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Two key ingredients to carry out inference on the copula of multivariate observations are the empirical
copula process and an appropriate resampling scheme for the latter. Among the existing techniques used
for i.i.d. observations, the multiplier bootstrap of Rémillard and Scaillet (J. Multivariate Anal. 100 (2009)
377–386) frequently appears to lead to inference procedures with the best finite-sample properties. Bücher
and Ruppert (J. Multivariate Anal. 116 (2013) 208–229) recently proposed an extension of this technique to
strictly stationary strongly mixing observations by adapting the dependent multiplier bootstrap of Bühlmann
(The blockwise bootstrap in time series and empirical processes (1993) ETH Zürich, Section 3.3) to the
empirical copula process. The main contribution of this work is a generalization of the multiplier resam-
pling scheme proposed by Bücher and Ruppert along two directions. First, the resampling scheme is now
genuinely sequential, thereby allowing to transpose to the strongly mixing setting many of the existing mul-
tiplier tests on the unknown copula, including nonparametric tests for change-point detection. Second, the
resampling scheme is now fully automatic as a data-adaptive procedure is proposed which can be used to
estimate the bandwidth parameter. A simulation study is used to investigate the finite-sample performance
of the resampling scheme and provides suggestions on how to choose several additional parameters. As
by-products of this work, the validity of a sequential version of the dependent multiplier bootstrap for em-
pirical processes of Bühlmann is obtained under weaker conditions on the strong mixing coefficients and
the multipliers, and the weak convergence of the sequential empirical copula process is established under
many serial dependence conditions.

Keywords: lag window estimator; multiplier central limit theorem; multivariate observations; partial-sum
process; ranks; serial dependence

1. Introduction

Let X be a d-dimensional random vector with continuous marginal cumulative distribution func-
tions (c.d.f.s) F1, . . . ,Fd . From the work of Sklar [45], the c.d.f. F of X can be written in a
unique way as

F(x)= C
{
F1(x1), . . . ,Fd(xd)

}
, x ∈R

d,

where the function C : [0,1]d → [0,1] is a copula and can be regarded as capturing the depen-
dence among the components of X. The above equation is at the origin of the increasing use of
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copulas for modeling multivariate distributions with continuous margins in many areas such as
quantitative risk management (McNeil, Frey and Embrechts [31]), econometric modeling (Patton
[35]), environmental modeling (Salvadori, De Michele and Kottegoda [41]), to name a very few.

Assume that C and F1, . . . ,Fd are unknown and let X1, . . . ,Xn be drawn from a strictly
stationary sequence of continuous d-dimensional random vectors with c.d.f. F . For any i ∈
{1, . . . , n} and j ∈ {1, . . . , d}, denote by R1:n

ij the (mid-)rank of Xij among X1j , . . . ,Xnj and

let Û1:n
ij = R1:n

ij /n. The random vectors Û1:n
i = (Û1:n

i1 , . . . , Û1:n
id ), i ∈ {1, . . . , n}, are often re-

ferred to as pseudo-observations from the copula C, and a natural nonparametric estimator of C

is the empirical copula of X1, . . . ,Xn (Rüschendorf [40]; Deheuvels [19]), frequently defined as
the empirical c.d.f. computed from the pseudo-observations, that is,

C1:n(u)= 1

n

n∑
i=1

1
(
Û1:n

i ≤ u
)
, u ∈ [0,1]d .

The empirical copula plays a key role in most nonparametric inference procedures on C. Ex-
amples of its use for parametric inference, nonparametric testing and goodness-of-fit testing can
be found in Tsukahara [46], Rémillard and Scaillet [39], Genest, Rémillard and Beaudoin [23],
respectively, among many others. The asymptotics of such procedures typically follow from
the asymptotics of the empirical copula process. With applications to change-point detection in
mind, a generalization of the latter process central to this work is the two-sided sequential empir-
ical copula process. It is defined, for any (s, t) ∈�= {(s, t) ∈ [0,1]2 : s ≤ t} and u ∈ [0,1]d , by

Cn(s, t,u)= 1√
n

�nt�∑
i=�ns�+1

{
1
(
Û�ns�+1:�nt�

i ≤ u
)−C(u)

}
, (1.1)

where, for any y ≥ 0, �y� is the greatest integer smaller or equal than y. The latter process can
be rewritten in terms of the empirical copula C�ns�+1:�nt� of the sample X�ns�+1, . . . ,X�nt� as

Cn(s, t,u)=√nλn(s, t)
{
C�ns�+1:�nt�(u)−C(u)

}
, (s, t,u) ∈�× [0,1]d,

where λn(s, t)= (�nt� − �ns�)/n and with the convention that Ck:k−1(u)= 0 for all u ∈ [0,1]d
and all k ∈ {1, . . . , n}.

The quantity Cn(0,1, ·, ·) is the standard empirical copula process which has been extensively
studied in the literature (see, e.g., Rüschendorf [40]; Gaenssler and Stute [22]; Tsukahara [46];
van der Vaart and Wellner [49]; Segers [43]; Bücher and Volgushev [13]). Notice that the process
Cn(0, ·, ·, ·) does not coincide with the sequential process initially studied by Rüschendorf [40]
and defined by

C
◦
n(s,u)= 1√

n

�ns�∑
i=1

{
1
(
Û1:n

i ≤ u
)−C(u)

}
, (s,u) ∈ [0,1]d+1. (1.2)

The above process, unlike Cn(0, ·, ·, ·), cannot be rewritten in terms of the empirical copula
unless s = 1. Note that the weak convergence of C◦n was further studied by Bücher and Volgushev
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[13] under a large number of serial dependence scenarios and under mild smoothness conditions
on the copula.

As mentioned earlier, a first key ingredient of many of the existing inference procedures on
the unknown copula C is the process Cn defined in (1.1). A second key ingredient is typically
some resampling scheme allowing to obtain replicates of Cn. When dealing with independent ob-
servations, several such resampling schemes for the empirical copula process Cn(0,1, ·, ·) were
proposed in the literature, ranging from the multinomial bootstrap of Fermanian, Radulović and
Wegkamp [21] to the multiplier technique introduced in Scaillet [42] and investigated further in
Rémillard and Scaillet [39]. Their finite-sample properties were compared in Bücher and Dette
[8] who concluded that the multiplier bootstrap of Rémillard and Scaillet [39] has, overall, the
best finite-sample behavior. In the case of strongly mixing observations, Bücher and Ruppert [11]
recently proposed a similar resampling scheme by adapting the dependent multiplier bootstrap
of Bühlmann ([15], Section 3.3) to the process C◦n defined in (1.2). Their empirical investigations
indicate that the latter outperforms in finite samples a block bootstrap based on the work of Kün-
sch [30] and Bühlmann [14]. Note that the idea of dependent multipliers appearing in Bühlmann
([15], Section 3.3) can also be found in Chen and Fan ([16], Section 5.1) and was recently inde-
pendently rediscovered by Shao [44] in the context of the smooth function model but not in the
empirical process setting. For the sample mean as statistic of interest, the latter author connected
this resampling technique to the tapered block bootstrap of Paparoditis and Politis [33].

The main aim of this work is to provide an extended version of the multiplier resampling
scheme of Bücher and Ruppert [11] adapted to the two-sided sequential process Cn defined
in (1.1). The influence of the parameters of the resulting bootstrap procedure is studied in detail,
both theoretically and by means of extensive simulations. An important contribution of the paper
is an approach for estimating the key bandwidth parameter which plays a role somehow analo-
gous to that of the block length in the block bootstrap. As a practical consequence, the resulting
dependent multiplier technique for Cn can be used in a fully automatic way and many of the
existing multiplier tests on the unknown copula C derived in the case of i.i.d. observations can
be transposed to the strongly mixing case. In addition, due to its sequential nature, the resam-
pling scheme can be used to derive nonparametric tests for change-point detection particularly
sensitive to changes in the copula. This last point will be discussed in more detail in Section 4,
and is also the subject of a companion paper (Bücher et al. [10]). Finally, the obtained results
could be used to develop statistical inference procedures for Markovian copula time series mod-
els as introduced in Darsow, Nguyen and Olsen [18]. Based on recent results from Beare [5] on
the mixing properties of these time series, one could, for instance, apply the proposed multiplier
bootstrap to derive uniform confidence bands for the empirical copula or to develop tests for
simple goodness-of-fit hypotheses on the copula in theses models.

There are two important by-products of this work that can be of independent interest. First, the
validity of a sequential version of the dependent multiplier bootstrap for empirical processes of
Bühlmann ([15], Section 3.3) (which has also been considered in Bücher and Ruppert [11], proof
of Proposition 2) is obtained under weaker conditions on the rate of decay of the strong mixing
coefficients and the multipliers. The derived result is based on a sequential unconditional multi-
plier central limit theorem for the multivariate empirical process indexed by lower-left orthants
that is adapted to the case of strongly mixing observations. Second, the weak convergence of the
two-sided sequential empirical copula process Cn is established under many serial dependence
scenarios, including mild strong mixing conditions.
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The paper is organized as follows. The second section presents a sequential extension of the
seminal work of Bühlmann ([15], Section 3.3). In the third section, the asymptotics of the two-
sided sequential empirical copula process Cn are obtained under many serial dependence con-
ditions. Based on the results of the second and third sections, a dependent multiplier bootstrap
for Cn is derived next. In the fifth section, the practical steps necessary to carry out the derived
bootstrap are examined. In particular, a procedure for estimating the key bandwidth parameter
of the dependent multiplier bootstrap is proposed by adapting to the empirical process setting
the approach put forward in Politis and White [38] and Patton, Politis and White [34], among
others. In addition, two ways of generating dependent multiplier sequences central to this resam-
pling technique are discussed. The last section partially reports the results of large-scale Monte
Carlo experiments whose aim was to investigate the influence in finite samples of the various
parameters involved in the dependent multiplier bootstrap for Cn.

The following notation is used in the sequel. The arrow “�” denotes weak convergence in
the sense of Definition 1.3.3 in van der Vaart and Wellner [48], and, given a set T , �∞(T )

(resp., C(T )) represents the space of all bounded (resp., continuous) real-valued functions on T

equipped with the uniform metric.

2. A dependent multiplier bootstrap for the multivariate
empirical process under strong mixing

The multiplier bootstrap of Rémillard and Scaillet [39] that has been adopted as a resampling
technique in the case of i.i.d. observations in many tests on the unknown copula C is a conse-
quence of the multiplier central limit theorem for empirical processes (see, e.g., Kosorok [29],
Theorem 10.1 and Corollary 10.3). A sequential version of the previous result can be proved
(see Holmes, Kojadinovic and Quessy [24], Theorem 1) by using the method of proof adopted
in van der Vaart and Wellner ([48], Theorem 2.12.1). While investigating the block bootstrap
for empirical processes constructed from strongly mixing observations, Bühlmann ([15], Sec-
tion 3.3) obtained what resembles to a conditional version of the multiplier central limit theorem,
subsequently also referred to as a dependent multiplier bootstrap (note that a sequential version
of this result appears in the proof of Proposition 2 of Bücher and Ruppert [11]). The main idea
of Bühlmann is to replace i.i.d. multipliers by suitable serially dependent multipliers. In the rest
of the paper, we say that a sequence of random variables (ξi,n)i∈Z is a dependent multiplier
sequence if:

(M1) The sequence (ξi,n)i∈Z is strictly stationary with E(ξ0,n) = 0, E(ξ2
0,n) = 1 and

supn≥1 E(|ξ0,n|ν) <∞ for all ν ≥ 1, and is independent of the available sample X1, . . . ,Xn.
(M2) There exists a sequence �n →∞ of strictly positive constants such that �n = o(n) and

the sequence (ξi,n)i∈Z is �n-dependent, that is, ξi,n is independent of ξi+h,n for all h > �n and
i ∈N.

(M3) There exists a function ϕ :R→ [0,1], symmetric around 0, continuous at 0, satisfying
ϕ(0)= 1 and ϕ(x)= 0 for all |x|> 1 such that E(ξ0,nξh,n)= ϕ(h/�n) for all h ∈ Z.

To state the main result of this section, we need to introduce additional notation and defini-
tions. Let U1, . . . ,Un be the unobservable sample obtained from X1, . . . ,Xn by the probability



A dependent multiplier bootstrap for the sequential empirical copula process 931

integral transforms Uij = Fj (Xij ), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}. It follows that U1, . . . ,Un is
a marginally uniform d-dimensional sample from the unknown c.d.f. C. The corresponding se-
quential empirical process is then defined as

B̃n(s,u)= 1√
n

�ns�∑
i=1

{
1(Ui ≤ u)−C(u)

}
, (s,u) ∈ [0,1]d+1. (2.1)

Note that, in the rest of the paper, the notation of most of the quantities that are directly computed
from the unobservable sample U1, . . . ,Un will involve the symbol “∼.”

Furthermore, let M be a large integer and let (ξ
(1)
i,n )i∈Z, . . . , (ξ

(M)
i,n )i∈Z be M independent

copies of the same dependent multiplier sequence. Then, for any m ∈ {1, . . . ,M} and (s,u) ∈
[0,1]d+1, let

B̃
(m)
n (s,u)= 1√

n

�ns�∑
i=1

ξ
(m)
i,n

{
1(Ui ≤ u)−C(u)

}
. (2.2)

From the previous display, we see that the bandwidth sequence �n defined in assumption (M2)
plays a role somehow analogous to that of the block length in the block bootstrap. Two ways of
forming the dependent multiplier sequences (ξ

(m)
i,n )i∈Z will be presented in Section 5.2.

Finally, for the sake of completeness, let us recall the notion of strongly mixing sequence.
For a sequence of d-dimensional random vectors (Yi )i∈Z, the σ -field generated by (Yi )a≤i≤b ,
a, b ∈ Z ∪ {−∞,+∞}, is denoted by Fb

a . The strong mixing coefficients corresponding to the
sequence (Yi )i∈Z are then defined by α0 = 1/2 and

αr = sup
p∈Z

sup
A∈Fp

−∞,B∈F+∞p+r

∣∣P(A∩B)− P(A)P(B)
∣∣, r ∈N, r > 0.

