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In this paper, we are concerned with nonparametric inference on the volatility of volatility process in
stochastic volatility models. We construct several estimators for its integrated version in a high-frequency
setting, all based on increments of spot volatility estimators. Some of those are positive by construction,
others are bias corrected in order to attain the optimal rate n−1/4. Associated central limit theorems are
proven which can be widely used in practice, as they are the key to essentially all tools in model validation
for stochastic volatility models. As an illustration we give a brief idea on a goodness-of-fit test in order to
check for a certain parametric form of volatility of volatility.
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1. Introduction

Nowadays, stochastic volatility models are standard tools in the continuous-time modelling of
financial time series. Typically, the underlying (log) price process is assumed to follow a diffusion
process of the form

Xt = X0 +
∫ t

0
μs ds +

∫ t

0
σs dWs, (1.1)

where μ and σ can be quite general stochastic processes themselves. A classical case is where
the volatility σ 2

s = σ 2(s,Xs) is a function of time and state – a situation referred to as the one
of a local volatility model. It has turned out in empirical finance that such models do not fit the
data very well, as some stylised facts such as the leverage effect or volatility clustering cannot be
explained using local volatility only. Stochastic volatility models, however, are able to reproduce
such features, as they bear an additional source of randomness. In these models, the volatility
process is a diffusion process itself, and we focus on a rather general situation, namely

σ 2
t = σ 2

0 +
∫ t

0
νs ds +

∫ t

0
βs dWs +

∫ t

0
ηs dW ′

s , (1.2)

where ν, β and η again are suitable stochastic processes and W ′ is another Brownian motion,
independent of W . This model obviously includes the widely used special case of a volatility
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with only one driving Brownian motion, which is dσ 2
t = νt dt + τt dVt , where V and W are

jointly Brownian with some correlation ρ.
Stochastic volatility models are typically parametric ones, and probably the prime example

among those is the Heston model of [14], given by

Xt = X0 +
∫ t

0

(
β − σ 2

s

2

)
ds +

∫ t

0
σs dWs,

σ 2
t = σ 2

0 + κ

∫ t

0

(
α − σ 2

s

)
ds + ξ

∫ t

0
σs dVs,

for some parameters β,κ,α and ξ , and with Corr(W,V ) = ρ. Here, the volatility process follows
a Cox–Ingersoll–Ross model, that means it is mean-reverting with mean α and speed κ , and both
diffusion coefficients are proportional with parameter ξ . Particularly the latter property appears
to be rather typical for stochastic volatility models, and in this sense the Heston model can
be regarded as prototypic. Popular alternatives are for example coming from the more general
(but again parametric) class of (one factor) CEV models, where the diffusion coefficient τ of
σ 2 becomes a general power function of σ , whereas the drift part of the volatility remains in
principle the same. See [21] for a survey.

For this reason, statistical inference for stochastic volatility models has focused on parametric
methods for most times, and usually the authors provide tools for a specific class of models.
However, one is faced with two severe problems: First, it is in most cases impossible to assess
the distribution of X (or its increments), which makes standard maximum likelihood theory un-
available. Second, the volatility process σ 2 is not observable, and many statistical concepts have
in common that they propose to reproduce the unknown volatility process from observed option
prices, typically by using proxies based on implied volatility. A survey on early estimation meth-
ods in this context can be found in [8]. One remarkable exception where stock price data only is
used is the paper of [7] who construct a GMM estimator for the parameters of the Heston model
from increments of realised variance. But also in a general setting with no specific model in mind,
the focus has been on parametric approaches. An early approach on parameter estimation when
σ 2 is ergodic is the work of [12], optimal rates are discussed in [15] and [13], and a maximum
likelihood approach based on proxies for the volatility can be found in [1]. Even nonparametric
concepts have been used to identify parameters of a stochastic volatility model; see, for example,
[3] or [25].

Genuine nonparametric inference for stochastic volatility models has typically focused on
function estimation. Both [24] and [9] discuss techniques for the estimation of f and g, when the
volatility process satisfies dσ 2

t = f (σ 2
t )dt +g(σ 2

t )dVt . In the more general model-free context of
(1.2), only [4] and [28] have discussed estimation of functionals of volatility of volatility. While
the latter focus on estimation of a kind of leverage effect which involves the volatility of volatility
process(es), the work of [4] provides a consistent estimator for integrated volatility of volatility∫ t

0 τ 2
s ds in the one-factor case. Their approach is inspired by the asymptotic behaviour of realised

variance, which states that the sum of squared increments of σ 2 converges in probability to the
quantity of interest. Since σ 2 is not observable, the authors use spot volatility estimators instead.

We will pursue their approach and discuss in detail the asymptotic behaviour of several esti-
mators for integrated volatility of volatility, all based on increments of spot volatility estimators,
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thus using observations of X only. It turns out that in order to attain the optimal rate of conver-
gence in this context, it is necessary to conduct a certain bias correction which destroys positivity
of the estimator – a feature which is well known from the related problem of volatility estimation
under microstructure noise. Several stable central limit theorems are provided, and by defining
appropriate estimators for the asymptotic (conditional) variance we obtain feasible versions as
well. The latter results are of theoretical interest on one hand, but are extremely important from
an applied point of view as well, as they make model validation for stochastic volatility models
possible. Given the tremendous number of such models with entirely different qualitative be-
haviours, there is a lack of techniques that help deciding whether a certain model fits the data
appropriately or not.

As a first approach to model validation in this framework, we give a brief idea on how to do
goodness-of-fit testing, but our method is by no means limited to it. Related procedures can be
used to test for example, whether a Brownian component or jumps are present in the volatility
process and what in general the structure of the jump part is. Such problems have been solved for
the price process X in recent years (see [18] for an overview), and in principle the methods are
all based on the estimation of plain integrated volatility

∫ t

0 σ 2
s ds and further quantities, such as

truncated versions or bipower variation. Using our main results, these concepts can be translated
to the stochastic volatility case by using estimators for integrated volatility of volatility instead,
but usually with the slower rate of convergence n−1/4.

The paper is organised as follows: In Section 2, we introduce our estimators and state the
central limit theorems, whereas Section 3 is on goodness-of-fit testing in stochastic volatility
models. Some Monte Carlo results can be found in Section 4, followed by some concluding
remarks in Section 5. An overview on some proofs plus a couple of details can be found in the
Appendix, whereas large parts of them have been relegated to a supplementary article [26].

2. Main results

Let us start with some conditions on the processes involved. All of these are rather mild and
covered by a variety of (stochastic) volatility models used. The only major restriction is that
we will assume most processes to be continuous for a while and only discuss briefly later how
possible adjustments in order to handle jumps in price and volatility could look like.

Assumption 2.1. Suppose that the process X is given by (1.1), where W is a standard Brownian
motion and the drift process μ is left continuous. We assume further that the volatility process
σ 2 is a continuous Itô semimartingale itself, having the representation (1.2). ν is assumed to be
left continuous as well, whereas β satisfies the regularity condition

β2
s = β2

0 +
∫ t

0
ωs ds +

∫ t

0
ϑ(1)

s dWs +
∫ t

0
ϑ(2)

s dW ′
s, (2.1)

where ω is locally bounded and each ϑ(l) is left continuous, l = 1,2. A similar condition is as-
sumed to hold for η as well. Finally, all processes are defined on the same probability space
(
,F , (Ft )t≥0,P), and all coefficients are specified in such a way that σ 2 is almost surely posi-
tive and that β2 and η2 are either almost surely positive or vanishing identically, respectively.
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As noted in the Introduction, (1.2) covers a large class of volatility models used. For η ≡ 0 we
are essentially in the case of a local volatility model, whereas βs = ρτs and ηs = √

1 − ρ2τs for
some process τ and ρ ∈ (−1,1) refers to the setting of the typical stochastic volatility models
mentioned before, in which both driving Brownian motions are correlated with ρ. The model
in (1.2) is even more flexible, and it is straight-forward to extend all results to the case of a
multi-factor model driven by more than two independent Brownian motions as well.

