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This paper presents a general asymptotic theory of sequential Bayesian estimation giving results for the
strongest, almost sure convergence. We show that under certain smoothness conditions on the probability
model, the greedy information gain maximization algorithm for adaptive Bayesian estimation is asymptot-
ically optimal in the sense that the determinant of the posterior covariance in a certain neighborhood of the
true parameter value is asymptotically minimal. Using this result, we also obtain an asymptotic expression
for the posterior entropy based on a novel definition of almost sure convergence on “most trials” (meaning
that the convergence holds on a fraction of trials that converges to one). Then, we extend the results to a
recently published framework, which generalizes the usual adaptive estimation setting by allowing different
trial placements to be associated with different, random costs of observation. For this setting, the author has
proposed the heuristic of maximizing the expected information gain divided by the expected cost of that
placement. In this paper, we show that this myopic strategy satisfies an analogous asymptotic optimality
result when the convergence of the posterior distribution is considered as a function of the total cost (as
opposed to the number of observations).
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1. Introduction

The theoretical framework of this paper is that of Bayesian adaptive estimation with an infor-
mation based objective function (see, e.g., MacKay [9], Kujala and Lukka [7], Kujala [6]). Fol-
lowing the notation of Kujala [5,6], the basic problem we consider is the estimation of an unob-
servable random variable � :� �→ O- based on a sequence yx1, . . . , yxt of independent (given θ )
realizations from some conditional densities p(yxt | θ) indexed by trial placements xt , each of
which can be adaptively chosen from some set X based on the outcomes (yx1 , . . . , yxt−1) of the
earlier observations. A commonly used greedy strategy is to choose the next placement so as
to maximize the expected immediate information gain, that is, the decrease of the (differential)
entropy of the posterior distribution given the next observation.

Previous work on the asymptotics of Bayesian estimation (see, e.g., Schervish [11], van der
Vaart [13]) has mostly concentrated on the i.i.d. case, and in the few cases where the independent
(given θ ) but not identical case is considered, it is customarily assumed that a certain fixed
sequence of variables is given. Hence, these results do not apply to the present situation where
the sequence Xt of placements is also random.
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Paninski [10] has developed an asymptotic theory for this adaptive setting. He states con-
sistency and asymptotic normality results for the greedy information maximization placement
strategy and quantifies the asymptotic efficiency of the method. However, the proofs therein are
not complete and hence do not provide a sufficient foundation for some generalizations and the-
orems we are interested in. In this paper, we develop a more general theory which allows us to
generalize the main results of Paninski [10] to almost sure convergence (with novel proofs) and
to show that the greedy method is in a certain sense asymptotically optimal among all placement
methods. Furthermore, we provide a rigorous and general framework that lends itself to further
extensions of the theory.

One particular extension we are interested in is analyzing the asymptotic properties of the
novel framework proposed in Kujala [5]. In this framework, the observation of Yx is associated
with some random cost Cx (see Section 4.4 for details). To make measurement “cost-effective”,
a myopic placement rule is considered that on each trial t maximizes the expected value of the
information gain (decrease of entropy)

Gt = H(� | YX1, . . . , YXt−1) − H(� | YX1 , . . . , YXt )

divided by the expected value of the cost Ct = CXt . This is called a myopic strategy as it looks
only one step ahead. However, it is not a greedy strategy as it does not optimize the immediate
gain.

In Kujala [5], the following fairly simple asymptotic optimality result is given for this myopic
strategy.

Theorem 1.1. Suppose that there exists a constant α > 0 such that

max
x∈X

E(Gt | y,Xt = x)

E(Ct | y,Xt = x)
= α (1.1)

for all possible sets y of past observations. If the next placement Xt is defined as the maximizer
of (1.1) and if for some σ 2 < ∞ and ε > 0,⎧⎪⎨

⎪⎩
Var(Gt | YX1 , . . . , YXt−1) ≤ σ 2,

Var(Ct | YX1 , . . . , YXt−1) ≤ σ 2,

E(Ct | YX1, . . . , YXt−1) ≥ ε

(1.2)

for all t , then the gain-to-cost ratio satisfies

lim
t→∞

G1 + · · · + Gt

C1 + · · · + Ct

a.s.= α.

This is asymptotically optimal in the sense that for any other strategy that satisfies (1.2), we have

lim sup
t→∞

G1 + · · · + Gt

C1 + · · · + Ct

a.s.≤ α.
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However, this result requires the obtainable information gains to not decrease over time for the
optimality condition to make sense and hence does not in general apply to smooth models. In this
paper, we provide a counterpart of the above result using an optimality criterion (D-optimality)
relevant to smooth models.

Our results are structured as follows. In Section 2, we derive strong consistency of the posterior
distributions under extremely mild, purely topological conditions on the family of likelihood
functions. In Section 3, we consider the local smoothness assumptions (to be assumed in a certain
neighborhood of the true parameter value) required for asymptotic normality. In Section 4.1,
we develop a theory of asymptotic proportions and use it for a novel type of convergence of
random variables that is required in our analysis. Then, in Sections 4.2 and 4.3, we are able to
quantify the asymptotic covariance and asymptotic entropy of the posterior distribution and to
show a form of asymptotic optimality for the standard greedy information maximization strategy.
In Section 4.4, these results are generalized to the situation with random costs of observation
associated with each placement as discussed above. The heuristically justified, myopic placement
strategy proposed in Kujala [5] turns out to be asymptotically optimal also in the sense of the
present paper, supporting the view that this strategy is the most natural generalization of the
greedy information maximization strategy to the situation where the costs of observation can
vary. We give concrete examples of the optimality results in Section 5 and then end with general
discussion in Section 6.

1.1. Preliminaries

We shall denote random variables by upper case letters and their specific values by lower
case letters. The information theoretic definitions that we will use are the (differential) entropy
H(A) = − ∫

p(a) logp(a)da, which does depend on the parameterization of a, the Kullback–
Leibler divergence

DKL
(
p(a)‖p(b)

) =
∫

p(a) log
p(a)

p(b)
da,

which is independent of the parameterization, and the mutual information

I(A;B) =
∫

p(a, b) log
p(a, b)

p(a)p(b)
d(a, b)

=
∫

p(a)DKL
(
p(b | a)‖p(b)

)
da

=
∫

p(b)DKL
(
p(a | b)‖p(a)

)
db,

which is also independent of the parameterization as well as symmetric. Also, the identities
I(A;B) = H(A) − E(H(A | B)) = H(B) − E(H(B | A)) hold whenever the differences are well
defined. This is all standard notation (see, e.g., Cover and Thomas [3]) except that in our notation,
there is no implicit expectation over the values of A in H(B | A), and so it is a random variable
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depending on the value of A. Similarly, a conditional density p(b | a) as an argument to DKL(· · ·)
is treated the same way as any other density of b, with no implicit expectation over a.

The densities p(a) and p(b) above are assumed to be taken w.r.t. arbitrary dominating mea-
sures “da” and “db”. Thus, following Lindley [8], we are in fact working in full measure theoretic
generality even though we use the more familiar notation. The underlying probability space is
(�,F ,P) and so, for example, P{� ∈ U} means the probability that the value of � :� → O- is
within the measurable set U ⊂ O- . In some places we may abbreviate this by p(U), but it will be
clear from the context what random variable is referred to. When we say “for a.e. θ”, it is w.r.t.
the prior distribution of �. The σ -algebra of O- is assumed to contain at least the Borel sets of
the topology which O- is assumed to be endowed with.

For any fixed x ∈ X, we assume that the conditional densities p(yx | θ) are given w.r.t. the
same dominating σ -finite measure “dyx” for all θ ∈ O- and when we say “for a.e. yx”, it is w.r.t.
this measure. For brevity, we shall indicate conditioning on the data Yt := (YX1 , . . . , YXt ) by
the subscript t on any quantities that depend on them. For example, pt(θ) = p(θ | Yt ) is the
posterior density of � given Yt and Et (f (�)) = Et (f (�) | Yt ) is the posterior expectation of
f (�) given Yt .

It is often assumed that one can observe multiple independent (given θ ) copies of the same
random variable Yx . However, instead of complicating the general notation with something like
Y

(t)
xt

, we rely on the fact that the set X can explicitly include separate indices for any identically

distributed copies, for example, one might have [Y(x,t) | θ ] i.i.d.∼ [Y(x,t ′) | θ ] for all t, t ′ ∈ N, t �= t ′.
Hence, we can use the simple notation with no loss of generality.

The greedy information gain maximization strategy can be formally defined as choosing the
placement Xt to be the value x that maximizes the mutual information It−1(�;Yx) = Ht−1(�)−
Et−1(Ht−1(� | Yx)), the expected decrease in the entropy of � after the next observation. In
some models, there may be no maximum of the mutual information in which case the placement
should be chosen sufficiently close to the supremum, which we formally define as the ratio of the
mutual information and its supremum converging to one (condition O4 in Section 4).

2. Consistency

The general assumptions for consistency are:

C1. The parameter space O- is a compact topological space.
C2. The family of log-likelihoods is (essentially) equicontinuous, that is, for all θ ∈ O- and

ε > 0, there exists a neighborhood U of θ such that whenever θ ′ ∈ U ,∣∣logp(yx | θ) − logp
(
yx | θ ′)∣∣ < ε

for a.e. yx for all x ∈ X.
C3. All points in O- are statistically distinguishable from each other. That is, for all distinct

θ, θ ′ ∈ O- ,

dx

(
θ, θ ′) :=

∫ ∣∣p(yx | θ) − pt

(
yx | θ ′)∣∣dyx > 0

for some x ∈ X.
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C4. For some γ > 0, the placements Xt satisfy

It−1(�;YXt ) ≥ γ sup
x∈X

It−1(�;Yx)

for all sufficiently large t .

Remark 2.1. These assumptions for consistency are considerably weaker than those formulated
in Paninski [10]. In particular, the assumptions C1–C3 only pertain to the likelihood function
p(yx | θ), absolutely nothing is assumed about the prior distribution of �. Furthermore, these
assumptions are purely topological in the sense that they are preserved by all homeomorphic
transformations of O- . Also, in C4, we do not require perfect maximization of information gain;
this is useful as it allows us to apply the same result to the non-greedy strategy discussed in
Section 4.4 as well.

Remark 2.2. Non-compact spaces can be handled if the log-likelihood has an (essentially)
equicontinuous extension to a compactification of O- . This happens precisely when the following
conditions hold:

C1′. The parameter space O- is a topological space.
C2′. The function f (θ) = ((x, yx) �→ logp(yx | θ)), with the topology of the target space

induced by the ([0,∞]-valued) norm

‖v‖ = sup
x∈X

ess sup
yx

∣∣v(x, yx)
∣∣,

is continuous (this is just restating C2) and the closure of the range f (O- ) is compact (this
is the extra condition needed for non-compact spaces).

C3′. For all distinct θ, θ ′ ∈ O- , the inequality f (θ) �= f (θ ′) holds true, where equality is inter-
preted w.r.t. a.e. yx . (This is equivalent to C3.)

In that case, f lifts continuously to the Stone–Čech compactification βO- of O- (Theorem A.1).
Condition C3 may not hold for the points added by the compactification, but this can be fixed by
moving to the compact quotient space βO- /ker(f ). Thus, C1–C3 can always be replaced by the
strictly weaker conditions C1′–C3′.

