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We prove the local asymptotic mixed normality (LAMN) property for a family of probability measures de-
fined by parametrized diffusion processes with nonsynchronous observations. We assume that observation
times of processes are independent of processes and we will study asymptotics when the maximum length
of observation intervals goes to zero in probability. We also prove that the quasi-maximum likelihood esti-
mator and the Bayes-type estimator proposed in Ogihara and Yoshida (Stochastic Process. Appl. 124 (2014)
2954-3008) are asymptotically efficient.
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1. Introduction

Given a probability space (2, F, P) with a filtration F = (F;);¢[0,77, We consider a two-
dimensional F-adapted process Y = {Y;}o</<T = {(Ytl, Yfz)}OSIST satisfying the following
stochastic differential equation:

deZM(t, Yfaa*)dt+b(t’ Ylva*)dwfa te[o’ T]7 (11)

where {W;}o<;<7 is a two-dimensional standard F-Wiener process, b = (b"j)lf,',jfz 1[0, T] x
R? x A — R2®R2 is a Borel function, i = (u', u?) is a R%-valued function, oy € A, and A is
a bounded open subset of RY.

We will consider the problem of estimating the unknown true value o, of the parameter by

. 1 bn 2 4O, Jinbin i len
nonsynchronous observations {Y,;}, ", and {YTW- }j=0’ where {$"'}, " and {T" ]}j=0 are ob-

servation times of ¥! and Y2, respectively.

The problem of nonsynchronous observations appears when we study statistical inference
for high-frequency financial data. Hayashi and Yoshida [12] pointed out that simple ‘synchro-
nization’ methods such as linear interpolation or ‘previous-tick’ interpolation do not work well
for covariation estimation. They constructed a consistent estimator of the quadratic covariation
of processes. On the other hand, Malliavin and Mancino [16] proposed an estimator based on
a Fourier analytic method, and Ogihara and Yoshida [19] constructed a quasi-maximum like-
lihood estimator and a Bayes-type estimator for a statistical model of nonsynchronously ob-
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served diffusion processes. There are also several studies about covariation estimation under
nonsynchronous observations and market microstructure noise. See Barndorff-Nielsen et al. [6],
Christensen, Kinnebrock and Podolskij [8], Ait-Sahalia, Fan and Xiu [3], Bibinger et al. [7], for
example.

In this work, we will study the local asymptotic mixed normality (LAMN) property of a sta-
tistical model of nonsynchronously observed diffusion processes. The definition of the LAMN
property is as follows (Jeganathan [15]).

Definition 1.1. Let Py, be a probability measure on some measurable space (X, Ay) for each
o € A and n € N. Then the family {Py ,}o,n satisfies the local asymptotic mixed normality
(LAMN) property at 0 = oy if there exist a sequence {b,},cN of positive numbers, d X d sym-
metric random matrices Iy, I and d-dimensional random vectors N,, N such that T is positive
definite a.s., Py, n[I'y is positive definite] =1 (n € N), b, — oo,

dpP

—1/2 1
log — 2t 0n _(x /TN, — —u*Tpu ) — 0
dPs, n 2

in Py, p-probability as n — oo for any u € RY, where represents transpose. Moreover,
N follows the d-dimensional standard normal distribution, N is independent of T and
LN, Tnl Po,n) = LN, T) as n — oo.

The LAMN property is significantly related to asymptotic efficiency of estimators. Let E,
denote expectation with respect to Py ,. Jeganathan [15] proved the minimax theorem:

lim liminf sup E_ 1z [1(|ba/> (Vo — 0 — b Pu)|)] = E[(IT7V2N)] (12)

@00 1—>00 |12y Oxtby,

for any estimators {V,}, and any function /:[0, co) — [0, co) which is nondecreasing and
[(0) =0, when the family {Ps ,}s» has the LAMN property at o = 0. This inequality gives
lower bounds of risk functions of estimation errors. In particular, this inequality gives a lower
bound of asymptotic variance of estimators if /(x) = x2. When estimators {V,}, attain the lower
bound of (1.2), they are called asymptotically efficient.

In a statistical model with independent identically distributed random variables, the maxi-
mum likelihood estimator and the Bayes estimator have minimal asymptotic variance under cer-
tain regularity conditions. See Chapter I of Ibragimov and Has’minskii [13] for the details. The
LAMN property is proved for a statistical model of one-dimensional diffusion process with syn-
chronous, equispaced observations in Dohnal [9], and then the results are extended to a multi-
dimensional diffusion in Gobet [10], by using a Malliavin calculus approach. On the other hand,
Gobet [11] proved the LAN property (that means the LAMN property with a deterministic I')
for ergodic diffusion process when the end time 7" of observations goes to infinity.

The aim of this paper is to show the LAMN property for nonsynchronously observed dif-
fusion processes, and consequently have the minimax theorem (1.2). We also prove that the
quasi-maximum likelihood estimator and the Bayes-type estimator proposed in Ogihara and
Yoshida [19,20] are asymptotically efficient. Ogihara and Yoshida [19] constructed an estima-
tor of quadratic covariation of the processes based on the quasi-maximum likelihood estimator
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and verified that the variance of estimation error of the estimator is much smaller than that of the
Hayashi—Yoshida estimator in a simple example.

When the observations occur in synchronous manner, the log-likelihood ratio
log(dP_ Sy ,/4Ps,.n) is decomposed into differences of logarithms of transition density

functions. A Malliavin calculus approach enables us to apply limit theorems to these differences,
and consequently to obtain the LAMN property, as seen in Gobet [10]. However, when the sam-
pling scheme is a nonsynchronous one, the log-likelihood ratio does not have such a simple form
and we cannot apply the Malliavin calculus approach in Gobet [10] directly. Instead, we will
define stochastic processes that ‘connect’ the process Y and an Euler—Maruyama approximation
process (Section 3), and we prove asymptotic equivalence of the log-likelihood ratio of ¥ and that
of Euler-Maruyama approximation. Since the log-likelihood ratio of Euler—-Maruyama approxi-
mation is asymptotically equivalent to the quasi-log-likelihood ratio in Ogihara and Yoshida [19]
and the quasi-log-likelihood ratio has a LAMN-type property, we obtain the LAMN property of
the model.

This paper is organized as follows. Section 2 presents assumptions and main theorems. Sec-
tion 3 contains some preliminary results. In Section 3.1, we introduce fundamental lemmas, some
notation and the result in Ogihara and Yoshida [19] with respect to a LAMN-type property of the
quasi-log-likelihood ratio. Section 3.2 gives some results in Malliavin calculus, and Section 3.3
is devoted to prove tightness of some log-likelihood ratios, which is used in the proof of the
LAMN property. We complete the proof of the main theorem in Section 4.

2. Main results

We begin with some general conventions. For a real number x, [x] denotes the maximum integer
which is not greater than x. Let us denote by |K| the length of interval K. For a matrix M,
||M|| represents the operator norm of M and M™* represents transpose of M. Let & be the unit
matrix of size / and §; ; be Kronecker’s delta function. We denote Ix|> = le ..... i Xy l-kl2 for

x ={xi,,..it}iy.....ir- FOr a vector x = (xy, ..., xx), we denote 8 = (dxlI o, )i )k =1 We use

the symbol C for a generic positive constant varying from line to line. We denote by —*%

stable convergence of a random sequence, which is stronger than convergence in distribution
and weaker than convergence in probability. See Aldous and Eagleson [4] or Jacod [14] for the
definition and fundamental properties of stable convergence.