Our aim in the following is to draw inference on the integrated volatility of volatility up to
time t , which becomes

∫ t

0 (β2
s + η2

s )ds in our context. Any statistical inference will be based on
high-frequency observations of X, and we assume that the data is recorded at equidistant times.
Thus, without loss of generality let the process be defined on the interval [0,1] and observed at
the time points i/n, i = 0, . . . , n.

Before we discuss several concepts to assess integrated volatility of volatility in detail, let us
recall the principles of estimation of standard integrated volatility

∫ 1
0 σ 2

s ds. The usual estimator
in the general model-free setting of (1.1) is realised volatility, given by

RV n
t =

�nt�∑
i=1

(
�n

i X
)2

,

where we set �n
i Z = Zi/n − Z(i−1)/n for any process Z. This estimator is optimal in several

respects, even though Itô formula proves

(
�n

i X
)2 =

∫ i/n

(i−1)/n

σ 2
s ds + 2

∫ i/n

(i−1)/n

(Xs − X(i−1)/n)dXs (2.2)

only, from which it is simple to see that each squared increment (�n
i X)2 is only on average equal

to integrated volatility over the corresponding time interval, but not consistent for it. (Realised
volatility, the sum of the squared increments, however, is consistent for the entire integrated
volatility, which is basically due to a martingale argument.)

Our estimators for integrated volatility of volatility will be based on a similar intuition: De-
fine statistics via sums of increments such that each summand is on average equal to integrated
volatility of volatility over the corresponding time interval, but not necessarily consistent. As
before, one would like to build those estimators upon increments of σ 2. These are in general not
observable, so a proxy for them is needed. Since we are in a model-free world, a natural estimator
for spot volatility σ 2

i/n is given by

σ̂ 2
i/n = n

kn

kn∑
j=1

(
�n

i+jX
)2

, i = 0, . . . , n − kn,

for some auxiliary (integer-valued) sequence kn. See [2] or [25] for details on the asymptotic
behaviour of this estimator. Itô formula again gives

σ̂ 2
i/n = n

kn

kn∑
j=1

2
∫ (i+j)/n

(i+j−1)/n

(Xs − X(i+j−1)/n)dXs + n

kn

∫ (i+kn)/n

i/n

σ 2
s ds =: An

i + Bn
i , (2.3)
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so that σ̂ 2
i/n − σ 2

i/n consists of two sources of error. From the proofs later on, we see that An
i =

Op(
√

1/kn), whereas Bn
i − σ 2

i/n = Op(
√

kn/n). Therefore, it appears natural to choose kn to be

of the order n1/2 in order to minimize the error of the spot volatility estimator (and we will see
later that this is indeed the best thing to do), but we will keep this sequence arbitrary in order to
allow for other estimators as well.

While the choice of the spot volatility estimators depends on the auxiliary sequence kn, we
will introduce a second sequence of integers ln which governs the length of the intervals over
which increments of σ̂ 2 are computed. Thus, the basic element of our final estimators will be
(σ̂ 2

(i+ln)/n − σ̂ 2
i/n)

2, which can be decomposed as

(
σ̂ 2

(i+ln)/n − σ̂ 2
i/n

)2 = (
An

i+ln
− An

i

)2 + (
Bn

i+ln
− Bn

i

)2 + 2
(
An

i+ln
− An

i

)(
Bn

i+ln
− Bn

i

)
.

The average behaviour of the terms above is discussed in the following lemma, and it depends
crucially on the size of both kn and ln.

Lemma 2.2. Suppose that Assumption 2.1 holds and let En
i [Z] denote conditional expectation

of some variable Z with respect to Fi/n. Set also Mn = max(kn, ln) and mn = min(kn, ln). Then
we have

E
n
i

[(
An

i+ln
− An

i

)2] = 4ln(knMn)
−1σ 4

i/n

(
1 + Op

(
M

1/2
n n−1/2)),

E
n
i

[(
Bn

i+ln
− Bn

i

)2] = lnmn(Mn − mn/3)(knMnn)−1(β2
i/n + η2

i/n

)(
1 + Op

(
M

1/2
n n−1/2)).

The previous lemma gives us several hints on how to obtain an estimator for integrated volatil-
ity of volatility via sums over (σ̂ 2

(i+ln)/n − σ̂ 2
i/n)

2. First, information about β2
i/n +η2

i/n is contained
in increments over the Bn

i only. Therefore, it appears to be reasonable to choose kn and ln later
on in such a way that these terms are at least not smaller than the bias terms due to increments
of An

i . Or in other words, the condition becomes that n ≤ Cknln for some generic C > 0.
Also, there are basically two ways to construct an estimator. Either, pick kn and ln such that

the bias due to increments of An
i is negligible even after dividing by the rate of convergence. This

concept will lead to the estimator

T̂ n
t =

�nt�−(kn+ln)∑
i=0

knMn

(
lnmn(Mn − mn/3)

)−1(
σ̂ 2

(i+ln)/n − σ̂ 2
i/n

)2

which is positive by construction. As noted in the Introduction, this is the kind of estimator [4]
were looking at. Alternatively, one can use a bias correction and subtract an estimator for the local
quarticity σ 4

i/n. In this case one loses positivity, but we will see later that the rate of convergence
is much faster in this situation.

Let us pursue the first path for a moment, however. In order to understand what the rate of
convergence for estimation of integrated volatility of volatility will be, the next result is extremely
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helpful, as it gives the central limit theorem for the “oracle” estimator

Ŝn
t =

�nt�−(kn+ln)∑
i=0

knMn

(
lnmn(Mn − mn/3)

)−1(
Bn

i+ln
− Bn

i

)2

which depends on the unobservable increments of Bn
i only. All results in this section will be

pointwise in t , even though it is likely that functional versions hold as well.

Proposition 2.3. Suppose that Assumption 2.1 holds and that both kn ∼ cnα and ln ∼ dnβ hold
for some α,β ∈ (0,1) and c, d > 0. Let also Mn and mn be defined as before.

(a) If α �= β , we have√
n

Mn

(
Ŝn

t −
∫ t

0

(
β2

s + η2
s

)
ds

)
L−(s)−→ √

4/3
∫ t

0

(
β2

s + η2
s

)
dWs.

(b) For kn = ln we have√
n

Mn

(
Ŝn

t −
∫ t

0

(
β2

s + η2
s

)
ds

)
L−(s)−→ √

151/70
∫ t

0

(
β2

s + η2
s

)
dWs.

In both cases, W is a Brownian motion defined on an extension of the original probability space
and independent of F and the convergence in (2.6) is F -stable in law.

Remark 2.4. It is obvious from Proposition 2.3 that the rate of convergence becomes faster the
smaller Mn is chosen. On the other hand, the condition n ≤ Cknln forces Mn to be at least of
the order n1/2. In this case, the rate of convergence in Proposition 2.3 becomes n−1/4, and this
rate is known to be optimal for this statistical problem. Indeed, a related parametric setting has
been discussed in [15] a decade ago, and it was shown therein that this rate is optimal in the
special case, where β vanishes identically and η is a function of time and state, known up to a
parameter θ .

Our first main theorem specifies conditions for a central limit theorem for T̂ n
t and is a simple

consequence of Lemma 2.2 and Proposition 2.3.