Lemma 2.1. Suppose that C1–C3 hold. Then, there exists a metric d : O- × O- → R that is con-
sistent with the topology of O- , and an estimator �̂t such that for each t there exists x ∈ X such
that

It (Yx;�) ≥ Et

(
d(�, �̂t )

2).
Proof. First, we show that the pseudometric dx defined in C3 is continuous in O- × O- for all
x ∈ X. It can be shown using C2 that for any θ ∈ O- and ε > 0, there exists a neighborhood Uθ,ε

such that dx(θ, θ ′) ≤ ε for all θ ′ ∈ Uθ,ε . Thus, for any ε > 0 and θ1, θ2 ∈ O- , the triangle inequality
implies ∣∣dx

(
θ ′

1, θ
′
2

) − dx(θ1, θ2)
∣∣ ≤ dx

(
θ1, θ

′
1

) + dx

(
θ2, θ

′
2

) ≤ 2ε
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whenever (θ ′
1, θ

′
2) ∈ Uθ1,ε × Uθ2,ε , and so dx is continuous.

As dx is continuous, the set

Sx = {(
θ, θ ′) ∈ O- × O- : dx

(
θ, θ ′) > 0

}
is open for every x ∈ X. Now C3 implies that

⋃
x∈X Sx covers O- × O- , and as O- × O- is compact,

there exists a finite subcover
⋃

x∈X′ Sx . It follows that

d
(
θ, θ ′) =

[
1

8|X′|
∑
x∈X′

(∫ ∣∣p(yx | θ) − pt

(
yx | θ ′)∣∣dyx

)2]1/2

is positive definite and hence a metric. Since X′ is finite, this metric inherits the continuity of dx .
To show that the topology induced by d coincides with that of O- , let U be an arbitrary open

neighborhood of θ0. Then Uc is compact and so its continuous image S := {d(θ0, θ): θ ∈ Uc} is
compact, too. It follows that Sc is open and as 0 ∈ Sc, we obtain [0, δU ) ⊂ Sc for some δU > 0.
Thus, we obtain {θ ∈ O- : d(θ0, θ) < δU } ⊂ U , and so the topology induced by d is finer than the
default topology of O- . As d is continuous, we obtain the converse, and so the topologies coincide.

Let then t be arbitrary. We extend d(θ, θ ′) with a special point �̄t /∈ O- for which we define the
distances

d(θ, �̄t ) =
[

1

8|X′|
∑
x∈X′

(∫ ∣∣p(yx | θ) − pt(yx)
∣∣dyx

)2]1/2

.

The extended distance function may not be strictly positive definite, but it is still a pseudometric
and satisfies the triangle inequality. Denoting

�̂t = arg min
θ∈O-

d(θ, �̄t ),

we have d(θ, �̄t ) ≥ d(�̂t , �̄t ) for all θ ∈ O- , and the triangle inequality yields d(θ, �̄t ) ≥
d(θ, �̂t ) − d(�̂t , �̄t ). Adding both inequalities, we obtain 2d(θ, �̄t ) ≥ d(θ, �̂t ) for all θ ∈ O- .
Now, the L1-bound of Kullback–Leibler divergence [3], Lemma 11.6.1, yields

max
x∈X′ It (Yx;�) ≥ 1

|X′|
∑
x′∈X′

It (Yx;�)

=
∫

1

|X′|
∑
x′∈X′

DKL
(
p(yx | θ)‖pt(yx)

)
pt (θ)dθ

(
L1 bound

) ≥
∫

1

|X′|
∑
x′∈X′

1

2

[∫ ∣∣p(yx | θ) − pt(yx)
∣∣dyx

]2

pt (θ)dθ

= 4
∫

d(θ, �̄t )
2pt(θ)dθ ≥

∫
d(θ, �̂t )

2pt (θ)dθ. �
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Lemma 2.2. Suppose that K is a function of � and has a finite range K. Then, for arbitrar-
ily chosen placements Xt , the inequality

∑∞
t=1 It−1(K;YXt ) < ∞ holds almost surely (which

implies It−1(K;YXt )
a.s.−→0).

Proof. As It−1(K;YXt ) = Ht−1(K) − Et−1(Ht (K)), where 0 ≤ Ht (K) ≤ log |K| for all t , we
obtain

E

(
t∑

k=1

Ik−1(K;YXk
)

)
= E

(
H0(K) − Et−1

(
Ht (K)

)) ≤ log |K|

for all t . As It−1(K;YXt ) is nonnegative, the sequence of partial sums is non-decreasing, and
Lebesgue’s monotone convergence theorem yields

E

( ∞∑
k=1

Ik−1(K;YXk
)

)
= lim

t→∞ E

(
t∑

k=1

Ik−1(K;YXk
)

)
≤ log |K| < ∞,

which implies the statement. �

Lemma 2.3. Suppose that C1 and C2 hold. Then It−1(�;YXt )
a.s.−→0 for arbitrarily chosen

placements Xt .

Proof. Let ε > 0 be arbitrary. As O- is compact, a finite number of the sets Uθ,ε given by C2
cover it. Thus, we can partition the parameter space into a finite number of subsets O- k each one
contained in some Uθ,ε . Letting the random variable K denote the index of the subset that �

falls into, the chain rule of mutual information yields

It−1(�;Yt ) = It−1(�,K;Yt ) = It−1(K;Yt ) +
∑

k

pt−1(k)It−1(�;Yt | k), (2.1)

where Yt := YXt and Lemma 2.2 implies that It−1(K;Yt )
a.s.−→0. Let us then look at the latter

term. Convexity of the Kullback–Leibler divergence yields

It−1(�;Yt | k) =
∫

pt−1(θ | k)DKL
(
p(yt | θ)‖pt−1(yt | k)

)
dθ

≤
∫

pt−1(θ | k)

[∫
pt−1

(
θ ′ | k)

DKL
(
p(yt | θ)‖p

(
yt | θ ′))dθ ′

]
dθ

=
∫ ∫

pt−1(θ | k)pt−1
(
θ ′ | k)[∫

p(yt | θ) log
p(yt | θ)

p(yt | θ ′)︸ ︷︷ ︸
≤2ε for a.e. yt

dyt

]
dθ dθ ′

≤ 2ε
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for all t . Thus,

lim sup
t→∞

It−1(�;Yt ) ≤ 2ε

almost surely. As ε > 0 was arbitrary, we obtain It−1(�;Yt )
a.s.−→0. �

Lemma 2.4. For any measurable function f : O- → R, if the prior expectation Ef (�) is well-
defined and finite, then limt→∞ Et f (�) exists as a finite number almost surely.

Proof. The finiteness of Ef (�) implies that E|f (�)| must also be finite and so Zt := Et f (�)

satisfies E|Zt | = E|Et f (�)| ≤ E|f (�)| < ∞ for all t . Furthermore, since Zt+1 depends linearly
on the posterior pt+1 whose expectation Et (pt+1) equals the prior pt , we obtain Et (Zt+1) = Zt

for all t and so Zt is a martingale. As supt E|Zt | ≤ E|f (�)| < ∞, Theorem A.2 implies that
limZt exists as a finite number almost surely. �

Theorem 2.1 (Strong consistency). Suppose that C1–C4 hold. Then, conditioned on almost
any θ0 ∈ O- as the true parameter value, the posteriors are strongly consistent, that is, Pt {� ∈
U} a.s.−→1 for any neighborhood U of θ0.

Proof. As the metric d given by Lemma 2.1 is bounded, Lemma 2.4 implies that
limt→∞ Et (d(�, θ)) exists and is finite for all θ in a countable dense subset of O- almost surely,
in which case continuity of d implies the same for all θ ∈ O- .

Lemmas 2.1 and 2.3 and C4 yield Et (d(�, �̂t ))
a.s.−→0. As d is bounded, Lebesgue’s domi-

nated convergence theorem and Markov’s inequality imply

P
{
d(�, �̂t ) > ε

} ≤ E(d(�, �̂t ))

ε
= E(Et (d(�, �̂t )))

ε
→ 0

for all ε > 0 and so d(�, �̂t )
P→0. Convergence in probability implies that there exists a subse-

quence tk such that d(�, �̂tk )
a.s.−→0. Thus, conditioned on almost any θ0 as the true value, we

obtain d(θ0, �̂tk )
a.s.−→0, and the triangle inequality yields

Etk

(
d(�, θ0)

) ≤ Etk

(
d(�, �̂tk )

) + d(θ0, �̂tk )
a.s.−→0.

As we have already established that the full sequence Et (d(�, θ0)) almost surely converges,
it now follows that the limit must almost surely be zero. Thus, given any neighborhood U ⊃
Bd(θ0, ε) of θ0, Markov’s inequality yields

Pt

{
� ∈ Uc

} ≤ Pt

{
� ∈ Bd(θ0, ε)

c
} ≤ Et (d(�, θ0))

ε

a.s.−→0. �

Lemma 2.5. Suppose that C1–C3 hold and assume that conditioned on θ0 ∈ O- as the true pa-
rameter value, the posteriors are strongly consistent. Then:
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1. Given any metric d consistent with the topology of O- ,

�∗
t := arg min

θ∈O-
Et

(
d(�, θ)2) a.s.−→ θ0.

2. For any neighborhood U of θ0 there exists a constant c > 0 such that, almost surely,
It (Yx;�) ≥ cPt {� ∈ Uc} for some x ∈ X for all sufficiently large t .

Proof. Let D be the diameter of �. The triangle inequality a ≤ b + c implies a2 ≤ (b + c)2 ≤
2(b2 + c2) and so consistency of the posteriors yields

d
(
θ0,�

∗
t

)2 ≤ 2Et

(
d(�, θ0)

2 + d
(
�,�∗

t

)2) ≤ 4Et

(
d(�, θ0)

2)
≤ 4

(
r2 + D2Pt

{
� ∈ Bd(θ0, r)

c
}) a.s.−→4

(
r2 + D2 · 0

)
for all r > 0, which implies �∗

t

a.s.−→ θ0.
Let us then assume that the metric d is the one given by Lemma 2.1 and choose ε > 0 such

that Bd(θ0,2ε) ⊂ U . As �∗
t

a.s.−→ θ0, we have Bd(�∗
t , ε) ⊂ U for all sufficiently large t , and so

Lemma 2.1 and Markov’s inequality yield

It (Yx;�) ≥ Et

(
d(�, �̂t )

2)
≥ Et

(
d
(
�,�∗

t

)2) ≥ ε2Pt

{
� ∈ Bd

(
�∗

t , ε
)c} ≥ ε2Pt

{
� ∈ Uc

}
for some x ∈ X. �

2.1. Asymptotic entropy

The differential entropy is sensitive to the parameterization, but asymptotically, we can in most
cases ignore this due to the following lemma.

Lemma 2.6. Suppose that the prior entropy H(�) is well-defined and finite. Then,

lim
t→∞

[
Ht (�) + DKL

(
pt (θ)‖p(θ)

)]
exists as a finite number almost surely.

Proof. As Ht (�) + DKL(pt (θ)‖p(θ)) = Et logp(�) and E logp(�) = −H(�) is well-defined
and finite, the statement follows from Lemma 2.4. �

Lemma 2.7. Suppose that C1′ holds and let f be defined as in C2′. Then, for any subset S ⊂ O- ,∣∣logpt+1(θ | S) − logpt(θ | S)
∣∣ ≤ 2 diamf (S)

for all θ ∈ S. If C2′ holds, then this upper bound is finite.
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Proof. Let θ1 ∈ S be fixed. If pt(θ | S) is multiplied by p(yx | θ)/p(yx | θ1), it can change by
at most a factor of exp(diamf (S)), and for the same reason, the normalization constant for this
density is within a factor of exp(diamf (S)) from 1. The statement follows.

Suppose then that C2′ holds. As f (O- ) is compact, it follows that f (S) ⊂ f (O- ) must be
bounded. �

Lemma 2.8. Suppose that C1 and C2 hold. Then, for any ε > 0, the inequality DKL(pt (θ)‖
p(θ)) < εt holds true for all sufficiently large t .

