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In this paper, we study the differentiability of implicitly defined functions which we encounter in the profile
likelihood estimation of parameters in semi-parametric models. Scott and Wild (Biometrika 84 (1997) 57–
71; J. Statist. Plann. Inference 96 (2001) 3–27) and Murphy and van der Vaart (J. Amer. Statist. Assoc. 95
(2000) 449–485) developed methodologies that can avoid dealing with such implicitly defined functions
by parametrizing parameters in the profile likelihood and using an approximate least favorable submodel
in semi-parametric models. Our result shows applicability of an alternative approach presented in Hirose
(Ann. Inst. Statist. Math. 63 (2011) 1247–1275) which uses the direct expansion of the profile likelihood.
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1. Introduction

Consider a general semi-parametric model

P = {
pθ,η(x): θ ∈ �,η ∈ H

}
,

where pθ,η(x) is a density function on the sample space X which depends on a finite-dimensional
parameter θ and an infinite-dimensional parameter η. We assume that the set � of the parameter
θ is an open subset of Rd and the set H is a convex subset of a Banach space B.

Once observations X1, . . . ,Xn are generated from the model, the log-likelihood is given by

�n(θ, η) = n−1
n∑

i=1

logpθ,η(Xi) =
∫

logpθ,η(x)dFn(x), (1.1)

where Fn is the empirical c.d.f. based on the observations. In the profile likelihood approach,
we find a function ηθ,F of the parameter θ and a c.d.f. F as the maximizer of the log-likelihood
given θ such that

ηθ,Fn = arg max
η

∫
logpθ,η(x)dFn(x). (1.2)
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Then the profile (log)-likelihood is given by
∫

logpθ,ηθ,Fn
(x)dFn(x). (1.3)

In this paper, we consider the situation when the function ηθ,F is given as the solution to the
operator equation of the form

η = �θ,F (η). (1.4)

Murphy, Rossini and van der Vaart [10] encountered this type of implicitly defined function
in their maximum likelihood estimation problem in the proportional odds model. According to
them, “because Ĥβ is not an explicit function of β , we are unable to differentiate the profile
log-likelihood explicitly in β to form an estimator of �” (here Ĥβ is the maximizer of the log-
likelihood �n(β,H) given β , H is the baseline odds of failure and � is the efficient information).
The authors (Murphy, Rossini and van der Vaart [10]) used a numerical approximation to the
problem. In the first example (Example 1) given below, we present a modified version of the
proportional odds model and give an example of implicitly defined function there.

Scott and Wild [13,14] also encountered implicitly defined functions in their estimation prob-
lem with data from various outcome-dependent sampling design. They proposed a method of
re-parametrization of profile-likelihood so that the log-likelihood is an explicitly defined func-
tion in terms of the parameters in the re-parametrized model. Their estimators turned out to be
efficient and Hirose and Lee [7] showed conditions under which re-parametrization gives effi-
cient estimation in a context of multiple-sample semi-parametric model.

Another way to avoid dealing with implicitly defined functions is developed by Murphy and
van der Vaart [11]. The paper proved the efficiency of profile likelihood estimation by introducing
an approximate least favorable sub-model to express the upper and lower bounds for the profile
log-likelihood. Since these two bounds have the same expression for the asymptotic expansion, so
does the one for the profile log-likelihood. The advantage of the approach is that it does not need
to deal with implicitly defined functions which we discussed in the current paper. Disadvantage of
Murphy and van der Vaart [11] are (1) it needs to find an approximate least favorable submodel in
each example which may be difficult to find in some cases; (2) no-bias condition (equation (3.4)
in Murphy and van der Vaart [11]) is assumed in the main theorem and it needs to be verified
in examples to which the main theorem is applied. In their “Discussion”, they commented “It
appears difficult to derive good approximations to a least favorable path for such models, and
given such approximation it is unclear how one would verify the no-bias condition”.

Hirose [6] used direct asymptotic expansion of the profile likelihood to show the efficiency of
the profile likelihood estimator. The result in the paper (Theorem 1 in Hirose [6]) does not as-
sume the no-bias condition and, under the assumptions given there, the no-bias condition (equa-
tion (4) in Hirose [6]) is proved (therefore, verification of the no-bias condition is not required
in examples). In the approach, we cannot avoid dealing with implicitly defined functions of the
form given in (1.4) in some applications. The purpose of this paper is to study the properties
of these function such as differentiability so that the method in Hirose [6] is applicable to those
applications. The results in Hirose [6] are summarized in Section 6.

In Section 2, we give examples of implicitly defined functions. The main results are presented
in Section 3. In Sections 4 and 5, the main results are applied to the examples. In Section 6.1,
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we demonstrate how the result of the paper (the differentiability of implicitly defined functions
in semi-parametric models) can be applied in a context of asymptotic linear expansion of the
maximum profile likelihood estimator in a semi-parametric model.

2. Examples

2.1. Example 1 (semi-parametric proportional odds model)

The original asymptotic theory for maximum likelihood estimator in the semi-parametric propor-
tional odds model is developed in Murphy, Rossini and van der Vaart [10]. We present a modified
version of the model in Kosorok [9].

In this model, we observe X = (U, δ,Z), where U = T ∧C, δ = 1{U=T }, Z ∈ Rd is a covariate
vector, T is a failure time and C is a right censoring time. We assume C and T are independent
given Z.

The proportional odds regression model is specified by the survival function of T given Z of
the form

S(t |Z) = 1

1 + eβ ′ZA(t)
,

where A(t) is nondecreasing function on [0, τ ] with A(0) = 0. τ is the limit of censoring distri-
bution such that P(C > τ) = 0 and P(C = τ) > 0. The distribution of Z and C are uninformative
of S and varZ is positive definite.

Define the counting process N(t) = δ1{U≤t} and at risk process Y(t) = 1{U≥t}. We assume
P {δY (t) = 1} > 0 for each t ∈ [0, τ ].

Let Fn be the empirical process for i.i.d. observation (Ui, δi,Zi), i = 1, . . . , n. Then the log-
likelihood on page 292 in Kosorok [9] can be written as

�n(β,A) =
∫ {

δ
(
β ′Z + loga(U)

) − (1 + δ) log
(
1 + eβ ′ZA(U)

)}
dFn,

where a(t) = dA(t)/dt .
Consider one-dimensional sub-models for A defined by the map

t → At(u) =
∫ u

0

(
1 + th(s)

)
dA(s),

where h(s) is an arbitrary total variation bounded cadlag function on [0, τ ]. By differentiating
the log-likelihood function �n(β,At ) with respect to t at t = 0, we obtain the score operator

Bn(β,A)(h) = d

dt

∣∣∣∣
t=0

�n(β,At ) =
∫ {

δh(U) − (1 + δ)
eβ ′Z ∫ U

0 h(u)dA(u)

1 + eβ ′ZA(U)

}
dFn.

Choose h(u) = 1{u≤t}, then

Bn(β,A)(h) =
∫

N(t)dFn −
∫ {∫ U

0
W(u;β,A)dA(u)

}
dFn,
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where N(t) and Y(t) are defined above and

W(u;β,A) = (1 + δ)eβ ′ZY (u)

1 + eβ ′ZA(U)
. (2.1)

The solution Âβ,Fn to the equation Bn(β,A)(h) = 0 is of the form

Âβ,Fn(u) =
∫ u

0

EFn dN(s)

EFnW(s;β, Âβ,Fn)
, (2.2)

where EFn dN(s) = ∫
dN(s)dFn and EFnW(s;β, Âβ,Fn) = ∫

W(s;β, Âβ,Fn)dFn.
Let F be a generic notation for the c.d.f., and if we let

�β,F (A) =
∫ u

0

EF dN(s)

EF W(s;β,A)
, (2.3)

then (2.2) is a solution to the operator equation A = �β,Fn(A), here EF dN(s) = ∫
dN(s)dF

and EF W(s;β, Âβ,F ) = ∫
W(s;β, Âβ,F )dF . More detailed treatment of this example can be

found in [9], Section 15.3, pages 291–303. We continue this example in Section 4.