Let us start with some definitions and assumptions. The end time 7 > O of observations is
assumed to be a fixed constant. We assume that the parameter space A satisfies Sobolev’s in-
equality, that is, for any p > d, there exists C > 0 such that

sup|u(x)| <C Yy Jaum|, (wec'@).

k=0,1

It is the case if A has a Lipschitz boundary (see Adams [1], Adams and Fournier [2]).
Let {€1 n}nen and {€2,}nen be sequences of positive integer-valued random variables, the

observation times IT, = ((S™ ‘)e“‘ (T"’j) o) satisfy §%0 =110 =0, §nbn = Tmln =T
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and random times {S™};, {T™J} j be monotone increasing with respect to i, j. Moreover, we
assume that o ({I1,},) is independent of {(Y;, W;)}o<s<r. We assume that I1,, and Yy do not
depend on o. -
Let bk = (bk_l,bkz) for k = 1,2, where {b}; ; are elements of the diffusion coeffi-
cient b. Let I' = [S™i=1 §m0), JJ = [T~V 7)), 1y = max; ;([I'| v |J7]), E@t) =
lin lon
{51',:"1{1in[o,z);e@}}i,l;/:1, EXt) = {5,,',,/'l{m[o,,)#g}}ﬁj,zl fort € (0,T] and G be an €1, x €2,
matrix with the elements G;; = |[I' N J/||I' |~1/2177|=Y2, Moreover, let
_ i\L! AL\ 1 42
U= {u = ((sl)iz()’ (t/)j=0)’ L s L* e N,

1 2
0=s"<s! <... <t =T,O=t0<t1<~~~<tL =T},

and we denote X; = ((Xi,-)l.Lle, (thj)jL.2 o) and X5 = ((Xll,i)iL=0’ (Xij)]L. o) for a two-dimensional

stochastic process X = {(XI,X?)}OS,ST, iu= ((si)iLzlo, (tj)]L.iO) cU and v = (v")iL=0 satisfying

0=1"<-- <vl=T.Let Y@ = (¥ }o<;<7 denote the two-dimensional diffusion process

satisfying (1.1) with a parameter o and YO(U) =Yp. Let P, , be the distribution of (I1,, ¥’ ISI‘:)).
Our purpose is to obtain the LAMN property of probability measures { Py »}sea neN Of non-

synchronous observations (I, Ylgli))' For this purpose, we will introduce several assumptions.
First, we consider conditions for the process Y.

[A1] ‘ .
1. For0 <i+ j <3 and 0 <k <4, the derivatives 8} 8){ 8§b and Bti 3% Bé‘u exist and are
continuous with respect to (¢, x, o). Moreover, 9y, dyb are bounded uniformly in
[0,T] x R x A.
2. A matrix (rb(t;,x1,0) + (1 —r)b(tr, x2,0))(rb(t1,x1,0) + (1 —r)b(ty, xp,0))* is
positive definite for any r € [0, 1], #1, 2 € [0, T'], x1,x2 € R2and o € A.
3. E[|Yo|*] < oo.

Condition [A1] is similar conditions to that for the LAMN property of the statistical model with
synchronous, equispaced observations in Gobet [10]. We do not need further conditions for the
process Y. If the diffusion coefficient b is symmetric and positive definite, we have [A1] 2.

Second, we give assumptions of observation times. Let {b,},en be a sequence of positive
numbers such that b, > 1 and b, — o0 as n — oo.

[A2] There exist positive constants {(Sj};:1 such that (581 + 483) Vv (361 + 2867 + 263) V
(381/2 4 382) < 1/2 and the following conditions hold true:
1. ry=0,(b, .

2.
Sz g1
lim b? sup P|li,> jiV j»and Q <b, 7% 1=0, (@1
n—oo T R ’ lj2 — jil
J1:J2€N,|j1—j2|=by,
2 |T™ )2 — Tt s
lim b;, sup Pllrn>jVjpand —————<b, "3 |=0. (22)
n—o00 T s ’ |j2 — J1l
J1:72€N, |j1—ja|>by?
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Condition [A2] 2. controls the probability that too many observations occur in some local
interval. For example, if we set §™ = iT/n* for 0 <i <n, S = (i + 1 — n)T/n for
n+1<i<2n—1and T = jT/n for 0 < j < n, then we can easily see that [A2] 2. is
not satisfied for b, = n. In this setting, extremely many observations of ¥! occur in the inter-
val [0, T /n] compared to other intervals. Condition [A2] is a condition to exclude observations
with such extremely different frequency. This condition is necessary to obtain asymptotic equiv-
alence between the true log-likelihood ratios and the quasi-log-likelihood ratios defined later
(Lemmas 4.3, 4.7 and 4.8), and to obtain convergence results of the quasi-log-likelihood ratios
(Theorem 3.1).
We need one more condition for observation times.

[A3] There exist o ({I1,},)-measurable left-continuous processes ap(t) and co(t) such
that fOT ap(t)dt v fOT co(t)dt < oo almost surely, b, ' tr(E' (1)) =7 [y ao(s)ds and
b;l tr(E2(r)) =P fé co(s)ds as n — oo for t € (0, T]. Moreover, at least one of the
following conditions holds true:
1. There exist n € (0, 1) and a o ({I1,},)-measurable process a(z, t) such that a is con-
tinuous with respect to z, left-continuous with respect to f, fOTa(z, t)dr < o0 a.s.
and

t
by (&N () (e, —zzGG*)_l)—>1’/ a(z, s)ds
0

asn—>ooforre(0,Tlandz€C,|z| <.

2. There exist n € (0, 1) and a o ({I1, },)-measurable process c(z, t) such that c¢ is con-
tinuous with respect to z, left-continuous with respect to ¢, fOT c(z,t)dt < oo a.s.
and

t
bn_1 tr(é’z(t)(c‘feln — zzG*G)_l) —P / c(z,s)ds
0

asn—>ooforte(0,T]and z €C, |z] < 7.

In particular, [A3] implies tightness of {b;l(ﬂl,n + )

Lemma 4 in Ogihara and Yoshida [19] shows that both 1. and 2. in [A3] hold true if r, =7 0
and [A3] holds true, that is, the first statement of [A3] and either 1. or 2. in [A3] hold true.
Moreover, a and c are analytic with respect to z and a(z,t) — a(0,t) = c(z,t) — ¢(0, t) for any
z€C, |z| <nandt € [0, T] almost surely, assuming that r, —7 0 and [A3] (Lemmas 3 and 4 and
Proposition 2 in [19]). We will give tractable sufficient conditions of [A2] and [A3] in Lemmas
2.1 and 2.2.

The intuitive meaning of [A3] is as follows. If u =0 and b(z, x, o) does not depend on (¢, x),
then Y is a Wiener process and we obtain

log(dP,_, 12, /4Py, n) = Hy (0w + by *u) o (I1, Y1) = Hy(e) o (T1, Yn),

w by
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where H, (o) is defined in (2.4). Roughly speaking, H, (o) o (I1, Y17) is asymptotically equiva-
lent to

E[Hy(0) o (1, Yn)|T]

B0 gl Do) S
- _Wtr((gfl,;z —p°GG ) ) — Wtr((f;@zm —p°G G) )
b' - b*(0y)

_ 1
2 7 % i (o(&, — pPGGT) I GGY) — = logdet S(o),
TR o) TP (e, — P76 ) — 5 logdet S(o)

where p = p(0) = b' - b?|b'|7|b?*|~!(c). Therefore, it is natural to assume conditions about
asymptotic behaviors of tr((&, , — p2GG*)™!) and tr((Ee,, — 0>G*G)™1) in this special case
of u and b. Since the diffusion coefficient of the diffusion process Y in general is locally ap-
proximated by a constant and asymptotic contribution of drift coefficient u is negligible, [A3] is
suitable for specifying asymptotic behaviors of log-likelihood ratios in general cases.