The sequence (Yi )i∈Z is said to be strongly mixing if αr → 0 as r →∞.
The following result, inspired by Bühlmann ([15], Section 3.3), could be regarded as an ex-

tension of the multiplier central limit theorem to the sequential and strongly mixing setting for
empirical processes indexed by lower-left orthants. Its proof is given in Appendix A.

Theorem 2.1 (Dependent multiplier central limit theorem). Assume that �n =O(n1/2−ε) for
some 0 < ε < 1/2 and that U1, . . . ,Un is drawn from a strictly stationary sequence (Ui )i∈Z
whose strong mixing coefficients satisfy αr =O(r−a), a > 3+ 3d/2. Then,

(
B̃n, B̃

(1)
n , . . . , B̃(M)

n

)
�

(
BC,B

(1)
C , . . . ,B

(M)
C

)
in {�∞([0,1]d+1)}M+1, where BC is the weak limit of the sequential empirical process B̃n defined
in (2.1), and B

(1)
C , . . . ,B

(M)
C are independent copies of BC .

Before commenting on the result and the assumptions of the above theorem, let us state a
corollary that can be regarded as an unconditional and sequential analogue of Theorem 3.2 of
Bühlmann [15], and may be of interest for applications of empirical processes outside the scope
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of copulas. Recall that X1, . . . ,Xn is drawn from a strictly stationary sequence of continuous
d-dimensional random vectors with c.d.f. F and that the margins of F are denoted by F1, . . . ,Fd .
Then, let

Zn(s,x)= 1√
n

�ns�∑
i=1

{
1(Xi ≤ x)− F(x)

}
, (s,x) ∈ [0,1] ×R

d ,

be the usual sequential empirical process based on the observed sequence X1, . . . ,Xn and, for
any m ∈ {1, . . . ,M}, let

Ẑ
(m)
n (s,x)= 1√

n

�ns�∑
i=1

ξ
(m)
i,n

{
1(Xi ≤ x)− Fn(x)

}
, (s,x) ∈ [0,1] ×R

d,

where R = [−∞,∞] and Fn is the empirical c.d.f. computed from X1, . . . ,Xn. The follow-
ing corollary is then a consequence of the fact that Zn(s,x)= B̃n{s,F1(x1), . . . ,Fd(xd)} for all
(s,x) ∈ [0,1] ×Rd and that, under the conditions of Theorem 2.1, for all m ∈ {1, . . . ,M},

sup
(s,x)∈[0,1]×Rd

∣∣Ẑ(m)
n (s,x)− B̃

(m)
n

{
s,F1(x1), . . . ,Fd(xd)

}∣∣ P→ 0,

a proof of which follows from the proof of Lemma A.3 in the supplementary material (Bücher
and Kojadinovic [9]).

Corollary 2.2 (Dependent multiplier bootstrap for Zn). Assume that �n =O(n1/2−ε) for some
0 < ε < 1/2 and that X1, . . . ,Xn is drawn from a strictly stationary sequence (Xi )i∈Z of con-
tinuous d-dimensional random vectors whose strong mixing coefficients satisfy αr = O(r−a),
a > 3+ 3d/2. Then,

(
Zn, Ẑ

(1)
n , . . . , Ẑ(M)

n

)
�

(
ZF ,Z

(1)
F , . . . ,Z

(M)
F

)
in {�∞([0,1] ×R

d)}M+1, where ZF is the weak limit of Zn, and Z
(1)
F , . . . ,Z

(M)
F are independent

copies of ZF .

Remark 2.3. In the literature, the “validity” (or “consistency”) of a bootstrap procedure is of-
ten shown by establishing weak convergence of conditional laws (see, e.g., van der Vaart [47],
Chapter 23). In most theoretical developments of this type, the necessary additional step of ap-
proximating conditional laws by simulation from the random resampling mechanism sufficiently
many times is typically omitted (van der Vaart [47], page 329). An appropriate unconditional
weak convergence result of the form of the one established in Corollary 2.2 (see also Segers
[43], and references therein for other examples) already includes the repetition of the random
resampling mechanism and can be used to deduce consistency of a bootstrap procedure in many
situations of practical interest. A rather general result in that direction is provided in Proposi-
tion F.1 of the supplementary material (Bücher and Kojadinovic [9]). As an important conse-
quence, in many situations of practical interest, both paradigms (conditional and unconditional)
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can be used, and one can choose the approach that appears to be easiest for the particular prob-
lem at hand. In the empirical process setting, we tend to favor the unconditional paradigm as
the usual workhorses for empirical process theory, the (extended) continuous mapping theorem
and the functional delta method, appear to be applicable under less restrictive conditions in an
unconditional setting (see, e.g., Kosorok [29], Section 10.1.4).

From a practical perspective, Corollary 2.2 is, for instance, a first necessary step to transpose
to the strongly mixing setting the goodness-of-fit and nonparametric change-point tests based on
empirical c.d.f.s considered in Kojadinovic and Yan [28] and Holmes, Kojadinovic and Quessy
[24], respectively.

We end this section by a few comments on the assumptions of Theorem 2.1 and Corollary 2.2:

• The requirement that �n = O(n1/2−ε) for some 0 < ε < 1/2 is used for proving the finite-
dimensional convergence involved in Theorem 2.1, while the condition αr = O(r−a), a >

3+ 3d/2, is needed for the proof of the asymptotic equicontinuity.
• Theorem 3.2 of Bühlmann [15] can be regarded as a nonsequential conditional analogue of

Corollary 2.2 with slightly more constrained multiplier random variables. The condition on
the rate of decay of the strong mixing coefficients in that result is

∑∞
r=0(r + 1)pα

1/2
r <∞

with p =max{8d + 12, �2/ε� + 1} and is therefore stronger than the condition involved in
Theorem 2.1.

• The condition on the strong mixing coefficients in Theorem 2.1 and Corollary 2.2 is clearly
satisfied if X1, . . . ,Xn are i.i.d., so that the above unconditional resampling scheme remains
valid for independent observations. In the latter case however, the Monte Carlo experiments
carried out in Bücher and Ruppert [11] suggest that a simpler scheme with i.i.d. multipliers
(based, e.g., on Theorem 1 of Holmes, Kojadinovic and Quessy [24]) will lead to better
finite-sample performance. As noted by a referee, this was to be expected since the use
of a resampling scheme designed to capture dependence for observations that are serially
independent should naturally result in an efficiency loss, especially if the tuning parameter
is estimated.

3. Asymptotics of the sequential empirical copula process under
serial dependence

In the case of i.i.d. observations, the classical empirical copula process turns out to be asymptoti-
cally equivalent to a linear functional of the multivariate sequential empirical process B̃n defined
in (2.1) (see Segers [43], Proposition 4.3). This representation is at the heart of the multiplier
bootstrap of Rémillard and Scaillet [39]. Obtaining such an asymptotic representation for the
two-sided sequential empirical copula process Cn defined in (1.1) is therefore a preliminary step
before a dependent multiplier bootstrap for Cn under strong mixing can be derived as a conse-
quence of Theorem 2.1. The desired result is actually a corollary of a more general result. Indeed,
in this section, the asymptotics of Cn are established under many serial dependence scenarios as a
consequence of the weak convergence of the multivariate sequential empirical process B̃n. More
specifically, the following condition is considered.
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Condition 3.1. The sample U1, . . . ,Un is drawn from a strictly stationary sequence (Ui )i∈Z
such that B̃n converges weakly in �∞([0,1]d+1) to a tight centered Gaussian process BC con-
centrated on{

α� ∈ C
([0,1]d+1) :α�(s,u)= 0 if one of the components of (s,u) is 0 and

α�(s,1, . . . ,1)= 0 for all s ∈ (0,1]}.
Note that, in the case of serial independence, the above condition is an immediate consequence

of Theorem 2.12.1 of van der Vaart and Wellner [48]. As shall be discussed below, it is also met
under strong mixing.

We also consider the following smoothness condition on C proposed by Segers [43]. As ex-
plained by the latter author, this condition is nonrestrictive in the sense that it is necessary for the
candidate weak limit of Cn to exist pointwise and have continuous sample paths.

Condition 3.2. For any j ∈ {1, . . . , d}, the partial derivatives Ċj = ∂C/∂uj exist and are con-
tinuous on {u ∈ [0,1]d : uj ∈ (0,1)}.

As we continue, for any j ∈ {1, . . . , d}, we define Ċj to be zero on the set {u ∈ [0,1]d : uj ∈
{0,1}} (see also Segers [43]; Bücher and Volgushev [13]). It then follows that, under Condi-
tion 3.2, Ċj is defined on the whole of [0,1]d . Also, for any j ∈ {1, . . . , d} and any u ∈ [0,1]d ,

u(j) is the vector of [0,1]d defined by u
(j)
i = uj if i = j and 1 otherwise.

Finally, in order to study Cn, we need to be able to easily go back and forth between normal-
ized ranks and empirical quantile functions. To this end, ties must not occur. In the case of serial
independence, it is sufficient to assume that the marginal distributions are continuous. However,
in the case of serial dependence, continuity of the marginal distributions is not sufficient to guar-
antee the absence of ties (see, e.g., Bücher and Segers [12], Example 4.2). This leads to a last
condition.

Condition 3.3. For any j ∈ {1, . . . , d}, there are no ties in the component series X1j , . . . ,Xnj

with probability one.

The following theorem is the main result of this section. It is proved in Appendix B.

Theorem 3.4 (Asymptotics of the sequential empirical copula process). Under Condi-
tions 3.1, 3.2 and 3.3,

sup
(s,t,u)∈�×[0,1]d

∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣ P→ 0,

where

C̃n(s, t,u)= {
B̃n(t,u)− B̃n(s,u)

}− d∑
j=1

Ċj (u)
{
B̃n

(
t,u(j)

)− B̃n

(
s,u(j)

)}
. (3.1)
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Consequently, Cn �CC in �∞(�× [0,1]d), where, for (s, t,u) ∈�× [0,1]d ,

CC(s, t,u)= {
BC(t,u)−BC(s,u)

}− d∑
j=1

Ċj (u)
{
BC

(
t,u(j)

)−BC

(
s,u(j)

)}
. (3.2)

The asymptotics of Cn under strong mixing immediately follow from the previous theorem.
The necessary tool is Theorem 1 of Bücher [7], which states that, if U1, . . . ,Un is drawn from
a strictly stationary sequence (Ui )i∈Z whose strong mixing coefficients satisfy αr = O(r−a),
a > 1, then B̃n � BC in �∞([0,1]d+1). In other words, U1, . . . ,Un satisfies Condition 3.1.

Corollary 3.5. Assume that X1, . . . ,Xn is drawn from a strictly stationary sequence (Xi )i∈Z
whose strong mixing coefficients satisfy αr =O(r−a), a > 1. Then, under Conditions 3.2 and 3.3,

sup
(s,t,u)∈�×[0,1]d

∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣ P→ 0,

where C̃n is defined in (3.1).

The conditions of the above corollary are, for instance, satisfied (with much to spare) when
X1, . . . ,Xn is drawn from a stationary vector ARMA process with absolutely continuous inno-
vations (see Mokkadem [32]).

4. A dependent multiplier bootstrap for Cn under strong mixing

Analogously to the approach adopted in Rémillard and Scaillet [39] (see also Segers [43]), we
shall now combine the asymptotic representation for Cn stated in Corollary 3.5 with Theorem 2.1
to show the validity of a dependent multiplier bootstrap for Cn under strong mixing. The corre-
sponding result, stated in Proposition 4.2 below, can be regarded as an extension of Proposition 2
in Bücher and Ruppert [11], where a similar but conditional result was established for the process
C◦n defined in (1.2) under stricter conditions on the mixing rate and the multipliers.

The underlying idea is as follows: the fact that the limiting vector of processes in Theorem 2.1
has independent components suggests regarding B̃

(1)
n , . . . , B̃

(M)
n as “almost” independent copies

of B̃n when n is large. Unfortunately, the B̃(m)
n cannot be computed because C is unknown and the

sample U1, . . . ,Un is unobservable. Estimating C by the empirical copula C1:n and U1, . . . ,Un

by the pseudo-observations Û1:n
1 , . . . , Û1:n

n , we obtain the following computable version of B̃(m)
n

defined, for any (s,u) ∈ [0,1]d+1, by

B̂
(m)
n (s,u)= 1√

n

�ns�∑
i=1

ξ
(m)
i,n

{
1
(
Û1:n

i ≤ u
)−C1:n(u)

}
. (4.1)

Starting from the asymptotic representation of Cn in terms of B̃n stated in Corollary 3.5, we see
that, to obtain “almost” independent copies of Cn for large n in the spirit of Rémillard and Scail-
let [39], we additionally need to estimate the partial derivatives Ċj , j ∈ {1, . . . , d}, appearing
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in (3.2). As we continue, we consider estimators Ċj,n of Ċj satisfying the following condition
put forward in Segers [43].

Condition 4.1. There exists a constant K > 0 such that |Ċj,n(u)| ≤ K for all j ∈ {1, . . . , d},
n≥ 1 and u ∈ [0,1]d , and, for any δ ∈ (0,1/2) and j ∈ {1, . . . , d},

sup
u∈[0,1]d

uj∈[δ,1−δ]

∣∣Ċj,n(u)− Ċj (u)
∣∣ P→ 0.

Three estimators of the partial derivatives satisfying Condition 4.1 are discussed in Section 5.3.
We can now define empirical processes that can be fully computed and that, under appropriate

conditions, can be regarded as “almost” independent copies of Cn for large n. For any m ∈
{1, . . . ,M} and (s, t,u) ∈�× [0,1]d , let

Ĉ
(m)
n (s, t,u) = {

B̂
(m)
n (t,u)− B̂

(m)
n (s,u)

}
(4.2)

−
d∑

j=1

Ċj,n(u)
{
B̂

(m)
n

(
t,u(j)

)− B̂
(m)
n

(
s,u(j)

)}
.

The following proposition is a consequence of Corollary 3.5 and Theorem 2.1 and can be
proved by adapting the arguments of Segers ([43], proof of Proposition 4.3) to the current se-
quential and strongly mixing setting. Its proof can be found in Section D of the supplementary
material (Bücher and Kojadinovic [9]).