Proof. Let ε > 0 be arbitrary. As in the proof of Lemma 2.3, we partition O- into a finite number
of subsets O- k such that | logp(yx | θ) − logp(yx | θk)| ≤ ε for all θ ∈ O- k , yx , and x ∈ X, where
θk is some fixed point of O- k . Let the random variable K denote the index of the subset that �

falls into. Lemma 2.7 implies that∣∣logpt+1(θ | k) − logpt (θ | k)
∣∣ ≤ 2ε

for all θ ∈ O- k , which yields

DKL
(
pt(θ | k)‖p(θ | k)

) = Et

(
log

pt(� | k)

p(� | k)

∣∣∣ k

)
≤ 2εt

for all t and k. The chain rule of Kullback–Leibler divergence now yields

DKL
(
pt(θ)‖p(θ)

) = DKL
(
pt (k)‖p(k)

) +
∑

k

pt (k)DKL
(
pt(θ | k)‖p(θ | k)

)
≤ log max

k
p(k)−1 + 2εt,

where we may assume that p(k) is positive since we can drop any set O- k with p(k) = 0 from the
partition. �

Lemma 2.9. Suppose that O- ⊂ R
n is bounded and the family of log-likelihoods is uniformly

Lipschitz, that is, ∣∣logp(yx | θ) − logp
(
yx | θ ′)∣∣ ≤ M

∣∣θ − θ ′∣∣
for all θ, θ ′ ∈ O- for all yx and x ∈ X. Then, for arbitrarily chosen placements Xt , the expected
gain over t trials is bounded by I(�;Yt ) ≤ n log t + c for some constant c < ∞.

Proof. For each t , we can subdivide the bounded parameter space O- into ≤ ctn subsets O- k , each
having diameter ≤ t−1. Letting the random variable Kt denote the index of the subset that �

falls into, the chain rule of mutual information yields

I(�;Yt ) = I(Kt ;Yt )︸ ︷︷ ︸
≤log(ctn)

+
∑
kt

p(kt ) I(�;Yt | kt )︸ ︷︷ ︸
≤M

≤ n log t + log c + M (2.2)

as in equation (2.1) in the proof Lemma 2.3. �
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3. Asymptotic normality

In this section, we assume that:

N1. The parameter space O- is a subset of Rn.
N2. The true parameter value θ0 is an interior point of O- .
N3. The log-likelihood θ �→ logp(yx | θ) is twice continuously differentiable with

|∇θ logp(yx | θ)| ≤ M and |∇2
θ logp(yx | θ)| ≤ M for all x ∈ X and yx .

N4. The family of Hessians θ �→ ∇2
θ logp(yx | θ) is equicontinuous at θ0 over all x ∈ X

and yx .
N5. The prior density is absolutely continuous w.r.t. the Lebesgue measure with positive and

continuous density at θ0.

For simplicity of notation, all statements are implicitly conditioned on θ0 being the true parameter
value. Throughout this section, we will denote the posterior mean and covariance by �̂t :=
Et (�) and �t = Covt (�). Note that the expected square error Et (|� − θ |2) is minimized by
the mean θ = Et (�). Thus, if the posteriors are strongly consistent, then Lemma 2.5 implies
that �̂t

a.s.−→ θ0. Note also that the square error is related to the variance through the identity
Et (|� − �̂t |2) = tr(�t ).

Lemma 3.1. Suppose that N1 and N3 hold and O- is a bounded convex set with diameter ≤ D <

∞. Then, there exists a constant CM,D < ∞ such that for all t , and x,∣∣It (Yx;�) − ( 1
2�t

) � Ix(�̂t )
∣∣ ≤ CM,DEt

(|� − �̂t |3
)
,

where � denotes the Frobenius product A�B = ∑
i,j AijBij = tr(AT B), and Ix(θ) is the Fisher

information matrix

Ix(θ) :=
∫ [∇θp(yx | θ)

p(yx | θ)

][∇θp(yx | θ)

p(yx | θ)

]T

p(yx | θ)dyx.

Proof. We can formally expand the mutual information as

It (Yx;�) = Ht (Yx) − Et

(
H(Yx | �)

)
=

∫
g

(∫
p(yx | θ)pt (θ)dθ

)
dyx −

∫ (∫
g
(
p(yx | θ)

)
dyx

)
pt (θ)dθ

=
∫ [

g

(∫
p(yx | θ)pt (θ)dθ

)
−

∫
g
(
p(yx | θ)

)
pt(θ)dθ

]
dyx,

where g(p) = −p logp. (Although Ht (Yx)−Et (H(Yx | �)) may not be well defined here, the last
line is always well-defined and equal to the mutual information.) Denoting pyx := p(yx | �̂t ),
Taylor’s theorem yields

g(p) = −pyx logpyx − (1 + logpyx )(p − pyx ) − (p − pyx )
2

2pyx

+ (p − pyx )
3

6q2
p,yx

,
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where qp,yx is some number between pyx and p. The error term is bounded by

∣∣εyx (p)
∣∣ :=

∣∣∣∣ (p − pyx )
3

6q2
p,yx

∣∣∣∣ ≤ |p − pyx |3
6 min{p,pyx }3

pyx = 1

6

(
exp

(| logp − logpyx |
) − 1

)3
pyx ,

and as | logp(yx | θ) − logp(yx | �̂t )| ≤ M|θ − �̂t | ≤ MD, we further obtain

∣∣εyx

(
p(yx | θ)

)∣∣ ≤ 1

6

(
exp

(∣∣logp(yx | θ) − logp(yx | �̂t )
∣∣) − 1

)3
p(yx | �̂t )

≤ 1

6

(
exp

(
M|θ − �̂t |

) − 1
)3

p(yx | �̂t )

≤ 1

6

(
exp(MD) − 1

MD
M|θ − �̂t |

)3

p(yx | �̂t )

= C1|θ − �̂t |3p(yx | �̂t ).

Due to the linearity of the integral, the constant and first order terms of the expansion cancel out,
leaving just

It (Yx;�) ≈
∫ −[∫ p(yx | θ)pt (θ)dθ − pyx ]2 + ∫ [p(yx | θ) − pyx ]2pt(θ)dθ

2pyx

dyx

=
∫

1

2
Vart

(
p(yx | �)

p(yx | �̂t )

)
p(yx | �̂t )dyx,

where the error is bounded by∣∣∣∣
∫

εyx

(∫
p(yx | θ)pt (θ)dθ

)
dyx −

∫ ∫
εyx

(
p(yx | θ)

)
pt (θ)dθ dyx

∣∣∣∣
≤

∫ {∣∣∣∣εyx

(∫
p(yx | θ)pt (θ)dθ

)∣∣∣∣ +
∫ ∣∣εyx

(
p(yx | θ)

)∣∣pt (θ)dθ

}
dyx

Jensen≤
∫ {∫ ∣∣εyx

(
p(yx | θ)

)∣∣pt (θ)dθ +
∫ ∣∣εyx

(
p(yx | θ)

)∣∣pt(θ)dθ

}
dyx

≤
∫

2
∫

C1|θ − �̂t |3p(yx | �̂t )pt (θ)dθ dyx ≤ 2C1Et

(|� − �̂t |3
)

for all t , �̂t , and x (Jensen’s inequality applies as |εyx (p)| is convex).
Now Taylor’s theorem yields

p(yx | θ)

p(yx | �̂t )
= 1 + ∇θp(yx | �̂t )

T

p(yx | �̂t )
(θ − �̂t ) + 1

2
(θ − �̂t )

T ∇2
θ p(yx | θ ′)
p(yx | �̂t )

(θ − �̂t )
T ,
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where θ ′ is a convex combination of �̂t and θ . The coefficients are uniformly bounded by

∣∣∣∣∇θp(yx | �̂t )

p(yx | �̂t )

∣∣∣∣ = ∣∣∇θ logp(yx | �̂t )
∣∣ ≤ M

and ∣∣∣∣∇2
θ p(yx | θ ′)
p(yx | �̂t )

∣∣∣∣ = p(yx | θ ′)
p(yx | �̂t )︸ ︷︷ ︸
≤exp(MD)

∣∣∇θ logp
(
yx | θ ′)︸ ︷︷ ︸

|·|≤M

∇θ logp
(
yx | θ ′)T︸ ︷︷ ︸

|·|≤M

+∇2
θ logp

(
yx | θ ′)︸ ︷︷ ︸

|·|≤M

∣∣

≤ exp(MD)
(
M2 + M

) =: C2.

Thus, denoting the linear term by A and the error term by B , we obtain

Vart

(
p(yx | �)

p(yx | �̂t )

)
= Vart (A) + Vart (B) + 2 Covt (A,B),

where

Vart (A) = �t �
[∇θp(yx | �̂t )

p(yx | �̂t )

][∇θp(yx | �̂t )

p(yx | �̂t )

]T

,

Vart (B) ≤ Et

(|B|2) ≤ ( 1
2C2

)2Et

(|� − �̂t |4
) ≤ ( 1

2C2
)2

DEt

(|� − �̂t |3
)
,∣∣Covt (A,B)

∣∣ = ∣∣Et (AB) − Et (A)︸ ︷︷ ︸
=0

Et (B)
∣∣ ≤ Et

(|A||B|) ≤ M 1
2C2Et

(|� − �̂t |3
)
.

�

For the next theorems and lemmas, we define the following conditions that depend on a subset
U ⊂ O- :

L1. |∇2
θ log |p(yx | θ) − ∇2

θ log |p(yx | θ ′)| < μ/2 for all θ, θ ′ ∈ U , x ∈ X, and yx .
L2. | logp(θ) − logp(θ ′)| ≤ C for all θ, θ ′ ∈ U .
L3. The maximum likelihood estimator �∗

t := arg maxθ∈U p(Yt | θ) is eventually well-
defined and converges to θ0 as t increases within indices satisfying λt ≥ tμ, where λt

is the smallest eigenvalue of −∇2
θ logp(Yt | θ0).

Lemma 3.2. Suppose that N4 and N5 hold. Then, for any μ,C > 0, there exists a constant
δμ,C < ∞ such that L1 and L2 hold for any neighborhood U of θ0 having diameter less than
δμ,C .

Lemma 3.3. Suppose that N1, N3, and L1 hold. If p(Yt | θ) ≥ p(Yt | θ0) for some θ ∈ U , then

|θ − θ0| ≤ 2|At |
t1/2μ

,
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where At = t−1/2∇ logp(Yt | θ0). Furthermore, conditioned on θ0 as the true parameter value,

P
{|At | ≥ a

} ≤ 2n exp

(
− a2

2nM2

)

for all t satisfying λt ≥ tμ, where λt is the smallest eigenvalue of −∇2
θ logp(Yt | θ0).

Proof. Taylor’s theorem yields

logp(Yt | θ) = logp(Yt | θ0) +
=:Zt︷ ︸︸ ︷

∇θ logp(Yt | θ0)
T (θ − θ0)

+ 1
2 (θ − θ0)

T ∇2
θ logp

(
Yt | θ ′)(θ − θ0)︸ ︷︷ ︸

≤−(1/2)λt |θ−θ0|2≤−(1/2)tμ|θ−θ0|2
,

for some θ ′ between θ0 and θ . Thus, p(Yt | θ) ≥ p(Yt | θ0) implies ZT
t (θ − θ0) ≥ 1

2 tμ|θ − θ0|2,
which in turn implies |Zt | ≥ 1

2 tμ|θ − θ0|. This is equivalent to the first statement.

Let us then prove the latter statement. Now |Zt |t−1/2 = |A|t ≥ a implies that |Z(k)
t | ≥

t1/2a/
√

n holds for at least one component k ∈ {1, . . . , n}. But as each Z
(k)
t is a martingale

satisfying Z
(k)
0 = 0 and |Z(k)

k+1 − Z
(k)
k | ≤ M , Theorem A.4 yields

P
{∣∣Z(k)

t

∣∣ ≥ t1/2a/
√

n
} ≤ 2 exp

(
− ta2

2ntM2

)

for all k ∈ {1, . . . , n}. Summing these probabilities over k so as to give an upper bound on the
probability that at least one component is over the limit gives the statement. �

Lemma 3.4. Suppose that N1–N3 and L1 hold. Then, L3 holds almost surely.