Let BX = BX(0) = |b*(t, Y;, 0.) /16X (2, Yy, 0)| for k = 1,2, p; = pi(0) = b' - B?b!7 x
|62~ 1(t, Yy, 0) and

T (9o 01 (0))”
I'= /O. {aza(pt(a*)5 t)Wl{pt(U*)?éo}

+2a(py(02). 1) (85 B (02))” +2¢(p1 (02), 1) (8, B2 (02)) 2.3)

80‘ Pt (U*)

2
1 — 9y B}(04) — 0y B? dr.
(o) (o0 =% ¢ (0%) — 05 z((’*)> }

— (a(pi(02), 1) —a(o, t))(

We also assume the following condition.
[H] The d x d random matrix I" is positive definite almost surely.

We can now formulate our main theorem.

Theorem 2.1. Assume [A1]-[A3] and [H]. Then the family { Py n}o.n defined by nonsynchronous
observations (I1,, Yr1,) has the LAMN property at o = o, where N in Definition 1.1 is a random
variable on an extension of (2, F, P), N is independent of F and I in Definition 1.1 is defined
by (2.3). Moreover, N, and T, can be taken so that (N, T) o (I, Y11,) —SL(N, ).

Conditions [A2], [A3] and [H] are often not easy to check for practical settings. So we see
some easily tractable sufficient conditions for these conditions.

[B1] There exists exponential @-mixing simple point process {N,},zo = {(1\711, N,z)},zo such
that No =0, ™' =inf{t > 0; N} , > i} AT, T"/ =inf{r > 0; Nj /> j} A T and the
distribution of (]\_/,ithk - N;+tk,1)1?/]=1 doesnotdependont >0for M eN,0<1 <1 <

o<ty and i = 1,2. Moreover, E[|N;]9] < oo and limsup,,_, ., max;=1 2 qu[NL’; =
0] < oo for any g > 0.
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[H'] There exists a constant € > 0 such that |bb*(¢, x, 01) — bb*(t, x, 02)| > €|o1 — 0| for
anyt €[0,T], x eR?and 01,09 € A.

For example, we can easily see that condition [B1] is satisfied if the processes {]\_/ 1}t20 and
(N 2}:30 are two independent homogeneous Poisson processes.

The following lemma is proved in Section 6, Proposition 4 and Remark 2 in Ogihara and
Yoshida [19]. (We also use some localization techniques.)

Lemma 2.1. 1. Condition [B1] implies [A3].

2. Assume [A1], [B1] and [H']. Then [H] holds true.
LetN) = Zflz'{ 1gni< and N7 = Zfi"] 1(7n.j <1y- Then we also have the following. The proof
is left in the Appendix.

Lemma 2.2. Let g > 0. Assume that there exists ng € N such that

sup max  sup  E[(N —N)] < o0.

n>ng lﬁiszflSbe;l t+by !
Then (2.1) and (2.2) hold true for any 63 > 3/q and §3 > 3/q. In particular, [ B1] implies [A2].

Remark 2.1. Conditions [B1] and [H'] are the simplest sufficient conditions of [A2], [A3]
and [H]. More detailed discussion about sufficient conditions of [A3] and [H] can be found
in Sections 4 and 6 in Ogihara and Yoshida [19] and Section 4 in Uchida and Yoshida [22].

By Theorem 2.1, we obtain the minimax theorem (1.2) under the conditions in Theorem 2.1. In
the rest of this section, we will prove that the quasi-maximum likelihood estimator and the Bayes-
type estimator defined in Ogihara and Yoshida [19] attain the lower bound in (1.2) under certain
conditions. So these estimators are asymptotically efficient in this sense. For these purposes, we
use the scheme of Yoshida [23] which leads to convergence of moments of estimators.

We will make the assumptions for asymptotic efficiency of estimators. We denote
wa () = sup,., [8(1) — g(s)I/It — s|* for @ € (0,1/2) and an «-Holder continuous function

g:10. 71— R. Let K@) = {Is'~", s}, U1/~ )} and (0(p. i i)}y <yp 412 pes, e

defined by 0(0, 1; it) = [s'~1,s!) 1 <1< L"), 0(0,1;i) =[f~L' =1, /L'y (L) <1< L' + L?)
and

0(p. 1 it) = | J{Kap: K1, ... Kap € K(i),
Kino@, L) # 2, K;NK;j 1 #£0 2<j<2p)}
for p e N, it = ((s)L., (tj)jL.iO) el and 1 <I< L'+ L2 Thatis, the interval 0(p, [; it) is the

union of intervals which are reached by 2p transfers from 6(0, [; u). Let 6, ; =6 (p, I; IT).
Letg >2,8€(0,1),8 >1and n € (0, 1).
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[C1]
1. The functions b and j have continuous derivatives 3/ 87 9%b, 8! 9] 9% 11 and sat-
isfy

sup  [9/070kb(r, x,0)| < C(1+1x)€ and
te[0,T]l,oeA

sup  [0707 0¥ it x, )| < C(1 + |x))€
t€l0,T],ceA

for0<i+j<3,0<k<4,0<i'+j +k <1andx eR%

The derivatives d, 1 and 9, b are bounded uniformly in [0, T'] x R2 x A.

inf; y » detbb*(t,x,0) > 0.

sup, supg<, <7 E[1Y,"’|7] < oo for any ¢ > 0.

The function 8§b can be continuously extended to [0, T] x R? x clos(A) for

0 <k <4, where clos(A) represents the closure of A.

[C2-q.8] Elr{]=0(b,"").

[C3-q,n] There exist ng e N, o € (0,1/2 — 1/¢q) and o ({I1,,},)-measurable left-continuous
processes {ap(t)}pez, and {cp(t)}pez, such that fOT(ap Vep)(t)dt € L9(R2) for
pEZy, E[(l1+€2,)?] <ooforneN and

)]
lon

E[(b;;
. T
bt Y g(T 7N ((G*6)") ; — /0 g(Dc, () dt
j=I

A

Lin

. T
b, Y e(sPN((66Y)), - fo g()a, (1) di

i=1

it

<C(p+D° (sgp!g(ﬂ!q + wa(g)q)

)]

for n > ng, p € Z4+ and any «-Holder continuous function g on [0, T'].
[C4-q,8']

o Lintlon
— ’ 4 9 q
lim {E|:(bn 912y, 1) 3 Q) " 102p12,D) :|

n—00 =0 (p + 1)(18’
Lint+lon /2
vE|[p! i ST Oapy 43, N O2pyai] |
' p1,p2=0 (p1+ D% (p2+ DY
=0.

Condition [C3-q, n] is a stronger condition than [A3] and is required to obtain moment con-
vergence of estimation errors. For any ¢ > 2 and n € (0, 1), we can prove that [C3-g, n] im-
plies [A3]. See Section 3.1 in Ogihara and Yoshida [19] for the details.
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Condition [C4-q, 8'] is a technical condition to obtain the asymptotic properties of quasi-
likelihood ratios and its derivatives. This condition together with Lemma 13 in [19] enable us
to apply martingale limit theorems to the quasi-likelihood ratios, and hence it is essential to
obtain asymptotic properties of quasi-likelihood ratios. See Propositions 3 and 10 in [19] and
their proofs for the details.

Let BX(o1; 02) = |b* (1, Y\, 00) | /16K (1, Y\ o1)| for k = 1,2, pi(o1; 02) = b - b2|b'| 7! x
b2~ (1, Y, 01), and

T Bl : 2 B2 : 2
Y(oi;02) = /0 {—wa(pz(m; 02),1) — wcw(m;w)ﬁ

p1(02; 02)

BIBZO';O' a o01;02),t) —ap(t 1 .
+ B! B (01; 02)(a(pi(01; 02), 1) — ao( ))pt(ol;az) {01 (01:02) 70}

ap(t)  co(?)
2 2

+ao(t)log B} (a1; 02)

Pt(UHUZ)a , 1) —ap(t
+Co(f)10g3;2(01;02)+/ Mdp}dr,
pi(02:02) o

where {a(z, t)} and {c(z, t)} are in [A3].

