥∥∥
∫
R

(Zt,x − Zs,x)h(x)μ(dx)

∥∥∥∥
2

L2

≤ ‖h‖2
L2(μ)c

(
Lf ,μ(R), κ ′)[∫ t

s

‖Yrk −ErYrk‖2

(rk − r)2
dr (34)

+
(∫ rk

t

‖Yrk −ErYrk‖
(rk − r)

√
r − t

dr

)2

(t − s)

]
.

Obviously (5.1) implies

∫ t

s

‖Yrk −ErYrk‖2

(rk − r)2
dr ≤ c1

∫ t

s

(rk − r)θk−2 dr

and

(∫ rk

t

‖Yrk −ErYrk‖
(rk − r)

√
r − t

dr

)2

≤ c1

(∫ 1

0
(1 − u)(θk/2)−1u−1/2 du

)2

(rk − t)θk−1

= c1B
2
(

θk

2
,

1

2

)
(rk − t)θk−1,

where B denotes the beta function. For θk < 1 one can see that for all s, t ∈]rk−1, rk[ with s < t

it holds

(rk − t)θk−1(t − s) ≤ rk − rk−1

1 − θk

(
(rk − t)θk−1 − (rk − s)θk−1)

= (rk − rk−1)

∫ t

s

(rk − r)θk−2 dr

since this inequality is equivalent to

t − s := ε(rk − s) ≤ rk − rk−1

1 − θk

[
1 − (1 − ε)1−θk

]
for ε ∈]0,1[ and s ∈]rk−1, rk[, and the last inequality can be proved easily. For θk = 1 we have

(rk − t)0(t − s) ≤
∫ t

s

rk − rk−1

rk − r
dr.

Summarizing we get the assertion with

c4 = c1c
(
Lf ,μ(R), κ ′)(1 + B2

(
θk

2
,

1

2

)
(rk − rk−1)

)
.
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Step 2. Now we take the sequence (ξn, f n)n from step 2 of the implication (i) ⇒ (iii) and
proceed with (34) in the same way as we did with (30). In order to get the analogous estimate,
we use the relations∫ t

s

‖ ∫ rk
r

f (u,Xu,Yu, Z̄u) − f (u,Xu,Y
n
u , Z̄n

u)du‖2

(rk − r)2
dr

≤
∫ t

s

1

rk − r
dr

∫ rk

rk−1

∥∥f (u,Xu,Yu, Z̄u) − f
(
u,Xu,Y

n
u , Z̄n

u

)∥∥2 du

which is arbitrarily small for fixed s, t ∈ [rk−1, rk[\Nk where λ(Nk) = 0 and large n ∈N, and

∫ rk

t

∫ rk
r

‖f (u,Xu,Yu, Z̄u) − f (u,Xu,Y
n
u , Z̄n

u)‖du

(rk − r)
√

r − t
dr

≤ 2
∫ rk
t

‖f (u,Xu,Yu, Z̄u) − f (u,Xu,Y
n
u , Z̄n

u)‖du

rk − t

∫ (rk+t)/2

t

1√
r − t

dr

+
√

2√
rk − t

∫ rk

(rk+t)/2

∫ rk
r

‖f (u,Xu,Yu, Z̄u) − f (u,Xu,Y
n
u , Z̄n

u)‖du

rk − r
dr.

For the last term, we can apply the estimate (32) to see that the RHS is arbitrarily small for large
n ∈N. �

6. A sufficient condition on ξ for fractional smoothness

Assume (Af ) is satisfied for (8) and ξ ∈H. If k = m, condition (i) of Theorem 5.1 means in fact

‖ξ −Esξ‖2 ≤ c1(T − s)θm, s ∈]rm−1, T ].
Following the ideas of [14], we will formulate a condition on ξ ∈ H which implies that (5.1) of
Theorem 5.1 holds for all k ∈ {1, . . . ,m}.

Assume that X̌ and X are processes on (�,F ,P) such that X̌ is an independent copy of the
Lévy process X. We define for 0 ≤ t < r ≤ T

Xt,r
s :=

∫ s

0
1[0,T ]\]t,r](u)dXu +

∫ s

0
1]t,r](u)dX̌u, s ∈ [0, T ], (35)

that is, we obtain the process Xt,r from X by replacing it on the interval ]t, r] by its independent
copy. Consequently, for the random measure Mt,r w.r.t. Xt,r we have the relation

Mt,r (B) = M
(
B \ (]t, r] ×R

)) + M̌
(
B ∩ (]t, r] ×R

))
, B ∈ B

([0, T ] ×R
)
.