Theorem 2.5. Suppose that all the assumptions of Proposition 2.3 hold true. If further
n3/2M

−3/2
n m−1

n → 0 and α �= β , then the stable central limit theorem√
n

Mn

(
T̂ n

t −
∫ t

0

(
β2

s + η2
s

)
ds

)
L−(s)−→ √

4/3
∫ t

0

(
β2

s + η2
s

)
dWs. (2.4)

holds true.

The optimal rate of convergence in this case is obtained for the choice of Mn = O(n3/5+ε)

and mn = O(n3/5) and approaches n−1/5 for ε → 0. This proves also that it is no restriction to
assume α �= β above.
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In order to obtain an estimator with the optimal rate of convergence, we choose ln and kn to be
both the same and of the order n1/2, but as noted above we need a bias correction then. Therefore,
we define with a slight abuse of notation

R̂n
t =

�nt�−2kn∑
i=0

(
3

2kn

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2 − 6
1

k2
n

σ̂ 4
i/n

)
, (2.5)

where σ̂ 4
i/n = n2

3kn

∑kn

j=1 |�n
i+jX|4 is in general different from (σ̂ 2

i/n)
2. Its asymptotic behaviour

is discussed in the following theorem.

Theorem 2.6. Suppose that Assumption 2.1 holds and let kn = cn1/2 + o(n1/4) for some c > 0.
Then √

n

kn

(
R̂n

t −
∫ t

0

(
β2

s + η2
s

)
ds

)
L−(s)−→ Ut (2.6)

for all t > 0, where the limiting variable has the representation

Ut =
∫ t

0
αs dWs, α2

s = 48

c4
σ 8

s + 12

c2
σ 4

s

(
β2

s + η2
s

) + 151

70

(
β2

s + η2
s

)2
. (2.7)

Remark 2.7. The situation encountered above has an interesting connection to the problem of
eliminating microstructure noise, as we face similar problems regarding optimal rates of conver-
gence and positivity of the estimators. Whereas the optimal rate of convergence for estimating
integrated volatility in the noisy setting is n−1/4, standard estimators attaining this rate are not
always positive. To ensure positivity, one typically accepts a drop in the rate of convergence to
n−1/5 as well. See, for example, [6] for a thorough discussion in a general multivariate setting.

Remark 2.8. Recently, [19] discussed efficient estimation of
∫ t

0 g(σ 2
s )ds for general functions g.

It turned out that Riemann sums based on g(σ̂ 2
i/n) indeed attain the optimal rate of convergence

n−1/2 in this context, but again the choice of kn affects the limiting distribution. The optimal
kn ∼ n1/2 leads to additional bias terms in their setting, and at least some of these can be avoided
by choosing kn in a different way.

The limiting distribution in Theorem 2.5 and Theorem 2.6 is mixed normal, and in order to ob-
tain a feasible central limit theorem we have to introduce consistent estimators for the respective
conditional variances. These are constructed using the same intuition as before, and precisely we
obtain the following theorem.

Theorem 2.9. (a) Under the conditions of Theorem 2.5, we have

Q̂n
t =

�nt�−(kn+ln)∑
i=0

4nk2
nM

2
n

9(lnmn(Mn − mn/3))2

(
σ̂ 2

(i+ln)/n − σ̂ 2
i/n

)4 P−→
∫ t

0

4

3

(
β2

s + η2
s

)2 ds.
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(b) In the situation of Theorem 2.6, we have

G
(1)
t,n = 1

n

�nt�−kn∑
i=1

(
σ̂ 4

i/n

)2 P−→
∫ t

0
σ 8

s ds,

G
(2)
t,n =

�nt�−2kn∑
i=1

(
3

2kn

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2 − 6
1

k2
n

σ̂ 4
i/n

)
σ̂ 4

i/n

P−→
∫ t

0
σ 4

s

(
β2

s + η2
s

)
ds,

G
(3)
t,n =

�nt�−2kn∑
i=1

n

k2
n

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)4 P−→
∫ t

0

(
48

c4
σ 8

s + 16

c2
σ 4

s

(
β2

s + η2
s

) + 4

3

(
β2

s + η2
s

)2
)

ds.

Therefore, as a consequence

P̂ n
t = 453

280
G

(3)
t,n − n

k2
n

486

35
G

(2)
t,n − n2

k4
n

1038

35
G

(1)
t,n

P−→
∫ t

0
α2

s ds.

Remark 2.10. Theorem 2.9 shows that a consistent estimator for
∫ t

0 (β2
s +η2

s )
2 ds is for example,

given by

3

4
G

(3)
t,n − 12

n

k2
n

G
(2)
t,n − 36

n2

k4
n

G
(1)
t,n,

and its proof suggests that a central limit theorem holds with the same rate of convergence as
before. In general, it is quite likely that this methods provides estimates for arbitrary even powers
of integrated volatility of volatility. A precise theory is left for future research.

The properties of stable convergence guarantee that dividing by the square root of a consistent
estimator for the conditional variance gives a feasible central limit theorem for the estimation
of integrated volatility of volatility. See, for example, [23] for details. Therefore, the following
corollary can be concluded easily.

Corollary 2.11. (a) Under the assumptions of Theorem 2.5, we have for all t > 0√
n

Mn

(
T̂ n

t −
∫ t

0

(
β2

s + η2
s

)
ds

)(
Q̂n

t

)−1/2 L−→N (0,1). (2.8)

(b) Under the assumptions of Theorem 2.6, we have for all t > 0√
n

kn

(
R̂n

t −
∫ t

0

(
β2

s + η2
s

)
ds

)(
P̂ n

t

)−1/2 L−→ N (0,1). (2.9)

Remark 2.12. So far we have only discussed the case where both processes have continuous
paths. Extensions to the situation of additional jumps in the price process seem to be possi-
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ble, but are already quite involved. The following observation is useful: Whenever there is a
jump within the interval [i/n, (i + 2kn)/n], it appears squared and blown up by n2/k2

n within
(σ̂ 2

(i+kn)/n − σ̂ 2
i/n)

2. This is a much larger order than the usual kn/n in the continuous case. For
this reason, it appears as if the truncation method due to [22] can be applied, and a similar intu-
ition holds for the bias correction as well. Note, however, that the raw statistics in this context are
sums of squared increments of X rather than plain increments of X as for the power variations
encountered in [22]. Therefore, the required techniques are different than the standard ones in
this area.

The case of jumps in the volatility appears to be even more complicated, as these come into
play via

Bn
i+kn

− Bn
i = n

kn

∫ (i+kn)/n

i/n

(
σ 2

s+kn/n − σ 2
s

)
ds,

and therefore the amount to which each increment is affected by a jump depends crucially on the
time at which the jump occurs. Thus, plain truncation might not be sufficient in this case and an
entirely different estimator was necessary. Both topics are left for future research.

3. Model checks for stochastic volatility models

In this section, we propose a first approach to goodness-of-fit testing for stochastic volatility
models. Assume we have representation (1.1) for the log price process X, whereas the volatility
process satisfies dσ 2

t = νt dt +τt dVt as in typical SV models. There is still a lot of freedom in the
modelling of σ 2, and the various proposals in the literature typically differ in the representation
of its diffusion part τ . As noted in the Introduction, a quite general class of stochastic volatility
models is given by the so-called CEV models, in which τ 2

s = θ(σ 2
s )γ for some nonnegative γ

and an unknown parameter θ , and the most popular among these is the Heston model from [14],
corresponding to γ = 1.

In order to construct a test whether a certain functional relationship between σ and τ is present,
we employ a technique which was already used in [10] or [27] when dealing with local volatility
models. Suppose we are interested in testing for τ 2

s = τ 2(s,Xs, σ
2
s , θ), where τ 2 is a given func-

tion and θ is some unknown (in general multidimensional) parameter. For simplicity, we will
focus on the one-dimensional linear case only, that is

H0 : τ 2
s = θτ 2(s,Xs, σ

2
s

)
for all s ∈ [0,1] (a.s.)