Proposition 4.2 (Dependent multiplier bootstrap for Cn). Assume that �n = O(n1/2−ε) for
some 0 < ε < 1/2 and that X1, . . . ,Xn is drawn from a strictly stationary sequence (Xi )i∈Z
whose strong mixing coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then, under Condi-
tions 3.2, 3.3 and 4.1, (

Cn, Ĉ
(1)
n , . . . , Ĉ(M)

n

)
�

(
CC,C

(1)
C , . . . ,C

(M)
C

)
in {�∞(� × [0,1]d)}M+1, where CC is the weak limit of the two-sided sequential empirical
copula process Cn defined in (3.2), and C

(1)
C , . . . ,C

(M)
C are independent copies of CC .

We end this section by briefly illustrating how Proposition 4.2 can be used in the context of
change-point detection. As discussed in Bücher et al. [10], a broad class of nonparametric tests
for change-point detection particularly sensitive to changes in the copula can be derived from the
process

Dn(s,u)=√nλn(0, s)λn(s,1)
{
C1:�ns�(u)−C�ns�+1:n(u)

}
, (s,u) ∈ [0,1]d+1.

The above definition is a mere transposition to the copula context of the “classical construction”
adopted, for instance, in Csörgő and Horváth ([17], Section 2.6). Under the null hypothesis of no
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change in the distribution, the process Dn can be simply rewritten as

Dn(s,u)= λn(s,1)Cn(0, s,u)− λn(0, s)Cn(s,1,u), (s,u) ∈ [0,1]d+1.

To be able to compute approximate p-values for statistics derived from Dn (given the unwieldy
nature of the weak limit of Dn), it is then natural to define the processes

D̂
(m)
n (s,u)= λn(s,1)Ĉ(m)

n (0, s,u)− λn(0, s)Ĉ(m)
n (s,1,u), (s,u) ∈ [0,1]d+1,

m ∈ {1, . . . ,M}, which could be thought of as “almost” independent copies of Dn under the
null hypothesis of no change in the distribution. Under the null and the conditions of Propo-
sition 4.2, we immediately obtain from Proposition 4.2 that Dn, D̂

(1)
n , . . . , D̂

(M)
n weakly con-

verge jointly to independent copies of the same limit. As discussed in Remark 2.3, the latter
result is the key step for establishing that classical tests based on Dn hold their level asymp-
totically. To illustrate this point further, let us focus on the Kolmogorov–Smirnov statistic
Wn = sup(s,u)∈[0,1]d+1 |Dn(s,u)| and let Ŵ

(m)
n = sup(s,u)∈[0,1]d+1 |D̂(m)

n (s,u)|, m ∈ {1, . . . ,M}.
The continuous mapping theorem then implies that, under the null and the conditions of Propo-

sition 4.2, (Wn,W
(1)
n , . . . ,W

(M)
n ) � (W,W(1), . . . ,W(M)), where W , the weak limit of Wn, is a

continuous random variable, and W(1), . . . ,W(M) are independent copies of W . The above un-
conditional result ensures that the conclusion of Proposition F.1 in Section F of the supplementary
material (Bücher and Kojadinovic [9]) holds, which implies that a test based on Wn whose ap-
proximate p-value is computed as M−1 ∑M

m=1 1(Ŵ
(m)
n ≥Wn) will hold its level asymptotically

as n→∞ followed by M →∞. To show that such a test is consistent under the alternative of

changes in the copula only, one typically needs to prove that n−1/2Wn
P→ c > 0 and that, for any

m ∈ {1, . . . ,M}, W
(m)
n =OP(�

1/2
n ), also under the alternative (see, e.g., Inoue [25], Theorem 2.5

for related results in the context of nonparametric change-point detection in multivariate c.d.f.s).
Additional details, simulation results as well as illustrations on financial data can be found in

Bücher et al. [10] for tests based on maximally selected Cramér–von Mises statistics.

5. Practical issues

The practical use of the derived dependent multiplier bootstrap for Cn requires the generation
of dependent multiplier sequences and the estimation of the partial derivatives of the copula.
These two practical issues are discussed in the second and third subsection below, while the first
subsection addresses the key choice of the bandwidth parameter �n involved in the definition of
dependent multiplier sequences.

5.1. Estimation of the bandwidth parameter �n

The bandwidth parameter �n defined in assumption (M2) plays a role somehow similar to that of
the block length in the block bootstrap of Künsch [30]. Its value is therefore expected to have a
crucial influence on the finite-sample performance of the dependent multiplier bootstrap for Cn.
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The choice of a similar bandwidth parameter is discussed, for instance, in Paparoditis and Politis
[33] for the tapered block bootstrap using results from Künsch [30]. Related results are presented
in Bühlmann ([15], Lemmas 3.12 and 3.13) and Shao ([44], Proposition 2.1) for the dependent
multiplier bootstrap when the statistic of interest is the sample mean. The aim of this section is
to extend the aforementioned results to the dependent multiplier bootstrap for Cn and propose
an estimator of �n in the spirit of those investigated in Paparoditis and Politis [33], Politis and
White [38] and Patton, Politis and White [34] for other resampling schemes. Since the dependent
multiplier bootstrap for Cn is based on the corresponding bootstrap approximation for B̃n, we
propose to base our estimator of the bandwidth parameter on the accuracy of the latter technique.

Let Eξ and Covξ denote the expectation and covariance, respectively, conditional on the data
X1, . . . ,Xn, and, for any u,v ∈ [0,1]d , let σC(u,v) = Cov{BC(1,u),BC(1,v)}. Now, fix m ∈
{1, . . . ,M} and, for any u,v ∈ [0,1]d , let

σ̃n(u,v) = Covξ

{
B̃

(m)
n (1,u), B̃(m)

n (1,v)
}

= Eξ

{
B̃

(m)
n (1,u)B̃(m)

n (1,v)
}

(5.1)

= 1

n

n∑
i,j=1

Eξ

(
ξ

(m)
i,n ξ

(m)
j,n

){
1(Ui ≤ u)−C(u)

}{
1(Uj ≤ v)−C(v)

}

= 1

n

n∑
i,j=1

ϕ
{
(i − j)/�n

}{
1(Ui ≤ u)−C(u)

}{
1(Uj ≤ v)−C(v)

}
,

where B̃
(m)
n is defined in (2.2). For the moment, although it is based on the unobservable sample

U1, . . . ,Un and the unknown copula C, we shall regard σ̃n(u,v) as an estimator of σC(u,v).
The following two results extend Lemmas 3.12 and 3.13 of Bühlmann [15] and Proposition 2.1

of Shao [44]. They can be proved by adapting the arguments used in the proofs of Lemmas 3.12
and 3.13 of Bühlmann [15]. The resulting proofs are given in the supplementary material (Bücher
and Kojadinovic [9]) for completeness.

Proposition 5.1. Assume that �n = O(n1/2−ε) for some 0 < ε < 1/2, that U1, . . . ,Un is drawn
from a strictly stationary sequence (Ui )i∈Z whose strong mixing coefficients satisfy αr =O(r−a),
a > 3, and that ϕ defined in assumption (M3) is additionally twice continuously differentiable
on [−1,1] with ϕ′′(0) �= 0. Then, for any u,v ∈ [0,1]d ,

E
{
σ̃n(u,v)

}− σC(u,v)= �(u,v)

�2
n

+ rn,1(u,v),

where supu,v∈[0,1]d |rn,1(u,v)| = o(�−2
n ) and

�(u,v)= ϕ′′(0)

2

∞∑
k=−∞

k2γ (k,u,v) with γ (k,u,v)= Cov
{
1(U0 ≤ u),1(Uk ≤ v)

}
.



A dependent multiplier bootstrap for the sequential empirical copula process 939

Proposition 5.2. Assume that U1, . . . ,Un is drawn from a strictly stationary sequence (Ui )i∈Z
whose strong mixing coefficients satisfy αr =O(r−a), a > 3, and that there exists λ > 0 such that
ϕ defined in assumption (M3) additionally satisfies |ϕ(x)− ϕ(y)| ≤ λ|x − y| for all x, y ∈ R.
Then, for any u,v ∈ [0,1]d ,

Var
{
σ̃n(u,v)

}= �n

n
�(u,v)+ rn,2(u,v),

where

�(u,v)=
{∫ 1

−1
ϕ(x)2 dx

}[
σC(u,u)σC(v,v)+ {

σC(u,v)
}2]

and supu,v∈[0,1]d |rn,2(u,v)| = o(�n/n).

Under the combined conditions of Propositions 5.1 and 5.2, we have that, for any u,v ∈ [0,1]2,
the mean squared error of σ̃n(u,v) is

MSE
{
σ̃n(u,v)

}= {�(u,v)}2
�4
n

+�(u,v)
�n

n
+ rn(u,v),

where rn(u,v)= {rn,1(u,v)}2 + 2�(u,v)rn,1(u,v)/�2
n + rn,2(u,v). This allows us to define the

integrated mean squared error

IMSEn =
∫
[0,1]2d

MSE
{
σ̃n(u,v)

}
du dv∼ �̄2

�4
n

+ �̄
�n

n
, (5.2)

where

�̄2 =
∫
[0,1]2d

{
�(u,v)

}2 du dv and �̄=
∫
[0,1]2d

�(u,v)du dv. (5.3)

Notice that �̄ can be rewritten as

�̄=
{∫ 1

−1
ϕ(x)2 dx

}[{∫
[0,1]d

σC(u,u)du
}2

+
∫
[0,1]2d

{
σC(u,v)

}2 du dv
]
.

Differentiating the function x �→ �̄2/x4 + �̄x/n and equating the derivative to zero, we obtain
that the value of �n that minimizes IMSEn is, asymptotically,

�
opt
n =

(
4�̄2

�̄

)1/5

n1/5. (5.4)

From (5.4), we see that, to estimate �
opt
n , we need to estimate the infinite sums K(u,v) =∑

k∈Z k2γ (k,u,v) and σC(u,v)=∑
k∈Z γ (k,u,v) for all u,v ∈ [0,1]d . Should U1, . . . ,Un be

observable, this could be done by adapting the procedures described in Paparoditis and Politis
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Figure 1. Graphs of the functions κB , κF,0.14 and κP , as well as κU,6 and κU,8 defined in Section 5.2.2.

([33], page 1111) or Politis and White ([38], Section 3) to the current empirical process setting.
Let L≥ 1 be an integer to be determined from X1, . . . ,Xn later and fix u,v ∈ [0,1]d . Proceeding
in the spirit of Politis and Romano [37] and Politis [36], the quantity K(u,v) could be estimated
by Ǩn(u,v)=∑L

k=−L κF,0.5(k/L)k2γ̌n(k,u,v), where

κF,c(x)= [{(
1− |x|)/(1− c)

}∨ 0
]∧ 1, c ∈ [0,1], (5.5)

is the “flat top” (trapezoidal) kernel parametrized by c ∈ [0,1] (see Figure 1), and γ̌n(k,u,v) is
the estimated cross-covariance at lag k ∈ {−(n− 1), . . . , n− 1}, computed from the sequences
{1(Ui ≤ u)}i∈{1,...,n} and {1(Ui ≤ v)}i∈{1,...,n}, that is,

γ̌n(k,u,v)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−1
n−k∑
i=1

{
1(Ui ≤ u)− H̃n(u)

}{
1(Ui+k ≤ v)− H̃n(v)

}
, k ≥ 0,

n−1
n∑

i=1−k

{
1(Ui ≤ u)− H̃n(u)

}{
1(Ui+k ≤ v)− H̃n(v)

}
, k ≤ 0,

with H̃n being the empirical c.d.f. computed from U1, . . . ,Un. Similarly, σC(u,v) could be esti-
mated by

σ̌n(u,v)=
L∑

k=−L

κF,0.5(k/L)γ̌n(k,u,v).

As U1, . . . ,Un is unobservable, it is natural to consider the sample of pseudo-observations
Û1:n

1 , . . . , Û1:n
n instead, and to replace γ̌n(k,u,v) by

γ̂n(k,u,v)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−1
n−k∑
i=1

{
1
(
Û1:n

i ≤ u
)−C1:n(u)

}{
1
(
Û1:n

i+k ≤ v
)−C1:n(v)

}
, k ≥ 0,

n−1
n∑

i=1−k

{
1
(
Û1:n

i ≤ u
)−C1:n(u)

}{
1
(
Û1:n

i+k ≤ v
)−C1:n(v)

}
, k ≤ 0,
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which gives the computable estimators

σ̂n(u,v) =
L∑

k=−L

κF,0.5(k/L)γ̂n(k,u,v) and

(5.6)

K̂n(u,v) =
L∑

k=−L

κF,0.5(k/L)k2γ̂n(k,u,v)

of σC(u,v) and
∑

k∈Z k2γ (u,v), respectively.

To estimate �̄2 and �̄ defined in (5.3), we then propose to use a grid {ui}i∈{1,...,g} of g points
uniformly spaced over (0,1)d , and to compute

ˆ̄�2

n =
{ϕ′′(0)}2

4

1

g2

g∑
i,j=1

{
K̂n(ui ,uj )

}2

and

ˆ̄�n =
{∫ 1

−1
ϕ(x)2 dx

}({
1

g

g∑
i=1

σ̂n(ui ,ui )

}2

+ 1

g2

g∑
i,j=1

{
σ̂n(ui ,uj )

}2

)
,

respectively. Plugging these into (5.4), we obtain an estimator of �
opt
n which shall be denoted as

�̂
opt
n as we continue.

The above estimator depends on the choice of the integer L appearing in (5.6). To estimate L,
we suggest proceeding along the lines of Politis and White ([38], Section 3.2) (see also Paparo-
ditis and Politis [33], page 1112). Let ρ̂j (k), j ∈ {1, . . . , d}, be the autocorrelation function at lag
k estimated from the sample X1j , . . . ,Xnj . For any j ∈ {1, . . . , d}, let Lj be the smallest integer
after which ρ̂j (k) appears negligible. Notice that the latter can be determined automatically by
means of the algorithm described in detail in Politis and White ([38], Section 3.2). Our imple-
mentation is based on Matlab code by A.J. Patton (available on his web page) and its R version
by J. Racine and C. Parmeter. Then, we merely suggest taking L = 2ψ(L1, . . . ,Ld), where ψ

is some aggregation function such as the median, the mean, the minimum or the maximum. The
previous approach is clearly not the only possible multivariate extension of the procedure of Poli-
tis and White [38]. Nonetheless, the choice ψ =median was found to give meaningful results in
our Monte Carlo experiments partially reported in Section 6.