By (F̂t )t∈[0,T ] we denote the augmented natural filtration w.r.t. (X, X̌) and put L2 := L2(�,
F̂T ,P) (the notation (Ft )t∈[0,T ] we keep for the augmented natural filtration w.r.t. X).
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For symmetric fn ∈ Ln
2 it holds

∥∥I t,r
n (fn) − In(fn)

∥∥2 = 2n!∥∥fn(1 − 1(([0,T ]\]t,r])×R)n)
∥∥2

Ln
2
. (36)

For any η ∈ L2 given by η = ∑∞
n=0 In(fn), we define

ηt,r :=
∞∑

n=1

I t,r
n (fn).

Theorem 6.1. Assume that ξ ∈ H and (Af ) is satisfied for (8). If there exist constants c > 0 and
θk ∈]0,1] such that

∥∥ξ − ξ t,rk
∥∥2 ≤ c(rk − t)θk for all t ∈ [rk−1, rk]

then

‖Yrk −Et Yrk‖2 ≤ C(rk − t)θk for all t ∈ [rk−1, rk].

Remark 6.2. (i) For f = 0, it follows from Theorem 6.1 the implication

∥∥ξ − ξ t,rk
∥∥2 ≤ c(rk − t)θk for all t ∈ [rk−1, rk]

(37)
�⇒ ‖Erk ξ −Et ξ‖2 ≤ c(rk − t)θk for all t ∈ [rk−1, rk].

For certain ξ the implication (37) is in fact an equivalence: for example, if ξ = g(Xrm −
Xrm−1, . . . ,Xr1 − Xr0) ∈ L2 such that g is a symmetric function and rk = kT

m
, for k = 0, . . . ,m.

A more detailed discussion under which conditions equivalence holds for (37) as well as an ex-
ample where ‖Erk ξ − Et ξ‖2 ≤ c(rk − t)θk , for all t ∈ [rk−1, rk] does not imply ‖ξ − ξ t,rk‖2 ≤
c(rk − t)θk , for all t ∈ [rk−1, rk] can be found in [18].

(ii) If ξ ∈ H the case � = (1,1, . . . ,1) corresponds to Malliavin differentiability:

∃c > 0:
∥∥ξ − ξ t,rk

∥∥2 ≤ c(rk − t) for all t ∈ [rk−1, rk], k = 1, . . . ,m
(38)

⇐⇒ ξ ∈ D1,2.

Indeed, using the notation of the proof of Lemma 5.3 and setting
(

n
γ (α)

) := n!
γ1(α)!···γm(α)! we have

∥∥ξ − ξ t,rk
∥∥2 = 2

∞∑
n=1

n!
∑

[α]∈V n
m/∼

(
n

γ (α)

)∥∥gα
n

∥∥2
L2(μ

⊗n)

× (
(rk − rk−1)

γk(α) − (t − rk−1)
γk(α)

) ∏
1≤l≤m

l �=k

(rl − rl−1)
γl(α).
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This implies for r := t−rk−1
rk−rk−1

and R := max1≤k≤m
1

rk−rk−1
that

‖ξ − ξ t,rk‖2

rk − t
= 2

rk − rk−1

∞∑
n=1

n!
∑

[α]∈V n
m/∼

(
n

γ (α)

)∥∥gα
n

∥∥2
L2(μ

⊗n)
λn(�α)

× 1{γk(α)≥1}
(
1 + r + · · · + rγk(α)−1)

≤ 2R

∞∑
n=1

n!
∑

[α]∈V n
m/∼

(
n

γ (α)

)∥∥gα
n

∥∥2
L2(μ

⊗n)
λn(�α)γk(α)

≤ 2R‖Dξ‖2
P⊗m

since γk(α) ≤ n. On the other hand, we get because of n = ∑m
k=1 γk(α) for α ∈ V n

m from the
above relation that

‖Dξ‖2
P⊗m =

m∑
k=1

∞∑
n=1

n!
∑

[α]∈V n
m/∼

(
n

γ (α)

)∥∥gα
n

∥∥2
L2(μ

⊗n)
λn(�α)γk(α)

≤ T

2
sup

1≤k≤m

sup
rk−1<t<rk

‖ξ − ξ t,rk‖2

rk − t
.

In [18], there is an example which shows that (38) is not necessarily true without assuming ξ ∈H.