Extensions to the general case follow along the lines of Section 5 in [27].
A test for the null hypothesis will be based on the observation that H0 is equivalent to Nt = 0

for all t ∈ [0,1] (a.s.), where the process Nt is given by

Nt =
∫ t

0

(
τ 2
s − θminτ

2(s,Xs, σ
2
s

))
ds,

θmin = arg min
θ

∫ 1

0

(
τ 2
s − θτ 2(s,Xs, σ

2
s

))2 ds.
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Assume that the function τ 2 is bounded away from zero. Then a standard argument from Hilbert
space theory shows that θmin = D−1C (and therefore Nt = Rt − BtD

−1C), where we have set
Rt = ∫ t

0 τ 2
s ds and

Bt =
∫ t

0
τ 2(s,Xs, σ

2
s

)
ds,

D =
∫ 1

0
τ 4(s,Xs, σ

2
s

)
ds,

C =
∫ 1

0
τ 2
s τ 2(s,Xs, σ

2
s

)
ds.

To define estimators let kn as before and recall (2.5). We set

τ̂ 2
i/n = 3n(2kn)

−1(σ̂ 2
(i+kn)/n − σ̂ 2

i/n

)2 − 6nk−2
n σ̂ 4

i/n (3.1)

and also N̂n
t = R̂n

t − B̂n
t (D̂n)−1Ĉn with R̂n

t from the previous section, whereas we denote

B̂n
t = 1

n

�nt�−kn∑
i=0

τ 2
(

i

n
,Xi/n, σ̂

2
i/n

)
,

D̂n = 1

n

n−kn∑
i=0

τ 4
(

i

n
,Xi/n, σ̂

2
i/n

)
,

Ĉn = 1

n

n−2kn∑
i=0

τ̂ 2
i/nτ

2
(

i

n
,Xi/n, σ̂

2
i/n

)
.

In the sequel, we will prove weak convergence of N̂n
t − Nt , up to a suitable normalisation.

Theorem 2.6 suggests that
√

n/kn is a reasonable choice, and the following claim proves that
two of the estimators converge at a faster speed, at least if we impose an additional smoothness
condition on the function τ 2.

Lemma 3.1. Suppose that the function τ 2 has continuous partial derivatives of second order.
Then we have

B̂n
t − Bt = op

(
n−1/4), D̂n − D = op

(
n−1/4),

the first result holding uniformly in t ∈ [0,1].

The above claim indicates that we have to focus on the terms involving τ̂ 2
i/n only, which is

familiar ground due to the results of Section 2. We start with a proposition on the joint asymptotic
behaviour of R̂n

t and Ĉn.
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Lemma 3.2. Let d be an integer and t1, . . . , td be arbitrary in [0,1]. Set

�t1,...,td

(
s,Xs, σ

2
s

) = α2
s ht1,...,td

(
s,Xs, σ

2
s

)
ht1,...,td

(
s,Xs, σ

2
s

)T

with ht1,...,td (s,Xs, σ
2
s ) = (1[0,t1], . . . ,1[0,td ], τ 2(s,Xs, σ

2
s ))T and α2

s as in Theorem 2.6. Under
the previous assumptions we have the stable convergence√

n

kn

(
R̂n

t1
− Rt1, . . . , R̂

n
td

− Rtd , Ĉ
n − C

)T L−(s)−→
∫ 1

0
�

1/2
t1,...,td

(
s,Xs, σ

2
s

)
dWs,

where W is a (d + 1)-dimensional standard Brownian motion defined on an extension of the
original space and independent of F .

We are interested in the asymptotics of the process An(t) = √
n/kn(N̂

n
t − Nt), and the pre-

ceding lemma basically leads to its finite dimensional convergence. The entire result on weak
convergence of An reads as follows.

Theorem 3.3. Assume that the previous assumptions hold. Then the process (An(t))t∈[0,1] con-
verges weakly to a mean zero process (A(t))t∈[0,1], which is Gaussian conditionally on F and
whose conditional covariance equals the one of the process{

αU

(
1{U≤t} − BtD

−1τ 2(U,XU,σ 2
U

))}
t∈[0,1]

where U ∼ U[0,1], independent of F .

As indicated before, convergence of the finite dimensional distributions is a direct consequence
of Lemma 3.2, using the Delta method for stable convergence (see, e.g., [11]). Tightness follows
from Theorem VI. 4.5 in [20] with a minimal amount of work.

Recall that Nt = 0 for all t under the null hypothesis. Therefore Theorem 3.3 shows that
a consistent test is obtained by rejecting the null hypothesis for large values of a suitable
functional of the process {√n/knN̂

n
t }t∈[0,1]. If we choose the Kolmogorov–Smirnov func-

tional Kn = supt∈[0,1]
√

n/kn|N̂n
t | for example, we have weak convergence under the null to

supt∈[0,1] |At | as a consequence of Theorem 3.3. The distribution of the latter statistic is ex-
tremely difficult to assess, as it typically depends on the entire process (X,σ 2). We therefore
propose to obtain critical values via a simple bootstrap procedure, which will be introduced in
the next section.

To end this section, we define an appropriate estimator for the conditional variance of A(t),
which is given by

s2
t =

∫ t

0
α2

s ds − 2BtD
−1

∫ t

0
α2

s τ
2(s,Xs, σ

2
s

)
ds + B2

t D−2
∫ t

0
α2

s τ
4(s,Xs, σ

2
s

)
ds,
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due to Theorem 3.3. Empirical counterparts for Bt and D are obviously defined by the statistics
B̂t and D̂, whereas Theorem 2.9 suggests that a local estimator for α2

i/n is given by

α̂2
i/n = n2

k2
n

(
453

280

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)4 − 486

35
τ̂ 2
i/nσ̂

4
i/n

)
− n6

k5
n

346

1225

kn∑
j=1

∣∣�n
i+jX

∣∣8
.

We obtain the following result, which can be proven in the same way as Theorem 2.9.

Theorem 3.4. Let t be arbitrary and set

(
ŝn
t

)2 = 1

n

�nt�−2kn∑
i=1

α̂2
i/n − 2B̂t D̂

−1 1

n

�nt�−2kn∑
i=1

α̂2
i/nτ

2
(

i

n
,Xi/n, σ̂

2
i/n

)

+ B̂2
t D̂−2 1

n

�nt�−2kn∑
i=1

α̂2
i/nτ

2
(

i

n
,Xi/n, σ̂

2
i/n

)
.

Then (ŝn
t )2 is consistent for s2

t .

As a consequence, each statistic
√

n/knN̂
n
t /ŝn

t converges weakly to a normal distribution. This
result will be used to construct a feasible bootstrap statistic in the following.

4. Simulation study

Let us start with a simulation study concerning the performance of the rate-optimal R̂n
t as an

estimator for integrated volatility of volatility. Throughout this section, we will work with the
Heston model only, and the parameters are chosen as follows: β = 0.3, κ = 5, α = 0.2 and
ξ = 0.5. Furthermore, we set X0 = 0 and σ 2

0 = α. Note that the Feller condition 2κα ≥ ξ2 is
satisfied, which ensures that the process σ 2 is almost surely positive as requested. So does τ 2,
and it is obvious that (2.1) holds as well. Therefore all conditions from Section 2 are satisfied.

We discuss the finite sample properties of R̂n
t for different choices of the correlation parameter

ρ and the number of observations n, and for comparability only we take n to be a square number
and kn equal to n1/2 in all cases, so we have c = 1. Theorem 2.6 suggests that such a medium size
of c is reasonable for finite samples, and additional results not reported here also point towards
the fact that kn should be chosen close to n1/2. Finally, we set t = 1. Tables 1–6 below are based
on 10 000 simulations.