[C5] There exist a family {¢,},~0 of positive constants and an open set A’ satisfying oy €
A’ C A such that sup,, ¢ 5+ Plinfs en\(oy} (—=V(01; 02) /|01 — 02|?) < r 7] < &q/r? for
r>0andqg > 0.

We see that [C5] implies [H], by using the relations Y(oy; 04) = 95,Y(01; 04)loy=0, = 0,

I'= =92 V(01 64)|s=0,» and hence infy4s, (—V(0:0%) /|0 — 04]?) < infyz0u*Tu/2lu|?).

Condition [C5] and [H] are conditions about identifiability of statistical models. We only need

[H] to have Theorem 2.1. However, we need [C5] to obtain asymptotic efficiency of estimators.
Ogihara and Yoshida [19] proposed a quasi-log-likelihood function H, defined by

Hy(0)o (I, Yn) = —12*S7(0)Z — L logdet S(0), (2.4)
where

Z=(((Ygni = Ysur )T (Vs = Yo )V 1ID ) 2.5)

l)_b(l)(a) pr(smi-1 yl Y2 , o) for j/ =max{j; T/ < §™i—1}, b(j)_b%j)(o)z

Snr 1 T"/
bZ(T" J= YS]" . Y%n i1:0) for i’ = max{i; Sl < nj— 1} and

. ~1 2

S(o) = ( dlag({|bli)| }z) {b(lz) b%j) } ) 2.6)
{b(lz) b%;) } j dlag({\b(]) },)

An intuitive meaning of H, is as follows. If u =0, b(¢, x, o) does not depend on x and IT is

deterministic, then Z follows a zero-mean normal distribution. Moreover, the covariance matrix
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of Z is approximated as

1 1 Loo—yl g
[ K Yo T ] i
- = 7 * 1,1
VI VI l
2 2 2 Y2 ]
|:YT"vj =Y YT"J/ }/T"'-"/_1 ~ |52 |2(Cf )8 i
. = IRV
N V17 '

1 1 2 2 e
|:st.i - st,ifl YT'l,_/' - YT”J*1
VI VAPZI

Hence, S(o) is approximation of the covariance matrix of Z. Therefore, we can say H, (o) is an
approximate log-likelihood function. These arguments are valid only for this special case of u, b
and IT. However, Ogihara and Yoshida [19] define H,, as above for general cases of u, b and I1
and studied the quasi-maximum likelihood estimator and the Bayes-type estimator constructed
by H,.

Let m: A — (0,00) be a bounded continuous function. The quasi-maximum likelihood es-
timator 6, and the Bayes-type estimator &, for the prior density m are defined by &, =
argmax y Hn(0) and

~ B(li)(a*) : E%j)(a*)Gij-

o eclos(A

-1
oy = <f exp(Hn(o))n(U) da) / o exp(Hn (0))7((0) do.
A A

Leto) =a*+b;1/2u foru e R9.

Theorem 2.2. Let § € (0,1/2). Assume that 0 < inf; w(0) < sup, w (o) < oo and that for
any q > 0, there exist 8 > 1 and q' € N satisfying 2q' > q such that [C1], [C2-(2q"), 8],
[C3-(2¢"), 8], [C4-(2¢"), 8'1, [C5] hold. Then

lim liminf sup Equ[/(|ba/* (82 —ol)|)] = E[1(IT2N))],

@00 100 i<y u

im imint sup oy (1816 — o) )] = EL(T )]

a=00 100 |y1<q u

for any continuous function [ :[0, co) — [0, 00) that is nondecreasing, [(0) = 0 and of at most
polynomial growth.

Remark 2.2. Theorems 2.2 and 2.1 and the minimax theorem by Jeganathan [15] imply that
estimators 6, and 6, are asymptotically efficient under [A1], [A2] and the conditions in Theo-
rem 2.2.

Outline of the proof of Theorem 2.2. Let G, = b)/*(6, o (I, Y7") — ). Then Theorem 2
in Ogihara and Yoshida [19] yields

lim E[1(|Gol)] = E[1(|T 72N )] 2.7
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Moreover, for any ¢, > 0, there exists n; € N such that SUP|,|<q P[|G, — Gg| > 8] < ¢ for
n > ny, by a similar argument to the proof of 1. of Theorem 2 in Ogihara and Yoshida [19] and
relations E[sup, |Yt(g”) — v < Cqb,:q/2|u|‘1 for any g > 2.

Furthermore, we obtain supy,, ., E[|G4|?] < oo for any « > 0, ¢ > 0 and sufficiently large n,
by a similar argument to the proof of Proposition 5 in Ogihara and Yoshida [19].

Then for any & > 0, there exist M’, n’ and § such that

sup |E[1(IGu])] — E[I(IGol)]| < sup |E[I(IGul) — 1(1Gol). IGul V |Gol < M]| + &

[u|<a |u| <«

< sup I(x) sup P[|Gy — Go| >8] +2¢ <3¢

lx|<M’ [u|<a

for n > n’, by continuity of /.
Hence, we obtain

lim liminf sup E[I(IGul)] = lim E[I(|Gol)] = E[1(|IT 2N )]

oA—>00 n—>0o0 |M‘§O{
by (2.7). We can similarly obtain the result for the Bayes-type estimator 6. ]
The following corollary is obtained by the argument in Section 6 in Ogihara and Yoshida [19].

Corollary 2.1. Assume that 0 < inf, (o) < sup, 7 (0) < 0o and that [C1], [B1] and [H'] hold.
Then the results in Theorem 2.2 hold true.

3. Preliminary results

In the rest of this paper, we will prove Theorem 2.1. For this purpose, we will prove asymptotic
equivalence between the log-likelihood ratio log(d Py /d Py, ) (Y1) of the processes Y©) and
the quasi-log-likelihood ratio H, (o)) — H,(04). Then we obtain Theorem 2.1 since H,(o)}) —
H, (0,) has a LAMN-type property.

This section is devoted to some auxiliary results. We use Malliavin calculus techniques and
prove estimates for transition density functions and their derivatives in Section 3.2. Section 3.3
is devoted to prove some tightness results of log-likelihood ratios. These results play essential
roles in the proof of Theorem 2.1 in Section 4.

3.1. Some fundamental results

In this subsection, we define Euler—Maruyama-type processes and related notation. We also in-
troduce a LAMN-type property of H,(o)}) — H, (o).

First, we prepare several fundamental lemmas. The first one is about localization. To obtain
Theorem 2.1, it is sufficient to consider the following stronger condition [A1'] instead of [A1].
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[A1’] Condition [A1] holds true, |Yo| < M a.s. for some M > 0, and b, 1« and their derivatives
are bounded on [0, T'] x R2 x A. Moreover, there exist positive constants fmin and Nmax
such that

Mmin&2 < (rb(t1,x1,0) + (1 = r)b(t2, x2,0)) (rb(t1, x1,0) + (1 — r)b(t2, x2,0))"
< Nmax&2
forany r €[0,1], 11,1 € [0, T], x;,x2 e R> and o € A.

[L] There exists a d-dimensional standard normal random variable A on an extension of
(22, F, P) such that V is independent of F, —b;laan(o*) o(IT,Y) —PT,

dp

1 U*+b,,_|/2u,n

w—1/2 |
T u*b, 80Hn(a*)+§u b 192 H, (o)u | — 0

in Py, , probability, and

bi %06 Hy (o) o (T1, Yr) "4 T2

for I' defined in (2.3).
Let H={we Q; —8(% H, (04)(w) is positive definite},

—1,2

Tp=—b;'92Hy(0u) 13y + Eqle, Ny = (=82 Hy(02)) ™ "8 Hy(0:) 194 (3.1

Lemma 3.1. Assume that [L] holds true under [A1'], [A2] and [A3). Then Theorem 2.1 holds
true with T'y, and N, in (3.1).