2.2. Example 2 (continuous outcome with missing data)

This example is studied in Weaver and Zhou [19] and Song, Zhou and Kosorok [17]. Suppose
the underlying data generating process on the sample space Y ×X is a model

Q = {
p(y, x; θ) = f (y|x; θ)g(x): θ ∈ �,g ∈ G

}
. (2.4)

Here, f (y|x; θ) is a conditional density of Y given X which depends on a finite-dimensional
parameter θ , g(x) is an unspecified density of X which is an infinite-dimensional nuisance pa-
rameter. We assume the set � ⊂ Rd is an open set containing a neighborhood of the true value θ0
and G is the set of density function of x containing the true value g0(x). We assume the variable
Y is a continuous variable.

We consider a situation when there are samples for which we observe complete observation
(Y,X) and for which we observe only Y . Let Ri be the indicator variable for the ith observation
defined by

Ri =
{

1, if Xi is observed,
2, if Xi is not observed.

Then the index set for the complete observations is V = {i: Ri = 1} and the index set for the
incomplete observations is V = {i: Ri = 2}. (In the paper Song, Zhou and Kosorok [17] Ri = 0
was used for subjects Xi is not observed.) Let nV = |V |, nV = |V | be the total number of com-
plete observations and incomplete observations, respectively.

Weaver and Zhou [19] and Song, Zhou and Kosorok [17] consider the likelihood of the form

Ln(θ, g) =
∏
i∈V

{
f (Yi |Xi; θ)g(Xi)

} ∏
i∈V

fY (Yi; θ, g), (2.5)



On differentiability of implicitly defined function 593

where

fY (y; θ, g) =
∫
X

f (y|x; θ)g(x)dx. (2.6)

The log-likelihood, the 1/n times log of (2.5) is

�n(θ, g) = nV

n

1

nV

∑
i∈V

{
logf (yi |xi; θ) + logg(xi)

} + nV

n

1

nV

∑
i∈V

logfY (yi; θ, g).

For the proof in the later part of the paper, we introduce notation: let F1n and F2n be the
empirical c.d.f.s based on the samples in V and V , respectively; denote w1n = nV /n, w2n =
nV /n and let Fn = ∑2

s=1 wsnFsn be the empirical c.d.f. for the combined samples in V ∪ V .
Then the log-likelihood can be expressed as

�n(θ, g) = w1n

∫ {
logf (y|x; θ) + logg(x)

}
dF1n + w2n

∫
logfY (y; θ, g)dF2n.

To find the maximizer of �n(θ, g), we treat g(x) as probability mass function on the observed
values {xi : i ∈ V }. Denote gi = g(xi), i ∈ V . The derivative of the log-likelihood with respect
to gi is

∂

∂gi

�n(θ, g) = w1n

∫
1{x=xi } dF1n

gi

+ w2n

∫
f (y|xi; θ)

fY (y; θ, g)
dF2n,

here, for the discrete g, fY (y; θ, g) = ∑
i∈V f (y|xi; θ)gi .

Let λ be a Lagrange multiplier to account for
∑

i∈V gi = 1. Set ∂
∂gi

�n(θ, g) + λ = 0. Multiply
by gi and sum over i ∈ V to get w1n + w2n + λ = 0. Therefore, λ = −(w1n + w2n) = −1 and
∂

∂gi
�n(θ, g) − 1 = 0. By rearranging this equation, we obtain

ĝi = w1n

∫
1{x=xi } dF1n

1 − w2n

∫
f (y|xi; θ)/fY (y; θ, ĝ)dF2n

.

This is exactly equation (3) in Song, Zhou and Kosorok [17]. Since the ĝi is a function of θ and
Fn = ∑2

s=1 wsnFsn, it can be written as

ĝθ,Fn(xi) = w1n(∂x

∫
dF1n)(xi)

1 − w2n

∫
f (y|xi; θ)/fY (y; θ, ĝθ,Fn)dF2n

, i ∈ V, (2.7)

where ∂x = ∂
∂x

(see Note below for the notation ∂x

∫
dF1). This is a solution to the equation

g = �θ,Fn(g) with

�θ,F (g) = w1∂x

∫
dF1

1 − w2
∫

f (y|x; θ)/fY (y; θ, g)dF2
,

here F = ∑2
s=1 wsFs . We continue this example in Sections 5 and 6.1.
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Note (Comment on the notation ∂x

∫
dF1). Let us denote ∂x = ∂

∂x
. The Heaviside step function

H(x) = 1{x≥0} and the Dirac delta function δ(x) are related by ∂xH(x) = δ(x). Using this, for
the joint empirical c.d.f. Fn(x, y) = 1

n

∑n
i=1 H(x − xi)H(y − yi), we have

(
∂x

∫
dFn

)
(x) = 1

n

n∑
i=1

δ(x − xi)

∫
dH(y − yi) = 1

n

n∑
i=1

δ(x − xi),

where we used
∫

dH(y − yi) = 1 (since the integral is over all y). For the continuous case, joint
c.d.f. F(x, y) and marginal p.d.f. f (x) are related by (∂x

∫
dF)(x) = f (x). This justifies the

notation ∂x

∫
dF1 for both continuous and empirical c.d.f.s.

3. Main results

In this section, we show the differentiability of implicitly defined function which is given as a
solution to the operator equation (1.4).

As we stated in the Introduction, we consider a general semi-parametric model

P = {
pθ,η(x): θ ∈ �,η ∈ H

}
,

where pθ,η(x) is a density function on the sample space X which depends on a finite-dimensional
parameter θ and an infinite-dimensional parameter η. We assume that the set � of the parameter θ

is an open subset of Rd and the set H is a convex set in a Banach space B, which we may assume
the closed linear span of H .

Definition (Hadamard differentiability). Suppose X and Y are two normed linear spaces and let
T ⊂ X. We say that a map ψ :T → Y is Hadamard differentiable at x ∈ T if there is a continuous
linear map dψ(x) :X → Y such that

t−1{ψ(xt ) − ψ(x)
} → dψ(x)h as t ↓ 0 (3.1)

for any map t → xt with xt=0 = x and t−1(xt − x) → h ∈ X as t ↓ 0. The map dψ(x) is
called the Hadamard derivative of ψ at x, and is continuous in x (for reference, see Gill [5]
and Shapiro [16]).

We denote the second derivative of ψ in the sense of Hadamard by d2ψ(x). The usual first and
second derivative of a parametric function ψ(x), x ∈ Rd , are denoted by ψ̇ and ψ̈ .

Note on Hadamard differentiability. The above form of definition of the Hadamard differentia-
bility is due to Fréchet in 1937. M. Sova showed the equivalence of the Hadamard differentiabil-
ity and the compact differentiability in metrizable linear spaces (Averbukh and Smolyanov [2]).
Because of the equivalence, some authors use compact differentiability as definition of Hadamard
differentiability (Gill [5], van der Vaart and Wellner [18], Bickel, Klaassen, Ritov and Wellner
[3]). In this paper, we use the definition of Hadamard differentiability given by Fréchet.

In addition to the Hadamard differentiability of functions, in Theorem 3.1 below, we assume
the following condition.



On differentiability of implicitly defined function 595

Additional condition. We say a Hadamard differentiable map ψ(x) satisfies the additional
condition at x, if, for each path xt in some neighborhood of x, there is a bounded and linear map
h → dψ∗

t h such that the equality

ψ(xt ) − ψ(x) = dψ∗
t (xt − x) (3.2)

holds.
For a smooth map xt with xt → x as t ↓ 0, the Hadamard differentiability of the function ψ

and the additional condition (3.2) imply that

dψ∗
t h → dψ(x)h as t ↓ 0, (3.3)

where the limit dψ(x) is the Hadamard derivative of ψ at x.
Note on additional condition. In many statistics applications, we have the additional condition.