5.2. Generation of dependent multiplier sequences

The practical use of the results stated in Sections 2 and 4 requires the generation of dependent
multiplier random variables satisfying assumptions (M1), (M2) and (M3). We describe two ways
of constructing such dependent sequences. The first one generalizes the moving average approach
proposed by Bühlmann ([15], Section 6.2) (see also Bücher and Ruppert [11]) and produces
multipliers that satisfy assumption (M3) only asymptotically. The second one was suggested by
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Shao [44] and is based on the calculation of the square root of the covariance matrix implicitly
defined in assumption (M3).

5.2.1. The moving average approach

Let κ be some positive bounded real function symmetric around zero such that κ(x) > 0 for all
|x|< 1. Let bn be a sequence of integers such that bn→∞, bn = o(n) and bn ≥ 1 for all n ∈N.
Let Z1, . . . ,Zn+2bn−2 be i.i.d. random variables independent of the available sample X1, . . . ,Xn

such that E(Z1)= 0, E(Z2
1)= 1 and E(|Z1|ν) <∞ for all ν ≥ 1. Then, let �n = 2bn− 1 and, for

any j ∈ {1, . . . , �n}, let wj,n = κ{(j − bn)/bn} and w̃j,n = wj,n(
∑�n

j ′=1 w2
j ′,n)

−1/2. Finally, for
all i ∈ {1, . . . , n}, let

ξi,n =
�n∑

j=1

w̃j,nZj+i−1.

Clearly, ξ1,n, . . . , ξn,n are identically distributed with E(ξ1,n)= 0, E(ξ2
1,n)= 1 and it can be veri-

fied that supn≥1 E(|ξ1,n|ν) <∞ for all ν ≥ 1. Furthermore, ξ1,n, . . . , ξn,n are (�n− 1)-dependent
and, for any i ∈ {1, . . . , n} and r ∈ {0, . . . , (�n − 1)∧ n},

Cov(ξi,nξi+r,n) =
�n∑

j=1

�n∑
j ′=1

w̃j,nw̃j ′,nE(Zj+i−1Zj ′+i+r−1)=
�n∑

j=r+1

w̃j,nw̃j−r,n

=
(

�n∑
j=1

w2
j,n

)−1 �n∑
j=r+1

κ
{
(j − bn)/bn

}
κ
{
(j − r − bn)/bn

}
.

For practical reasons, only a sequence of size n has been generated. From the previous de-
velopments, we immediately have that the infinite size version of ξ1,n, . . . , ξn,n satisfies assump-
tions (M1) and (M2) (as (�n− 1)-dependence clearly implies �n-dependence). Let us now verify
that it satisfies assumption (M3) asymptotically.

Assume additionally that κ(x)= 0 for all |x|> 1, and, for any f,g :Z→ R, let f ∗ g denote
the discrete convolution of f and g, that is, f ∗ g(r)=∑∞

j=−∞ f (j)g(r − j), r ∈ Z. Then, let
κbn(j)= κ(j/bn), j ∈ Z, and notice that the previous covariance can be written as

Cov(ξi,nξi+r,n)=
∑∞

j=−∞ κbn(j − bn)κbn(j − r − bn)

κbn ∗ κbn(0)
+ o(1)= κbn ∗ κbn(r)

κbn ∗ κbn(0)
+ o(1)

for all i ∈ {1, . . . , n} and r ∈ {0, . . . , n− i}, where the o(1) term comes from the fact that κ(1) is
not necessarily equal to 0.

Assume furthermore that there exists λ > 0 such that |κ(x)− κ(y)| ≤ λ|x − y| for all x, y ∈
[−1,1] and let rn be a positive sequence such that rn/bn → γ ∈ [0,1]. We shall now check that
b−1
n κbn ∗ κbn(rn)→ κ � κ(γ ), where � denotes the convolution operator between real functions.

We have

1

bn

κbn ∗ κbn(rn)=
1

bn

bn∑
j=−bn

κ(j/bn)κ
{
(rn − j)/bn

}
.
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On the one hand,∣∣∣∣∣ 1

bn

bn∑
j=−bn

κ(j/bn)κ
{
(rn − j)/bn

}− 1

bn

bn∑
j=−bn

κ(j/bn)κ(γ − j/bn)

∣∣∣∣∣
≤ λ|rn/bn − γ |2bn + 1

bn

sup
x∈R

κ(x)→ 0,

and, and on the other hand,

1

bn

bn∑
j=−bn

κ(j/bn)κ(γ − j/bn)→
∫ 1

−1
κ(x)κ(γ − x)dx = κ � κ(γ ).

It follows that

κbn ∗ κbn(rn)

κbn ∗ κbn(0)
→ κ � κ(γ )

κ � κ(0)
.

Now, let

ϕ(x)= κ � κ(2x)

κ � κ(0)
, x ∈R, (5.7)

where the factor 2 ensures that ϕ(x) = 0 for all |x| > 1. Then, for large n, Cov(ξi,nξj,n) ≈
ϕ{(i − j)/�n}, for any i, j ∈ {1, . . . , n}. Hence, the infinite size version of ξ1,n, . . . , ξn,n satisfies
assumption (M3) asymptotically.

In our numerical experiments, we considered several popular kernels for the function κ (see,
e.g., Andrews [2]), defined, for any x ∈R, as

Truncated: κT (x)= 1
(|x| ≤ 1

)
,

Bartlett: κB(x)= (
1− |x|)∨ 0,

Parzen: κP (x)= (
1− 6x2 + 6|x|3)1(|x| ≤ 1/2

)+ 2
(
1− |x|)31

(
1/2 < |x| ≤ 1

)
,

as well as the flat top kernel already defined in (5.5). The above kernels satisfy all the assump-
tions on the function κ mentioned previously. Their graphs are represented in Figure 1. The flat
top (or trapezoidal) kernel, parametrized by c ∈ [0,1], was used in Paparoditis and Politis [33]
in the context of the tapered block bootstrap for the mean. These authors found that, within the
class of trapezoidal kernels symmetric around 0.5 and with support (0,1), κF,0.14, rescaled and
shifted to have support (0,1), minimizes the asymptotic mean squared error of the bootstrap-
ping procedure. The latter kernel was also used in Shao [44] who connected the tapered block
bootstrap with the dependent multiplier bootstrap for the mean.

5.2.2. The covariance matrix approach

Let �n be a sequence of strictly positive constants such that �n →∞ and �n = o(n). Let ϕ

be a function satisfying assumption (M3) such that, additionally,
∫∞
−∞ ϕ(u)e−iux du ≥ 0 for all
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x ∈R, and let �n be the n×n (covariance) matrix whose elements are defined by ϕ{(i− j)/�n},
i, j ∈ {1, . . . , n}. The integral condition on ϕ ensures that �n is positive definite which in turn

ensures the existence of �
1/2
n . From a practical perspective, �

1/2
n can be computed either by

diagonalization, singular value decomposition or Cholesky factorization of �n. We use the first
approach. Then, let Z1, . . . ,Zn be i.i.d. standard normal random variables independent of the
available sample X1, . . . ,Xn. A dependent multiplier sequence ξ1,n, . . . , ξn,n can then be simply
obtained as

[ξ1,n, . . . , ξn,n]� =�
1/2
n [Z1, . . . ,Zn]�.

If ϕ(1) > 0, then the above construction generates �n-dependent multipliers, while if ϕ(1)= 0,
the generated sequence is (�n − 1)-dependent. Clearly, the infinite size version of ξ1,n, . . . , ξn,n

satisfies assumptions (M1), (M2) and (M3).
From a practical perspective, for the function ϕ, we considered the Bartlett and Parzen ker-

nels κB and κP , as well as κU,6 and κU,8, where κU,p is the density function of the sum of p

independent uniforms centered at 0, normalized so that it equals 1 at 0, and rescaled to have
support (−1,1). The functions κU,6 and κU,8 are represented in Figure 1. Notice that κT = κU,1,
κB = κU,2 and κP = κU,4. This also implies that κU,8 is a rescaled and normalized version of the
convolution of κP with itself, that is, κU,8(x)= κP � κP (2x)/κP � κP (0) for all x ∈R. A numer-
ically stable and efficient way of computing κU,p consists of using divided differences (see, e.g.,
Agarwal, Dalpatadu and Singh [1]). Finally, note that the truncated and flat top kernels cannot be
used as they do not satisfy the integral condition ensuring that �n is positive definite.

Remark 5.3. In the case of the moving average approach presented in Section 5.2.1, we have seen
that κ determines ϕ asymptotically through (5.7). It follows that, for an initial standard normal
i.i.d. sequence, the same value of �n and for large n, we could expect the dependent multiplier
sequences generated by the moving average and the covariance matrix approaches, respectively,
to give close results when κ in Section 5.2.1 and ϕ in Section 5.2.2 are related through (5.7).
For instance, all other parameters being similar, using the Bartlett kernel for κ in Section 5.2.1
should produce similar results to using the Parzen kernel for ϕ in Section 5.2.2.

5.3. Estimation of the partial derivatives of the copula

For the estimators of the partial derivatives appearing in (4.2), we considered three possible
definitions proposed in the literature. The first one is that of Rémillard and Scaillet [39] who
suggested to estimate the partial derivatives Ċj , j ∈ {1, . . . , d}, by finite-differences as

Ċj,n(u) = 1

2n−1/2

{
Cn

(
u1, . . . , uj−1, uj + n−1/2, uj+1, . . . , ud

)
(5.8)

−Cn

(
u1, . . . , uj−1, uj − n−1/2, uj+1, . . . , ud

)}
, u ∈ [0,1]d .

A slightly different definition consisting of a “boundary correction” was proposed in Kojadi-
novic, Segers and Yan ([27], page 706). Yet another definition is mentioned in Bücher and Rup-
pert ([11], page 212). Note that, for any δ ∈ (0,1/2), all three definitions coincide on the set
{u ∈ [0,1]d : uj ∈ [δ,1 − δ]} provided n is taken large enough. Now, under the assumptions
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of Corollary 3.5, we have that Cn(0,1, ·) � CC(0,1, ·) in �∞([0,1]d). The latter weak conver-
gence implies the first statement of Lemma 2 of Kojadinovic, Segers and Yan [27], which in turn
implies that Condition 4.1 is satisfied for the above defined Ċj,n as well as for the two slightly
different definitions considered in Kojadinovic, Segers and Yan ([27], page 706) and Bücher and
Ruppert ([11], page 212), respectively.

6. Monte Carlo experiments

To investigate the finite-sample performance of the proposed dependent multiplier bootstrap,
we considered several statistics derived from the sequential empirical copula process Cn de-
fined in (1.1). With applications to statistical tests in mind, we mostly focus in this section on
Cramér–von-Mises and Kolomogorov–Smirnov statistics obtained from Cn(0,1, ·). Results for
some simpler functionals can be found in Section G of the supplementary material (Bücher and
Kojadinovic [9]).

Recall that M is a large integer, and let

Sn =
∫
[0,1]d

{
Cn(0,1,u)

}2
du and

(6.1)

S(m)
n =

∫
[0,1]d

{
Ĉ

(m)
n (0,1,u)

}2
du, m ∈ {1, . . . ,M},

where Ĉ
(m)
n is defined in (4.2) with the partial derivative estimators defined as discussed later

in this section. Under the conditions of Proposition 4.2 and from the continuous mapping theo-

rem, we then immediately have that (Sn, S
(1)
n , . . . , S

(M)
n ) converges weakly to (S,S(1), . . . , S(M)),

where S = ∫
[0,1]d {CC(0,1,u)}2 du and S(1), . . . , S(M) are independent copies of S.

The first aim of our Monte Carlo experiments was to assess the quality of the estimation of the

quantiles of S by the empirical quantiles of the sample S
(1)
n , . . . , S

(M)
n . Let S

(1:M)
n ≤ · · · ≤ S

(M:M)
n

denote the corresponding order statistics. An estimator of the quantile of S of order p ∈ (0,1)

is then simply S
(�pM�:M)
n . For each data generating scenario, the target theoretical quantiles of

S of order p were accurately estimated empirically from 105 realizations of S1000 for p ∈ P =
{0.25,0.5,0.75,0.9,0.95,0.99}. Then, for each data generating scenario, N = 1000 samples

X1, . . . ,Xn were generated and, for each sample, S
(�pM�:M)
n was computed for each p ∈P using

the dependent multiplier bootstrap with M = 2500 yielding, for each p ∈ P , N estimates of the
quantile of S of order p. This allowed us to compute, for each data generating scenario and
each p ∈ P , the empirical bias and the empirical mean squared error (MSE) of the estimators of
the quantiles of S of order p. Similar simulations were performed for the Kolmogorov–Smirnov
statistic. Specifically, let

Tn = sup
u∈[0,1]d

∣∣Cn(0,1,u)
∣∣ and T (m)

n = sup
u∈[0,1]d

∣∣Ĉ(m)
n (0,1,u)

∣∣, m ∈ {1, . . . ,M}. (6.2)

The dimension d was fixed to two, and the integrals and the suprema in (6.1) and (6.2), respec-
tively, were computed approximately using a fine grid on (0,1)2 of 400 uniformly spaced points.
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Four data generating models were considered. The first one is a simple AR1 model. Let
Ui , i ∈ {−100, . . . ,0, . . . , n}, be a bivariate i.i.d. sample from a copula C. Then, set εi =
(�−1(Ui1),�

−1(Ui2)), where � is the c.d.f. of the standard normal distribution, and X−100 =
ε−100. Finally, for any j ∈ {1,2} and i ∈ {−99, . . . ,0, . . . , n}, compute recursively

Xij = 0.5Xi−1,j + εij . (AR1)

The second and third data generating models are related to the nonlinear autoregressive (NAR)
model used in Paparoditis and Politis ([33], Section 3.3), and to the exponential autoregressive
(EXPAR) model considered in Auestad and Tjøstheim [3] and Paparoditis and Politis ([33], Sec-
tion 3.3). The sample X1, . . . ,Xn is generated as previously with (AR1) replaced by

Xij = 0.6 sin(Xi−1,j )+ εij (NAR)

and

Xij =
{
0.8− 1.1 exp

(−50X2
i−1,j

)}
Xi−1,j + 0.1εij , (EXPAR)

respectively. The fourth and last data generating model is the bivariate GARCH-like model con-
sidered in Bücher and Ruppert [11]. The sample of innovations is defined as for the models
above. In addition, for any j ∈ {1,2}, let σ−100,j =

√
ωj/(1− αj − βj ) where ωj , αj and βj

are usual GARCH(1,1) parameters whose values will be set below, and, for any j ∈ {1,2} and
i ∈ {−99, . . . ,0, . . . , n}, compute recursively

σ 2
ij = ωj + βjσ

2
i−1,j + αjε

2
i−1,j and Xij = σij εij . (GARCH)

Following Bücher and Ruppert [11], we take (ω1, β1, α1) = (0.012,0.919,0.072) and (ω2, β2,

α2)= (0.037,0.868,0.115). The latter values were estimated by Jondeau, Poon and Rockinger
[26] from SP500 and DAX daily logreturns, respectively.