Proof. Similar to the proof of Lemma 4.1. in Gobet [10] and we omit the details. O
The second lemma is Lemma 11 in Ogihara and Yoshida [19].

Lemma 3.2. Let {X,},eN be a sequence of integrable random variables on some probability
space (', F', P") and {G, }heN be sub o-fields of F'. Assume E'[X,|G,] —P 0 as n — oo. Then
X, =P 0asn— oo.

Moreover, the following lemma is proved similarly to Lemma 3.2.

Lemma 3.3. Let © be a set, {X, 1}neN.aco be a family of integrable random variables on some
probability space (', F', P') and {G,}nen be sub o-fields of F'. Assume that for any ¢ > 0,
there exists M > 0 such that sup, ; P'[E'[|X,,11|G:] > M] < €. Then for any & > 0, there exists
M > 0 such that sup,, ; P'[|X, ;| > M] <e.
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LetO<s<t<T,re[0,1] and o € A. Under [A1], a stochastic differential equation

5= (=4 0.257, )
H{A=nb(v+5. X7, 0) +rb(s.20.0) } AW, v E[0,1 = 5],
X(;‘“ =2z0

has a unique strong solution {&7)° }o<y<;—s. Let p(z1; 20,7, 5,t,0) be the probability density
function of X;”%,.

The following lemma is classical estimate. See Theorem 1 in Aronson [5] or Proposition 5.1
in Gobet [10].

Lemma 3.4. Assume [A1']. Then there exist positive constants 11 < iy and C > 1 such that

I malzi — zol? 1 wilzi — zol?
— 2 exp( -2 ) < pziszon 8.1, 0) < Co———exp — o),
Conli—s) exP( 2y ) SPenzensito)=Comraexp| = r—s

f0r0§s<t§T,re[0,l],z(),zleRzandGGA.

We will define some further notation. Let n, be the minimum positive integer satisfying
{07 Yn=na.0<v<1 C A for u € R, For it = ((s');, (1)) € U, let it = {ak(u)}LO(”) be a strictly

increasing sequence of the elements of i such that i is equal to i as a set. Let Auk = ik — k=1,

ki (i) = ki (i; it) be k satisfying s' = it% and ky(j) = ka(j; i) be k satisfying 1/ = ik,
i(k)y=ilk;u) = max{ there exists j such that st<td <k 1},

jk)y=jlk;n) = max{j; there exists i such that 7/ < s' < ikt }

We define random times U* = ik (1) and U= {Uk}k
For il = ((s)E, (t’)L o) €U and z = ()", 0 2)) € R2Lo@+2 | we denote 7 =

((xkl(i))l-:p (J’kz(j))jzl) and 7 = ((Xk)k¢{k1(i);0§i§Ll}, (yk)kg{kz(j);OijLz})~

Now, let us define stochastic processes that connect the process ¥ ) and an Euler-Maruyama
process. Let u € R, ael, re [0,1] and n > n,. Under [A1’], there exists a unique two-
dimensional stochastic process Y = {¥,""}o<;<1 = {(Y,r’”’l(ﬁ), Y,r’“’z(ﬁ))}ostfr satisfying

’“_YO+Z/ {A =, v o) +ru@ " vt o))} ds

Lo rnitk
+2/ {A=rb(s, Y0  0) +rb(@ =" Y5 o)) }dW,,  1€[0,T].

Then we have Y90 =Y.
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1

. h—l ~ o, (1
Moreover, we define pz’u(zo,zl) = p(z1; 20, 1, 0¥ ,uk,cr,;’), pz’;)(zo,m) = 05 p(21; 20, 7

ﬁk—l’ ﬁk,dlf
Lo
P (z,0) = Hﬁlz,u((xk—lv Yi—1)s (X, 1)), P, (0., Z, ) Z/IP’Z(Z; iu)dz
k=1

and P} =P’,(z, 1) Py, (dzo) dZ dZ for z = ((x); %y, ) 2) € R2L0+2,
Then synchronous observations Y ﬁr’” follow the distribution P!. Moreover, we have

Pg’:"n = (n’y() uy = PYOM(dZOdZH_I = L_t)Pn(dIZ) = PY;'M (dZOdZ)Pl’[(dL_t)
=1P0(z0, Z, it) Py, (dzo) dz Pr; (di).

Therefore, we obtain
B0

log Sock ( i) =1 P( £). (3.2)
o 20,2, u) =lo 20,2, U :
gdPU*n 0 glP’g 0

So it is sufficient to investigate the asymptotic behavior of 1og(]P’ JPY 0)-

For each function with respect to (z, i) or (zo, Z, ), we often omit the variable .

The following theorem gives a LAMN-type property of H,, (Proposition 3 and Proposition 10
in Ogihara and Yoshida [19]).

Theorem 3.1. Assume [A1'],[A2] and [A3). Then there exists a random variable N on an
extension of (2, F, P) such that N is independent of F, —b;lag H,(0y) o (I1,Y) =P T,

—1/2

{Ha (o) — Hu(0,) — (*by "* 96 Hy (o) + u*by 82 Hy(0,)u/2) } o (I1, Yr1) =7 0,

b_1/23 H,(oy) o (I1, Y1) =%~ LTI2N as n — oo, where T is defined by (2.3).

Remark 3.1. Though we ne_ed an assumption “8§b (0 <k <4) can be extended to a continuous
function on [0, T'] x RZ x A” to apply the results in Ogihara and Yoshida [19], the assumption
can be removed by considering a relatively compact open subset of A containing o.

By virtue of Lemma 3.1, The_orer_n 3.1 and (3.2), to obtain Theorem 2.1, it is sufficient to show
asymptotic equivalence of log(]P’g /Pg)(Yn) and (H, (0)") — H, (04)) o (I1, Y11) under [A1'], [A2]
and [A3]. We will prove it in the rest of this paper.

3.2. Malliavin calculus techniques and estimates for transition densities

We will prepare results of estimates for transition density functions used later. To this end, we
introduce some techniques from Malliavin calculus. We refer the reader to Chapter II in Nualart
[17] and Gobet [10] for detailed expositions of this subsection.
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WefixueRI, e, 1 <k< Lo(i) and n > n, here. ForO0<r <1 and x € R2, consider
a unique two-dimensional process {Y;’"’k’x},e[O,A,;k] ST AR Y,r’"’k’x’z)},e[o,Mk] satisfy-
ing

. t [ [
Y:,u,k,x,z =X+/é {(1 _r)M§0),r,t T+ (ﬁk—l’x,(};)}ds

5 [0 o

v Jk,
for t e [0, Ai¥], where Mﬁ},fj., = @i+ B o) e BT =
OB (1 4 k=1, Yk g "Npi.....p, TOr q € Z. We simply denote Y, = Y;™ K and YI =
yr Jkx, z.

t
Under [A1], Theorem 39 in Chapter V of Protter [21] ensures that 3, Y} = &Y, B,Yf’z)
exists for any ¢ € [0, Aui*] a.s. and satisfies

arY?i - / [Z(l r)M(l) rza er + ’ui (Lvlk_l,x, 01:1) MgO) rzi| ds
+2. f [Z(l = b oY b (@ o) — b } aw;.
- JO
J p

Define an isonormal Gaussian process W by W (&) = OALV’k (dé;/dt) - AW, k1 for an R2-

“k
valued absolutely continuous function § = {&}y<,<a; satisfying fOA" |dg; /dr|2dr < co. We
also consider the Malliavin derivative operator D and the divergence operator §.