For example, for functions F(x) and g(x), the map ψ :F → ∫
g(x)dF(x) satisfies the additional

condition:

ψ(Ft ) − ψ(F) =
∫

g(x)d(Ft − F)(x)

here the map dψ∗
t in (3.2) is dψ∗h = ∫

g(x)dh(x) which coincides with the Hadamard derivative
of ψ . For another example, consider a map ψ :g → (

∫
g(x)dF(x))−1. Then

ψ(gt ) − ψ(g) = 1∫
gt (x)dF(x)

− 1∫
g(x)dF(x)

= − ∫ [gt (x) − g(x)]dF(x)∫
gt (x)dF(x)

∫
g(x)dF(x)

,

and it shows the map ψ satisfies the additional condition with

dψ∗
t h = − ∫

h(x)dF(x)∫
gt (x)dF(x)

∫
g(x)dF(x)

.

If gt → g as t ↓ 0, then dψ∗
t h converges to the Hadamard derivative of ψ :

dψh = − ∫
h(x)dF(x)

(
∫

g(x)dF(x))2
.

Note on norm used in Theorem 3.1 (below). We treat the set of c.d.f. functions F on X as
a subset of �∞(X ), the collection of all bounded functions on X . This means the norm on F
is the sup-norm: for F ∈ F , ‖F‖ = supx∈X |F(x)|. The convex subset H of a Banach space
B has the natural norm from the Banach space and it is also denoted by ‖h‖ for h ∈ H . For all
derivatives in the theorem, we use the operator norm. The open subset � of Rd has the Euclidean
norm.

Theorem 3.1. Suppose the map (θ,F,η) → �θ,F (η) ∈ H , (θ,F,η) ∈ � ×F × H , is:

(A1) Two times continuously differentiable with respect to θ and two times Hadamard dif-
ferentiable with respect to η and Hadamard differentiable with respect to F so that the
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derivatives �̇θ,F (η), �̈θ,F (η), dη�θ,F (η), d2
η�θ,F (η), dη�̇θ,F (η) and dF �θ,F (η) exist

in some neighborhood of the true value (θ0, η0,F0) (where, e.g., �̇θ,F (η) is the first
derivative with respect to θ , and dη�θ,F (η) is the first derivative with respect to η in the
sense of Hadamard. Similarly, the rest is defined). For each derivative, we assume the
corresponding additional condition (3.2).

(A2) The true value (θ0, η0,F0) satisfy η0 = �θ0,F0(η0).
(A3) The linear operator dη�θ0,F0(η0) :B → B has the operator norm ‖dη�θ0,F0(η0)‖ < 1.

Then the solution ηθ,F to the equation

η = �θ,F (η) (3.4)

exists in an neighborhood of (θ0,F0) and it is two times continuously differentiable with respect
to θ and Hadamard differentiable with respect to F in the neighborhood. Moreover, the deriva-
tives are given by

η̇θ,F = [
I − dη�θ,F (ηθ,F )

]−1
�̇θ,F (ηθ,F ), (3.5)

η̈θ,F = [
I − dη�θ,F (ηθ,F )

]−1[
�̈θ,F (ηθ,F ) + dη�̇θ,F (ηθ,F )η̇T

θ,F
(3.6)

+ dη�̇
T
θ,F (ηθ,F )η̇θ,F + d2

η�θ,F (ηθ,F )η̇θ,F η̇T
θ,F

]

and

dF ηθ,F = [
I − dη�θ,F (ηθ,F )

]−1 dF �θ,F (ηθ,F ). (3.7)

3.1. Proof of Theorem 3.1

We assumed the derivative dη�θ0,F0(η0) exists and its operator norm satisfies ‖dη�θ0,F0(η0)‖ <

1. By continuity of the map (θ, η,F ) → dη�θ,F (η), there are ε > 0 and a neighborhood of
(θ0, η0,F0) such that ∥∥dη�θ,F (η)

∥∥ < 1 − ε (3.8)

for all (θ, η,F ) in the neighborhood. In the following, we assume the parameters (θ, η,F ) stay
in the neighborhood so that the inequality (3.8) holds.

Existence and invertibility. Let I :B → B be the identity operator on the space B. In the neigh-
borhood discussed above, the map (I − dη�θ,F (η)) :B → B has the inverse (I − dη�θ,F (η))−1,
which is also a bounded linear map (cf. Kolmogorov and Fomin [8], Theorem 4, page 231).
It also follows that there is a neighborhood of (θ0, η0,F0) such that, for each (θ,F ), the map
η → �θ,F (η) is a contraction mapping in the neighborhood. By Banach’s contraction principle
(cf. Agarwal, O’Regan and Sahu [1], Theorem 4.1.5, page 178), the solution to the equation (3.4)
exists uniquely in the neighborhood.

Differentiability with respect to F . Fix h in an appropriate space and let Ft be a map such
that Ft=0 = F , t−1{Ft − F } → h as t ↓ 0. Then, Ft → F (as t ↓ 0). We aim to find the limit of
t−1{ηθ,Ft − ηθ,F } as t ↓ 0.



On differentiability of implicitly defined function 597

(Step 1) First step is to show ηθ,Ft → ηθ,F as t ↓ 0. Due to equation (3.4), ηθ,F = �θ,F (ηθ,F )

and ηθ,Ft = �θ,Ft (ηθ,Ft ). It follows that

{ηθ,Ft − ηθ,F } = {
�θ,Ft (ηθ,Ft ) − �θ,F (ηθ,F )

}
(3.9)= {

�θ,Ft (ηθ,Ft ) − �θ,Ft (ηθ,F )
} + {

�θ,Ft (ηθ,F ) − �θ,F (ηθ,F )
}
.

Since the map F → �θ,F (η) is continuous and Ft → F (as t ↓ 0), the second term in the
right-hand side is

�θ,Ft (ηθ,F ) − �θ,F (ηθ,F ) = o(1) as t ↓ 0.

By the generalized Taylors theorem for Banach spaces (cf. [20], page 243, Theorem 4C), the first
term in the right-hand side is∥∥�θ,Ft (ηθ,Ft ) − �θ,Ft (ηθ,F )

∥∥ ≤ sup
τ∈[0,1]

∥∥dη�θ,Ft

(
ηθ,F + τ(ηθ,Ft − ηθ,F )

)∥∥‖ηθ,Ft − ηθ,F ‖

≤ (1 − ε)‖ηθ,Ft − ηθ,F ‖,
where the last inequality is due to (3.8).

It follows from (3.9) that

‖ηθ,Ft − ηθ,F ‖ ≤ o(1) + (1 − ε)‖ηθ,Ft − ηθ,F ‖ as t ↓ 0.

This shows ηθ,Ft → ηθ,F as t ↓ 0.
(Step 2) By the Hadamard differentiability of the map F → �θ,F (η) and the additional con-

dition ((3.2) and (3.3)), there is a linear operator h → dF �∗
t h such that the first term in the

right-hand side of (3.9) can be expressed as
{
�θ,Ft (ηθ,Ft ) − �θ,F (ηθ,Ft )

} = dF �∗
t (Ft − F),

and

dF �∗
t → dF �θ,F (ηθ,F ) as t ↓ 0.

Similarly, there is a linear operator h′ → dη�
∗
t h′ such that the second term in the right-hand

side of (3.9) is {
�θ,F (ηθ,Ft ) − �θ,F (ηθ,F )

} = dη�
∗
t {ηθ,Ft − ηθ,F }

and

dη�
∗
t → dη�θ,F (ηθ,F ) as t ↓ 0.

Altogether, equation (3.9) can be written as

{ηθ,Ft − ηθ,F } = dF �∗
t (Ft − F) + dη�

∗
t {ηθ,Ft − ηθ,F }.

It follows that [
I − dη�

∗
t

]{ηθ,Ft − ηθ,F } = dF �∗
t (Ft − F),

where I is the identity operator in the space B.