Proof. For any sufficiently small ε > 0, N2 implies that the set V = B(θ0, ε) is a subset of O- .
Lemma 3.3 applied to this set implies that �∗

t converges fast in probability to θ0, that is, the

probability P{�∗
t /∈ B(θ0, ε)} sums to a finite value over all t . This implies that �∗

t

a.s.−→ θ0. �

Theorem 3.1 (Asymptotic normality). Suppose that N1–N5 hold and let L1–L3 hold for some
μ > 0, C > 0, and U ⊂ O- . Then, the following conditions surely hold when t increases within
indices satisfying λt ≥ tμ:

1. The posterior density of the scaled variable 
t = t1/2(� − �∗
t ) satisfies∫ ∣∣pt(φt | � ∈ U) − N

(
φt ;0,B−1

t

)∣∣dφt → 0,

where N(· · ·) denotes a normal density with given mean and covariance and Bt =
−t−1∇2

θ logp(Yt | θ0).
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2. All moments as well as the entropy of pt (φt | � ∈ U) are asymptotically equal to those of
N(φt ;0,B−1

t ), that is, the difference converges to zero.
3. Adjusting for the t1/2 scaling factor, this implies in particular that t Covt (� | U)−B−1

t →
0 and t3/2Et (|�− Et (� | U)|3 | U) ≤ cnμ

−3/2 for sufficiently large t for some constant cn,
and so (assuming that U is bounded and convex), Lemma 3.1 yields

sup
x∈X

∣∣∣∣tIt (�;Yx | U) − 1

2
B−1

t � Ix(θ0)

∣∣∣∣ → 0.

Proof. The scaled variable 
t takes values in the set Vt := {φt ∈R
n: �∗

t + t−1/2φt ∈ U}. A Tay-
lor expansion of logp(Yt | φt ) at φt = 0 yields

pt(φt )

pt (φt = 0)
= exp

(±ε(r)
)

exp

(
−1

2
φT

t Btφt ± 1

2
ε(r)|φt |2

)

for all φt satisfying �∗
t + t−1/2φt ∈ B(θ0, r), where

ε(r) = sup
x,yx ,θ∈B(θ0,r)

max

{∣∣∣∣log
p(θ)

p(θ ′)

∣∣∣∣, ∣∣∇2
θ logp(yx | θ) − ∇2

θ logp
(
yx | θ ′)∣∣}.

Denoting rt = t1/4, we have St := B(0, rt ) ⊂ Vt for sufficiently large t and εt = ε(rt t
−1/2 +

|�∗
t − θ0|) → 0. It follows

pt(φt ) ∝ ft (φt ) := exp
(− 1

2φT
t Btφt

)︸ ︷︷ ︸
=:Nt (φt )

gt (φt )

for all φt ∈ Vt , where gt (φ) = exp(±εt ± 1
2ε

1/2
t ) → 1 for φ ∈ St . As Nt(φ) is uniformly bounded

and St → R
n, it follows [φ ∈ Vt ]ft (φ) − Nt(φ) → 0 for all φ ∈ R

n. Furthermore, as Nt(φt ) ≤
exp(− 1

2μ|φ|2) and gt (φ) = exp(±C ± 1
4μ|φ|2) for all φ ∈ Vt , it follows∫

[φ ∈ Vt ]ft (φ)|φ|k ≤
∫

exp

(
C − 1

4
μ|φ|2

)
|φ|k < ∞,

∫
Nt(φ)|φ|k < ∞

for all k ≥ 0, and so Lebesgue’s dominated convergence theorem implies that∫ ∣∣[φ ∈ Vt ]ft (φ)u(φ) − Nt(φ)u(φ)
∣∣dφ → 0

for any function |u(φ)| ≤ |φ|k . This implies that all moments of [φ ∈ Vt ]ft (φ) are asymptot-
ically equal to those of Nt(φ). As the eigenvalues of Bt are between μ and M , the normal-
ization constant Z := ∫

Nt(φ)dφ is within the constant range [(2π/M)n/2, (2π/μ)n/2], and it
follows that the moments of the normalized densities pt (φt ) and N(φt ;0,B−1

t ) are also asymp-
totically equal. Similarly, as ft (φ) logft (φ) − Nt(φ) logNt(φ) → 0, where the log-factors can
be bounded by polynomials of |φ|, it follows that the entropies of pt (φt ) and N(φt ;0,B−1

t ) are
asymptotically equal. (Note that the entropy of a density p(x) = f (x)/Z can be calculated as
−(

∫
f logf )/Z + log(Z).) �
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Lemma 3.5. Suppose that N1 and N3 hold. Then, conditioned on θ0 as the true parameter value,
E(−∇2

θ logp(Yx | θ0)) = Ix(θ0) for all x ∈ X, and

Bt −
∑t

k=1 IXt (θ0)

t

a.s.−→0,

where Bt = −t−1∇2
θ logp(Yt | θ0).

Proof.

E
(−∇2

θ logp(Yx | θ0) | � = θ0
)

=
∫

p(yx | θ0)

{[∇θp(yx | θ0)

p(yx | θ0)

][∇θp(yx | θ0)

p(yx | θ0)

]T

− ∇2
θ p(yx | θ0)

p(yx | θ0)

}
dyx

= Ix(θ0) −
∫

∇2
θ p(yx | θ0)dyx

= Ix(θ0) − ∇θ

∫
∇θp(yx | θ0)dyx

= Ix(θ0) − ∇2
θ

∫
p(yx | θ0)dyx = Ix(θ0),

where the interchange of the order of integration and differentiation is justified by Lebesgue’s
dominated convergence theorem for the dyx -integrable dominating functions fx(yx) and gx(yx)

given by∣∣∇2
θ p(yx | θ)

∣∣ = p(yx | θ)
∣∣∇θ logp(yx | θ)∇θ logp(yx | θ)T + ∇2

θ logp(yx | θ)
∣∣

≤ p(yx | θ0) exp
(
M|θ − θ0|

) · (M2 + M
)

≤ p(yx | θ0) exp(MD) · (M2 + M
) =: fx(yx)

and ∣∣∇θp(yx | θ)
∣∣ = p(yx | θ)

∣∣∇θ logp(yx | θ)
∣∣

≤ p(yx | θ0) exp(MD) · M =: gx(yx).

Thus, denoting Zk = −∇2
θ logp(Yxk

| θ0) − IXk
(θ0), given � = θ0, the sequence Z1 + · · · +

Zk of partial sums is a martingale and satisfies E(|Zk|2) ≤ (M + M)2 < ∞ for all k, and so
Theorem A.3 implies that (Z1 + · · · + Zt)/t

a.s.−→0, which is the statement. �

Corollary 3.1. Suppose that N1–N5 hold. Then, for all μ > 0, almost surely t�t > (Bt +μI)−1

(meaning that the difference is positive definite) for all sufficiently large t , where Bt :=
−t−1∇2

θ logp(Yt | θ0). In particular, tr(t�t ) ≥ (2μ)−1 and det(t�t ) ≥ (2μ)−1(2M)−(n−1) for
all sufficiently large t satisfying minλBt ≤ μ ≤ M , where minλBt denotes the smallest eigen-
value of Bt .
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Proof. Let μ > 0 be arbitrary and define an augmented observation model Y ′
x := (Yx,Z), where

Z ∼ N(�,μ−1I ) is independent (given θ ) from Yx . Let U be a neighborhood of θ0 satisfying
L1 and L2 as well as L3 almost surely. If we choose the auxiliary component zt so as to obtain
t−1 ∑t

k=1 zk = E(� | yt ) for each t , then L3 remains satisfied given the augmented data and we
also obtain �t > �′

t , because the augmented data will strictly decrease the square error from the
original mean, and moving to the new mean can only further reduce this error. The normalized
Hessian at θ0 for the augmented data is B ′

t = Bt +μI , and so, due to Lemma 3.5, minλB ′
t
≥ μ/2

for all sufficiently large t (although we have fiddled with the zk values, Lemma 3.5 still applies
as it does not depend on these values). Thus, Theorem 3.1(3) implies that t Cov(� | y′

t ,U) −
(B ′

t )
−1 → 0 (note that Theorem 3.1 is a sure result and hence applies even with our fiddled zk

values). Since Pt {� ∈ Uc} decays exponentially in the augmented model, it follows that also
t�′

t − (B ′
t )

−1 → 0. As the eigenvalues of B ′
t are within the range [μ/2,M + μ/2], the matrix

inverse behaves nicely and we obtain (t�′
t )

−1 − B ′
t → 0, which implies (t�′

t )
−1 − B ′

t < εI for
all sufficiently large t for any ε > 0. It follows t�t > t�′

t > (Bt + (μ+ ε)I )−1 for all sufficiently
large t . �

4. Asymptotic optimality

In this section, we assume that:

O1. C1–C4 hold globally.
O2. Some neighborhood U0 of θ0 ∈ O- is homeomorphic to a subset of R

n that satisfies
N1–N5.

O3. There exists placements x1, . . . , xm ∈ X and nonnegative weights α1 + · · · + αm = 1 such
that

∑m
j=1 αj Ixj

(θ0) is positive definite.
O4. The placements Xt satisfy

Rt := It (�;YXt+1)

supx∈X It (�;Yx)
� 1.

(See Section 4.1 below for the definition of “�”.)

First, let us say a few words about the main difficulty related to the adaptivity of the place-
ments, namely the complications caused by any secondary modes in the posterior distribution.
This issue is discussed by Paninski [10] in the context of consistency, but it seems that even after
consistency has been established, the issue cannot be ignored.

The information maximization strategy decreases the relative weights of any secondary modes
only at a rate approximately proportional to 1/t [10]. Therefore, any secondary mode may have
a contribution proportional to 1/t to all moments of the posterior distribution. This means that
only the first order moments of the approximating normal distribution remain asymptotically
accurate, even though its total variation distance from the posterior does tend to zero. In par-
ticular, the inverse Hessian of the likelihood generally does not give an asymptotically accurate
approximation of the global posterior covariance. (In fact, the global posterior covariance may
be undefined as O- need not have a global Euclidean structure.)
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For this reason, the asymptotic approximation to the expected information gain It (�;Yx | U)

given by Theorem 3.1(3) only applies within a sufficiently small neighborhood U of the true
parameter value, where the posterior can be shown to be asymptotically unimodal. Nonetheless,
even though the local and global moments are not in good agreement asymptotically, it turns
out that It (�;YXt+1 | U) is in fact in good agreement with It (�;YXt+1) on “most trials”. Indeed,
as the relative weights of any secondary modes typically decay at an exponential rate with the
number of trials whose placements can distinguish between them, it follows that the placements
of only a decreasing fraction of trials can be significantly affected by the secondary modes.

To formalize this intuition, we will first develop a theory for measuring asymptotic propor-
tions.

4.1. Asymptotic proportions

Definition 4.1. To measure subsets K ⊂N, we use the proportion measures

ρ(K) = lim
n→∞ρ1,n(K), ρa,b(K) = |K ∩ [a, b[|

b − a
,

where | · | indicates the cardinality of a set. (Note that although ρa,b is a measure in the measure-
theoretic sense for any a, b ∈ N, the limit ρ is only a finitely additive measure.) When we say
“for almost every n ∈ N”, we mean that the set where the statement does not hold is a null set
w.r.t. ρ. We use the notation xk � x to mean that there exists a subset K ⊂ N with ρ(K) = 1
such that [k ∈ K](xk − x) → 0. We also define

lim sup
k�∞

xk := inf{x ∈ R: xk ≤ x for a.e. k ∈N},

lim inf
k�∞ xk := sup{x ∈R: xk ≥ x for a.e. k ∈N},

and when both equal x, we write limk�∞ xk = x.