Table 1 shows the performance for ρ = 0, for which we see that it takes quite some time for the
asymptotics to kick in. Apparent is a slight overestimation of the lower tails of the distribution,
which seems to originate from the relation of the estimators R̂1 and G

(3)
1,n. By construction, in

cases where R̂1 is underestimating the true quantity, it is typically the case that increments of
σ̂ 2 are relatively small. As these increments occur in G

(3)
1,n as well, most likely the asymptotic

variance is underestimated as well, which explains a too large negative standardised statistic. The
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Table 1. Mean/variance and simulated quantiles of the feasible test statistic (2.9) for ρ = 0. The last column
gives the relative amount of negative estimates

n Mean Variance 0.025 0.05 0.1 0.9 0.95 0.975 Neg.

400 −0.397 0.856 0.0497 0.0968 0.1756 0.9754 0.9946 0.9989 0.3522
2 500 −0.287 0.965 0.0526 0.0932 0.1619 0.9572 0.9862 0.9965 0.1963

10 000 −0.170 1.023 0.0449 0.0799 0.1425 0.9325 0.9757 0.9928 0.0933
22 500 −0.112 1.002 0.0404 0.0696 0.1253 0.9271 0.9722 0.9914 0.0510
40 000 −0.073 1.029 0.0401 0.0703 0.1235 0.9203 0.9690 0.9874 0.03
52 900 −0.031 1.022 0.0368 0.0653 0.1157 0.9154 0.9633 0.9872 0.0221

same effect is visible for the upper quantiles as well (but resulting in an overestimation), and this
simple explanation is supported by a detailed look at simulation results not reported here which
reveal that the estimation of the asymptotic variance is extremely accurate for moderate sizes of
R̂1 − ∫ 1

0 τ 2
s ds, but becomes worse when the deviation is rather large. Similar conclusions can be

drawn for the case of a moderately negative ρ = −0.2.
We proceed with the finite sample behaviour of the statistics T̂ n

t , for which we have a lot of
freedom in choosing kn and ln. However, in order for both Mn to be rather small and the condition
n3/2M

−3/2
n m−1

n → 0 to be satisfied, we choose Mn = �n3/4� and mn = n1/2, resulting in a rate
of convergence of about n−1/8. Also, we restrict ourselves to ρ = 0.

As expected, the approximation of the nominal level is rather poor in this situation, both when
reproducing mean/variance and the quantiles in the tails. Empirically the results do not improve
for other choices of kn and ln. Note from Table 3 and Table 4 that results do not differ very
much when choosing either kn or ln large, apart from the remarkable expection of a larger ln and
n = 10 000. But even in this case, the results are not better than for the rate-optimal R̂n

t , which
is why we recommend to choose this one rather than T̂ n

t , even though only the latter estimator is
ensured to be positive.

As an example for an application in goodness-of-fit testing, we have constructed a test for
a Heston-like volatility structure via a bootstrap procedure as follows: Based on the observa-
tion that for each t ,

√
n/knN̂

n
t /ŝn

t converges weakly to a standard normal distribution if the

Table 2. Mean/variance and simulated quantiles of the feasible test statistic (2.9) for ρ = −0.2. The last
column gives the relative amount of negative estimates

n Mean Variance 0.025 0.05 0.1 0.9 0.95 0.975 Neg.

400 −0.386 0.874 0.0491 0.0967 0.1816 0.9724 0.9942 0.9989 0.3528
2 500 −0.295 0.971 0.0552 0.0963 0.1614 0.9559 0.9864 0.9962 0.1996

10 000 −0.176 1.013 0.0464 0.0808 0.1427 0.9369 0.9770 0.9940 0.0954
22 500 −0.226 0.987 0.0480 0.0840 0.1476 0.9436 0.9776 0.9932 0.0557
40 000 −0.075 1.001 0.0410 0.0673 0.1217 0.9254 0.9713 0.9904 0.0310
52 900 −0.040 1.019 0.0396 0.0677 0.1171 0.9180 0.9663 0.9879 0.0246
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Table 3. Mean/variance and simulated quantiles of the feasible test statistic (2.8) for kn = �n3/4�, ln = n1/2

and ρ = 0

n Mean Variance 0.025 0.05 0.1 0.9 0.95 0.975

400 −0.490 1.261 0.0966 0.1304 0.1848 0.9990 1 1
2 500 −0.320 0.837 0.0548 0.0837 0.1390 0.9963 0.9999 1

10 000 −0.291 0.806 0.0514 0.0800 0.1332 0.9941 1 1
22 500 −0.259 0.920 0.0537 0.0873 0.1424 0.9739 0.9948 0.9996
40 000 −0.215 1.040 0.0658 0.0920 0.1380 0.9654 0.9970 1
52 900 −0.164 1.016 0.0594 0.0826 0.1274 0.9690 0.9988 1

null is satisfied, it seems reasonable to reject the hypothesis for large values of the standardised
Kolmogorov–Smirnov statistic Yn = supi≤n−2kn

|√n/knN̂
n
i/n/ŝ

n
i/n|. Since its (asymptotic) distri-

bution is in general hard to assess, we used bootstrap quantiles instead, and precisely we have
generated bootstrap data X

∗(b)
i/n , b = 1, . . . ,B , following the equation

X∗
t =

∫ t

0
σ ∗

s dW ∗
s ,

(
σ ∗

t

)2 = α̂ +
∫ t

0
κ̂
(
α̂ − (

σ ∗
s

)2)ds + ξ̂

∫ t

0
σ ∗

s dV ∗
s .

Here, W ∗ and V ∗ are independent Brownian motions, and we have identified α̂ with the realised
volatility of the original data (which is a measure for the average volatility over [0,1]) and defined
ξ̂ = θ̂1/2, since both quantities coincide under the null. Finally, we have simply set κ̂ = 5θ̂/α̂

such that Feller’s condition is satisfied. Setting B = 200, we have run 500 simulations each.
Table 5 shows that the simulated levels are rather close to the expected ones, irrespectively

of n. We have tested two alternatives from the class of CEV models, namely

σ 2
t = σ 2

0 + κ

∫ t

0

(
α − σ 2

s

)
ds + Vt

Table 4. Mean/variance and simulated quantiles of the feasible test statistic (2.8) for ln = �n3/4�, kn = n1/2

and ρ = 0

n Mean Variance 0.025 0.05 0.1 0.9 0.95 0.975

400 −0.476 1.255 0.0976 0.1316 0.1889 0.9983 0.9999 1
2 500 −0.311 0.817 0.0505 0.0779 0.1322 0.9950 0.9996 1

10 000 0.149 1.196 0.0450 0.0657 0.1005 0.8784 0.9589 0.9904
22 500 −0.276 0.812 0.0460 0.0728 0.1234 0.9886 0.9989 1
40 000 −0.217 1.033 0.0648 0.0914 0.1354 0.9647 0.9974 1
52 900 −0.306 0.824 0.0494 0.0829 0.1456 0.9882 0.9981 1
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Table 5. Simulated level of the bootstrap test based on the standardised Kolmogorov–Smirnov statistic Yn

n 0.01 0.025 0.05 0.1 0.2

400 0.004 0.012 0.024 0.064 0.172
2 500 0.018 0.040 0.064 0.120 0.216

10 000 0.010 0.018 0.040 0.084 0.194
22 500 0.016 0.024 0.034 0.088 0.194
40 000 0.020 0.038 0.068 0.128 0.220
52 900 0.010 0.020 0.052 0.118 0.200

and

σ 2
t = σ 2

0 + κ

∫ t

0

(
α − σ 2

s

)
ds + √

κ

∫ t

0
σ 2

s dVs,

corresponding to γ = 0 and γ = 2, respectively, and using the parameters from above. We see
from the simulation results that the rejection probabilities are much larger for the second alter-
native than for the first, which can partially explained from two observations: First, the Vasicek
model does not satisfy the assumptions from the previous sections since the volatility may be-
come negative (in which case it is set to zero); second, our choice of κ̂ is responsible for a
large speed of mean reversion in the bootstrap algorithm which makes it difficult to distinguish
between a Heston-like volatility of volatility and a constant one. It is expected that the power
improves for an entirely data-driven choice of κ̂ .