598 Y. Hirose

Since we have the inequality (3.8) and dη�
∗
t → dη�θ,F (ηθ,F ) as t ↓ 0, the inverse [I −

dη�
∗
t ]−1 exists for small t > 0. Therefore, when t−1(Ft − F) → h as t ↓ 0, we have that

t−1{ηθ,Ft − ηθ,F } = [
I − dη�

∗
t

]−1 dF �∗
t t−1(Ft − F)

→ [
I − dη�θ,F (ηθ,F )

]−1
dF �θ,F (ηθ,F )h as t ↓ 0.

Since the limit is a bounded and linear map of h, the function ηθ,F (x) is Hadamard differen-
tiable with respect to F with the derivative

dF ηθ,F = [
I − dη�θ,F (ηθ,F )

]−1 dF �θ,F (ηθ,F ).

Differentiability with respect to θ . Similar proof as above can show that, for t−1(θt − θ) →
a ∈ Rd as t ↓ 0, we have

t−1{ηθt ,F − ηθ,F } → [
I − dη�θ,F (ηθ,F )

]−1
aT �̇θ,F (ηθ,F ).

It follows that the first derivative η̇θ,F of ηθ,F (x) with respect to θ is given by

aT η̇θ,F = [
I − dη�θ,F (ηθ,F )

]−1
aT �̇θ,F (ηθ,F ). (3.10)

Now we show the second derivative of ηθ,F (x) with respect to θ . From (3.10), we have

aT η̇θ,F = aT �̇θ,F (ηθ,F ) + dη�θ,F (ηθ,F )
(
aT η̇θ,F

)
.

Using this equation, for t−1(θt − θ) → b ∈ Rd as t ↓ 0,

t−1{aT η̇θt ,F − aT η̇θ,F

}
= t−1{aT �̇θt ,F (ηθt ,F ) − aT �̇θ,F (ηθ,F )

}
+ t−1{dη�θt ,F (ηθt ,F )

(
aT η̇θt ,F

) − dη�θ,F (ηθ,F )
(
aT η̇θ,F

)}
= t−1{aT �̇θt ,F (ηθt ,F ) − aT �̇θ,F (ηθt ,F )

} + t−1{aT �̇θ,F (ηθt ,F ) − aT �̇θ,F (ηθ,F )
}

+ t−1{dη�θt ,F (ηθt ,F )
(
aT η̇θt ,F

) − dη�θ,F (ηθt ,F )
(
aT η̇θt ,F

)}
+ t−1{dη�θ,F (ηθt ,F )

(
aT η̇θt ,F

) − dη�θ,F (ηθ,F )
(
aT η̇θt ,F

)}
+ t−1{dη�θ,F (ηθ,F )

(
aT η̇θt ,F

) − dη�θ,F (ηθ,F )
(
aT η̇θ,F

)}
.

By the differentiability with respect to θ , the each term in the right-hand side has the limit as
follows, as t ↓ 0,

t−1{aT �̇θt ,F (ηθt ,F ) − aT �̇θ,F (ηθt ,F )
} → aT �̈θ,F (ηθ,F )b,

t−1{aT �̇θ,F (ηθt ,F ) − aT �̇θ,F (ηθ,F )
} → aT dη�̇θ,F (ηθ,F )

(
η̇T

θ,F b
)
,

t−1{dη�θt ,F (ηθt ,F )
(
aT η̇θt ,F

) − dη�θ,F (ηθt ,F )
(
aT η̇θt ,F

)} → {
dη�̇θ,F (ηθ,F )

(
aT η̇θ,F

)}T
b,
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t−1{dη�θ,F (ηθt ,F )
(
aT η̇θt ,F

) − dη�θ,F (ηθ,F )
(
aT η̇θt ,F

)} → d2
η�θ,F (ηθ,F )

(
aT η̇θ,F

)(
η̇T

θ,F b
)
,

t−1{dη�θ,F (ηθ,F )
(
aT η̇θt ,F

) − dη�θ,F (ηθ,F )
(
aT η̇θ,F

)}
= dη�θ,F (ηθ,F )t−1{aT η̇θt ,F − aT η̇θ,F

}
,

where the last equality is due to the linearity of the operator dη�θ,F (ηθ,F ) :B → B (the
Hadamard derivative of �θ,F (ηθ,F ) with respect to η).

Using additional condition and the Hadamard differentiability in (A1), by similar argument to
the case for the differentiability with respect to F , we can show that

t−1{aT η̇θt ,F − aT η̇θ,F

}
= aT �̈θ,F (ηθ,F )b + aT dη�̇θ,F (ηθ,F )

(
η̇T

θ,F b
) + {

dη�̇θ,F (ηθ,F )
(
aT η̇θ,F

)}T
b

+ d2
η�θ,F (ηθ,F )

(
aT η̇θ,F

)(
η̇T

θ,F b
) + dη�θ,F (ηθ,F )t−1{aT η̇θt ,F − aT η̇θ,F

} + o(1).

By rearranging this, we obtain

[
I − dη�θ,F (ηθ,F )

]
t−1{aT η̇θt ,F − aT η̇θ,F

}
= aT �̈θ,F (ηθ,F )b + aT dη�̇θ,F (ηθ,F )

(
η̇T

θ,F b
) + {

dη�̇θ,F (ηθ,F )
(
aT η̇θ,F

)}T
b

+ d2
η�θ,F (ηθ,F )

(
aT η̇θ,F

)(
η̇T

θ,F b
) + o(1),

and hence, as t ↓ 0,

t−1{aT η̇θt ,F − aT η̇θ,F

} → aT η̈θ,F b,

where

aT η̈θ,F b = [
I − dη�θ,F (ηθ,F )

]−1[
aT �̈θ,F (ηθ,F )b + aT dη�̇θ,F (ηθ,F )

(
η̇T

θ,F b
)

+ {
dη�̇θ,F (ηθ,F )

(
aT η̇θ,F

)}T
b + d2

η�θ,F (ηθ,F )
(
aT η̇θ,F

)(
η̇T

θ,F b
)]

.

Therefore, η̇θ,F is differentiable with respect to θ with derivative η̈θ,F .

4. Example 1 continued

As an application of the main result (Theorem 3.1), we show existence and differentiability of
solution to the operator equation in Example 1.

Theorem 4.1. Suppose that

EF

(
δ

1 + δ
W 2(s;β,A)

)
> VarF W(s;β,A), (4.1)
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where VarF W(s;β,A) = EF W 2(s;β,A) − {EF W(s;β,A)}2. Then the solution Aβ,F (t) to the
operator equation

A = �β,F (A)

exists in an neighborhood of (β0,F0) and it is two times continuously differentiable with respect
to β and Hadamard differentiable with respect to F in the neighborhood, where the operator
�β,F (A) is given in (2.3).

For the proof, we verify conditions (A1), (A2) and (A3) in Theorem 3.1 so that the differen-
tiability of the solution is implied by the theorem.

Verification of condition (A1). We show that the map �β,F (A) defined by (2.3) is differentiable
with respect to β , F and A.

(The derivative of �β,F (A) with respect to F ) Suppose a map t → Ft satisfies t−1(Ft −F) →
h as t ↓ 0.

t−1{�β,Ft (A) − �β,F (A)
} = t−1

{
EFt

∫ u

0

dN(s)

EFt W(s;β,A)
− EF

∫ u

0

dN(s)

EF W(s;β,A)

}

= t−1
{
EFt

∫ u

0

dN(s)

EFt W(s;β,A)
− EF

∫ u

0

dN(s)

EFt W(s;β,A)

}

+ t−1
{
EF

∫ u

0

dN(s)

EFt W(s;β,A)
− EF

∫ u

0

dN(s)

EF W(s;β,A)

}
.