Lemma 4.1. Suppose that for all j ∈ N, the proposition P
j
k holds for a.e. k ∈ N. Then there

exists an increasing sequence j (k) → ∞ such that P 1
k ∧ · · · ∧ P

j(k)
k holds for a.e. k ∈N.

Proof. For all j ∈ N, Q
j
k := P 1

k ∧ · · · ∧ P
j
k holds for a.e. k ∈N. Thus, for all j ∈ N,

fj (k) := inf
k′≥k

∑k′
i=1 Q

j
i

k′

is increasing in k and tends to one as k → ∞. Choosing

j (k) = max
{
j ′ ∈ N: fj ′(k) ≥ 1 − 1/j ′}

yields the statement. �
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Lemma 4.2. If xk is a bounded sequence, then the following are equivalent:

1. xk � x,
2. |xk − x| < ε for a.e. k ∈N for all ε > 0,
3. limk�∞ xk = x,
4. 1

t

∑t
k=1 |xk − x| → 0.

If xk is not bounded, then 1–3 are equivalent and implied by 4.

Proof. All implications are fairly obvious. As an example, “2 ⇒ 1” follows from Lemma 4.1
applied to P

j
k = [|xk − x| < 1/j ]. �

Lemma 4.3. Let xk be a nonnegative sequence. If
∑∞

k=1 xk < ∞, then for any ε > 0, the in-
equality xk < ε/k holds true for almost every k ∈N (which implies k · xk � 0).

Proof. Assume the contrary: for some ε > 0 there exists a set K ⊂ N such that xk ≥ ε/k for
all k ∈ K and for some c > 0, ρ1,k(K) > c for arbitrarily large k. As ρ1,n+1(K) − ρk,n+k(K) ≤
2k/n → 0 as n → ∞ for all k, we can recursively find an increasing sequence of indices k1 = 1,
ki+1 ≥ 2ki , such that ρki,ki+1(K) ≥ c for all i. This yields

∞∑
k=1

xk ≥
∞∑
i=1

c(ki+1 − ki)
ε

ki

≥
∞∑
i=1

c(2ki − ki)
ε

ki

= ∞,

which contradicts the assumption. �

Lemma 4.4. Suppose that a sequence of random variables Xk :� → [−M,M] satisfies Xk � X

almost surely. Then, E(|Xk − X|) � 0.

Proof. By Lemma 4.2(4) and the dominated convergence theorem,

1

t

t∑
k=1

E
(|Xk − X|) = E

(
1

t

t∑
k=1

|Xk − X|
)

→ E

(
lim

t→∞
1

t

t∑
k=1

|Xk − X|
)

= 0.
�

Corollary 4.1. Suppose that the event Ak happens for a.e. k ∈N a.s. Then, P{Ak} � 1.

Definition 4.2. We use the notation Xk
P�X to mean that there exists a subset K ⊂ N with

ρ(K) = 1 such that [k ∈ K](Xk − X)
P→0.

Lemma 4.5. Xk
P�X if and only if P{|Xk − X| ≥ ε} � 0 for all ε > 0.

Proof. The “only if” direction is obvious. We will prove the “if” direction.
By definition, we have P{|Xk − X| ≥ 1/j} ≤ 1/j for a.e. k ∈ N for all j ∈ N. Lemma 4.1 then

implies that there exists an increasing sequence j (k) → ∞ such that

P
{|Xk − X| ≥ 1/j (k)

} ≤ 1/j (k) → 0
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for a.e. k ∈ N. �

Lemma 4.6. Suppose that a sequence of random variables Xk satisfies Xk � X almost surely.

Then, Xk
P�X.

Proof. Let ε > 0 be arbitrary. Denoting

Yt = 1

t

t∑
k=1

[|Xk − X| ≥ ε
]
,

Xk � X implies that Yt → 0. As Yt is bounded, the dominated convergence theorem implies

0 = E
(

lim
t→∞Yt

)
= lim

t→∞ E(Yt ) = lim
t→∞

1

t

t∑
k=1

P
{|Xk − X| ≥ ε

}

and so Lemma 4.2(4) yields P{|Xk − X| ≥ ε} � 0. Now Lemma 4.5 implies the statement. �

4.2. Asymptotic D-optimality

In this section, we show that the greedy information maximization strategy satisfies asymptoti-
cally a condition known as D-optimality. This condition is defined as maximality of the deter-
minant of the Fisher information matrix of the experiment at the true parameter value θ0. The
D-optimality criterion is special among all functionals of the information matrix (such as the
trace, minimum eigenvalue, etc.) in that it is insensitive to linear or affine transformations of the
parameter space O- . Furthermore, in the asymptotically normal models that we are interested in,
it yields a (local) approximation of the posterior entropy, which is the utility function commonly
used in adaptive estimation settings. We will make use of this fact in the next section to derive
an asymptotic expression of the posterior entropy.

Lemma 4.7. For almost any θ0 ∈ O- satisfying O1–O3, there exists a constant c such that for
all μ > 0, given θ0 as the true parameter value, almost surely It (�;YXt+1) ≥ c(tμ)−1 for all
sufficiently large t satisfying λt ≤ tμ, where λt denotes the smallest eigenvalue of −∇2

θ logp(Yt |
θ0).

Proof. Denoting I := ∑m
j=1 αj Ij , where αj and Ij := Ixj

(θ0) are given by O3, the smallest
eigenvalue minλI is positive.

Suppose that U0 has diameter D and let CM,D be the constant of Lemma 3.1 applied to U0

as the parameter space. The same constant also applies to any subset U = B(θ0, δ/2) ⊂ U0 with
diameter δ ≤ D and as the posteriors are strongly consistent in U , too, Lemma 2.5 implies that
Et (� | U)

a.s.−→ θ0. Thus, N3 and N4 imply that |Ix(Et (� | U)) − Ix(θ0)| < δ for all x for all
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sufficiently large t . We obtain

It (Yx;� | U) ≥ 1

2
Covt (� | U) � Ix

(
Et (� | U)

) − CM,DEt

(∣∣� − Et (� | U)
∣∣3 | U)

≥ 1

2
Covt (� | U) � Ix

(
Et (� | U)

) − CM,DEt

(
δ
∣∣� − Et (� | U)

∣∣2 | U)
= 1

2
tr
(
Covt (� | U)Ix

(
Et (� | U)

)) − CM,Dδ tr
(
Covt (� | U)

)
≥ 1

2
tr
(
Covt (� | U)Ix(θ0)

) −
(

CM,D + 1

2

)
δ tr

(
Covt (� | U)

)
≥ 1

2
max

j=1,...,m
tr
(
Covt (� | U)Ij

) −
(

CM,D + 1

2

)
δ tr

(
Covt (� | U)

)
≥ 1

2
tr
(
Covt (� | U)I

) −
(

CM,D + 1

2

)
δ tr

(
Covt (� | U)

)
≥ 1

2
tr
(
Covt (� | U)

)
minλI −

(
CM,D + 1

2

)
δ tr

(
Covt (� | U)

)
=

(
minλI

2
−

(
CM,D + 1

2

)
δ

)
tr
(
Covt (� | U)

) =: c tr
(
Covt (� | U)

)
for some x ∈ X (fourth inequality) for all sufficiently large t (third inequality), where we have
used the fact that tr(A)minλB ≤ tr(AB) ≤ tr(A)maxλB (sixth and third inequalities). Let us
then choose δ < minλI /(2CM,D + 1) so that c as defined above is positive. Now, the inequality
It (�;Yx) ≥ pt (U)It (�;Yx | U), which follows from the chain rule of mutual information (cf.
the proof of the next lemma), and C4 + Corollary 3.1 imply

It (�;Yt+1) ≥ γ sup
x∈X

It (�;Yx) ≥ γ sup
x∈X

pt(U)It (�;Yx | U)

≥ γpt (U)c tr
(
Covt (� | U)

) ≥ γpt (U)c(2tμ)−1.

As Lemma 2.5 yields pt(U)
a.s.−→1, the statement follows. �

Lemma 4.8. For almost any θ0 ∈ O- satisfying O1–O3, there exists a neighborhood U ⊂ U0 of θ0
such that conditioned on θ0 as the true parameter value, almost surely,

Qt := It (�;YXt+1 | U)

It (�;YXt+1)
� 1.

Proof. By Lemmas 2.2, 2.3 and 4.3, almost surely, the convergences

It (�;YXt+1 | U) → 0,

tIt
([� ∈ U ];YXt+1

)
� 0
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hold for all neighborhoods U in a countable basis of the compact metrizable space O- . It follows
that the same is true conditioned on almost any θ0 ∈ O- as the true parameter value. Thus, given
almost any θ0 ∈ O- , we can pick a neighborhood U ⊂ U0 of θ0 from the countable basis such that
the above convergences almost surely hold.

Lemma 4.7 (applied to μ = M) almost surely yields

It (�;Yt+1) ≥ c(Mt)−1 =: c1t
−1

for all sufficiently large t , where we denote Yt+1 = YXt+1 . Condition C4 + Lemma 2.5 yields

It (�;Yt+1) ≥ γ sup
x∈X

It (�;Yx) ≥ γ cpt

(
Uc

) =: c2pt

(
Uc

)
for all sufficiently large t , and the chain rule of mutual information yields

It (�;Yt+1) = It
([� ∈ U ];Yt+1

) + pt (U)It (�;Yt+1 | U) + pt

(
Uc

)
It
(
�;Yt+1 | Uc

)
.

Thus, almost surely,

It (�;Yt+1 | U)

It (�;Yt+1)
= 1

pt (U)︸ ︷︷ ︸
→1

[
1 −

≤It (�;Yt+1)/c2︷ ︸︸ ︷
pt(U

c)

→0︷ ︸︸ ︷
It (�;Yt+1 | Uc)+

�0︷ ︸︸ ︷
tIt ([� ∈ U ];Yt+1) t−1

It (�;Yt+1)︸ ︷︷ ︸
≥c1t

−1

]
� 1.

�

Corollary 4.2. Conditioned on almost any θ0 satisfying O1–O4, the sequence

Dt := sup
x∈X

B−1
t � Ix(θ0) − B−1

t � IXt+1(θ0)

satisfies [minλBt ≥ μ]Dt � 0 a.s. for any given μ > 0, where minλBt denotes the smallest
eigenvalue of Bt := −t−1∇2

θ logp(Yt | θ0).

Proof. Let us first shrink the neighborhood U0 of θ0 as necessary to make its diameter smaller
than the constant δμ,C given by Lemma 3.2. Then, let U ⊂ U0 be the neighborhood of θ0 given
by Lemma 4.8. By Theorem 3.1(3), there now exist random sequences Et → 0 and E′

t → 0 such
that conditioned on θ0 as the true value,

1

2
sup
x∈X

B−1
t � Ix(θ0) = sup

x∈X
tIt (�;Yx | U) + Et,

1

2
B−1

t � IXt+1(θ0) = tIt (�;YXt+1 | U) + E′
t

whenever minλBt ≥ μ. For these t , it follows

1

2
Dt =

(
1

2
sup
x∈X

B−1
t � Ix(θ0)︸ ︷︷ ︸

=tr(B−1
t Ix (θ0))≤nμ−1M

−Et

)(
1 − It (�;YXt+1 | U)

supx∈X It (�;Yx | U)

)
+ Et − E′

t ,
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where Lemma 4.8 and the inequality It (�;Yx) ≥ pt (U)It (�;Yx | U) yield

It (�;YXt+1 | U)

supx∈X It (�;Yx | U)
≥ pt(U)

It (�;YXt+1 | U)

supx∈X It (�;Yx)
= pt (U)QtRt � 1,

and so [minλBt ≥ μ]Dt � 0. �

Lemma 4.9. Conditioned on almost any θ0 satisfying O1–O3, there exists μ such that
minλBt ≥ μ for infinitely many t ∈ N, where minλBt denotes the smallest eigenvalue of
Bt = −t−1∇2

θ p(Yt | θ0).