The other factors of the experiments are as follows. Four different copulas were considered:
Clayton copulas with parameter values 1 and 4, respectively, and Gumbel–Hougaard copulas
with parameter value 1.5 and 3, respectively. The lower (resp., higher) parameter values corre-
spond to a Kendall’s tau of 1/3 (resp., 2/3), that is, to mild (resp., strong) dependence. Notice
that the Clayton copula is lower-tail dependent while the Gumbel–Hougaard is upper-tail depen-
dent (see, e.g., McNeil, Frey and Embrechts [31], Chapter 5). The values 100, 200 and 400 were
considered for n.

We report the results of the experiments very partially (additional results are available in the
supplementary material, see Bücher and Kojadinovic [9]) and when based on the estimators
of the partial derivatives given in (5.8). Figure 2 displays the empirical MSE of the estimator

S
(�pM�:M)
n of the quantile of order p = 0.95 of Sn versus the bandwidth parameter �n for the

different choices of κ/ϕ mentioned in Section 5.2. The top (resp., middle, bottom) line of graphs
was obtained from datasets generated under the NAR (resp., EXPAR, GARCH) scenario with C

being the Gumbel–Hougaard copula with parameter value 1.5. The line segments in the lower-
right corners of the graphs correspond to the empirical MSEs of the estimator S

(�0.95M�:M)
n based

on the estimated bandwidth �̂
opt
n computed as explained in Section 5.1. The line styles of the

segments correspond to the choice of ϕ. The results for the AR1 scenario being very similar
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Figure 2. For various choices of the function κ/ϕ (see Section 5.2), empirical MSE× 104 of the estimator

S
(�0.95M�:M)
n with M = 2500 versus the bandwidth parameter �n under the NAR, EXPAR and GARCH

data generating scenarios with C being the Gumbel–Hougaard copula with parameter 1.5. The line segments
in the lower-right corners of the graphs correspond to the empirical MSEs of the estimator with estimated
bandwidth parameter following the procedure described in Section 5.1. The line styles of the segments
correspond to the choice of ϕ.

to those for the NAR scenario are not reported. Similar looking graphs were obtained for the
other three copulas used in the simulations and when replacing the Cramér–von Mises statistics
by the Kolmogorov–Smirnov statistics defined in (6.2). In a related manner, the shapes of the
graphs were not too much affected by the value p of the quantile order: the empirical MSEs
were smaller for p < 0.95 and higher for p = 0.99. Figures analogue to Figure 2 for other values
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of p and/or for the Kolmogorov–Smirnov statistic Tn can actually be found in Section G of the
supplementary material (Bücher and Kojadinovic [9]).

The black (resp., red) curves in the first column of panels of Figure 2 were obtained for depen-
dent multiplier sequences generated from initial standard normal i.i.d. sequences using the mov-
ing average (resp., covariance matrix) approach described in Section 5.2.1 (resp., Section 5.2.2).
The functions κT , κB , κF,0.14 and κP were considered for κ in the case of the moving average
approach, while the function ϕ in the covariance matrix approach was successively taken equal
to κB , κP , κU,6 and κU,8. Looking at the graphs for n = 100, we see that, when the functions
κ and ϕ are chosen to match in the sense of Remark 5.3, the resulting empirical MSEs are very
close. For that reason, to facilitate reading of the plots, only the curves obtained with the mov-
ing average approach and κ ∈ {κT , κB, κP } are plotted when n ∈ {200,400}. As it can be seen,
for the NAR and EXPAR scenarios, the empirical MSEs tend to decrease first with �n, reach a
minimum, and increase again. It is not the case for the GARCH setting for which it seems that
�n = 1 always leads to the smallest MSE. In other words, the use of the dependent multiplier
bootstrap does not seem necessary in that context as the usual i.i.d. multiplier of Rémillard and
Scaillet [39] provides the best results. This might be due to the fact that in this setting the con-
tributions of the lagged covariances to the long-run variance of the empirical process are very
small. Looking again at the graphs for the NAR and EXPAR settings, we see that the smallest
MSEs are reached by choosing κ = κP /ϕ = κU,8, which is in accordance with Proposition 5.2
which states that, asymptotically, kernels with the smallest integral lead to the lowest variance.
Another observation is that, unlike what was expected by Shao ([44], Remark 2.1) in the case
of the mean as statistic of interest, the choice κ = κF,0.14 did not lead to better results than the
choice κ = κP . Finally, let us comment on the empirical MSEs of the estimator S

(�0.95M�:M)
n

based on the estimated bandwidth �̂
opt
n computed as explained in Section 5.1. As it can be seen

from the line segments in the lower-right corners of the graphs, the achieved empirical MSEs de-
crease with n and are, overall, reasonably close to the lowest observed MSE. Considering all the
available results (see Section G of the supplementary material Bücher and Kojadinovic [9], for
additional figures), the choice ϕ = κU,8 appears to lead to a slightly lower MSE, overall, when
n= 100. For n ∈ {200,400}, the choices ϕ = κP and ϕ = κU,8 do not seem to lead to differences
of practical interest.

In view of the small differences between the moving average and covariance matrix approaches
for generating dependent multipliers (black versus red curves in the first column of graphs of
Figure 2), we suggest to use the former which is faster and more stable numerically as it does not
require the computation of the square root of a large covariance matrix.

Before discussing further the estimation of �n using the results of Section 5.1, let us mention
an observation of practical interest. Working with the same random seed, we replicated the exper-
iments described above using the two alternative definitions of the partial derivative estimators
mentioned below (5.8). To our surprise, the best results, overall, were obtained with the proposal
of Rémillard and Scaillet [39] given in (5.8), although the differences seem too small to be of
practical interest.

We end this section with a more direct empirical investigation of the estimator �̂
opt
n of �

opt
n

(see (5.4) and Section 5.1). We report an experiment based on the AR1 model which will serve
as a benchmark for judging about the performance of �̂

opt
n . The setting is the following: a grid

{ui}i∈{1,...,g} of g = 25 points uniformly spaced over (0,1)2 was created, and σC(ui ,uj ) was
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accurately estimated for all i, j ∈ {1, . . . , g} from 105 samples of size 1000 generated under
the AR1 model described previously. The latter estimation was carried out as follows: given
a sample X1, . . . ,Xn generated from the AR1 model, the marginally standard uniform sample
U1, . . . ,Un was formed using the fact that the marginal c.d.f.s of the Xi are centered normal with
variance 1/(1− 0.52) in this case; this enabled us to compute B̃n(1, ·) at the grid points, where
B̃n is defined in (2.1); for any i, j ∈ {1, . . . , g}, σC(ui ,uj ) was finally accurately estimated as
the sample covariance of 105 independent realizations of (B̃n(1,ui ), B̃n(1,uj )).

Next, for n ∈ {100,200,400} and �n ∈ {1,3, . . . ,39}, IMSEn defined in (5.2) was approxi-
mated as follows: 1000 samples X1, . . . ,Xn were generated under the AR1 model, and, for each
sample, the processes B̂(1)

n (1, ·), . . . , B̂(M)
n (1, ·) with M = 1000 were evaluated at the grid points,

with B̂
(m)
n defined in (4.1); computing sample covariances, this allowed us to obtain 1000 boot-

strap estimates of σC(ui ,uj ) for all i, j ∈ {1, . . . , g}, from which we approximated IMSEn. The
results are represented in the graphs of Figure 3 for the previously considered choices of the func-
tion ϕ. The top (resp., bottom) row of graphs was obtained when C in the AR1 data generating
scenario is the Gumbel–Hougaard copula with parameter 1.5 (resp., 3).

The procedure described in Section 5.1 was finally used to obtain 1000 estimates of �
opt
n

under the AR1 model based on the Gumbel–Hougaard copula with parameter θ , for n ∈

Figure 3. For several choices of the function ϕ, IMSEn defined in (5.2), computed approximately using a
grid of 25 uniformly spaced points on (0,1)2 and 1000 samples versus the bandwidth parameter �n under
the AR1 data generating scenario with C being the Gumbel–Hougaard copula with parameter 1.5 (top row)
and parameter 3 (bottom row).
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Table 1. Mean and standard deviation of 1000 estimates of �
opt
n , defined in (5.4), computed as explained in

Section 5.1 from 1000 samples generated from the AR1 model in which C is the Gumbel–Hougaard copula
with parameter θ . The computations were carried out for the choices ϕ = κP and ϕ = κU,8

ϕ = κP ϕ = κU,8

θ n Mean Std. Mean Std.

1.5 100 8.93 3.85 12.41 5.92
200 10.67 4.05 14.74 5.15
400 12.81 3.94 17.73 4.99

3.0 100 9.11 5.18 12.75 8.13
200 10.64 4.08 14.69 5.74
400 12.77 3.94 17.66 5.31

{100,200,400}, ϕ ∈ {κP , κU,8} and θ ∈ {1.5,3}. The mean and standard deviation of the esti-
mates are reported in Table 1. A comparison with Figure 3 reveals that the procedure described
in Section 5.1 for estimating �

opt
n gives surprisingly good results on average for the experiment

at hand. Another observation is that the estimates do not seem much affected by the value of θ ,
that is, the strength of the dependence.

Appendix A: Proof of Theorem 2.1

The proof of Theorem 2.1 is based on three lemmas. The first lemma establishes weak conver-
gence of the finite-dimensional distributions, while the second and third lemmas concern asymp-
totic tightness.

The following result can be proved using a well-known blocking technique (see, e.g., Dehling
and Philipp [20], page 31). Its proof is given in the supplementary material (Bücher and Kojadi-
novic [9]).

Lemma A.1 (Finite-dimensional convergence). Assume that �n =O(n1/2−ε) for some 0 < ε <

1/2 and that (Ui )i∈Z is a strictly stationary sequence whose strong mixing coefficients satisfy
αr =O(r−a), a > 2. Then, the finite-dimensional distributions of (B̃n, B̃

(1)
n , . . . , B̃

(M)
n ) converge

weakly to those of (BC,B
(1)
C , . . . ,B

(M)
C ).

Regarding the tightness, let us first extend B̃
(m)
n , m ∈ {1, . . . ,M}, to blocks in [0,1]d+1 in

the spirit of Bickel and Wichura [6]. For any (s, t] ⊂ [0,1] and A= (u1, v1] × · · · × (ud, vd ] ⊂
[0,1]d , we define B̃

(m)
n ((s, t] ×A) to be

B̃
(m)
n

(
(s, t] ×A

)= 1√
n

�nt�∑
i=�ns�+1

ξ
(m)
i,n

[
1(Ui ∈A)− ν(A)

]
,
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where

ν(A) = P(U1 ∈A)

=
∑

(ε1,...,εd )∈{0,1}d
(−1)

∑d
i=1 εi C

{
(1− ε1)v1 + ε1u1, . . . , (1− εd)vd + εdud

}
.

In the next two lemmas, the sequences (ξ
(m)
i,n )i∈Z are only assumed to satisfy (M1) with

E[{ξ (m)
0,n }2]> 0 not necessarily equal to one.

Lemma A.2 (Moment inequality). Assume that (Ui )i∈Z is a strictly stationary sequence
whose strong mixing coefficients satisfy αr = O(r−a), a > 6. Then, for any m ∈ {1, . . . ,M},
q ∈ (2a/(a − 3),4), (s, t] ⊂ [0,1] and A= (u1, v1] × · · · × (ud, vd ] ⊂ [0,1]d , we have

E
[{
B̃

(m)
n

(
(s, t] ×A

)}4]≤ κ
[
λn(s, t)

2{ν(A)
}4/q + n−1λn(s, t)

{
ν(A)

}2/q]
,

where κ > 0 is a constant.

Proof. The proof is similar to that of Lemma 3.22 in Dehling and Philipp [20]. Fix m ∈
{1, . . . ,M}. For any i ∈ Z, let Yi = 1(Ui ∈A)− ν(A). Then,

E
[{
B̃

(m)
n

(
(s, t] ×A

)}4]

= 1

n2

�nt�∑
i1,i2,i3,i4=�ns�+1

E
[
ξ

(m)
i1,n

ξ
(m)
i2,n

ξ
(m)
i3,n

ξ
(m)
i4,n

]
E[Yi1Yi2Yi3Yi4] (A.1)

≤ 4!λn(s, t)

n

∑
0≤i,j,k≤�nt�−�ns�−1
i+j+k≤�nt�−�ns�−1

∣∣E[ξ (m)
0,n ξ

(m)
i,n ξ

(m)
i+j,nξ

(m)
i+j+k,n

]
E[Y0YiYi+j Yi+j+k]

∣∣.