After a simple calculation the right-hand side is equal to

d�∗
t

(
t−1{Ft − F })

(4.2)

= Et−1{Ft−F }
∫ u

0

dN(s)

EFt W(s;β,A)
− EF

∫ u

0

Et−1{Ft−F }W(s;β,A)

EF W(s;β,A)EFt W(s;β,A)
dN(s),

where the notation EF f means
∫

f dF . The expression (4.2) shows the additional condition (3.2)
is satisfied. Moreover, as t ↓ 0, the expression converges to

dF �β,F (A)h = Eh

∫ u

0

dN(s)

EF W(s;β,A)
− EF

∫ u

0

EhW(s;β,A)

{EF W(s;β,A)}2
dN(s).

This shows the map F → �β,F (A) is Hadamard differentiable at (β,A,F ) with derivative
dF �β,F (A) and additional condition satisfied (clearly, the derivative is linear in h, we omit the
proof of boundedness of dF �β,F (A)).

For the rest the derivatives, the proofs are similar and straightforward, therefore, we omit the
proof and just give the derivatives in Appendix B.

Verification of condition (A2). Let F0 be the true c.d.f. and β0 be the true value of β . Since the
true value A0 of A is the maximizer of the expected log-likelihood

∫ {
δ
(
β ′

0Z + loga(U)
) − (1 + δ) log

(
1 + eβ ′

0ZA(U)
)}

dF0,
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the same method to derive the equation (2.2) can be applied to show

A0(u) =
∫ u

0

EF0 dN(s)

EF0W(s;β0,A0)
= �β0,F0(A0),

where EF0 dN(s) = ∫
dN(s)dF0, EF0W(s;β0,A0) = ∫

W(s;β0,A0)dF0 and �β,F (A) is de-
fined in (2.3).

Verification of condition (A3). The derivatives dA�β,F (A) and dAW(s;β,A) are given in (B.1)
and (B.2), respectively, in Appendix B. We consider the sup-norm on the space of total variation
bounded cadlag functions h1(u) on [0, τ ]. For all h1(u) such that ‖h1(u)‖ = supu∈[0,τ ] |h1(u)| ≤
1, we have that

∣∣dAW(s;β,A)h1
∣∣ ≤ (1 + δ)e2β ′ZY (s)|h1(U)|

{1 + eβ ′ZA(U)}2
≤ (1 + δ)e2β ′ZY (s)

{1 + eβ ′ZA(U)}2

≤ (1 + δ)2e2β ′ZY (s)

{1 + eβ ′ZA(U)}2
= W 2(s;β,A).

We assumed P {δY (s) = 1} > 0 for each s ∈ [0, τ ] so that the last inequality in the above equation
is strict inequality with positive probability for each s. This implies

W 2(s;β,A) − ∣∣dAW(s;β,A)h1
∣∣ ≥ δ

1 + δ
W 2(s;β,A) > 0 (4.3)

with positive probability for each s.
Then, by (4.1) and (4.3), we have that, for each s,

EF W 2(s;β,A) − EF

∣∣dAW(s;β,A)h1
∣∣ > EF W 2(s;β,A) − {

EF W(s;β,A)
}2

> 0.

It follows that

∣∣dA�β,F (A)h1
∣∣ ≤ EF

∫ u

0

EF |dAW(s;β,A)h1|
{EF W(s;β,A)}2

dN(s) < EF

∫ u

0
dN(s) ≤ 1.

This demonstrates the operator h1 → dAW(s;β,A)h1 has the operator norm smaller than one.
We have completed verification of conditions (A1), (A2) and (A3) in Theorem 3.1. By the

theorem it follows that the derivatives of the function (2.2) is given by equations (3.5), (3.6)
and (3.7) (needs replacement θ with β and η with A).

5. Example 2 continued

The generic form of c.d.f. for combined samples is F = ∑2
s=1 wsFs where ws > 0, s = 1,2, and

w1 + w2 = 1 and F1,F2 are c.d.f.s for the samples in V and V , respectively.
For θ ∈ Rd , F and function g(x), define

�θ,F (g) = ∂x

∫
π1(dF)

A(x; θ, g,F )
, (5.1)
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where πs :F = ∑2
s′=1 ws′Fs′ → wsFs , s = 1,2, are projections, and

A(x; θ, g,F ) = 1 −
∫

f (y|x; θ)

fY (y; θ, g)
π2(dF). (5.2)

Then the function gθ,Fn(x) given by (2.7) is the solution to the operator equation

g(x) = �θ,F (g)(x) (5.3)

with F = Fn.
We show the differentiability of the solution gθ,F (x) to the equation (5.3) with respect to θ

and F .

Theorem 5.1. Let θ0, g0 and F0 = ∑2
s=1 ws0Fs0 be the true values of θ , g and F at which data

are generated. We assume that
w20

w10
< 1 (5.4)

and the function f (y|x; θ) is twice continuously differentiable with respect to θ . Then the solu-
tion gθ,F (x) to the operator equation (5.3) exists in an neighborhood of (θ0,F0) and it is two
times continuously differentiable with respect to θ and Hadamard differentiable with respect to
F in the neighborhood.

To prove the theorem, we verify conditions (A1), (A2) and (A3) in Theorem 3.1 so that the
results follows from that theorem.

We denote f = f (y|x; θ), fY = fY (y; θ, g), A = A(x; θ, g,F ), ḟ = ∂
∂θ

f (y|x; θ), f̈ =
∂2

∂θ ∂θT f (y|x; θ), ḟY = ∫
ḟ (y|x; θ)g(x)dx, and f̈Y = ∫

f̈ (y|x; θ)g(x)dx.
Verification of condition (A1). We show that the map �θ,F (g) is differentiable with respect to

θ , F and g.
(The derivative of �θ,F (g) with respect to F ) Suppose a map t → Ft satisfies t−1(Ft − F) →

h as t ↓ 0.
Then

�θ,Ft (g) − �θ,F (g)

= ∂x

∫
π1(dFt)

A(x; θ, g,Ft )
− ∂x

∫
π1(dF)

A(x; θ, g,F )

= (∂x

∫
π1[d(Ft − F)])A(x; θ, g,F ) − (∂x

∫
π1(dF)){A(x; θ, g,Ft ) − A(x; θ, g,F )}

A(x; θ, g,Ft )A(x; θ, g,F )
.

By equation (5.2), the right-hand side is equal to

dF �∗
t (g)(Ft − F)

= (∂x

∫
π1[d(Ft − F)])A(x; θ, g,F ) + (∂x

∫
π1(dF))

∫
f (y|x; θ)/fY (y; θ, g)π2[d(Ft − F)]

A(x; θ, g,Ft )A(x; θ, g,F )
.
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This shows the additional condition (3.2) is satisfied. Moreover, as t ↓ 0,

t−1{�θ,Ft (g) − �θ,F (g)
} = t−1 dF �∗

t (g)(Ft − F) → dF �θ,F (g)h,

where the map dF �θ,F (g) is given by

dF �θ,F (g)h = (∂x

∫
π1(dh))A(x; θ, g,F ) + (∂x

∫
π1(dF))

∫
f (y|x; θ)/fY (y; θ, g)π2(dh)

{A(x; θ, g,F )}2
.

Hence, the map F → �θ,F (g) is Hadamard differentiable at (θ, g,F ) with derivative
dF �θ,F (g) (clearly, the derivative is linear in h, we omit the proof of boundedness of
dF �θ,F (g)).

Similarly, other (Hadamard) differentiability of map can be shown. In Appendix C, we list the
derivatives without proofs.

Verification of condition (A2). To verify (A2), we show that, at (θ0,F0), g0(x) is a solution to
the operator equation (5.3).