Proof. Let μ > 0 be arbitrary. Lemma 4.7 almost surely yields It−1(�;YXt ) ≥ c(tμ)−1 for all
sufficiently large t satisfying minλBt < μ and Lemma 4.8 implies that It−1(�;YXt | U0) ≥
c(tμ)−1 for a.e. t satisfying minλBt ≤ μ. Let then Kμ := {t ∈ N: minλBt ≥ μ} and suppose
that ρ(Kμ) = 0. Then, ρj := ρ2j ,2j+1(Kμ) → 0, and then exists j0 such that ρj ≤ 1/2 for all
j ≥ j0. It follows

2j1−1∑
t=1

It−1(�;YXt | U0) ≥ c

μ

2j1−1∑
t=1

[t /∈ Kμ]1

t
≥ c

μ

j1−1∑
j=j0

2j+1−1∑
t=2j (1+ρj )

1

t
≥ c

μ
(j1 − j0) log

2

3/2
,

and so
t∑

k=1

Ik−1(�;YXk
| U0) ≥

(
c

μ
log

4

3

)
log2(t − 1) − cc,μ

for all t = 2j , j ≥ j0. Since μ was arbitrary, this implies that the sum grows asymptotically
superlogarithmically if ρ(Kμ) = 0 holds for all μ > 0. If this event has positive probability
among all θ0 ∈ U0, then also

I(�;Yt | U0) = E

(
t∑

k=1

Ik−1(�;YXk
| U0)

∣∣∣ U0

)

grows superlogarithmically, contradicting Lemma 2.9. Thus, for almost all θ0 ∈ U0 satisfying
O1–O3, either Kμ is not ρ-measurable or ρ(Kμ) > 0. In either case Kμ is infinite. �

Theorem 4.1 (Asymptotic D-optimality, part 1). Conditioned on almost any θ0 ∈ O- satisfying
O1–O4, almost surely,

Bt := −t−1∇2
θ logp(Yt | θ0) → B∗ := arg max

B∈I
det(B),

where I is the convex hull of the closure of {Ix(θ0)}x∈X. The maximizer B∗ is unique, because
the determinant is log-concave on the compact convex set I . This result is optimal in the sense
that for any strategy of choosing the placements Xt (instead of O4 and C4), almost surely
lim supt→∞ det(Bt ) ≤ det(B∗).
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Proof. The objective function is

f (B) =
{

log det(B), minλB > 0,
−∞, otherwise,

where λB denotes the set of eigenvalues of B . Lemma 3.5 implies that Bt is asymptotically a
convex combination of matrices in the closure of {Ix(θ0)}x∈X and so lim supt→∞ f (Bt ) ≤ f (B∗).
Let us then show that this upper bound is tight.

First, we choose some representation B∗ = ∑m
k=1 αkIk of the optimum point, where Ik are

matrices in the closure of {Ix(θ0)}x∈X and
∑m

k=1 αk = 1.
For any symmetric real matrix Bt , we have (with slight abuse of notation)

∇f (Bt ) = B−1
t ,

∇2f (Bt ) = −[(
B−1

t

)
i

(
B−1

t

)T

j

]n
i,j

,[∇2f (Bt )
]
B = −[(

B−1
t

)
i

(
B−1

t

)T

j
� B

]n
i,j

= −B−1
t BB−1

t ,

B � [∇2f (Bt )
]
B = − tr

(
B−1

t BB−1
t B

)
,

and Taylor’s theorem yields

f (Bt+1) = f (Bt ) + B−1
t � (Bt+1 − Bt) − 1

2 tr
(
B−1

t B ′B−1
t B ′),

where B ′ is between 0 and Bt+1 − Bt . Denoting B := −∇2
θ log(p(YXt+1 | θ0)), we obtain

f (Bt+1) − f (Bt ) = f

(
tBt + B

t + 1

)
− f (Bt )

= B−1
t � B − Bt

t + 1
− 1

2
tr
(
B−1

t B ′B−1
t B ′)︸ ︷︷ ︸

|·|≤n4M2μ−2(t+1)−2

≥ 1

t + 1

(
B−1

t � B − n − 2nM2μ−2

t + 1

)
,

for all indices t satisfying minλBt ≥ μ for any μ > 0. Denoting by λi the eigenvalues of B−1
t B∗,

Corollary 4.2 now implies that

B−1
t � IXt+1(θ0) + Dt = sup

x∈X
B−1

t � Ix(θ0)

≥ max
k

B−1
t � Ik ≥

∑
k

αk

(
B−1

t � Ik

) = B−1
t � B∗

= tr
(
B−1

t B∗) =
n∑

i=1

λi = n +
n∑

i=1

(λi − 1) ≥ n +
n∑

i=1

log(λi)

= n + log det
(
B−1

t B∗) = n + f
(
B∗) − f (Bt ),
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where [minλBt ≥ μ]Dt � 0 for any μ > 0. Noting that IXt+1(θ0) = Et (B | θ0), we obtain

Et

(
f (Bt+1) | θ0

) − f (Bt ) ≥ 1

t + 1

(
f

(
B∗) − f (Bt ) − Dμ,t

)
,

where Dμ,t = Dt + (2nM2μ−2)/(t + 1).
From now on, in order to keep the notation clean, we will implicitly condition all probability

statements on � = θ0.
Let the constants f0 < f1 < f (B∗) be arbitrary and define μ := exp(f0)M

1−n/2 > 0. Suppose
that some t0 satisfies f (Bt0) ≥ f0. Then, the definition of μ guarantees that minλBt0

≥ 2μ. Let
then α ∈]1, exp(μ/M)] be arbitrary. Since minλBt can decrease by at most M/t per each step,
we obtain

minλBt ≥ 2μ −
t1∑

t=t0+1

M

t
≥ 2μ − M log

t1

t0
≥ μ

for all t between t0 and t1 := �αt0�. Thus, the following inequalities hold true for all t ∈ [t0, t1[:

Et−1f (Bt ) − f (Bt−1) ≥ 1

t

(
f

(
B∗) − f (Bt−1) − Dμ,t−1

)
,

Et−1
(
tf (Bt ) − (t − 1)f (Bt−1)

) ≥ f
(
B∗) − Dμ,t−1,

Et0

(
tf (Bt ) − (t − 1)f (Bt−1)

) ≥ f
(
B∗) − Et0Dμ,t−1,

t1∑
t=t0+1

Et0

(
tf (Bt ) − (t − 1)f (Bt−1)

) ≥
t1∑

t=t0+1

(
f

(
B∗) − Et0Dμ,t−1

)
,

Et0

(
t1f (Bt1)

) − t0f (Bt0) ≥ (t1 − t0)f
(
B∗) −

t1−1∑
t=t0

Et0Dμ,t ,

and dividing by t1, we obtain the inequality

Et0f (Bt1) − α−1f (Bt0) ≥
(

1 − t0

t1

)
f

(
B∗) − Et0

(
1

t1

t1−1∑
t=t0

Dμ,t

)

→ (
1 − α−1)f (

B∗),
where we have used the fact that t1 ≤ αt0, and where the convergence holds for any increasing
sequence of indices t0 satisfying f (Bt0) ≥ f0 (which implies minλBt ≥ μ for all t ∈ [t0, t1[).
This convergence is obtained by applying Lemma 4.2(3) to the bounded sequence [minλBt ≥
μ]Dμ,t � 0, which yields∣∣∣∣∣ 1

t1

t1−1∑
t=t0

Dμ,t

∣∣∣∣∣ ≤ 1

t1

t1−1∑
t=0

∣∣[minλBt ≥ μ]Dμ,t

∣∣ → 0
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(and since |Dμ,t | ≤ 2nMμ−1 + 2nM2μ−2 for all t , Lebesgue’s dominated convergence theorem
allows us to take this limit inside the expectation). Thus, there exists a positive constant s such
that

Et0f (Bt1) ≥ f (Bt0) + 2s

for all sufficiently large t0 satisfying f0 ≤ f (Bt0) ≤ f1. Also, since the maximum change in the
value of f over one step is bounded by v/t for some constant v > 0 (depending on μ), we obtain

Vart0 f (Bt1) ≤
t1∑

t=t0+1

(
v

t

)2

≤
∫ t1

t0

(
v

t

)2

dt = v2
(

1

t0
− 1

t1

)
≤ v2

t0
.

Now Markov’s inequality yields

Pt0

{
f (Bt1) < f (Bt0) + s

} ≤ Pt0

{
f (Bt1) < Et0f (Bt1) − s

}
≤ Pt0

{∣∣Et0f (Bt1) − f (Bt1)
∣∣2

> s2}
≤ Vart0 f (Bt1)

s2
≤ v2

t0s2
.

As this upper bound on the probability sums to a finite number over the sequence t0(k)

determined by t0(k + 1) = t1(k) = �αt0(k)�, the Borel–Cantelli lemma implies that almost
surely f (Bt0(k+1)) < f (Bt0(k)) + s holds for only finitely many indices k ∈ N satisfying f0 ≤
f (Bt0(k)) ≤ f1. Thus, there exists k0 such that for all k ≥ k0, whenever f0 ≤ f (Bt0(k)) ≤ f1, the
value f (Bt0(k)) will increase by at least s on each step as k increases. Furthermore, since

∣∣f (Bt ) − f (Bt0(k))
∣∣ ≤

t1(k)∑
t=t0(k)+1

v

t
≤ v log

t1(k)

t0(k)
≤ v logα

for all t ∈ [t0(k), t1(k)[, it follows that if f (Bt0(k)) ≥ f0 for any k ≥ k0, then f (Bt ) ≥ f1 −v logα

for all sufficiently large t (provided that f1 − v logα ≥ f0). Since f1 − v logα can be made
arbitrarily close to f (B∗) by appropriate choices of rational α > 1 and rational f1 < f (B∗) for
arbitrarily small rational f0, we almost surely obtain lim inft→∞ f (Bt ) ≥ f (B∗) unless f (Bt )

eventually stays below any number. But this would imply that lim supt→∞ minλBt ≤ 0, which is
almost surely contradicted by Lemma 4.9. �

Corollary 4.3 (Asymptotic D-optimality, part 2). Conditioned on almost any θ0 ∈ O- satis-
fying O1–O4, there exists a neighborhood U of θ0 such that t Covt (� | U)

a.s.−→(B∗)−1. This
is optimal in the sense that for any other strategy in place of O4 and C4, almost surely
lim inft→∞ det(t Covt (� | U)) ≥ det(B∗)−1.

Proof. Given O4, Theorems 4.1 and 3.1(2) imply that t Covt (� | U)
a.s.−→(B∗)−1. For any

other strategy, we have lim supt→∞ det(Bt ) ≤ det(B∗) a.s., and so Theorem 3.1(2) yields
lim inft→∞ det(t Covt (� | U)) ≥ det(B∗)−1 a.s. as t increases within indices satisfying
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minλBt > μ for some given μ > 0. But Corollary 3.1 implies that if we choose a sufficiently
small μ > 0, then det(t Covt (� | U)) ≥ det(B∗)−1 also for minλBt ≤ μ, and the statement fol-
lows. �

Remark 4.1. As discussed in the beginning of this section, secondary modes with weights pro-
portional to 1/t may remain outside U , and they do contribute to the asymptotic variance. Thus,
the D-optimality result (part 2) shown here is only a local form of optimality.