On one hand, |E[ξ (m)
0,n ξ

(m)
i,n ξ

(m)
i+j,nξ

(m)
i+j+k,n]| ≤ E[{ξ (m)

0,n }4]. On the other hand, by Lemma 3.11 of
Dehling and Philipp [20], for any q ∈ (2a/(a− 3),4) and p ∈ (2, a/3) such that 1/p+ 2/q = 1,
we have

E
[
Y0(YiYi+j Yi+j+k)

] ≤ 10α
1/p
i ‖Y0‖q‖YiYi+j Yi+j+k‖q ≤ 10α

1/p
i ‖Y0‖2

q,

E
[
(Y0YiYi+j )Yi+j+k

] ≤ 10α
1/p
k ‖Y0‖2

q

and

∣∣E[(Y0Yi)(Yi+j Yi+j+k)
]∣∣ ≤ ∣∣E[Y0Yi]E[Yi+j Yi+j+k]

∣∣+ 10α
1/p
j ‖Y0Yi‖q‖Yi+j Yi+j+k‖q

≤ 100α
1/p
i α

1/p
k ‖Y0‖4

q + 10α
1/p
j ‖Y0‖2

q .
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Proceeding as in Lemma 3.22 of Dehling and Philipp [20], we split the sum on the right of (A.1)
into three sums according to which of the indices i, j, k is the largest. Combining this decompo-
sition with the three previous inequalities, we obtain

E
[∣∣B̃(m)

n

(
(s, t] ×A

)∣∣4]
≤ 24E[{ξ (m)

0,n }4]λn(s, t)

n

×
{

100‖Y0‖4
q

�nt�−�ns�−1∑
j=0

∑
i,k≤j

α
1/p
i α

1/p
k + 30‖Y0‖2

q

�nt�−�ns�−1∑
i=0

∑
j,k≤i

α
1/p
i

}
.

Observing that
∑∞

i=1 α
1/p
i <∞ and

∑∞
i=1 i2α

1/p
i <∞ (note that p < a/3 by construction), we

can bound the expression on the right of the previous inequality by

κ
{
λn(s, t)

2‖Y0‖4
q + n−1λn(s, t)‖Y0‖2

q

}
,

where κ > 0 is a constant depending on the mixing coefficients and E[{ξ (m)
0,n }4]. Finally, since

q > 2 by construction, the assertion follows from the fact that E[|Y0|q ] ≤ E[Y 2
0 ] = ν(A) −

ν(A)2 ≤ ν(A). �

Let us introduce additional notation. For any δ ≥ 0, T ⊂ [0,1]d+1 and f ∈ �∞([0,1]d+1), let

wδ(f,T )= sup
x,y∈T

‖x−y‖1≤δ

∣∣f (x)− f (y)
∣∣,

where ‖ · ‖1 denotes the 1-norm.

Lemma A.3 (Asymptotic equicontinuity). Assume that (Ui )i∈Z is a strictly stationary se-
quence whose strong mixing coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then, for any
m ∈ {1, . . . ,M}, B̃(m)

n is asymptotically uniformly ‖ · ‖1-equicontinuous in probability, that is,
for any ε > 0,

lim
δ↓0

lim sup
n→∞

P
{
wδ

(
B̃

(m)
n , [0,1]d+1)> ε

}= 0.

Proof. Fix m ∈ {1, . . . ,M}. Let K > 0 be a constant and let us first assume that, for any n ≥ 1
and i ∈ {1, . . . , n}, ξ

(m)
i,n ≥−K . Then, let Z

(m)
i,n = ξ

(m)
i,n +K ≥ 0. Furthermore, let γ ∈ (0,1/2] be

a real parameter to be chosen later, and define

In = {i/n : i = 0, . . . , n}, In,γ =
{
i/
⌊
n1/2+γ

⌋ : i = 0, . . . ,
⌊
n1/2+γ

⌋}
,

and Tn = In× I d
n,γ . Also, for any s ∈ [0,1], let s = �sn�/n and s̄ = �sn�/n; clearly, s, s̄ ∈ In and

are such that s ≤ s ≤ s̄ and s̄ − s ≤ 1/n. Similarly, for any u ∈ [0,1], let uγ , ūγ ∈ In,γ such that
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uγ ≤ u≤ ūγ and ūγ − uγ ≤ 1/�n1/2+γ �. Then, for any u ∈ [0,1]d , we define uγ ∈ I d
n,γ (resp.,

ūγ ∈ I d
n,γ ) as uγ = (u1,γ , . . . , ud,γ ) (resp., ūγ = (ū1,γ , . . . , ūd,γ )).

Now, for any (s,u) ∈ [0,1]d+1,

B̃
(m)
n (s,u)− B̃

(m)
n (s,uγ ) ≤ 1√

n

�ns�∑
i=1

Z
(m)
i,n

{
1(Ui ≤ ūγ )− 1(Ui ≤ uγ )

}
+√nK

{
C(ūγ )−C(uγ )

}
.

Thus,

B̃
(m)
n (s,u)− B̃

(m)
n (s,uγ ) ≤ B̃

(m)
n (s, ūγ )− B̃

(m)
n (s,uγ )+K

{
B̃n(s, ūγ )− B̃n(s,uγ )

}

+
(√

nK + 1√
n

�ns�∑
i=1

Z
(m)
i,n

){
C(ūγ )−C(uγ )

}
,

and therefore

B̃
(m)
n (s,u)− B̃

(m)
n (s,uγ ) ≤ ∣∣B̃(m)

n (s, ūγ )− B̃
(m)
n (s,uγ )

∣∣+K
∣∣B̃n(s, ūγ )− B̃n(s,uγ )

∣∣
+ d

(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣),
using the fact that C satisfies the Lipschitz condition

∣∣C(u)−C(v)
∣∣≤ ‖u− v‖1 ∀u,v ∈ [0,1]d , (A.2)

and that n1/2(�n1/2+γ �)−1 ≤ (nγ − 1)−1 for all n≥ 1. Similarly, for any (s,u) ∈ [0,1]d+1,

B̃
(m)
n (s,uγ )− B̃

(m)
n (s,u)

≤ 1√
n

�ns�∑
i=1

Z
(m)
i,n

{
C(ūγ )−C(uγ )

}+ K√
n

�ns�∑
i=1

{
1(Ui ≤ ūγ )− 1(Ui ≤ uγ )

}

≤ d
(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣)+K
∣∣B̃n(s, ūγ )− B̃n(s,uγ )

∣∣.
Hence, for any (s,u) ∈ [0,1]d+1, we have that

∣∣B̃(m)
n (s,u)− B̃

(m)
n (s,uγ )

∣∣
≤ ∣∣B̃(m)

n (s, ūγ )− B̃
(m)
n (s,uγ )

∣∣+K
∣∣B̃n(s, ūγ )− B̃n(s,uγ )

∣∣ (A.3)

+d
(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣).
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Then, noticing that, for any s ∈ [0,1], B̃(m)
n (s, ·)= B̃

(m)
n (s, ·), and applying (A.3) to the first and

the third summand on the right-hand side of the decomposition

B̃
(m)
n (s,u)− B̃

(m)
n (t,v) = {

B̃
(m)
n (s,u)− B̃

(m)
n (s,uγ )

}+ {
B̃

(m)
n (s,uγ )− B̃

(m)
n (t,vγ )

}
+ {

B̃
(m)
n (t,vγ )− B̃

(m)
n (t,v)

}
,

we obtain that, for any δ > 0,

wδ

(
B̃

(m)
n , [0,1]d+1) ≤ 3wδ+(d+1)/�n1/2+γ �

(
B̃

(m)
n , Tn

)+ 2Kwδ+d/�n1/2+γ �
(
B̃n, [0,1]d+1)

+ 2d
(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣)
≤ 3w2δ

(
B̃

(m)
n , Tn

)+ 2Kw2δ

(
B̃n, [0,1]d+1)

+ 2d
(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣),
for sufficiently large n. Now, from the previous inequality, for any ε > 0,

P
{
wδ

(
B̃

(m)
n , [0,1]d+1)> ε

} ≤ P
{
3w2δ

(
B̃

(m)
n , Tn

)
> ε/3

}
+ P

{
2Kw2δ

(
B̃n, [0,1]d+1)> ε/3

}
+ P

{
2d
(
nγ − 1

)−1
(
K + max

1≤i≤n

∣∣Z(m)
i,n

∣∣)> ε/3
}
.

Since a > 1, we have from Bücher ([7], Lemma 2) that B̃n is asymptotically uniformly
‖ · ‖1-equicontinuous in probability. This implies that the second term on the right of the pre-
vious display converges to 0 as n→∞ followed by δ ↓ 0. The third term converges to zero

because n−γ max1≤i≤n |Z(m)
i,n |

P→ 0. Indeed, for any η > 0 and ν > 1/γ ≥ 2, by Markov’s in-
equality and (M1),

P
(
n−γ max

1≤i≤n

∣∣Z(m)
i,n

∣∣> η
)
≤ nP

(∣∣Z(m)
1,n

∣∣≥ ηnγ
)≤ η−νn1−γ ν sup

n≥1
E
(∣∣Z(m)

1,n

∣∣ν)→ 0.

Thus, it remains to show that, for any ε > 0, limδ↓0 lim supn→∞ P{wδ(B̃
(m)
n , Tn) > ε} = 0, or

equivalently (see, e.g., van der Vaart and Wellner [48], Problem 2.1.5) that, for any positive
sequence δn ↓ 0, limn→∞ P{wδn(B̃

(m)
n , Tn) > ε} = 0. To do so, we shall use Lemma A.2 together

with Lemma 2 of Balacheff and Dupont [4] (see also Bickel and Wichura [6], Theorem 3 and the
remarks on page 1665).

Recall that ν is the measure on [0,1]d corresponding to the c.d.f. C, and let μ be a measure
on [0,1]d+1 defined by μ = 2λ⊗ ν, where λ denotes the one-dimensional Lebesgue measure.
Next, for some real q ∈ (2a/(a − 3),6a/(2a − 3))⊂ (2,4), let β = 2− 2/q − 3/a ∈ (1,4/q).
Furthermore, consider a non-empty set (s, t] ×A= (s, t] × (u1, v1] × · · · × (ud, vd ] of [0,1]d+1

whose boundary points are all distinct and lie in Tn. Then, starting from Lemma A.2, for any
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q ∈ (2a/(a − 3),6a/(2a − 3))⊂ (2,4),

E
[{
B̃

(m)
n

(
(s, t] ×A

)}4]
≤ κ

[
λn(s, t)

2{ν(A)
}4/q + n−1λn(s, t)

{
ν(A)

}2/q]
≤ κ

[{
λn(s, t)ν(A)

}4/q + n−1{λn(s, t)ν(A)
}2/q]

≤ κμ
(
(s, t] ×A

)β{
μ
(
(s, t] ×A

)4/q−β + n−1μ
(
(s, t] ×A

)2/q−β}
≤ κμ

(
(s, t] ×A

)β{24/q−β + n−1n−(1+d/2+dγ )(2/q−β)
}

= κμ
(
(s, t] ×A

)β{24/q−β + n(β−2/q)(1+d/2+dγ )−1}.
Note that infq>2a/(a−3)(β − 2/q) = 3/a. Hence, because 3/a < 2/(2 + d) from the assump-
tion on the mixing rate, it is possible to choose q ∈ (2a/(a − 3),6a/(2a − 3)) and γ > 0 (the
parameter involved in the grid I d

n,γ ) small enough such that β − 2/q < 2/(2 + d + 2dγ ). For
the aforementioned parameter choices, (β − 2/q)(1 + d/2+ dγ ) − 1 < 0, which implies that
n(β−2/q)(1+d/2+dγ )−1 ≤ 1 for all n≥ 1.

With some abuse of notation consisting of incorporating the constant {κ(24/q−β + 1)}1/β into
the measure, we obtain

E
[{
B̃

(m)
n

(
(s, t] ×A

)}4]≤ μ
(
(s, t] ×A

)β
,

which, by Markov’s inequality, implies that, for any ε > 0,

P
{∣∣B̃(m)

n

(
(s, t] ×A

)∣∣≥ ε
}≤ ε−4μ

(
(s, t] ×A

)β
.

Now, let μ̃n denote a finite measure on Tn defined from its values on the singletons {(s,u)} of Tn

as

μ̃n

({
(s,u)

})= {
0, if s ∧ u1 ∧ · · · ∧ ud = 0,
μ
((

s′, s
]× (

u′1, u1
]× · · · × (

u′d , ud

])
, otherwise,

where s′ =max{t ∈ In : t < s} and u′j =max{u ∈ In,γ : u < uj } for all j ∈ {1, . . . , d}. By addi-
tivity of μ̃n, the previous estimation reads

P
{∣∣B̃(m)

n

(
(s, t] ×A

)∣∣≥ ε
}≤ ε−4μ̃n

[{
(s, t] ×A

}∩ Tn

]β
.

We shall now conclude by an application of Lemma 2 of Balacheff and Dupont [4]. Consider
a positive sequence δn ↓ 0, and let δ′n ↓ 0 such that, for any n ∈ N, δ′n ∈ {1/i : i ∈ N} and δ′n ≥
max{δn,1/�n1/2+γ �}. Applying Lemma 2 of Balacheff and Dupont [4] (note that 1/�n1/2+γ � =
max{1/n,1/�n1/2+γ �} is denoted by τ in the lemma) and using the fact that ‖ · ‖2 ≤ ‖ · ‖1, we
obtain that, for any ε > 0, there exists a constant λ > 0 depending on ε, β and d , such that

P
{
wδn

(
B̃

(m)
n , Tn

)
> ε

}
≤ P

{
wδ′n

(
B̃

(m)
n , Tn

)
> ε

}
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≤ λμ̃n(Tn)

×
[
max

{
sup

s,t∈In

|s−t |≤3δ′n

∣∣μ̃n

({0, . . . , s} × I d
n,γ

)− μ̃n

({0, . . . , t} × I d
n,γ

)∣∣,

sup
u,v∈In,γ

|u−v|≤3δ′n

∣∣μ̃n

(
In × {0, . . . , u} × I d−1

n,γ

)− μ̃n

(
In × {0, . . . , v} × I d−1

n,γ

)∣∣,
. . . ,

sup
u,v∈In,γ

|u−v|≤3δ′n

∣∣μ̃n

(
In × I d−1

n,γ × {0, . . . , u})− μ̃n

(
In × I d−1

n,γ × {0, . . . , v})∣∣}]β−1
,

which implies that,

P
{
wδn

(
B̃

(m)
n , Tn

)
> ε

}
≤ λμ

([0,1]d+1)
×
[
max

{
sup

s,t∈[0,1]
|s−t |≤3δ′n

∣∣μ([0, s] × [0,1]d)−μ
([0, t] × [0,1]d)∣∣,

sup
u,v∈[0,1]
|u−v|≤3δ′n

∣∣μ([0,1] × [0, u] × [0,1]d−1)−μ
([0,1] × [0, v] × [0,1]d−1)∣∣,

. . . ,

sup
u,v∈[0,1]
|u−v|≤3δ′n

∣∣μ([0,1]d × [0, u])−μ
([0,1]d × [0, v])∣∣}]β−1

,

which converges to 0 by uniform continuity of the functions s �→ μ([0, s] × [0,1]d), u �→
μ([0,1] × [0, u] × [0,1]d−1), . . . , u �→ μ([0,1]d × [0, u]) on [0,1]. This concludes the proof
for the case ξ

(m)
i,n ≥−K .