Since ∂x

∫
dF10 = ∫

f (y|x; θ0)g0(x)dy = g0(x), and dF20(y)
dy

= fY (y; θ0, g0), w10 + w20 = 1,
we have

�θ0,F0(g0)(x) = w10∂x

∫
dF10

1 − w20
∫

f (y|x; θ0)/fY (y; θ0, g0)dF20
(5.5)

= w10g0(x)

1 − w20
∫

f (y|x; θ0)/fY (y; θ0, g0)fY (y; θ0, g0)dy
= g0(x),

where we used
∫

f (y|x; θ)dy = 1 for each x.
Verification of condition (A3). Let L1 be the space of all real valued measurable functions h(x)

with ‖h‖1 = ∫ |h(x)|dx < ∞. Then L1 is a Banach space with the norm ‖ · ‖1. The sup-norm is
denoted by ‖h‖∞ = supx |h(x)|.

The derivatives dg�θ,F (g) and dgA(x; θ, g,F ) are, respectively, given in (C.1) and (C.2).
Since ∂x

∫
π1(dF0) = w10g0(x), (C.1) implies

dg�θ0,F0(g0)h
∗ = −w10g0(x)dgA(x; θ0, g0,F0)h

∗

{A(x; θ0, g0,F0)}2
.

By (5.2) together with π2(dF0) = w20fY (y; θ0, g0)dy, and
∫

f (y|x; θ)dy = 1, for all x, we
have

A(x; θ, g0,F0) = 1 −
∫

f (y|x; θ0)

fY (y; θ0, g0)
π2(dF0) = 1 − w20 = w10.

These equations and (C.2) imply

dg�θ0,F0(g0)h
∗ = −w20

w10
g0(x)

∫
f (y|x; θ0)

∫
f (y|x; θ0)h

∗(x)dx

fY (y; θ0, g0)
dy. (5.6)
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The L1 norm of (5.6) is

∥∥dg�θ0,F0(g0)h
∗∥∥

1 =
∫ ∣∣∣∣w20

w10
g0(x)

∫
f (y|x; θ0)

∫
f (y|x; θ0)h

∗(x)dx

fY (y; θ0, g0)
dy

∣∣∣∣dx

≤ w20

w10

∫
g0(x)

(∫
f (y|x; θ0)

∫
f (y|x; θ0)|h∗(x)|dx

fY (y; θ0, g0)
dy

)
dx

= w20

w10

∫ ∣∣h∗(x)
∣∣dx

(
by Fubini’s theorem and

∫
f (y|x; θ0)dy = 1

)

= w20

w10
‖h∗‖1.

From the calculation above, we see that the operator h∗ → dg�θ0,F0(g0)h
∗ has the operator norm

≤w20
w10

. Since we assumed w20
w10

< 1, we have condition (A3).

6. Asymptotic normality of maximum profile
likelihood estimator

Hirose [6] showed the efficiency of the maximum profile likelihood estimator in semi-parametric
models using the direct asymptotic expansion of the profile likelihood. The method gives alterna-
tive to the one proposed by Murphy and van der Vaart [11] which uses an asymptotic expansion
of approximate profile likelihood. We summarize the results from the paper.

Suppose we have a function ηθ,F that depends on (θ,F ) such that �̃0(x) ≡ �̃θ0,F0(x) is the
efficient score function, where

�̃θ,F (x) ≡ ∂

∂θ
logpθ,ηθ,F

(x). (6.1)

The theorem below show that if the solution θ̂n to the estimating equation
∫

�̃
θ̂n,Fn

(x)dFn = 0 (6.2)

is consistent then it is asymptotically linear with the efficient influence function Ĩ−1
0 �̃0(x) so that

n−1/2(θ̂n − θ0) =
∫

Ĩ−1
0 �̃0(x)d

{
n−1/2(Fn − F0)

} + oP (1)
d−→ N

(
0, Ĩ−1

0

)
, (6.3)

where N(0, Ĩ−1
0 ) is a normal distribution with mean zero and variance Ĩ−1

0 . Since Ĩ0 = E0(�̃0�̃
T
0 )

is the efficient information matrix, this demonstrates that the estimator θ̂n is efficient.
On the set of c.d.f. functions F , we use the sup-norm, that is, for F,F0 ∈F ,

‖F − F0‖ = sup
x

∣∣F(x) − F0(x)
∣∣.
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For ρ > 0, let

Cρ = {
F ∈F : ‖F − F0‖ < ρ

}
.

Theorem 6.1 (Hirose [6]). Assumptions:

(R0) The function gθ,F satisfies gθ0,F0 = g0 and the function

�̃0(x) = �̃θ0,F0(x)

is the efficient score function where �̃θ,F (x) is given by (6.1).
(R1) The empirical process Fn is n1/2-consistent, that is, n1/2‖Fn − F0‖ = OP (1), and there

exists a ρ > 0 and a neighborhood � of θ0 such that for each (θ,F ) ∈ � × Cρ , the
log-likelihood function logp(x; θ, ĝθ,F ) is twice continuously differentiable with respect
to θ and Hadamard differentiable with respect to F for all x.

(R2) The efficient information matrix Ĩ0 = E0(�̃0�̃
T
0 ) is invertible.

(R3) There exists a ρ > 0 and a neighborhood � of θ0 such that the class of functions
{�̃θ,F (x): (θ,F ) ∈ � × Cρ} is Donsker with square integrable envelope function, and
that the class of functions { ∂

∂θ
�̃θ,F (x): (θ,F ) ∈ � × Cρ} is Glivenko–Cantelli with inte-

grable envelope function.

Under the assumptions {(R0), (R1), (R2), (R3)}, for a consistent solution θ̂n to the estimating
equation (6.2), the equation (6.3) holds.

6.1. Asymptotic normality and efficiency in Example 2

In this section, we demonstrate how the result of the paper can be used to show the efficiency of
profile likelihood estimators in semi-parametric models. We show the efficiency of the estimator
in Example 2 (using the result in Section 5). First, we identify the efficient score function in
the example. Then we verify conditions (R0)–(R3) in Theorem 6.1. Then the efficiency of the
estimator follows from the theorem.

Efficient score function. We show that the function (2.7) (the solution to the equation (5.3))
gives us the efficient score function in Example 2. The log-density function in Example 2 is
given by

logp(s, z; θ, g) = 1{s=1}
{
logf (y|x; θ) + logg(x)

} + 1{s=2} logfY (y; θ, g), (6.4)

where z = (y, x) if s = 1 and z = y if s = 2, and fY (y; θ, g) is given in (2.6).

Theorem 6.2 (The efficient score function). Let us denote gθ,F0(x) as the function (2.7) eval-
uated at (θ,F0):

gθ,F0(x) = w10∂x

∫
dF10

1 − w20
∫

f (y|x; θ)/fY (y; θ, gθ,F0)dF20
. (6.5)
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Then the function

�̃θ0,F0(s, z) = ∂

∂θ

∣∣∣∣
θ=θ0

logp(s, z; θ, gθ,F0) (6.6)

is the efficient score function in the model in Example 2.

Proof. We check conditions (A.1) and (A.2) in Theorem A.1 in the Appendix. Then the claim
follows from the theorem.

Condition (A.1) is checked in equation (5.5).
We verify condition (A.2). Let gt (x) be a path in the space of density functions with gt=0(x) =

g0(x). Define αt (x) = gt (x) − g0(x) and write α̇0(x) = ∂
∂t

|t=0αt (x). Then

∂

∂t

∣∣∣∣
t=0

∫
logp(s, z; θ, gθ,F0 + αt )dF0

= ∂

∂t

∣∣∣∣
t=0

[
w10

∫ {
logf (y|x; θ) + log(gθ,F0 + αt )

}
dF10

+ w20

∫
logfY (y; θ, gθ,F0 + αt )dF20

]

= w10

∫
α̇0(x)

gθ,F0(x)
dF10 + w20

∫ ∫
f (y|x; θ)α̇0(x)dx

fY (y; θ, gθ,F0)
dF20

=
∫

α̇0(x)dx = ∂

∂t

∣∣∣∣
t=0

∫
gt (x)dx = 0

(
by (6.5) and since gt (x) is a density

)
. �

Efficiency of the profile likelihood estimator. Let �̃θ,F (s, x) be the score function given by (6.6)
with θ0 and F0 are replaced by θ and F .