5. Conclusion

In this paper, we have discussed a nonparametric method to estimate the integrated volatility of
volatility process in stochastic volatility models. Our concept is based on spot volatility estima-
tors, and just as for standard realised volatility we use sums of squares of these spot volatility

Table 6. Simulated rejection probabilities of the bootstrap test based on the standardised Kolmogorov–
Smirnov functional statistic Yn for various alternatives

Alt γ = 0 γ = 2

n 0.01 0.025 0.05 0.1 0.2 0.01 0.025 0.05 0.1 0.2

400 0.032 0.072 0.124 0.192 0.292 0.056 0.080 0.128 0.204 0.320
2 500 0.028 0.052 0.082 0.134 0.262 0.044 0.090 0.156 0.248 0.372

10 000 0.032 0.048 0.086 0.138 0.260 0.036 0.084 0.176 0.284 0.396
22 500 0.024 0.042 0.068 0.138 0.302 0.032 0.086 0.162 0.284 0.432
40 000 0.028 0.046 0.094 0.196 0.426 0.028 0.064 0.120 0.310 0.482
52 900 0.026 0.040 0.082 0.174 0.422 0.024 0.058 0.144 0.320 0.488
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estimators to obtain a global estimator for integrated volatility of volatility. Two classes of esti-
mators have been investigated – one consisting of positive estimators with a slow rate of conver-
gence, the other one being bias corrected but converging at the optimal rate n−1/4. In both cases,
central limit theorems are provided, and we also discuss briefly why a truncated version could be
useful when there are additional jumps in the price process.

Given the variety of stochastic volatility models (in continuous time) which are used to de-
scribe financial data, there is a severe lack in tools on model validation. Our results fill this gap
to a first extent, as we provide a bootstrap method for goodness-of-fit testing in such models
which investigates whether a specific parametric model for volatility of volatility is appropriate
given the data or not. A rigorous proof that the proposed procedure keeps the asymptotic level
and is consistent against a large class of alternatives has not been provided, however, and is left
for future research.

A different issue to take microstructure issues into account which are likely to be present when
data is observed at high-frequency. Again it is promising to combine filtering methods for noisy
diffusions with the method proposed in this paper to obtain an estimator for integrated volatility
of volatility in such models as well, but the rate of convergence is expected to drop further.
Precise statements are beyond the scope of the paper as well.

Appendix

Note first that every left-continuous process is locally bounded, thus all processes appearing are.
Second, standard localisation procedures as in [5] or [17] allow us to assume that any locally
bounded process is actually bounded, and that almost surely positive processes can be regarded
as bounded away from zero. Universal constants are denoted by C or Cr , the latter if we want to
emphasise dependence on some additional parameter r .

Within the main corpus, we give the proof of Theorem 2.6 only, which is the by far most
complicated result of this work. Analogues of Lemma 2.2 and Proposition 2.3 for the special
case of ln = kn are of course parts of it, and it is not difficult to generalise the proofs in order for
both claims to be covered as well. Therefore, these results are not shown explicitly. Let us start
with a brief sketch of what we will be doing. In general, F -stable convergence of a sequence Zn

to some limiting variable Z defined on an extension (
̃, F̃ , P̃) of the original space is equivalent
to

E
[
h(Zn)Y

] → Ẽ
[
h(Z)Y

]
(A.1)

for any bounded Lipschitz function h and any bounded F -measurable Y . For details, see, for
example, [20] and related work. Suppose now that there are additional variables Zn,p and Zp

(the latter defined on the same extension as Z) such that

lim
p→∞ lim sup

n→∞
E

[|Zn − Zn,p|] = 0, (A.2)

Zn,p
L−(s)−→ Zp for all p, (A.3)

lim
p→∞ Ẽ

[|Zp − Z|] = 0, (A.4)
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hold. Then the desired stable convergence Zn
L−(s)−→ Z follows. Indeed, let ε > 0. Then there

exists a δ > 0 such that |x − y| < δ implies |h(x) − h(y)| < ε. Thus we have∣∣E[
h(Zn)Y

] −E
[
h(Zn,p)Y

]∣∣
≤ C

(
E

[
h(Zn) − h(Zn,p)|1{|Zn−Zn,p |≥δ}

] +E
[∣∣h(Zn) − h(Zn,p)

∣∣1{|Zn−Zn,p |<δ}
])

≤ C
(
P

(|Zn − Zn,p| ≥ δ
) + ε

)
.

We have limp→∞ lim supn→∞ |E[h(Zn)Y ] − E[h(Zn,p)Y ]| = 0 from Markov inequality, (A.2)
and as ε was arbitrary. limp→∞ |Ẽ[h(Zp)Y ] − Ẽ[h(Z)Y ]| = 0 can be shown similarly using
(A.4), and (A.3) is by definition equivalent to limn→∞ |E[h(Zn,p)Y ] − Ẽ[h(Zp)Y ]| = 0. Putting
the latter three claims together (plus the triangle inequality and the fact that all three limiting
conditions on p and n are actually the same) gives (A.1).

Our aim in this proof is to employ a certain blocking technique, which allows us to make use
of a type of conditional independence between the summands within R̂n

t . To this end, we apply
the above methodology, so we have to define an appropriate double sequence U

n,p
t , which will

correspond to an approximated version of R̂n
t where we sum over the big blocks only. Some

additional notation is necessary. Let p ∈N be arbitrary. We set

a�(p) = (� − 1)(p + 2)kn,

b�(p) = a�(p) + pkn,

c(p) = Jn(p)(p + 2)kn + 1,

the first two for any � = 1, . . . , Jn(p) with Jn(p) = ��nt − 2kn�/((p + 2)kn)�. These numbers
depend on n as well, even though it does not show up in the notation. We define further Hn

i =∫ i/n

(i−1)/n(Ws − W(i−1)/n)dWs . In order to exploit the afore-mentioned conditional independence,
we need approximations for An

i and Bn
i from (2.3). For the sake of brevity, we will only state the

approximated increments explicitly, which are given by

Ã(i+kn)/n − Ãi/n := n

kn

kn∑
j=1

2σ 2
a�(p)/n

(
Hn

i+j+kn
− Hn

i+j

)
(A.5)

= n

kn

σ 2
a�(p)/n

kn∑
j=1

((
�n

i+kn+jW
)2 − (

�n
i+jW

)2)
,

where the latter identity is a consequence of Itô formula, and

B̃(i+kn)/n − B̃i/n

(A.6)

:= n

kn

∫ (i+kn)/n

i/n

(
βa�(p)/n(Ws+kn/n − Ws) + ηa�(p)/n

(
W ′

s+kn/n − W ′
s

))
ds.
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These quantities are defined for i = a�(p), . . . , b�(p) − 1, thus over the big blocks. For later
reasons, we introduce similar approximations over the small blocks. Set

C̃(i+kn)/n − C̃i/n = n

kn

σ 2
b�(p)/n

kn∑
j=1

((
�n

i+kn+jW
)2 − (

�n
i+jW

)2)
,

D̃(i+kn)/n − D̃i/n = n

kn

∫ (i+kn)/n

i/n

(
βb�(p)/n(Ws+kn/n − Ws) + ηb�(p)/n

(
W ′

s+kn/n − W ′
s

))
ds)ds,

both for i = b�(p), . . . , a�+1(p) − 1. Then the following claim holds, whose proof is postponed
to the supplemental file [26].