Let us now consider the general case. Let Z+i,n =max(ξ
(m)
i,n ,0), Z−i,n =max(−ξ

(m)
i,n ,0), K+ =

E(Z+0,n) and K− = E(Z−0,n). Furthermore, define ξ
(m),+
i,n = Z+i,n −K+ and ξ

(m),−
i,n = Z−i,n −K−.

Then, using the fact that K+ −K− = 0, we can write

ξ
(m)
i,n = Z+i,n −Z−i,n = Z+i,n −K+ − (

Z−i,n −K−)= ξ
(m),+
i,n − ξ

(m),−
i,n .

Setting

B̃
(m),±
n (s,u)= n−1/2

�ns�∑
i=1

ξ
(m),±
i,n

{
1(Ui ≤ u)−C(u)

}
, (s,u) ∈ [0,1]d+1,
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we obtain that B̃(m)
n = B̃

(m),+
n − B̃

(m),−
n . The case treated above immediately yields asymptotic

equicontinuity of B̃(m),+
n and of B̃(m),−

n , which implies asymptotic equicontinuity of B̃(m)
n . �

Proof of Theorem 2.1. Weak convergence of the finite-dimensional distributions is established
in Lemma A.1. Asymptotic tightness of B̃n is a consequence of the weak convergence of B̃n to
BC in �∞([0,1]d), which follows from Theorem 1 in Bücher [7]. From Lemma A.3, we have that,
for any m ∈ {1, . . . ,M}, B̃(m)

n is asymptotically uniformly ‖ · ‖1-equicontinuous in probability.
Together with the fact that [0,1]d+1 is totally bounded for ‖ · ‖1 and Lemma A.1, we have,
for instance, from Theorem 2.1 in Kosorok [29], that, for any m ∈ {1, . . . ,M}, B̃(m)

n � B
(m)
C

in �∞([0,1]d), which implies asymptotic tightness of B̃(m)
n . The proof is complete as marginal

asymptotic tightness implies joint asymptotic tightness. �

Appendix B: Proof of Theorem 3.4

The proof of Theorem 3.4 is based on the extended continuous mapping theorem (van der Vaart
and Wellner [48], Theorem 1.11.1). The intuition of the proof is as follows: the aim is to con-
struct suitable maps gn and g such that gn continuously converges to g (i.e., gn(αn) converges
uniformly to g(α) for all sequences αn converging uniformly to α) and such that we may con-
clude that, as a process indexed by s, t,u, Cn(s, t,u)≈ gn{B̃n(t,u)−B̃n(s,u)} converges weakly
to g{B̃(t,u)− B̃(s,u)} =C(s, t,u).

In the following, all the convergences are with respect to n→∞. Let E be the set of c.d.f.s on
[0,1] with no mass at 0, that is,

E = {
F : [0,1]→ [0,1] : F is right-continuous and nondecreasing with

F(0)= 0 and F(1)= 1
}
,

let

E�
n =

{
F� :�× [0,1]→ [0,1] : u �→ λn(s, t)

−1F�(s, t, u) ∈ E if �ns�< �nt�
and F�(s, t, ·)= 0 if �ns� = �nt�},

where λn(s, t)= (�nt� − �ns�)/n, and let In be the sequence of maps defined, for any F� ∈ E�
n

and any (s, t, u) ∈�× [0,1], by

In

(
F�

)
(s, t, u)= inf

{
v ∈ [0,1] : F�(s, t, v)≥ λn(s, t)u

}
.

Furthermore, given a function H� ∈ �∞(�× [0,1]d), for any j ∈ {1, . . . , d}, we define

H�
j (s, t, u)=H�(s, t,u{j}), (s, t, u) ∈�× [0,1],

where, for any u ∈ [0,1], u{j} is the vector of [0,1]d whose components are all equal to 1 except
the j th one which is equal to u. Then, let

E�
n,d =

{
H� :�× [0,1]d →[0,1] :H�

j ∈ E�
n for all j ∈ {1, . . . , d}}
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and let �n be the map from E�
n,d to �∞(�× [0,1]d) defined, for any H� ∈ E�

n,d and (s, t,u) ∈
�× [0,1]d , by

�n

(
H�

)
(s, t,u)=H�

{
s, t, In

(
H�

1

)
(s, t, u1), . . . , In

(
H�

d

)
(s, t, ud)

}
. (B.1)

Let additionally U�
n ∈ E�

n be defined as U�
n(s, t, u)= λn(s, t)u for all (s, t, u) ∈�×[0,1], and

let C�
n(s, t,u) = λn(s, t)C(u) for all (s, t,u) ∈ �× [0,1]d . Clearly, we have that C�

n,1 = · · · =
C�

n,d =U�
n . Moreover, �n(C

�
n)= C�

n.
Also, let

D� = {
α� ∈ �∞

(
�× [0,1]d) : α�(s, t, ·)= 0 if s = t, and

α�(s, t,u)= 0 if s < t and if one of the components of u is 0 or u= (1, . . . ,1)
}
,

let D�
n = {α� ∈ D� : C�

n + n−1/2α� ∈ E�
n,d}, and let D�

0 = D� ∩ C(�× [0,1]d). Finally, for any

α�
n ∈D�

n and any (s, t,u) ∈�× [0,1]d , let

gn

(
α�

n

)
(s, t,u)=√n

{
�n

(
C�

n + n−1/2α�
n

)
(s, t,u)−�n

(
C�

n

)
(s, t,u)

}
, (B.2)

and, for any α� ∈D�
0 and any (s, t,u) ∈�× [0,1]d , let

g
(
α�
)
(s, t,u)= α�(s, t,u)−

d∑
j=1

Ċj (u)α�
(
s, t,u(j)

)
.

The following lemma is the main ingredient for the proof of Theorem 3.4. Its proof is given
subsequent to the proof of Theorem 3.4.

Lemma B.1. Suppose that C satisfies Condition 3.2, and let α�
n→ α� with α�

n ∈D�
n for every n

and α� ∈D�
0. Then, gn(α

�
n)→ g(α�) ∈ �∞(�× [0,1]d).

Proof of Theorem 3.4. Under Condition 3.1, we have that B̃n � BC in �∞([0,1]d+1). Now,
for any (s, t,u) ∈�×[0,1]d , define B̃�

n (s, t,u)= B̃n(t,u)− B̃n(s,u), B�
C(s, t,u)= BC(t,u)−

BC(s,u), and

H̃ �
n (s, t,u)= 1

n

�nt�∑
i=�ns�+1

1(Ui ≤ u).

Notice that B̃�
n =

√
n(H̃ �

n − C�
n) and that, by the continuous mapping theorem, B̃�

n � B
�
C in

�∞(� × [0,1]d). Clearly, B̃
�
n , as a function of ω, takes its values in D�

n and B
�
C is Borel

measurable and separable by Condition 3.1, and, as a function of ω, takes its values in D�
0.

Now, consider the map hn from D�
n to {�∞(� × [0,1]d)}2, defined, for any α�

n ∈ D�
n and any

(s, t,u) ∈�× [0,1]d , by

hn

(
α�

n

)
(s, t,u)= (

gn

(
α�

n

)
(s, t,u), g

(
α�

n

)
(s, t,u)

)
.
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Using Lemma B.1 and the fact that g is linear and bounded, we have from the extended contin-
uous mapping theorem (van der Vaart and Wellner [48], Theorem 1.11.1) that hn(B̃

�
n ) � h(B�

C)

in {�∞(�× [0,1]d)}2, where, for any α� ∈D�
0 and any (s, t,u) ∈�× [0,1]d ,

h
(
α�
)
(s, t,u)= (

g
(
α�
)
(s, t,u), g

(
α�
)
(s, t,u)

)
.

An application of the continuous mapping theorem immediately yields that gn(B̃
�
n ) − C̃n =

gn(B̃
�
n )− g(B̃�

n ) � 0 in �∞(�× [0,1]d), where C̃n is defined in (3.1). To complete the proof,
it remains to show that

An = sup
(s,t,u)∈�×[0,1]d

∣∣gn

(
B̃

�
n

)
(s, t,u)−Cn(s, t,u)

∣∣= oP(1).

Note that it suffices to restrict the supremum over all pairs (s, t) ∈� such that �ns�< �nt�. From
the definition of gn, we have that

gn

(
B̃

�
n

)
(s, t,u)

=√n
{
�n

(
H̃ �

n

)
(s, t,u)−�n

(
C�

n

)
(s, t,u)

}

= 1√
n

�nt�∑
i=�ns�+1

[
1
{
Ui1 ≤ In

(
H̃ �

n,1

)
(s, t, u1), . . . ,Uid ≤ In

(
H̃ �

n,d

)
(s, t, ud)

}−C(u)
]
.

Now, let H̃�ns�+1:�nt� be the empirical c.d.f. computed from the sample U�ns�+1, . . . ,U�nt�, and
let H̃�ns�+1:�nt�,1, . . . , H̃�ns�+1:�nt�,d be the corresponding marginal c.d.f.s. Given F ∈ E , let F−1

be its generalized inverse defined by F−1(u)= inf{v ∈ [0,1] : F(v)≥ u}. Then, let

H̃−1
�ns�+1:�nt�(u)= (

H̃−1
�ns�+1:�nt�,1(u1), . . . , H̃

−1
�ns�+1:�nt�,d (ud)

)
, u ∈ [0,1]d .

Using the fact that, for any j ∈ {1, . . . , d}, In(H̃
�
n,j )(s, t, u)= H̃−1

�ns�+1:�nt�,j (u) for all (s, t, u) ∈
�× [0,1] such that �ns�< �nt�, we obtain

gn

(
B̃

�
n

)
(s, t,u) = 1√

n

�nt�∑
i=�ns�+1

[
1
{
Ui ≤ H̃−1

�ns�+1:�nt�(u)
}−C(u)

]

=√nλn(s, t)
[
H̃�ns�+1:�nt�

{
H̃−1
�ns�+1:�nt�(u)

}−C(u)
]
.

Hence, we obtain that

An = sup
(s,t,u)∈�×[0,1]d

√
nλn(s, t)

∣∣C�ns�+1:�nt�(u)− H̃�ns�+1:�nt�
{
H̃−1
�ns�+1:�nt�(u)

}∣∣
= n−1/2 max

1≤l<k≤n
sup

u∈[0,1]d
(k − l)

∣∣Cl+1:k(u)− H̃l+1:k
{
H̃−1

l+1:k(u)
}∣∣.
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Under Condition 3.3, it can be verified, using properties of generalized inverses, that

sup
u∈[0,1]d

∣∣Cl+1:k(u)− H̃l+1:k
{
H̃−1

l+1:k(u)
}∣∣≤ d

k− l
,

which implies that An→ 0 and completes the proof. �

It remains to prove Lemma B.1. For that purpose, another lemma is needed.

Lemma B.2. Let α�
n→ α� with α�

n ∈D�
n for every n and α� ∈D�

0. Then, for any j ∈ {1, . . . , d},

sup
(s,t,u)∈�×[0,1]

∣∣√nλn(s, t)
{
In

(
U�

n + n−1/2α�
n,j

)
(s, t, u)− u

}+ α�
j (s, t, u)

∣∣→ 0.

Proof. The assertion is trivial for u= 0 because α� ∈D�
0 and U�

n + n−1/2α�
n,j ∈ E�

n .
Clearly, for any s ∈ [0,1], ns ≥ �ns�, that is, s ≥ λn(0, s). Furthermore, under the constraint

s ≤ t , �nt� = �ns� is equivalent to 0≤ t − λn(0, s) < 1/n, which can be written as 0≤ t − s +
s − λn(0, s) < 1/n, which means that there exists hn ↓ 0 such that t − s < hn. Then, we have

sup
�nt�=�ns�,u∈[0,1]

∣∣λn(s, t)
√

n
{
In

(
U�

n + n−1/2α�
n,j

)
(s, t, u)− u

}+ α�
j (s, t, u)

∣∣
≤ sup

t−s<hn,u∈[0,1]
∣∣α�

j (s, t, u)
∣∣→ 0

by uniform continuity of α�
j on �× [0,1].