We verify conditions (R0), (R1), (R2) and (R3) of Theorem 6.1 so that we can apply the
theorem to show that the solution θ̂n to the estimating equation

2∑
s=1

n∑
i=1

�̃
θ̂n,Fn

(s,Xsi) = 0

is asymptotically linear estimator with the efficient influence function, that is, (6.3) holds. This
shows the efficiency of the MLE based on the profile likelihood in this example.

Condition (R0). Theorem 6.2 shows that the score function evaluated at (θ0,F0) is the efficient
score function in Example 2.

Condition (R1). We assume that:

(T1) For all θ ∈ �, the function f (y|x; θ) is twice continuously differentiable with respect
to θ .

The maps

g → logg(x)
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and

g → fY (y; θ, g) =
∫
X

f (y|x; θ)g(x)dx

are Hadamard differentiable (cf. Gill [5]). It follows that the log-density function logp(s, z; θ, g)

given by (6.4) is Hadamard differentiable with respect to g and, by assumption (T1), it is also
twice continuously differentiable with respect to θ . In the previous section (Section 5), we ver-
ified the function gθ,F is Hadamard differentiable with respect to F and twice continuously
differentiable with respect to θ . By the chain rule and product rule of Hadamard differentiable
maps, the log-density function logp(s, x; θ, gθ,F ) is Hadamard differentiable with respect to F

and twice continuously differentiable with respect to θ . Therefore, we verified condition (R1).
Derivatives of log-likelihood. The log-density function under consideration is

logp(s, z; θ, gθ,F ) = 1{s=1}
{
logf (y|x; θ) + loggθ,F (x)

} + 1{s=2} logfY (y; θ, gθ,F ). (6.7)

The derivative of the log-density with respect to θ is

�̃θ,F (s, z) = ∂

∂θ
logp(s, z; θ, gθ,F )

(6.8)

= 1{s=1}
{

ḟ

f
+ ġθ,F

gθ,F

}
+ 1{s=2}

ḟY + dgfY (ġθ,F )

fY

.

The second derivative of the log-density function with respect to θ is

∂

∂θT
�̃θ,F (s, z) = ∂2

∂θ ∂θT
logp(s, z; θ, gθ,F )

= 1{s=1}
{

f̈

f
− ḟ ḟ T

f 2
+ g̈θ,F

gθ,F

− ġθ,F ġT
θ,F

g2
θ,F

}

+ 1{s=2}
{

f̈Y + dgḟY (ġθ,F )

fY

− ḟY ḟ T
Y + ḟY dgfY (ġT

θ,F )

f 2
Y

(6.9)

+ dgḟ
T
Y (ġθ,F ) + dgfY (g̈θ,F )

fY

− dgfY (ġθ,F )ḟ T
Y + dgfY (ġθ,F )dgfY (ġT

θ,F )

f 2
Y

}
.

Here, we used the notation ḟY = ḟY (y; θ, gθ,F ), f̈Y = f̈Y (y; θ, gθ,F ), dgfY (gθ,F ) = ∫
f (y|x;

θ)gθ,F (x)dx, and dgḟY (gθ,F ) = ∫
ḟ (y|x; θ)gθ,F (x)dx.

Condition (R2). We assume that:

(T2) There is no a ∈ Rd such that aT ḟ
f
(y|x; θ) is constant in y for almost all x.
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The term ġθ,F

gθ,F
(x, θ0,F0) is a function of x. Therefore, by equation (6.8) and assumption (T2),

there is no a ∈ Rd such that aT �̃θ,F (1, z) is constant in y for almost all x. By Theorem 1.4 in
Seber and Lee [15], E(�̃θ0,F0 �̃

T
θ0,F0

) is nonsingular with the bounded inverse.
Conditions (R3). Since verification of condition (R3) require more assumptions and it does not

add anything new, we simply assume:

(T3) Let F be the set of c.d.f. functions and for some ρ > 0 define Cρ = {F ∈ F : ‖F −
F0‖∞ ≤ ρ}. The class of function

{
�̃θ,F (s, z): (θ,F ) ∈ � × Cρ

}

is Pθ0,g0 -Donsker with square integrable envelope function and the class

{
∂

∂θT
�̃θ,F (s, z): (θ,F ) ∈ � × Cρ

}

is Pθ0,g0 -Glivenko–Cantelli with integrable envelope function.

7. Discussion

In Theorem 3.1, we have shown the differentiability of implicitly defined function which we en-
counter in the maximum likelihood estimation in semi-parametric models. In the theorem, we
assumed the implicitly defined function is the solution to the operator equation (1.4) and we ob-
tained the derivatives of the (implicitly defined) function. In application of the theorem, we need
to verify condition (A3) in the theorem (that is ‖dη�θ0,F0(η0)‖ < 1). This required additional
conditions in the examples ((4.1) in Example 1 and (5.4) in Example 2). The future work is to re-
lax the condition to ‖dη�θ0,F0(η0)‖ < ∞ so that the additional conditions can be weaken. Once
the differentiability of the implicitly defined function has been established, the results in Hirose
[6] (we summarized in Section 6, Theorem 6.1) are applicable.

Appendix A: Verification of efficient score function

To verify condition (R0) in Theorem 6.1, the following theorem may be useful. This is a mod-
ification of the proof in Breslow, McNeney and Wellner [4] which was originally adapted from
Newey [12].

Theorem A.1. We assume the general semi-parametric model given in the Introduction with the
density pθ,η(x) = p(x; θ, η) is differentiable with respect to θ and Hadamard differentiable with
respect to η. Suppose gt is an arbitrary path such that gt=0 = g0 and let αt = gt − g0. If gθ,F is
a function of (θ,F ) such that

gθ0,F0 = g0 (A.1)
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and, for each θ ∈ �,

∂

∂t

∣∣∣∣
t=0

E0
[
logp(x; θ, gθ,F0 + αt )

] = 0, (A.2)

then the function �̃θ0,F0(x) = ∂
∂θ

|θ=θ0 logp(x; θ, gθ,F0) is the efficient score function.

Proof. Condition (A.2) implies that

0 = ∂

∂θ

∣∣∣∣
θ=θ0

∂

∂t

∣∣∣∣
t=0

E0
[
logp(x; θ, gθ,F0 + αt )

]
(A.3)

= ∂

∂t

∣∣∣∣
t=0

E0

[
∂

∂θ

∣∣∣∣
θ=θ0

logp(x; θ, gθ,F0 + αt )

]
.

By differentiating the identity

∫ (
∂

∂θ
logp(x; θ, gβ,F0 + αt )

)
p(x; θ, gβ,F0 + αt )dx = 0

with respect to t at t = 0 and θ = θ0, we get

0 = ∂

∂t

∣∣∣∣
t=0,θ=θ0

∫ (
∂

∂θ
logp(x; θ, gθ,F0 + αt )

)
p(x; θ, gθ,F0 + αt )dx

= E0

[
�̃θ0,F0(x)

(
∂

∂t

∣∣∣∣
t=0

logp(x; θ0, gt )

)] (
by (A.1)

)
(A.4)

+ ∂

∂t

∣∣∣∣
t=0

E0

[
∂

∂θ

∣∣∣∣
θ=θ0

logp(x; θ, gθ,F0 + αt )

]

= E0

[
�̃θ0,F0(x)

(
∂

∂t

∣∣∣∣
t=0

logp(x; θ0, gt )

)] (
by (A.3)

)
.

Let c ∈ Rm be arbitrary. Then it follows from equation (A.4) that the product c′�̃θ0,F0(x) is
orthogonal to the nuisance tangent space Ṗg which is the closed linear span of score functions of
the form ∂

∂t
|t=0 logp(x;β0, gt ).