Let {V7}cr0.aik) = (V7" }ief0.aik).1.; be @ stochastic process satisfying

rl]_311+2/ (l—r)u(l)”v””ds—i—z:/ (l—r)b(l)”qup]qu

then the argument in Sections 2.2 and 2.3 of Nualart [17] yields

= DV [ =B b )]

for ¢ € [0, Au¥], where vpH~ l)q,, represents the element of (V)™ 1 Moreover, we obtain

sup  (E[|Di Yy M] V E[|Di, Y "

1€[0, Aiik]

]) <0

for M > 0.
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Lemma 3.5. Letu € R? and g > 1. Assume [A1']. Then there exists a positive constant Cy such
that

O P |
k,u v
—| Prou@r—1,20) dzx < Cy

: /
Sup ———~  sup
k (Auk)q/z 0<r<l,zx—1

foranyn>n, andu elU.

Proof. Let B) = (B} j = (1 - Pb + rb* T x, o)V (Vi) for ¢ e [0, AiF],

where bt(o)’r = {bt(o)’r’i’j }ij. Then by a similar argument to the proof of Proposition 4.1. in Gobet

[10], we obtain

8” ru, r,
i U (2hets z) = ——p E[8((B) 8, Y ) Yl = ], (3.3)

Pru Ak

Moreover, by Proposition 1.3.3. in Nualart [17], we obtain

2 . , N 4 .
8((8’)*8rY’Mk)=Z{8rY’A"ﬁk5(B“)— fo D, (3, Y',) - By dt}. (3.4)
i=1
Furthermore, we have
2 Ak ] ) q
E|: Z/O D,(0,Y}) - By dt }
i=1

vk q-— 12/ }Dt leVk ZQ]I/ZEHBtr,i|2q]1/2dI 3.5)
o (i) ")
and
2
|:Za levk Brz :| Aﬁk Z |8 B” 211 1/2 (36)

where we use the fact that any moments of (VrA:Zk)_l are bounded (see Section 2.3.1. in Nu-
alart [17]).
By Propositions 1.3.8. and 1.5.7. in Nualart [17] and Clark—Ocone representation formula
(Corollary A.2. in Nualart and Pardoux [18]), we have
2q:|

Adik
< (Ait)?” ‘/ E[|D:s(B7)*] de (3.7)
0

Adk '
/0 E[Di8(B"")|F, 1] - AW, jpe

B[l ) = £|
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Ak

- (Aak)q*‘fo E[|B/ + (DB de
= 0o((Aai)7).

By (3.4)~(3.7), we obtain E[|8((B")*3,Y', .,)|1] = O((Aii*)?/?). Therefore, we have
~r

f Pr.u

by (3.3). O

Pl o
| PruGi-1 20 dz < Gy (Auk)q/

The following lemma is proved similarly.

Lemma 3.6. Let u € RY and g > 1. Assume [A1']. Then

0 kel 1 x
%p(Zkﬂkflvr’ Wit o) = A= EL8((B7) 06 Yy ) Wy = 2]

2
4

(2 21, 01 o)

*u
1 *
= E|:A—ﬁk8((8r) 00y Y k)

2
1 . N .
+ —(Aﬁk)2 Z S(Br’l(s(([)’r) a(r,a)YrAI;k a(V,U)YrAlIZk)) ‘YrA,;k = Zk:| s
i=1
and there exists a constant C,4 > 0 such that

sup (Aﬁk)flq/2/|8({8£ log p|? (zx; zk—1, v/, ¥t ik, o)

4 vu
k,0=r'<1,0<v=<l,7;—1

v /
X Proou(@k—1,2k) dzx < Cy

forrel0,1,uelU,n>ny,, | <j+I1<2.

3.3. Tightness results of some log-likelihood ratios

In this section, we will prove some _tightness results, which are necessary later. First, we
prove tightness of {supy, < | log(I”;, /]P’g)l(Yn)}n. To this end, we prove results about the log-
likelihood ratio log (P}, / ]P’g)(Y ). Then we prove a key proposition (Proposition 3.1) which en-

ables us to obtain tightness of a density ratio in a nonsynchronous scheme from properties of a
density ratio in a synchronous scheme.
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[A3’] The sequence {b,j1 (L1.n+ L2.4)}y is tight.

Since tr(EX(T)) + tr(EX(T)) = L0+ €2, [A3] implies [A3].
We prepare some results for the log-likelihood ratio log(IP}, / IP’g)

Lemma 3.7. Let u € R?. Assume [A1'] and [A3']). Then for any & > 0, there exists M > 0 such

that
sup o 5503 = |

Proof. By Lemmas 3.6 and 3.4, we obtain

[l

at(P?u) 0,u
— (Y dt‘l’[
7, |0

0
u

P 0
lo “
g]P’

IIP’
0
gIP’

(2‘0)>M“<s.

0 0

IP)O
log —
IP)0

UJ

IA
!

2
+ by ul // Za(,< "p) oy S L0, 0% U )

< Chy P+ o) P+ Ch () 0 + o).

drp dtl‘ ]

Hence, by Lemma 3.3 and the assumptions, for any ¢ > O there exists M > 0 such that

sup,,~,,, P[|log(P9/P) )|(Y°“) > M] < &. Similarly, we obtain sup,-, P[|log(P{ /P )|(Y 0>
M] < e. [l

‘We define

Al () = {(x, y) € REo@+1 o lot@)+1, sup |10g(]P’Z/]P’8)|(x, y) < M}

0<r<l

fori ed and M > 0.

Lemma 3.8. Ler u € RY. Assume [A1] and [A3']. Then for any ¢ > 0, there exists M > 0 such
that

0P,
P,

sup {p[ygoe(%)c(n)]vp[yg" (A" (H)]VE[

nzny,r

1(AM)L(W)]} <.
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Proof. Fix ¢ > 0. Then for r € [0, 1], we obtain
P a,pr LT e Py
|: sup log ( r") 1'[:| < E[/ L (YE)dr H} :/ E|: (Y 1'[:| dr'.
0=r'<l o | P v 0 P U

On the other hand, by Lemmas 3.6 and 3.4, we have
E |=E it r,a At dr|(Y2"
=Fl ), )|
Lo 9 ﬁr 2 1/2
r"Fk,u X :
SE[Z( ) (v ) n}
k=1 kou

o 3r151£:u ru ru
+supE Zar — (YUH,YV,)

/ Uk
r k=1 k,u

o, P

/u YC,M
|05

d

d

< CJT +CT.

Hence, by Lemma 3.3, for any ¢ > 0 there exists M| > 0 such that

(") = 5] <

r/

log —~ IPO

sup P|: sup

0<r<l1 0<r’'<1

N ™

2
Therefore, Lemma 3.7 yields

sup P[YC “ e (A},) D]

n>ny,r
0 r’
M P M e
< P|l Yo") > — and 1 Yoy < — | + =
<, o0 | fioe 5| 17) = 5 amd sup oo Z0r51) < [+
P 0 M P M 9
y O yOu y O 1 €
< sup E lo %) > —and sup |lo <—|+=
namr [PO( ) gIP’O ¥g") 2 O<r£l Bg 7" 2 :|
]PO M £
< M/2 Pl 1 O’M — |+ =
<€ nSll}E)u Og]P)()( )> 2 2<8

for sufficiently large M > 0.
Moreover, by Lemma 3.5, we obtain

s E[0 /g = s | Y0 ) (0 1) | <o

k-1’ k
nzny,r k 4 U

Hence, by (3.8), we have sup,-.,, , E[|0,P, /P | I(A%)C(Ygu)] < ¢ for sufficiently large M > 0.
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On the other hand, there exists M> > 0 such that sup,,, P[] log(IP’O/IE’> )|(Y0 0) > M) <eg/2
by Lemma 3.7. Therefore, we have