Lemma A.1. We have

E
[∣∣A(i+kn)/n − Ai/n − (Ã(i+kn)/n − Ãi/n)

∣∣r] ≤ Cr

(
pn−1)r/2

,

E
[∣∣B(i+kn)/n − Bi/n − (B̃(i+kn)/n − B̃i/n)

∣∣r] ≤ Cr

(
pn−1)r/2

,

as well as E[|A(i+kn)/n − Ai/n|r ] ≤ Crn
−r/4 and E[|B(i+kn)/n − Bi/n|r ] ≤ Crn

−r/4 for every
r > 0. The latter bounds hold also for the approximated versions, and the same results are true
for the approximation via increments of C̃ and D̃ over the small blocks.

Up to a different standardisation, the role of Zn,p in this proof will be played by U
n,p
t =∑Jn(p)

�=1 U
n,p

� , where

U
n,p
� =

b�(p)−1∑
i=a�(p)

3

2kn

(
(Ã(i+kn)/n − Ãi/n) + (B̃(i+kn)/n − B̃i/n)

)2

(A.7)

− pkn

n

[
6n

k2
n

σ 4
a�(p)/n + (

β2
a�(p)/n + η2

a�(p)/n

)]
involves quantities from the big blocks only. The U

n,p
� can be shown to be martingale differences,

and the most involved part in the proof is to use Lemma A.1 to obtain

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣(R̂n
t −

∫ t

0

(
β2

s + η2
s

)
ds

)
− U

n,p
t

∣∣∣∣] = 0, (A.8)

which is the analogue of (A.2). Let us focus on the remaining two steps as well. We set

U
p
t =

∫ t

0
α(p)s dWs,

α(p)2
s = p

p + 2

(
48p + d1

pc4
σ 8

s + 12p + d2

pc2
σ 4

s

(
β2

s + η2
s

) + 151p + d3

70p

(
β2

s + η2
s

)2
)
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for certain unspecified constants dl , l = 1,2,3. In order to prove the stable convergence√
n

kn

U
n,p
t

L−(s)−→ U
p
t (A.9)

we use a well-known result for triangular arrays of martingale differences, which is due to Jacod
[16]. In particular, the following three conditions have to be checked.

n

kn

Jn(p)∑
�=1

E
n
a�(p)

[(
U

n,p

�

)2] P−→
∫ t

0
α(p)2

s ds, (A.10)

n2

k2
n

Jn(p)∑
�=1

E
n
a�(p)

[(
U

n,p
�

)4] P−→ 0, (A.11)

√
n

kn

Jn(p)∑
�=1

E
n
a�(p)

[
U

n,p

� (Na�+1(p)/n − Na�(p)/n)
] P−→ 0, (A.12)

where N is any component of (W,W ′) or a bounded martingale orthogonal to both W and W ′.
The final step limp→∞ Ẽ|Up

t − Ut | = 0 is obvious.

A.1. Proof of (A.8)

For simplicity, we set η ≡ 0 and ϑ(2) ≡ 0 from now on, as otherwise the proof is exactly the
same. In a brief first step, we replace R̂n

t by a version in which the unknown bias and not the
estimator for it is subtracted, that is we introduce

Un
t =

�nt�−2kn∑
i=0

3

2kn

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2 − 6

c2

∫ t

0
σ 4

s ds −
∫ t

0
β2

s ds.

Theorem 2.1 in [5] shows that integrals over σ can be estimated with rate n−1/2, so the assump-
tion on kn and a standard argument regarding boundary terms prove that√

n

kn

E

[∣∣∣∣(R̂n
t −

∫ t

0
β2

s ds

)
− Un

t

∣∣∣∣] = o(1),

uniformly in t . A simple consequence of Lemma A.1 is that the remainder terms in Un
t are

negligible, that is

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
�nt�−2kn∑
i=c(p)

3

2kn

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2 − 6

c2

∫ t

c(p)/n

σ 4
s ds −

∫ t

c(p)/n

β2
s ds

∣∣∣∣∣
]

= 0,
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using also boundedness of the processes on the right hand side and the definition of c(p). There-
fore, we are left to show

lim
p→∞ lim sup

n→∞
√

n/knE
[∣∣Ũn,p

t − U
n,p
t

∣∣] = 0 (A.13)

with

Ũ
n,p
t =

Jn(p)∑
�=1

(
b�(p)−1∑
i=a�(p)

+
a�+1(p)−1∑
i=b�(p)

)(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2

(A.14)

− 6

c2

∫ c(p)/n

0
σ 4

s ds −
∫ c(p)/n

0
β2

s ds.

For the integrals within (A.14), recall that these are replaced by approximated versions in
U

n,p
t . Therefore we have to show for example,

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
Jn(p)∑
�=1

∫ b�(p)/n

a�(p)/n

(
β2

s − β2
a�(p)/n

)
ds

∣∣∣∣∣
]

= 0. (A.15)

For its proof, recall (2.1). The result above follows from

E

[∣∣∣∣∣
Jn(p)∑
�=1

∫ b�(p)/n

a�(p)/n

∫ s

a�(p)/n

ωr dr ds

∣∣∣∣∣
]

≤ C
n

pkn

(
pkn

n

)2

≤ Cpn−1/2

and

E

(
Jn(p)∑
�=1

∫ b�(p)/n

a�(p)/n

∫ s

a�(p)/n

ϑ(1)
r dWr ds

)2

=
Jn(p)∑
�=1

E

(∫ b�(p)/n

a�(p)/n

∫ s

a�(p)/n

ϑ(1)
r dWr ds

)2

≤ Cp2n−1.

Of course, the similar claim

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
Jn(p)∑
�=1

∫ b�(p)/n

a�(p)/n

(
σ 4

s − σ 4
a�(p)/n

)
ds

∣∣∣∣∣
]

= 0 (A.16)

holds for the same reasons. We have further

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
Jn(p)∑
�=1

pkn

n

(
n

k2
n

− 1

c2

)
σ 4

a�(p)/n

∣∣∣∣∣
]

= 0, (A.17)

which by boundedness of σ amounts to prove n−3/4(k2
n − nc2) = o(1), and the latter is satisfied

by definition of kn. Note that analogues of (A.15), (A.16) and (A.17) are satisfied over the small
blocks as well.
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The latter claims prove that we are left to show the approximation over the big blocks, which
is

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
Jn(p)∑
�=1

b�(p)−1∑
i=a�(p)

3

2kn

((
(A(i+kn)/n − Ai/n) + (B(i+kn)/n − Bi/n)

)2

(A.18)

− (
(Ã(i+kn)/n − Ãi/n) + (B̃(i+kn)/n − B̃i/n)

)2)∣∣∣∣∣
]

= 0,

and the negligibility of the small blocks, that is

lim
p→∞ lim sup

n→∞

√
n

kn

E

[∣∣∣∣∣
Jn(p)∑
�=1

(
a�+1(p)−1∑
i=b�(p)

3

2kn

(
σ̂ 2

(i+kn)/n − σ̂ 2
i/n

)2

(A.19)

− 2kn

n

[
6n

k2
n

σ 4
(b�(p))/n + β2

b�(p)/n

])∣∣∣∣∣
]