Example 6.3. If X is any square integrable Lévy process it holds for ξ := 1]K,∞[(X1) with
K ∈R that

ξ ∈D1,2 ⇐⇒ σ = 0 and
∫

{|x|≤1}
|x|dν(x) < ∞

(see [26], Example 3.1). If X is a tempered α-stable process given by the Lévy measure

να(dx) = d

|x|1+α
(1 + |x|)−m1{x �=0} dx,

where d > 0, α ∈]0,2[ and m ∈]2 − α,∞[, it follows from [15], Section 4.2, that

ξ ∈ B
1/2
2,∞ := (L2,D1,2)1/2,∞,

that is, (see Remarks 5.2(i) and 6.2(i)) there exists a c > 0:∥∥ξ − ξ t,1
∥∥2 ≤ c(1 − t)1/2 for all t ∈ [0,1].

Consequently, for any α ∈ [1,2[ the above ξ is in B
1/2
2,∞ but not in D1,2.

Proof of Theorem 6.1. If (Y,Z) is a solution of (8), then (Y t,r ,Zt,r ) solves

Yu = ξ t,r +
∫ T

u

f
(
s,Xt,r

s ,Ys , Z̄s

)
ds −

∫
]u,T ]×R

Zs,xM
t,r (ds,dx).
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From (36), we conclude that

∥∥Er I
t,r
n (fn) −Er In(fn)

∥∥2 = 2
∥∥Et In(fn) −Er In(fn)

∥∥2
.

Since Yrk is Frk -measurable this implies for t ∈]rk−1, rk[ that

2‖Yrk −Et Yrk‖2 = ∥∥Yrk − Y t,rk
rk

∥∥2
.

Since M and Mt,rk coincide on ]rk, T ] ×R we have

Yrk − Y t,rk
rk

= ξ − ξ t,rk

+
∫ T

rk

f (s,Xs,Ys, Z̄s) − f
(
s,Xt,rk

s , Y rk
s , Z̄t,rk

s

)
ds

−
∫

]rk,T ]×R

(
Zs,x − Zt,rk

s,x

)
M(ds,dx).

By Theorem 2.3, we get

E
∣∣Yrk − Y t,rk

rk

∣∣2 +E

∫
]rk,T ]×R

∣∣Zs,x − Zt,rk
s,x

∣∣2m(ds,dx)

≤ C

(
E

∣∣ξ − ξ t,rk
∣∣2 +E

∫ T

rk

∣∣f (s,Xs,Ys, Z̄s) − f
(
s,Xt,rk

s , Ys, Z̄s

)∣∣2 ds

)
,

which can be reduced by the Lipschitz property of f to

E
∣∣Yrk − Y t,rk

rk

∣∣2 +E

∫
]rk,T ]×R

∣∣Zs,x − Zt,rk
s,x

∣∣2m(ds,dx)

≤ C

(
E

∣∣ξ − ξ t,rk
∣∣2 +E

∫ T

rk

L2
f

∣∣Xs − Xt,rk
s

∣∣2 ds

)
.

By definition of Xt,rk in (35), we get for s > rk

E
∣∣Xs − Xt,rk

s

∣∣2 = E
∣∣Xrk − Xt + (X̌rk − X̌t )

∣∣2 = C1(rk − t).

Thus, there is a constant C̃ such that

E
∣∣Yrk − Y t,rk

rk

∣∣2 +E

∫
]rk,T ]×R

∣∣Zs,x − Zt,rk
s,x

∣∣2m(ds,dx)

≤ CE
∣∣ξ − ξ t,rk

∣∣2 + C̃(rk − t),

which implies the assertion. �
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7. Concluding remarks

1. The assumption that the Lévy process X is square integrable could be avoided by using
a more general formulation of the Clark–Ocone–Haussmann formula and modifying the
dependency of the generator f (t,Xt , Yt , Z̄t ) on Xt . (If X is not square integrable, Xt does
not belong to D1,2.)

2. A generalization to the setting of a d-dimensional Lévy process seems to be possible as well
and similar results might be expected. For example, for a multidimensional Lévy process
without Brownian part, a chaos decomposition and a Clark–Ocone–Haussmann formula
can be found in [24] and [25]. This could be extended to general Lévy processes.

3. In this paper, the dependency of the driver with respect to the Z process is given by the
integral

∫
Zt,xκ(dx). A generalization to the dependency on finitely many integrals,

f

(
s,Xs,Ys,

∫
Zt,xκ1(dx), . . . ,

∫
Zt,xκn(dx)

)
,

where the variables z1, . . . , zn in the generator underly the same assumptions as for one
z-variable appears to be straightforward. Note that the choice κ = δ0 covers the case for the
Z-variable from [5], for instance.

4. The investigation of the case where the terminal condition or the generator depends on
paths of a process of a Lévy driven SDE is of major interest for further research, as well as
the extension to assumptions beyond the Lipschitz generator setting like quadratic drivers.
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