P[ y20 ( )(H)]<P|: sup log]P;;( )>M logpg( ) M21|+8
0<r<l Pg ]Pg 2
P, £
M, 0,u
<e"2P| sup |lo Yo )Y>M|+-=-<e¢
[oqgl ® B i ") } 2
for sufficiently large M > 0 by (3.8). (I

Let 2" = {Z'}o<i<r and Z"" = {Z}"" (1) }o<i<7 be two-dimensional continuous F-adapted
processes satisfying that Zy" =Z) forn e N,u e and 0 <r <1, (t, i, w) > Z;"" (i) (w) is
measurable, and (Z7, "’r(ﬁ)) ¢.r.i are independent of o ((I1,,),,). Let the distributions of Z” and

Z>' (i) be given by Fy (20,2, 2) Pz (dz) dzdZ and F; (zo, Z, 2) Pz (dzo) dZ dZ, respectlvely, for
some positive-valued Borel functions Fy, and F . Let K}, no=K" 37 (@) be a Borel set in R2Lo+D)|
Ky = Ky(o,2,0) = {2 (20,2,2) € Ky}, Fa (zo, 7) = f Fu(20,2,2)d2, Fym(20,2) =
/ &1 (z0.5) Fn (20, 2, Z)dz and F, and F, ,, be defined similarly.

The following proposition is a key result to deduce properties of density ratios in the nonsyn-
chronous scheme.

Proposition 3.1. Suppose F, can be continuously differentiable with respect to r and
[ o,F} I KI)e dz exists and is continuous with respect to r for each n, z, 7 and Z.

1. Suppose for any € > 0, there exists M| > 0 such that
n
s&p P|:51r1p (Z[]) > M] <& and
sup{ P[Z:" e (K}y) (D] V E Laih (Z:) |t <e
n,;P U M n K v
for M > M. Then for any €, n > 0, there exists M> > 0 such that

supP[sup!log(FJ/FJ,M)|(Z’ﬁ) = ’7] <¢
n r

r

F
log =~
Fy

for M > M.
2.
LA -

sup P| sup|log ="—|(Z{;) = n|T1

n r F}:,M

<< P[Z° € (K}y)ITT] +sup E L nye(Z57) (M

—1—en U M " Fr Ky \ =y

Fr
+ P|supl|log = |(Z" >M’1'[:|
[rp g5 ((Z3)

foranyn, M, M’ > 0.
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Proof. We first prove 1. By the assumptions, for any ¢, n > 0, there exist M1, M> > 0 such that

r

F
log -2 d
og F, an

()~ Ml] <

: en’
i @3] < 5

sup P [sup
n r

W ™

r
r Fy

Fy

n,r

sup{P[z’;jO e (K3) (] v E|:

for M > M,, where n’ =1 — e~". Hence, we obtain

Lr

r n,M
Fr s
<Plsupll = M l(zy> ' 2t e, |+ 2
— |: rp F,}Z’ ‘( H)—r} U M, 3

Lr

<1E[ Lot s R e s P )d"dA) 4
— sup|l — —=—|1pn .2, .2, n =
= rp Fr Ly, (20:2,2) Fa(20, 2, 2) Pz (dzo) dzdz| . 3
- 1E / anlL;\zll(Zo,Z,i)dﬁ }FV }f‘r ‘P (d )d_) +8
=atLU Y E B =]
where L'}, = {(z0, Z, 2); sup, | log(F, / F)|(z0, 2, 2) < M}.
Since
S Fulpn, (20,2,2)d2 1 [F
1 nopr S oA As < oM
= == —_ —F 1 n s d < 1,
strlp 7 51r1p FJfFJ nley, (z0,z,2)dz <e
we obtain
P[suplog(Fy /7 u1)| (Zh) = 1]
,
eMl -0 ~0 ! T T p= €
< 7E[f{|Fn —F) ul +/0 |9, (F —Fn’M)|dr}PZg(dZO)dz’ﬁ:n:| +3
i P[Z2° € (K},) (ID)] +sup E LS P (2 |V <e
S T T o LR TS
for M > M>. Hence, we obtain 1.
The result in 2. is proved by a similar argument as above. (]

Let

Al(20,2) = {2; sup|log(P’, /PY) (20,7, 2)| < M], Py (20, 2) =/
r

A%y(20.2)

P, (z0,Z,2) dz

for M > 0.
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Lemma 3.9. Let u € R, Assume [A1'] and [A3']. Then for any ¢, 1 > 0, there exists M’ > 0
such that

mr 0
sup P|:sup log = |(Yn) > n] <e, sup P[ log _00 (Y1) > n] <e
n>ny r 'I‘VIVM n>ny IPM,O
for M > M'.

Proof. The results are obtained by using Proposition 3.1 and Lemma 3.8. The first inequality
is obtained by setting 2" =Y, 2" = Y"* and K}, = A}, in Proposition 3.1. For the second
inequality, set 2" =Z"" =Y and K}, = A)},. O

Proposition 3.2. Let u € RY. Assume [A1'] and [A3']. Then {supy<,<; |1og(®’, /B (YD)} nzn,
is tight.

Proof. We easily obtain the result by Lemma 3.9 and an estimate

P 1 r
sup|log _3’1’“ < sup|log T/ —g]P’g | <M
r Pho r Pho /43 Py
for sufficiently large M > 0. (]

The following lemma is similarly proved and used later.

Lemma 3.10. Let u € R?. Assume [A1'] and [A3']. Then {supy—,; |1og(PS, /POI(Y;)}nzn,
and {Supy<, <y |log([P’8u/P8)|(Yn)},,Znu are tight.

4. The proof of LAMN property

In this section, we will complete the proof of the LAMN property of { Py n}o.n-

It is essential in the proof to replace ]F’S in (3.2) by the function [exp(}_, fk”) dz below so
that coefficient b is predictable and does not depend on Z. For this purpose, we use Ito’s rule and
martingale properties and estimate the difference. However, the proof is technically complicated
because the function log ]f”g contains a dz-integral of an exponential function. This integral is far
more difficult to handle than a simple function of increments of the process, which appears in
synchronous sampling models of Gobet [10]. We estimate the difference step by step in Lemmas
4.3 and 4.8. The function log [ exp(}_, fk“) dZ can be rewritten in a simple function of incre-
ments of the process as seen in Lemma 4.6. Then the proof is completed by proving asymptotic
equivalence of the replaced likelihood ratio and the quasi-likelihood ratio H,, () — Hy, (o).
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In the following, we assume that [A2] holds true. Let wg(z,0) = p(@ ', 24—y, 0),
by (z,0) = b 1 241, 0), by (z, ) = @Y, Xk, (10))s Yka (jk))» O)s
vk * —1
J(z,0) = _‘(Zk — zp—1 — AF g (2, o))" (A b(k)b(k)(z,ff))
X (Zk — Zk—1— A /L(k)(z,o))
logdet(Au b(k)b(k)(z (T)) — log(2m),

fuo(z.0) = =3 — s—1)* (AiF b b, (2. o))" @k — zk-1)

— % log det(AﬁkE(k)EZk) (z,0)) —log(2m)

for z = (22 = (2%, ()W) € R2Lo@+2 | and let Mk(Z)—M(k)(Z o), ll);:(z)=
bay(z,0m), BU(2) = bgy(z, o), fk (z) fo @ ol), filz) = fu(z.oh), fk“’()(z) =

1
¥ fuo(z, 0, £ W) =0, fow (o
Then we obtain P} = [exp(}_, f* (z)) dz.
Moreover, let k be a positive constant satisfying