The situation would be different if the placements were chosen so as to minimize the de-
terminant of the posterior covariance Covt (�) directly (which, of course, presupposes that the
parameter space has global Euclidean structure). Then, slightly more trials would be spent to
decrease the weights of the secondary modes, but they should remain insignificant in propor-
tion. Thus, we can conjecture that Bt

a.s.−→B∗ would still obtain in Theorem 4.1 with t Covt (�)

asymptotically equal to (Bt )
−1, making the result globally optimal.

4.3. Asymptotic entropy

Here we use the D-optimality result to derive an expression for the asymptotic entropy.

Corollary 4.4. Conditioned on almost any θ0 ∈ O- satisfying O1–O4, for any neighborhood U of
θ0, there exists a constant cU such that almost surely, pt(U

c) ≤ cU/t for a.e. t ∈ N.

Proof. Theorem 4.1 implies that minλBt ≥ μ for all sufficiently large t for some μ > 0. Hence,
given any ε > 0, Theorem 3.1(3) yields

tIt (�;YXt+1 | U) ≤ sup
x∈X

B−1
t � Ix(θ0) + ε ≤ nμ−1M + ε =: c

for all sufficiently large t , where U is any sufficiently small neighborhood of θ0. Combined with
Lemma 4.8, this implies that It (�;YXt+1) ≤ 2c/t for a.e. t ∈ N, and so Lemma 2.5(2) yields the
statement. �

Remark 4.2. Note that the statement of Corollary 4.4 holds only for a.e. t ∈N. What happens in
a sufficiently long run is that most trials are spent on increasing the accuracy around the global
mode and an approximately logarithmically growing number of trials is spent on placements that
decrease the weights of secondary modes. However, on any such trial there is a small probability
that the weight of the secondary mode actually increases, and given a sufficiently long run, this
will eventually happen arbitrarily many times in a row, making the weight of the secondary mode
temporarily arbitrarily much larger than the c/t bound that holds on most trials.

Theorem 4.2. Conditioned on almost any θ0 ∈ O- satisfying O1–O4, if the prior entropy H(�)

w.r.t. a parameterization that is consistent with the local Euclidean structure (i.e., the prior den-
sity p(θ) is given w.r.t. a measure that coincides with the Lebesgue measure on subsets of U0) is
well-defined and finite, then, almost surely

Ht (�) + n

2
log t � H ∗ := −1

2
log det

(
B∗) + n

2
log(2πe).
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Proof. Let us condition everything on θ0 being the true value. Theorem 3.1(2) implies that for
some sufficiently small neighborhood U of θ0,

Ht (� | U) + n

2
log t

a.s.−→H ∗.

Lemmas 2.6 and 2.8 imply that for any ε > 0, |Ht (� | Uc)| < εt for all sufficiently large t , and
as Corollary 4.4 yields pt (U

c) ≤ c/t for a.e. t , Lemma 4.2(2) implies pt(U
c)Ht (� | Uc) � 0.

The statement now follows from the chain rule of entropy

Ht (�) = pt (U)Ht (� | U) + pt

(
Uc

)
Ht

(
� | Uc

)︸ ︷︷ ︸
�0

+Ht

([� ∈ U ])︸ ︷︷ ︸
→0 a.s.

,

where the first term satisfies

pt(U)Ht (� | U) + n

2
log t = pt (U)

[
Ht (� | U) + n

2
log t

]
+ pt

(
Uc

)︸ ︷︷ ︸
≤c/t

n

2
log t � H ∗.

�

Corollary 4.5. Suppose that O1–O4 hold for almost all θ0 ∈ O- and that the prior entropy H(�)

w.r.t. a parameterization that is consistent with the local Euclidean structures U0 in O2 is well-
defined and finite. Then,

Ht (�) + n

2
log t

P�H ∗.

In other words, there exists a set K ⊂N of indices with ρ(K) = 1 such that

Ht (�) + n

2
log t

P→H ∗,

as t increases within K .

Proof. Apply Lemma 4.6 to the statement of Theorem 4.2. �

4.4. Varying cost of observation

In Kujala [5] the adaptive sequential estimation framework is generalized to the situation where
the observation of Yx is associated with some random cost Cx of observation, which given the
value of Yx , is independent of � and the results and costs of any other observations:

�

↙ ↓ ↘
Yx Yx′ · · ·
↓ ↓
Cx Cx′ · · ·
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The technical requirement that Cx depends on � only through Yx is satisfied in particular if Cx

is a component of Yx . Thus, it leads to no loss of generality if the incurred costs are observable.
The goal considered in Kujala [5] is maximization of the expected information gain of a se-

quential experiment that terminates when the total cost overruns a given budget. To achieve
this goal, the heuristic of maximizing the expected information gain It (�;Yx) divided by the
expected cost Et (Cx) on each trial is proposed. In this section, we are able to show that this
heuristic is in fact asymptotically optimal (as the budget tends to infinity) under essentially the
same conditions that the plain information gain maximization is.

Thus, condition O4 is now replaced by the following:

O4′. The placements satisfy

R′
t := It (�;YXt+1)/Et (CXt+1)

supx∈X(It (�;Yx)/Et (Cx))
� 1,

where |Cx | ≤ M , E(Cx | θ0) ≥ γ ′ > 0, and the family of expected cost functions {θ �→
E(Cx | θ): x ∈ X} is equicontinuous at θ0.

Due to the assumed bounds on the expected cost E(Cx | θ0), condition C4 is still satisfied and so
all the previous lemmas depending on it apply. Together with the following lemma, these bounds
also imply that the total cost grows asymptotically within linear bounds.

Lemma 4.10. Suppose that O4′ holds. Then, conditioned on θ0 as the true parameter value,

Ct − ∑t
k=1 E(CXk

| θ0)

t

a.s.−→0,

where Ct := ∑t
k=1 CXk

. In particular, for any γ < γ ′, almost surely Ct ≥ tγ for all sufficiently
large t (as well as Ct ≤ tM for all t ).

Proof. Denoting Zk = CXk
− E(CXk

| θ0), given � = θ0, the sequence Z1 + · · · + Zk of partial
sums is a martingale and satisfies E(|Zk|2) ≤ M2 < ∞ for all k, and so Theorem A.3 implies
that (Z1 + · · · + Zt)/t

a.s.−→0, which is the statement. �

Next, we will generalize Corollary 4.2 for the cost-aware placements.

Corollary 4.6. Conditioned on almost any θ0 satisfying O1–O3 and O4′, the sequence

Dt := sup
x∈X

B−1
t � Ix(θ0)

E(Cx | θ0)
− B−1

t � IXt+1(θ0)

Et (CXt+1 | θ0)

satisfies [minλ(Ct /t)Bt ≥ μ]Dt � 0 a.s. for any given μ > 0, where minλ(Ct /t)Bt denotes the
smallest eigenvalue of Bt := −C−1

t ∇2
θ logp(Yt | θ0) and Ct := ∑t

k=1 CXk
.

Proof. Let us first shrink the neighborhood U0 of θ0 as necessary to make its diameter smaller
than the constant δμ,C given by Lemma 3.2. Then, let U ⊂ U0 be the neighborhood of θ0 given
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by Lemma 4.8. The boundedness and equicontinuity at θ0 of θ �→ E(Cx | θ) ∈ [γ ′,M] imply that
conditioned on � = θ0, almost surely, Et (Cx) → E(Cx | θ0), uniformly over all x ∈ X. Combined
with Theorem 3.1(3), this implies that there exist random sequences Et → 0 and E′

t → 0 such
that conditioned on θ0 as the true value,

1

2
sup
x∈X

B−1
t � Ix(θ0)

E(Cx | θ0)
= sup

x∈X
Ct

It (�;Yx | U)

Et (Cx)
+ Et,

1

2
B−1

t � IXt+1(θ0)

E(CXt+1 | θ0)
= Ct

It (�;YXt+1 | U)

Et (CXt+1)
+ E′

t

whenever minλ(Ct /t)Bt ≥ μ. For these t , it follows

1

2
Dt =

(
1

2
sup
x∈X

B−1
t � Ix(θ0)

E(Cx | θ0)︸ ︷︷ ︸
≤tr(B−1

t Ix (θ0))/γ≤n(γμ)−1M

−Et

)(
1 − It (�;YXt+1 | U)/Et (CXt+1)

supx∈X(It (�;Yx | U)/Et (Cx))

)

+ Et − E′
t ,

where Lemma 4.8 and the inequality It (�;Yx) ≥ pt(U)It (�;Yx | U) yield

It (�;YXt+1 | U)/Et (CXt+1)

supx∈X(It (�;Yx | U)/Et (Cx))
≥ pt(U)

It (�;YXt+1 | U)/Et (CXt+1)

supx∈X(It (�;Yx)/Et (Cx))
= pt (U)QtR

′
t � 1,

and so [minλ(Ct /t)Bt ≥ μ]Dt � 0. �

Lemma 4.11. The range of the expression

rt =
∑t

k=1 Ixk
(θ0)∑t

k=1 E(Cxk
| θ0)

over all sequences xk in X and all finite t is a dense subset of the set I defined as the closure of
the convex hull of

S =
{

Ix(θ0)

E(Cx | θ0)

}
x∈X

.

Furthermore, the range of the limits of all converging rt equals I .

Proof. For any sequence {xk}, we have

rt =
∑t

k=1 Ixk
(θ0)∑t

k=1 E(Cxk
| θ0)

=
t∑

k=1

(
E(Cxk

| θ0)∑t
k=1 E(Cxk

| θ0)

)
︸ ︷︷ ︸

=:αk,t

Ixk
(θ0)

E(Cxk
| θ0)

,

and so rt is always a convex combination of elements in S. The convex combination is not
exactly linear w.r.t. the number of different x in the sequence because of the different E(Cxk

| θ0)
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weights, but nonetheless, by varying the proportions of different x in a sufficiently long sequence,
any convex combination can be approximated arbitrarily well. �

Theorem 4.3 (Asymptotic D-optimality, part 1). Conditioned on almost any θ0 ∈ O- satisfying
O1–O3, O4′, almost surely,

Bt := −∇2
θ logp(Yt | θ0)

Ct

→ B∗ := arg max
B∈I

det(B),

where Ct := ∑t
k=1 CXk

and I is the convex hull of the closure of

S =
{

Ix(θ0)

E(Cx | θ0)
: x ∈ X

}
.

This is optimal in the sense that for any strategy of choosing the placements Xt (instead of O4′
and C4), almost surely lim supt→∞ det(Bt ) ≤ det(B∗).

Proof. Since S is bounded, I is a compact convex set and B∗ is well defined. Lemmas 3.5, 4.10,
and 4.11 imply that lim supt→∞ det(Bt ) ≤ det(B∗) a.s. Let us then show that this upper bound is
tight.