Using condition (A.1), we have

�̃θ0,F0(x) = ∂

∂θ

∣∣∣∣
θ=θ0

logp(x; θ, g0) + ∂

∂β

∣∣∣∣
θ=θ0

logp(x; θ0, gθ,F0)

= �̇θ0,g0(x) − ψθ0,g0(x),

where �̇θ0,g0(x) = ∂
∂θ

|θ=θ0 logp(x; θ, g0) is the score function for θ and ψθ0,g0(x) =
− ∂

∂θ
|θ=θ0 logp(x; θ0, gθ,F0). Finally, c′�̃θ0,F0(x) = c′�̇θ0,g0(x) − c′ψθ0,g0(x) is orthogonal to the
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nuisance tangent space Ṗg and c′ψθ0,g0(x) ∈ Ṗg implies that c′ψθ0,g0(x) is the orthogonal pro-
jection of c′�̇θ0,g0(x) onto the nuisance tangent space Ṗg . Since c ∈ Rm is arbitrary, �̃θ0,F0(x) is
the efficient score function. �

Appendix B: Verification of (A1) in Example 1: Continued from
Section 4

In verification of (A1) in Example 1, Section 4, we gave proof the Hadamard differentiability of
functions with additional condition for the derivative of �β,F (A) with respect to F . For the rest
the derivatives, we give them without proofs.

(The derivative of �β,F (A) with respect to A) Let h1 = h1(U) be a function of U .

dA�β,F (A)h1 = −EF

∫ u

0

EF dAW(s;β,A)h1

{EF W(s;β,A)}2
dN(s), (B.1)

where

dAW(s;β,A)h1 = −(1 + δ)e2β ′ZY (s)h1(U)

{1 + eβ ′ZA(U)}2
. (B.2)

(The second derivative of �β,F (A) with respect to A) If h1(U), h2(U) are functions,

d2
A�β,F (A)h1h2 = EF

∫ u

0

EF d2
AW(s;β,A)h1h2

{EF W(s;β,A)}2
dN(s)

+ EF

∫ u

0

2{EF dAW(s;β,A)h1}{EF dAW(s;β,A)h2}
{EF W(s;β,A)}3

dN(s),

where

d2
AW(s;β,At )h1h2 = 2(1 + δ)e3β ′ZY (s)h1(U)h2(U)

{1 + eβ ′ZA(U)}3
.

(The expression of dAW(s;β,A)h1 is given in (B.2).)
(The first and second derivative of �β,F (A) with respect to β) Let us denote the first and

second derivatives (with respect to β) by �̇β,F (A) and �̈β,F (A), respectively. Then they are
given by, for a, b ∈ Rd ,

aT �̇β,F (A) = aT

{
∂

∂β
�β,F (A)

}

= −EF

∫ u

0

EF aT Ẇ (s;β,A)

{EF W(s;β,A)}2
dN(s),

aT �̈β,A(g)b = aT

{
∂2

∂β ∂βT
�β,F (A)

}
b
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= EF

∫ u

0

EF aT Ẅ (s;β,A)b

{EF W(s;β,A)}2
dN(s)

+EF

∫ u

0

2{EF aT Ẇ (s;β,A)h1}{EF ẆT (s;β,A)b}
{EF W(s;β,A)}3

dN(s).

Here,

aT Ẇ (s;β,A) = aT

{
∂

∂β
W(s;β,A)

}
= (1 + δ)aT βeβT ZY (s)

{1 + eβT ZA(U)}2

and

aT Ẅ (s;β,A)b = aT

{
∂2

∂β ∂βT
W(s;β,A)

}
b

= (1 + δ){(aT b)eβT Z + (aT β)(βT b)eβT Z}Y(s)

{1 + eβT ZA(U)}2

− 2(1 + δ)(aT β)(βT b)e2βT ZY (s)A(U)

{1 + eβT ZA(U)}3
.

(The derivative of �β,F (A) with respect to β and A) For given function h1(U) and a ∈ Rd ,

aT dA�̇β,F (A)h1

= −EF

∫ u

0

{
EF aT dAẆ(s;β,A)h1

{EF W(s;β,A)}2
− 2

EF aT Ẇ (s;β,A)EF dAW(s;β,A)h1

{EF W(s;β,A)}3

}
dN(s),

here aT Ẇ (s;β,A) is given above, dAW(s;β,A)h1 is given in (B.2) and

aT dAẆ(s;β,A)h1 = −2(1 + δ)aT βe2βT ZY (s)h1(U)

{1 + eβT ZA(U)}3
.

Appendix C: Verification of (A1) in Example 2: Continued
from Section 5

We proved the Hadamard differentiability of functions and additional condition for the derivative
of �θ,F (g) with respect to F in Section 5, verification of (A1) in Example 2. The rest of the
derivatives are listed here.

(The derivative of �θ,F (g) with respect to g) For a function h∗(x) of x,

dg�θ,F (g)h∗ = −(∂x

∫
π1(dF)){dgA(x; θ, g,F )h∗}

{A(x; θ, g,F )}2
, (C.1)
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where

dgA(x; θ, g,F )h∗ =
∫

f (y|x; θ)

∫
f (y|x; θ)h∗(x)dx

{fY (y; θ, g)}2
π2(dF). (C.2)

(The second derivative of �θ,F (g) with respect to g) For functions h1(x) and h2(x) of x,

d2
g�θ,F (g)h1h2

=
(

∂x

∫
π1(dF)

)[
−d2

gA(x; θ, g,F )h1h2

{A(x; θ, gt ,F )}2
+ 2{dgA(x; θ, g,F )h1}{dgA(x; θ, g,F )h2}

{A(x; θ, g,F )}3

]
,

where

d2
gA(x; θ, gt ,F )h1h2 = −2

∫
f (y|x; θ)

{∫ f (y|x; θ)h1(x)dx}{∫ f (y|x; θ)h2(x)dx}
{fY (y; θ, g)}3

π2(dF).

(The first and second derivative of �θ,F (g) with respect to θ ) Let us denote the first and
second derivatives with respect to θ by �̇θ,F (g) and �̈θ,F (g), respectively. They are given by,
for a, b ∈ Rd ,

aT �̇θ,F (g) = aT

{
∂

∂θ
�θ,F (g)

}
= − (∂x

∫
π1(dF))aT Ȧ

A2
,

aT �̈θ,F (g)b = aT

{
∂2

∂θ ∂θT
�θ,F (g)

}
b = − (∂x

∫
π1(dF)){A(aT Äb) − 2(aT Ȧ)(ȦT b)}

A3
,

where

aT Ȧ = aT

{
∂

∂θ
A(x; θ, g,F )

}
= −

∫
fY (aT ḟ ) − f (aT ḟY )

f 2
Y

π2(dF)

and

aT Äb = aT

{
∂2

∂θ ∂θT
A(x; θ, g,F )

}
b

= −
∫ (

f 2
Y

(
aT f̈ b

) − ffY

(
aT f̈Y b

) + 2f
(
aT ḟY

)(
ḟ T

Y b
)

− fY

(
aT ḟ

)(
ḟ T

Y b
) − fY

(
aT ḟY

)(
ḟ T b

))
/f 3

Y π2(dF).

(The derivative of �θ,F (g) with respect to θ and g) For a ∈ Rd and function h∗(x) of x,

aT dg�̇θ,F (g)h∗

= −
(

∂x

∫
π1(dF)

)[
aT dgȦ(x; θ, g,F )h∗

{A(x; θ, g,F )}2
− 2aT Ȧ(x; θ, g,F )dgA(x; θ, g,F )h∗

{A(x; θ, g,F )}3

]
,
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where

aT dgȦ(x; θ, g,F )h∗

=
∫ (

aT ḟ
)∫

f h∗ dx

f 2
Y

π2(dF) +
∫

f

∫
(aT ḟ )h∗ dx

f 2
Y

π2(dF) − 2
∫

f
(
aT ḟY

)∫
f h∗ dx

f 3
Y

π2(dF).
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