Hence, it remains to consider the case �ns� < �nt� and u ∈ (0,1]. Given F ∈ E , let F−1

be its generalized inverse defined by F−1(u) = inf{v ∈ [0,1] : F(v) ≥ u}. Then, notice that,
for any �ns� < �nt� and u ∈ [0,1], In(U

�
n + n−1/2α�

n,j )(s, t, u) = F−1
s,t,n(u), where Fs,t,n =

λn(s, t)
−1(U�

n + n−1/2α�
n,j )(s, t, ·) ∈ E . It follows that, for any �ns� < �nt� and u ∈ (0,1],

ξn(s, t, u)= In(U
�
n + n−1/2α�

n,j )(s, t, u) > 0, and therefore that εn(s, t, u)= n−1 ∧ ξn(s, t, u) >

0. Also, for any F ∈ E , it can be verified that F {F−1(u)− η} ≤ u≤ F ◦F−1(u) for all u ∈ (0,1]
and all η > 0 such that F−1(u)− η ≥ 0. Hence, for any �ns�< �nt� and u ∈ (0,1],

(
U�

n + n−1/2α�
n,j

){
s, t, ξn(s, t, u)− εn(s, t, u)

} ≤ λn(s, t)u

≤ (
U�

n + n−1/2α�
n,j

){
s, t, ξn(s, t, u)

}
,

that is

−n−1/2α�
n,j

{
s, t, ξn(s, t, u)

}
≤ λn(s, t)

{
ξn(s, t, u)− u

}
(B.3)

≤ λn(s, t)εn(s, t, u)− n−1/2α�
n,j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}
,
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which in turn implies that

sup
�ns�<�nt�,u∈(0,1]

∣∣λn(s, t)
{
ξn(s, t, u)− u

}∣∣→ 0 (B.4)

since, by uniform convergence of α�
n to α� and the fact that α� ∈ D�

0, the quantity
sup(s,t,u)∈�×[0,1] |α�

n,j (s, t, u)| is bounded. From (B.3), exploiting the fact that εn(s, t, u)≤ n−1,
we then obtain that

sup
�ns�<�nt�,u∈(0,1]

∣∣√nλn(s, t)
{
ξn(s, t, u)− u

}+ α�
j (s, t, u)

∣∣≤An +Bn + n−1/2,

where

An = sup
�ns�<�nt�,u∈(0,1]

∣∣α�
n

{
s, t, ξn(s, t, u)

}− α�
j (s, t, u)

∣∣,
and

Bn = sup
�ns�<�nt�,u∈(0,1]

∣∣α�
n,j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}− α�
j (s, t, u)

∣∣.
For Bn, we write Bn ≤ Bn,1 +Bn,2, where

Bn,1 = sup
�ns�<�nt�
u∈(0,1]

∣∣α�
n,j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}− α�
j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}∣∣

≤ sup
(s,t,u)∈�×[0,1]

∣∣α�
n,j (s, t, u)− α�

j (s, t, u)
∣∣→ 0,

and

Bn,2 = sup
(s,t,u)∈�×[0,1]

∣∣α�
j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}− α�
j (s, t, u)

∣∣.
It remains to show that Bn,2 → 0. Let ε > 0. Since α� ∈ D�

0, there exists δ > 0 such that
supt−s<δ,u∈[0,1] |α�

j (s, t, u)| ≤ ε. We have Bn,2 =max{Bn,3,Bn,4}, where

Bn,3 = sup
t−s<δ,u∈[0,1]

∣∣α�
j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}− α�
j (s, t, u)

∣∣≤ 2ε,

and

Bn,4 = sup
t−s≥δ,u∈[0,1]

∣∣α�
j

{
s, t, ξn(s, t, u)− εn(s, t, u)

}− α�
j (s, t, u)

∣∣.
Now, it is easy to verify that t − s ≤ λn(s, t)+ 1/n, so that, for n sufficiently large, t − s ≥ δ

implies that λn(s, t) ≥ δ/2. Then, from (B.4) and the fact that ξn(·, ·,0) = 0, we immediately
have that, for n sufficiently large,

an = sup
t−s≥δ

u∈[0,1]

∣∣ξn(s, t, u)− u
∣∣≤ sup

t−s≥δ

u∈[0,1]

∣∣λn(s, t)
{
ξn(s, t, u)− u

}∣∣× sup
t−s≥δ

λn(s, t)
−1 → 0.
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Hence, we can write

Bn,4 ≤ sup
t−s≥δ,u,u′∈[0,1]
|u′−u|≤an+n−1

∣∣α�
j

(
s, t, u′

)− α�
j (s, t, u)

∣∣→ 0

since α�
j is uniformly continuous on � × [0,1]. Proceeding as for Bn, it can be verified that

An→ 0, which completes the proof. �

Proof of Lemma B.1. Starting from the definitions of gn and �n given in (B.2) and (B.1),
respectively, we have the decomposition

gn

(
α�

n

)
(s, t,u)=An,1(s, t,u)+An,2(s, t,u),

where

An,1(s, t,u)= α�
n

{
s, t, In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1), . . . , In

(
U�

n + n−1/2α�
n,d

)
(s, t, ud)

}
,

and

An,2(s, t,u)

=√nλn(s, t)
[
C
{
In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1), . . . , In

(
U�

n + n−1/2α�
n,d

)
(s, t, ud)

}−C(u)
]
.

We begin the proof by showing that sup(s,t,u)∈�×[0,1]d |An,1(s, t,u) − α�(s, t,u)| → 0. Let
ε > 0. Using the fact that α� ∈D�

0, there exists δ > 0 such that |α�(s, t,u)| ≤ ε for all t − s < δ

and u ∈ [0,1]d . Then, we write

sup
(s,t,u)∈�×[0,1]d

∣∣An,1(s, t,u)− α�(s, t,u)
∣∣≤ Bn,1 +Bn,2 +Bn,3,

where

Bn,1 = sup
(s,t,u)∈�×[0,1]d

∣∣An,1(s, t,u)− α�
{
s, t, In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1), . . . ,

In

(
U�

n + n−1/2α�
n,d

)
(s, t, ud)

}∣∣
≤ sup

(s,t,u)∈�×[0,1]d
∣∣α�

n(s, t,u)− α�(s, t,u)
∣∣≤ ε,

for sufficiently large n, where

Bn,2 = sup
t−s<δ

u∈[0,1]d

∣∣α�
{
s, t, In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1), . . . , In

(
U�

n + n−1/2α�
n,d

)
(s, t, ud)

}

− α�(s, t,u)
∣∣,
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and

Bn,3 = sup
t−s≥δ

u∈[0,1]d

∣∣α�
{
s, t, In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1), . . . , In

(
U�

n + n−1/2α�
n,d

)
(s, t, ud)

}

− α�(s, t,u)
∣∣.

For Bn,2, using the triangle inequality, we have that

Bn,2 ≤ 2 sup
t−s<δ,u∈[0,1]d

∣∣α�(s, t,u)
∣∣≤ 2ε.

For Bn,3, we use the fact that Lemma B.2 implies that, for any j ∈ {1, . . . , d},
an,j = sup

t−s≥δ,u∈[0,1]
∣∣In

(
U�

n + n−1/2α�
n,j

)
(s, t, u)− u

∣∣→ 0, (B.5)

and the fact that

Bn,3 ≤ sup
t−s≥δ,|u1−v1|≤an,1,...,|ud−vd |≤an,d

∣∣α�(s, t,u)− α�(s, t,v)
∣∣.

By uniform continuity of α�, for sufficiently large n, we obtain that Bn,3 ≤ ε. Hence, we have
shown that, for sufficiently large n, sup(s,t,u)∈�×[0,1]d |An,1(s, t,u)−α�(s, t,u)| ≤ 4ε, and there-
fore that sup(s,t,u)∈�×[0,1]d |An,1(s, t,u)− α�(s, t,u)| → 0.

Let us now deal with An,2. Fix n ≥ 1 and s < t such that �ns� < �nt�. For any u ∈ [0,1]d ,
j ∈ {1, . . . , d} and r ∈ [0,1], let ūj (r)= uj + r{In(U

�
n + n−1/2α�

n,j )(s, t, uj )− uj } and define

ū(r)= (ū1(r), . . . , ūd(r)). Now, fix u ∈ (0,1)d and let f be the function defined by

f (r)= C�
n

{
s, t, ū(r)

}= λn(s, t)C
{
ū(r)

}
.

Obviously, we have that 0 < ūj (r) < 1 for all r ∈ (0,1) and j ∈ {1, . . . , d}. Therefore, the func-
tion f is continuous on [0,1], and, by Condition 3.2, is differentiable on (0,1). Hence, by the
mean value theorem, there exists r∗ ∈ (0,1) such that f (1)− f (0)= f ′(r∗), which implies that

An,2(s, t,u)=
d∑

j=1

Ċj

{
ū
(
r∗
)}

λn(s, t)
√

n
{
In

(
U�

n + n−1/2α�
n,j

)
(s, t, uj )− uj

}
. (B.6)

The previous equality remains clearly valid when �ns� = �nt�. Let us now verify that it
also holds when �ns� < �nt� and u is on the boundary of [0,1]d . When uj = 0 for some
j ∈ {1, . . . , d}, In(U

�
n + n−1/2α�

n,j )(·, ·, uj )= 0, which implies that ūj (r)= 0 for all r ∈ [0,1].
It then immediately follows that the left-hand side of (B.6) is zero and that the j th term in the
sum on the right is zero. The d − 1 remaining terms in the sum on the right of (B.6) are actually
also zero because, for any k ∈ {1, . . . , d}, k �= j , Ċk(v)= 0 for all v ∈ [0,1]d such that vk = 0.
Hence, (B.6) remains true whenever uj = 0 for some j ∈ {1, . . . , d}.
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Let us now assume that �ns� < �nt� and that uj = 1 for some j ∈ {1, . . . , d}. Two
cases can be distinguished according to whether In(U

�
n + n−1/2α�

n,j )(s, t,1) = 1 or In(U
�
n +

n−1/2α�
n,j )(s, t,1) < 1. In the later case, 0 < ūj (r) < 1. In the former case, we obtain that

ūj (r) = 1 for all r ∈ [0,1] and that the j th term in the sum on the right of (B.6) is zero so
that neither the left nor the right-hand side of (B.6) depend on uj anymore. It follows that, when
some components of u are one, the previous equality can be recovered by an application of the
mean value theorem similar to the one carried out above.

Now, we write

An,2(s, t,u)=
d∑

j=1

Ċj (u)λn(s, t)
√

n
{
In

(
U�

n +n−1/2α�
n,j

)
(s, t, uj )−uj

}+ rn(s, t,u), (B.7)

where rn(s, t,u)=∑d
j=1 rn,j (s, t,u) and, for any j ∈ {1, . . . , d},

rn,j (s, t,u)= [
Ċj

{
ū
(
r∗
)}− Ċj (u)

]
λn(s, t)

√
n
{
In

(
U�

n + n−1/2α�
n,j

)
(s, t, uj )− uj

}
.

By Lemma B.2 and from the fact that 0≤ Ċj ≤ 1 for all j ∈ {1, . . . , d}, the dominating term in
decomposition (B.7) converges to

−
d∑

j=1

Ċj (u)α�
(
s, t,u(j)

)

uniformly in (s, t,u) ∈�× [0,1]d . It therefore remains to show that

sup
(s,t,u)∈�×[0,1]d

∣∣rn(s, t,u)
∣∣→ 0.

Let us first show that sup(s,t,u)∈�×[0,1]d |rn,1(s, t,u)| → 0. We have that

sup
(s,t,u)∈�×[0,1]d

∣∣rn,1(s, t,u)
∣∣≤ Bn,4 +Bn,5,

where

Bn,4 = sup
(s,t,u)∈�×[0,1]d

∣∣Ċ1
{
ū
(
r∗
)}− Ċ1(u)

∣∣
× sup

(s,t,u)∈�×[0,1]d
∣∣λn(s, t)

√
n
{
In

(
U�

n + n−1/2α�
n,1

)
(s, t, u1)− u1

}+ α�
1(s, t, u1)

∣∣,
and

Bn,5 = sup
(s,t,u)∈�×[0,1]d

∣∣[Ċ1
{
ū
(
r∗
)}− Ċ1(u)

]
α�

1(s, t, u1)
∣∣.
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From the fact that 0 ≤ Ċ1 ≤ 1 and Lemma B.2, we immediately obtain that Bn,4 → 0. It re-
mains to show that Bn,5 → 0. To this end, let ε > 0. Since α� ∈D�

0, there exists δ > 0 such that
|α�

1(s, t, u)| ≤ ε for all t − s < δ and all u ∈ [0,1]. Then, Bn,5 ≤ Bn,6 +Bn,7, where

Bn,6 = sup
(s,t,u)∈�×[0,1]d

∣∣Ċ1
{
ū
(
r∗
)}− Ċ1(u)

∣∣× sup
t−s<δ,u∈[0,1]

∣∣α�
1(s, t, u)

∣∣≤ 2ε,

and

Bn,7 = sup
t−s≥δ,u∈[0,1]d

∣∣[Ċ1
{
ū
(
r∗
)}− Ċ1(u)

]
α�

1(s, t, u1)
∣∣.

For Bn,7, we use the fact that, since α� ∈D�
0, there exists 0 < κ < 1/2 such that

sup
t−s≥δ,u∈[0,κ)∪(1−κ,1]

∣∣α�
1(s, t, u)

∣∣≤ ε.

Then, we write Bn,7 ≤ Bn,8 +Bn,9, where

Bn,8 = sup
(s,t,u)∈�×[0,1]d

∣∣Ċ1
{
ū
(
r∗
)}− Ċ1(u)

∣∣× sup
t−s≥δ,u∈[0,1]d

u1∈[0,κ)∪(1−κ,1]

∣∣α�
1(s, t, u1)

∣∣≤ 2ε,

and

Bn,9 = sup
t−s≥δ,u∈[0,1]d ,u1∈[κ,1−κ]

∣∣Ċ1
{
ū
(
r∗
)}− Ċ1(u)

∣∣× sup
(s,t,u)∈�×[0,1]

∣∣α�
1(s, t, u)

∣∣.
From (B.5), we obtain that

Bn,9 ≤ sup
u,v∈[0,1]d ,u1,v1∈[κ/2,1−κ/2]
|u1−v1|≤an,1,...,|ud−vd |≤an,d

∣∣Ċ1(u)− Ċ1(v)
∣∣× sup

(s,t,u)∈�×[0,1]

∣∣α�
1(s, t, u)

∣∣.

Since Ċ1 is uniformly continuous on [κ/2,1− κ/2] × [0,1]d−1 according to Condition 3.2, and
since sup(s,t,u)∈�×[0,1] |α�

1(s, t, u)| is bounded, we have that Bn,9 → 0, which implies that, for n

sufficiently large, Bn,9 ≤ ε. It follows that, for n sufficiently large, Bn,5 ≤ 5ε, which implies that
sup(s,t,u)∈�×[0,1]d |rn,1(s, t,u)| → 0. One can proceed similarly for rn,j , j ∈ {2, . . . , d}. Hence,
sups≤t,u∈[0,1]d |rn(s, t,u)| → 0. �
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Supplementary Material

Supplement to “A dependent multiplier bootstrap for the sequential empirical copula pro-
cess under strong mixing” (DOI: 10.3150/14-BEJ682SUPP; .pdf). Additional proofs and sim-
ulation results can be found in (Bücher and Kojadinovic [9]).
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