Lemma 4.11 implies that there exists a representation

B∗ = lim
m→∞

∑m
k=1 Ik∑m
k=1 ck

of the optimum point B∗ where (Ik, ck) are elements of {(Ix(θ0),E(Cx | θ0)): x ∈ X}.
Denoting B := −∇2

θ log(p(YXt+1 | θ0)) and C := CXt+1 , and assuming minλ(Ct /t)Bt ≥ μ, we
obtain

|B|, |C| ≤ M,
∣∣B−1

t

∣∣ ≤ (μ/M)−1, |B − CBt | ≤ M + M2/μ, Ct + C ≥ γ (t + 1)

and so, for some B ′ between 0 and Bt+1 − Bt , we obtain

f (Bt+1) − f (Bt ) = f

(
CtBt + B

Ct + C

)
− f (Bt )

= B−1
t � B − CBt

Ct + C
− 1

2
tr
(
B−1

t B ′B−1
t B ′)

≥ 1

Ct + C

(
B−1

t � B − nC − [(μ/M)−1(M + M2/μ)]2

Ct + C

)

≥ Et (C | θ0)

Ct + C︸ ︷︷ ︸
≥(γ /M)/(t+1)

(
B−1

t � B

Et (C | θ0)
− nC

Et (C | θ0)
− CM,μ,γ

t + 1

)
.
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Denoting by λi the eigenvalues of B−1
t B∗, we obtain

B−1
t � IXt+1(θ0)

E(CXt+1 | θ0)
+ Dt = sup

x∈X
B−1

t � Ix(θ0)

E(Cx | θ0)

≥ sup
k

(
B−1

t � Ik

ck

)
≥ lim

m→∞

∑m
k=1(B

−1
t � Ik)∑m

k=1 ck

= B−1
t � B∗

= tr
(
B−1

t B∗) =
n∑

i=1

λi = n +
n∑

i=1

(λi − 1) ≥ n +
n∑

i=1

log(λi)

= n + log det
(
B−1

t B∗) = n + f
(
B∗) − f (Bt ),

where Corollary 4.6 implies that [minλ(Ct /t)Bt ≥ μ]Dt � 0. Noting that Et (B/Et (C | θ0) | θ0) =
IXt+1(θ0)/E(CXt+1 | θ0), it follows

Et

(
f (Bt+1) | θ0

) − f (Bt ) ≥ γ /M

t + 1

(
f

(
B∗) − f (Bt ) − Dμ,t

)
,

where Dμ,t = Dt + CM,μ,γ /(t + 1).
From here on, the proof is essentially the same as in the maximum information case. We just

use μ := exp(f0)M
−n/2 to guarantee that minλ(Ct /t)Bt ≥ 2μ for f (Bt ) ≥ f0. �

The part 2 of the D-optimality result as well as analogs of the asymptotic entropy results follow
with essentially the same proofs (just replacing t with Ct at appropriate places):

Corollary 4.7 (Asymptotic D-optimality, part 2). Conditioned on almost any θ0 ∈ O- satisfying
O1–O3, O4′, there exists a neighborhood U of θ0 such that Ct Covt (� | U)

a.s.−→(B∗)−1, where
Ct := ∑t

k=1 CXk
. This is optimal in the sense that for any other strategy in place of O4′ and C4,

almost surely lim inft→∞ det(Ct Covt (� | U)) ≥ det(B∗)−1.

Theorem 4.4. Conditioned on almost any θ0 ∈ O- satisfying O1–O3, O4′, if the prior entropy
H(�) w.r.t. a parameterization that is consistent with the local Euclidean structure (i.e., the
prior density p(θ) is given w.r.t. a measure that coincides with the Lebesgue measure on subsets
of U0) is well-defined and finite, then, almost surely

Ht (�) + n

2
logCt � H ∗ := −1

2
log det

(
B∗) + n

2
log(2πe),

where Ct := ∑t
k=1 CXk

.

Corollary 4.8. Suppose that O1–O4 hold for almost all θ0 ∈ O- and that the prior entropy H(�)

w.r.t. a parameterization that is consistent with the local Euclidean structures U0 in O2 is well-
defined and finite. Then,

Ht (�) + n

2
logCt

P�H ∗,
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where Ct := ∑t
k=1 CXk

. In other words, there exists a set K ⊂ N of indices with ρ(K) = 1 such
that

Ht (�) + n

2
logCt

P→H ∗,

as t increases within K .

5. Examples

In this section, we give specific examples illustrating the optimality results.

Example 5.1 (Psychometric model). Consider the psychometric model, where an observer’s
unknown intensity threshold � for detecting a stimulus of intensity x is distributed uniformly on
[0,100] and the trial result Yx ∈ {0,1} for a test intensity x ∈ [0,100] is distributed as

p(yx | θ) =
{

ψ(θ − x), yx = 1 (detected),
1 − ψ(θ − x), yx = 0 (not detected),

where ψ(x) is the psychometric function, here assumed to be the sigmoid

ψ(x) = 1

1 + e−x

for simplicity (for more general psychometric models, see Kujala and Lukka [7], and the refer-
ences therein).

In this model, the Fisher information of a given placement x is calculated as

Ix(θ) =
1∑

yx=0

p(yx | θ)

[
∂

∂θ
logp(yx | θ)

]2

= ψ ′(θ − x)2

ψ(θ − x)[1 − ψ(θ − x)] = eθ−x

[1 + eθ−x]2
.

Thus, for any given θ0, the D-optimal value of the averaged Fisher information in Theorem 4.1
is B∗ = 1

4 given by the placement x = θ0 to which the greedy algorithm eventually converges.
Now Corollary 4.5 yields

Ht (�) + n

2
log t

P�H ∗ = −1

2
log det

(
B∗)︸ ︷︷ ︸

=0.25

+ n

2
log(2πe) (5.1)

and this is the asymptotically optimal posterior entropy. In this example, the same expression
also gives the asymptotically optimal expected utility E(Ht (�)) + n

2 log t , which we will next
compare to that of the offline design.

Example 5.2 (Offline design). A rigorous study of the optimal offline design is beyond the scope
of the present article, so we will not go into detailed proofs here but only sketch the general ideas.
Suffice it to say that for an offline design for optimizing the expected utility E(Ht (�)), one cannot
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do much better than to use the usual strategy of placing the trials evenly on the interval [0,100].
(Due to boundary effects, an exactly uniform distribution of placements is not really the global
optimum, but for simplicity, we avoid a more complicated discussion here.)

For uniform placement of trials on [0,100], Lemma 3.5 implies

Bt
a.s.−→ 1

100

∫ 100

0
Ix(θ0)dx = 1

100

(
1

1 + e−θ0
− 1

1 + e100−θ0

)
∈ [0.005,0.01],

where Bt = −t−1∇2
θ logp(Yt | θ0), and it can be shown that the asymptotic posterior entropy

satisfies

Ht (�) + n

2
log t −

[
−1

2
log det(Bt )︸ ︷︷ ︸

lim≤0.01

]
+ n

2
log(2πe)

a.s.−→0,

which implies the asymptotic lower bound

lim inf
t→∞

[
Ht (�) + n

2
log t

]
≥ −1

2
log 0.01 + n

2
log(2πe)

on the posterior entropy. Comparing to the asymptotically optimal posterior entropy (5.1), it
follows that the offline design needs asymptotically at least ( 0.25

0.01 )1/n = 25 times as many trials
as the optimal adaptive design for the same accuracy. If the range [0,100] is doubled, then this
number approximately doubles as well, so the gap to the asymptotically optimal adaptive design
can be arbitrarily large.

Example 5.3 (Varying cost of observation). Let us then return to the adaptive case and suppose
that instead of a unit cost, each trial costs

Cx = 1 + 3[Yx = 0]

units. Such a formulation could be based on the assumption that the observer takes four times
as long to respond when the stimulus is not detected. Then, the asymptotic efficiency of a place-
ment x in Theorem 4.3 is characterized by the expression

Ix(θ0)

E(Cx)
= Ix(θ0)

1 + 3[1 − ψ(θ0 − x)] = 1

5 + 5 cosh(θ0 − x) − 3 sinh(θ0 − x)
. (5.2)

This expression is maximized by the placement x = θ0 + log 2 to which the myopic algo-
rithm eventually converges to (provided it is within the range [0,100]). Thus, assuming that
θ0 ≤ 100 − log 2 ≈ 99.3069 and substituting the maximizer in (5.2), we obtain in Theorem 4.3
the D-optimal asymptotic efficiency B∗ = 1

9 . Comparing to the asymptotically optimal place-
ment x = θ0 for unit cost (yielding B∗ = 1

10 in (5.2)), we see that the cost-aware strategy reaches
the same accuracy in 10% less cost (time) in this example.
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6. Discussion

We have derived an expression for the asymptotic efficiency of any sequential experiment de-
sign for both the standard framework with unit cost of observation as well as for the general-
ized framework with random costs of observation as proposed in Kujala [5]. We have shown an
asymptotic D-optimality result for the greedy information optimization strategy in the standard
framework and we have extended this result for the novel myopic strategy proposed in Kujala [5]
for the situation with random costs of observations. These results indicate that for (almost) all
true parameter values θ0, the greedy or myopic adaptive design is asymptotically optimal among
all placement strategies in a well-defined sense.

Assuming the standard sequential estimation framework with unit cost of observation,
Lemma 3.5 together with the asymptotic normality result imply that the asymptotic efficiency
of any given design is characterized by the average∑t

k=1 IXk
(θ0)

t

of the Fisher information matrices Ix(θ0) over the sequence of placements Xt and the
D-optimality criterion of a design refers to maximality of the determinant of this averaged infor-
mation matrix at the limit. For any given θ0, there is a distribution (or sequence) of placements
x ∈ X yielding the D-optimal average information matrix. For (almost) all θ0, the placements
of the greedy adaptive design converge to such an optimum, whereas the offline design cannot
adjust the distribution of the placements x ∈ X depending on the true value θ0. Thus, the offline
design can be equally efficient for a given true value of �, but generally not for all values θ0 ∈ O-
and depending on the model, the gap in efficiency can be arbitrarily large as seen in Example 5.2.

The situation is essentially the same in the framework with random costs of observation, the
only difference being that the convergence of the estimate of � is not measured in relation to t but
in relation to the total cost Ct = CX1 + · · · + CXt of placements. In this situation, the asymptotic
efficiency is characterized by the ratio ∑t

k=1 IXk
(θ0)∑t

k=1 E(CXk
| θ0)

and the limit is again determined by the distribution (or sequence) of the placements x ∈ X.
Theorem 4.3 shows that the myopic strategy of maximizing

It (�;Yx)

Et (Cx)

yields the asymptotically D-optimal efficiency in this situation.
However, the actual utility function assumed in both of the frameworks considered is the

differential entropy, and so the most relevant asymptotic optimality criterion should be based
on the asymptotic properties of the differential entropy as shown in, for example, Corollaries
4.5 and 4.8. Thus, a topic for future work is finding conditions under which the results of Corol-
laries 4.5 and 4.8 can be said to be optimal among all placement strategies.
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Appendix: Auxiliary theorems

Theorem A.1 (Stone–Čech compactification). Suppose that X is a Tychonoff space. Then there
exists a compact space βX that embeds X as a dense subspace. Any continuous map f :X → K ,
where K is a compact Hausdorff space, lifts uniquely to a continuous map βX → K .

Theorem A.2 (Martingale convergence). Let Xk be a submartingale (i.e., E(Xk+1 | X1, . . . ,

Xk) ≥ Xk) and suppose that supk E|Xk| < ∞. Then, X = limk→∞ exists almost surely and
E|X| < ∞.

Proof. For example, [11], Theorem B.117, page 648, or [12], Theorem 1, page 508. �

Theorem A.3 (A strong law of large numbers for martingales). Let Xk = Z1 + · · · + Zk be a
martingale and let δ > 0. If

∞∑
k=1

E(|Zk|2)
k2δ

< ∞,

then Xk/kδ a.s.−→0.

Proof. For example, [2] or [12], Theorem 4, page 519. �

Theorem A.4 (Hoeffding–Azuma inequality). Let Xk be a martingale and suppose that |Xk −
Xk−1| ≤ ck for all k. Then, for all t > 0 and k ∈N,

P{Xn − X0 ≥ t} ≤ exp

(
− t2

2
∑n

k=1 c2
k

)
,

and

P
{|Xn − X0| ≥ t

} ≤ 2 exp

(
− t2

2
∑n

k=1 c2
k

)
.

Proof. See [4], Theorem 2 and note around (2.18) on page 18, or [1]. �
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