= 0

to obtain (A.8).
To prove (A.18), the binomial theorem tells us that we can discuss the approximation for B ,

the one for A and the mixed part separately. Using further x2 − y2 = 2y(x − y) + (x − y)2 and
xx′ − yy′ = (x − y)y′ + y(x′ − y′) + (x − y)(x′ − y′), we see from Lemma A.1 and the growth
conditions that (A.18) follows from limp→∞ lim supn→∞

∑4
r=1 E[|L(j)

n,p|] = 0 with

L(1)
n,p =

√
n

kn

Jn(p)∑
�=1

b�(p)−1∑
i=a�(p)

1

kn

(
(B(i+kn)/n − Bi/n)

(A.20)

− (B̃(i+kn)/n − B̃i/n)
)
(B̃(i+kn)/n − B̃i/n),

L(2)
n,p =

√
n

kn

Jn(p)∑
�=1

b�(p)−1∑
i=a�(p)

1

kn

(
(B(i+kn)/n − Bi/n)

(A.21)

− (B̃(i+kn)/n − B̃i/n)
)
(Ã(i+kn)/n − Ãi/n),

L(3)
n,p =

√
n

kn

Jn(p)∑
�=1

b�(p)−1∑
i=a�(p)

1

kn

(
(A(i+kn)/n − Ai/n)

(A.22)

− (Ã(i+kn)/n − Ãi/n)
)
(Ã(i+kn)/n − Ãi/n),

L(4)
n,p =

√
n

kn

Jn(p)∑
�=1

b�(p)−1∑
i=a�(p)

1

kn

(
(A(i+kn)/n − Ai/n)

(A.23)

− (Ã(i+kn)/n − Ãi/n)
)
(B̃(i+kn)/n − B̃i/n).

Proofs of these claims can be found in the supplementary material [26].
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Finally, to obtain (A.19), we compute the conditional expectation of the approximated incre-
ments, and we will do this for the Ã and B̃ terms only. We have

E
n
a�(p)

[
(Ã(i+kn)/n − Ãi/n)

2]
= n2

k2
n

σ 4
a�(p)/n

kn∑
j=1

E
[((

�n
i+kn+jW

)2 − (
�n

i+kn
W

)2)2] (A.24)

= 4

kn

σ 4
a�(p)/n

as well as

E
n
a�(p)

[
(B̃(i+kn)/n − B̃i/n)

2]
= 2

n2

k2
n

β2
a�(p)/n

∫ (i+kn)/n

i/n

∫ s

i/n

E
[
(Ws+kn/n − Ws)(Wr+kn/n − Wr)

]
dr ds

= 2
n2

k2
n

β2
a�(p)/n

∫ (i+kn)/n

i/n

∫ s

i/n

(
r + kn/n − s

)
dr ds

= 2kn

3n
β2

a�(p)/n.

The expectation of the mixed part is zero. Obviously, we have

E
n
b�(p)

[(
a�+1(p)−1∑
i=b�(p)

3

2kn

(
(C̃(i+kn)/n − C̃i/n) + (D̃(i+kn)/n − D̃i/n)

)2

− 2kn

n

[
6n

k2
n

σ 4
b�(p)/n + β2

b�(p)/n

])]
= 0

as well. (A.19) then follows from the fact that

n

kn

Jn(p)∑
�=1

E

[(
a�+1(p)−1∑
i=b�(p)

3

2kn

(
(C̃(i+kn)/n − C̃i/n) + (D̃(i+kn)/n − D̃i/n)

)2

− 2kn

n

[
6n

k2
n

σ 4
b�(p)/n + β2

b�(p)/n

])2]

is bounded by a constant times p−1, using Lemma A.1.
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A.2. Proof of (A.9)

Let us check the conditions for stable convergence in this step, where particularly the proof of
(A.10) is tedious. Write U

n,p
� = ∑3

s=1 U
n,p,s
� with

U
n,p,1
� =

b�(p)−1∑
i=a�(p)

3

2kn

(
(Ã(i+kn)/n − Ãi/n)

2 − 4

kn

σ 4
a�(p)/n

)
,

U
n,p,2
� =

b�(p)−1∑
i=a�(p)

3

2kn

(
(B̃(i+kn)/n − B̃i/n)

2 − 2kn

3n
β2

a�(p)/n

)
,

U
n,p,3
� =

b�(p)−1∑
i=a�(p)

3

kn

(Ã(i+kn)/n − Ãi/n)(B̃(i+kn)/n − B̃i/n).

We have seen in the final step above that these terms are indeed martingale differences, and it
turns out that only the (U

n,p,s
� )2 terms are responsible for the conditional variance, whereas the

remaining mixed ones are of small order each. To summarize, the following lemma holds which
is proven in the supplementary material [26].

Lemma A.2. We have

E
n
a�(p)

[(
U

n,p,1
�

)2] = σ 8
a�(p)/n

48p + d1

k2
n

+ OP

(
pn−3/2),

E
n
a�(p)

[(
U

n,p,2
�

)2] = β4
a�(p)/n

(
151

70
p + d2

)
k2
n

n2
+ OP

(
pn−3/2),

E
n
a�(p)

[(
U

n,p,3
�

)2] = σ 4
a�(p)/nβ

2
a�(p)/n

12p + d3

n
+ OP

(
pn−3/2),

for certain unspecified constants dm, m = 1,2,3, as well as for each r �= s

E
n
a�(p)

[
U

n,p,r
� U

n,p,s
�

] = OP

(
pn−3/2).

We use Lemma A.2 to obtain

n

kn

Jn(p)∑
�=1

E
n
a�(p)

[(
U

n,p
�

)2]

= pkn

n

Jn(p)∑
�=1

(
n2

k4
n

(
48 + d1

p

)
σ 8

a�(p)/n

+ n

k2
n

(
12 + d2

p

)
σ 4

a�(p)/nβ
2
a�(p)/n +

(
151

70
+ d3

p

)
β4

a�(p)/n

)
+ Op

(
1

n1/2

)
,
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thus (A.10) holds using kn ∼ cn1/2. Simpler to obtain is (A.11), as Lemma A.1 gives

n2

k2
n

Jn(p)∑
�=1

E
n
a�(p)

[(
U

n,p
�

)4] ≤ C
n3

pk3
n

p4n−2,

which converges to zero in the usual sense. Finally, one can prove

E
n
a�(p)

[
b�(p)−1∑
i=a�(p)

3

2kn

(
(Ã(i+kn)/n − Ãi/n)

(A.25)

+ (B̃(i+kn)/n − B̃i/n)
)2

(Na�+1(p)/n − Na�(p)/n)

]
= 0,

where N is either W or W ′ or when N is a bounded martingale, orthogonal to (W,W ′). Focus
on the first case and decompose ((Ã(i+kn)/n − Ãi/n) + (B̃(i+kn)/n − B̃i/n))

2 via the binomial
theorem. For the pure Ã and the pure B̃ term, the claim follows immediately from properties
of the normal distribution upon using that σa�(p)/n or βa�(p)/n are Fa�(p)/n measurable. For the
mixed term, one has to use the special form of Ã(i+kn)/n − Ãi/n as a difference of two sums, and
a symmetry argument proves (A.25) in this case. For an orthogonal N , we use standard calculus.
By Itô formula, both (Ã(i+kn)/n − Ãi/n)

2 and (B̃(i+kn)/n − B̃i/n)
2 are a measurable variable

times the sum of a constant and a stochastic integral with respect to W and W ′, respectively.
Thus (A.25) holds. In the mixed case, we use integration by parts formula to reduce (Ã(i+kn)/n −
Ãi/n)(B̃(i+kn)/n − B̃i/n) to the sum of a constant, a dW - and a dW ′-integral. Then the same
argument applies. Altogether, this gives (A.12).
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