1 (38 4283) v (8 +6 )
52v(51+53)</<<<1—( 1+ 3)2 (1+2)>A( 1>,

6 2
h=h, =[b};] and

@), |k — k| <h,
log 132, L@ otherwise,

fot@ = {

where {6 f}izl appears in [A2]. Then we obtain

o @(Y)—/ “(P”“)d(m
gIP’O = o P9

0 vu

4.1)
~1/2 S 2k (P, IEL)/pk v Py log By ) (@) dz
—b; / . dv(Yr).
Jexp(Xylog py ,,)(2) d2
If we have asymptotic equivalence of 1og(]P’ JPY 0)(Yr) and
log(/ exp(z f,f) dﬁ//exp(Z fko) dﬁ)(Yn)
k k

(4.2)

o (1 - R
—1/2 ! ka fkvu ( )eXP(Zk/ fk’i“)dz

=b, ~
0 Jexp(Qp fHdz

dv(Ym),

then Lemma 4.6 gives a simple asymptotic representation of 10g(IF>0 /IP> )(Yr1) using the incre-
ments of processes. However, it is difficult to estimate directly the difference of these two quan-
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tities since exp(}_; log [)2, o) —€Xp(Q_p fk",“) is not asymptotically negligible. So we first prove
asymptotic equivalence of log(]I_"g / I_Pg)(Yn) and

vu,(l) kvu
o / [l o0 D& 5 “3)

IGXP(ZW fi'

in Lemmas 4.3 and 4.8. Then we prove asymptotic equivalence of (4.2) and (4.3) in Lemma 4.7,
using a simpler expression of (4.3) obtained by calculating dZ-integral partially by the virtue of
Lemma 4.6.

We start with preparation of several lemmas. The first one is proved similarly to Lemma 5 in
Ogihara and Yoshida [19], so we omit details.

Lemma 4.1. Assume [A2] and [A3']. Then

b—1/2+8 i le,lz |9171,11 m9172,12| P
" (p1+ D3(p2 +1)3

p1,p2=0

as n — oo for any § satisfying 0 < 8§ < 1/2 — (351 +283) Vv (61 + 62).

Lemma 4.2. Let u € RY. Assume [A1'],[A2] and [A3']. Then for any ¢,n > 0, there exists
M’ > 0 such that

PO
sup P|: sup |log = 0 (Ym) > nj| <e
nzny O<v<l M, vu
for M > M’, where
B, = {z e R?Lo+2, sup|f logﬁg,yv,u(zk/fl,zk,) < Mb, ' K},
kv
Bl (20.2) = {2: (20.2.2) € By} and P, (20.7) = an (c0.5) PU(2) 2.

Proof. We will apply 2. of Proposition 3.1. By using the Burkholder—Davis—Gundy inequality
and Lemma 3.6, we have

]PO
E|:sup log =2 | (Y, ]
v P9
9 ) ]
= E|su T_su Yy ‘n
|: UP/O P?u ( U)
po (1)
<b ‘/2|u|/ [ GO (Y, Yigo) ‘n} dv (4.4)
kvu
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n|
k pkO
L0,(1)

1 pv
_ p
+bn”2|u|// E[Ejav( ’“’”‘)( it Yie)
0J0 pkvzu

< Chy Pl + o) + Ch U2 (€10 + £a0).

£0,(1)

_ p
sbn”2|u|E[Z S (Yo Yo

‘1’[] dvy dv

On the other hand, for any ¢ > 0, Lemmas 3.4 and 3.6 yield

sup P[Y3"" € (By,)“IMT]
v

< supE|:sup fuu f”,“—i—/ dr‘ Yo l'[]
M4 Ko 0 p;;, ou ( U )
bz/3+qk P
< Cq Ma (r,? (el,n + EZ,n) (45)

% P o

=T

Py o

q 1
+supE[Z( +/
r,v & 0

< C b MR (0 4 £)

a Pvr/ / 4q
3U( r rk vu)‘ dv/) (Yg,vu)
pk’ v'u

)

for any ¢ > 0 and M > 0.
By (4.4), (4.5) and 2. of Proposition 3.1, we obtain
PO

[sup
M, vu

C 1M 1
< Gt {<—+ 2>b‘1/3+q” 42001, +£2,,,)+—supE[

E»O
log

(Ym) = n\n]

U u

1 —e™" Ma M4 My

+—(1+b 1|l/£| (6 +Z ))
M n 1,n 2,n
for any M, M/, M, > 0.

Hence, we have

_0 'O

log

log =

Yn) = n] = supE[ [sup

supP|:sup ]PO (Yn)zn‘l'l]/\l} <e

0
M,vu P

M,vu

for sufficiently large M > 0. ]
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Similarly to (4.1), we obtain

Py, 1o, (9, )
log = Yn) = —" du(y)
g5y (Ym) = fo = (Yn)

M.0 M,vu

4.6)
12, / Say, Su B /B ) exp(Ly log By ,,)(2) d2
0

™0
]P)M,vu

dv(Yn).

Let I@i’"(g)(zg,i) = [g(@)exp(>_p fZﬁ’“(z))dé for an integrable function g. For 1 < k <
Lo(u) and p € Z4, let é(p,k; u) be 0(p,l;u), where an integer [ satisfies 1 <1 < L! and
[k =1, 0Ky c [s71, s7). Let G,k = O(p, k; TD).

The following lemma is the first step to replace P) by [exp(>", fi*)dz.

Lemma 4.3. Let u € R?. Assume [A1'], [A2] and [A3']. Then for any €, 1 > 0, there exist M >
0 and {Ny}pm=m C N such that
-

d

for M > M’ andn > Ny.

PZ vu(fvu (1)13" )
log O(YH)— . f Z : dv(¥m)

Mvu

Proof. Fix ¢,n € (0, 1). By Lemmas 3.10 and 4.2, there exists M’ > 0 such that SUP, >y, PlYr e
(K})(ID] < &/2 for M > M, where

/C}u(ﬁ)={(20 2): sup |log(Fy, /Fo)|(z0,2) < M and sup [log(F, /P W)|(zo,z>51}.

O<v<l O<v<l

Therefore by (4.6), Lemmas 3.2 and 4.2, it is sufficient to show that

b / Z(/{ (Bt /o) exp(zlogpkf W><z>

k'

frw exp<2 f uu>} )/(@?\/[wu)dv

q>n=E[

x 1,%(11)()/“)‘1'1]

—P0

asn — oo forany M > 0.
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By the definition of IC}V, and the relation |exp(x) — 1 — x| < Cx? for |x| < 3M, we obtain

@, <Mty
130 (1)
X supE|: b, 1/22{ k,vu f”“ mexp( Z (fv,“ —logﬁ,?/ W))H
k k vu k' |k'—k|<h
x 1gn (YO) n}
U
-y
_ , 1 ~ o ,
<cswpe {0 - 0 (1 S5 (-t ) ) f g ]
v X k,ou Kk —k|<h
+o0,(1)
]50 (1) ﬁl,(l) @.7)
< CsupE|:b ”22{ o ko H(Yg’””) n}
k pk,vu pk,vu
—1/2 1 . N 0,
+CSUPE[ / Z e Z (logpll’,vu _logpl(g)’,vu) (Y[/UM) n:|
k' |k'—k|<h
+CsupE[ b, ‘”Z{f”" DR A (”( 3 (- kﬁ“))”(yg”“) n}
k k';|k'—k|<h
+o0,(1)
=@, 1 +Ppo+ Py3 +0p(1)-
The quantity ®,, | is estimated as
Iv)r(l)
q>n1<cSupE[ ”223 ( ’””)‘ Yo n]
nv pk i v

<r,(1)
- p
= Cb, ”2ZsupEHE[ar(ﬁ’j = )(Y;t”ﬁ’, ")
k r,v

3

k,vu u=I1
ﬁr,(l)
1/2 k,ou 0,vu +,0,vu
+CsupE|:b (3(v )Yv_,YV
o Xk: B, ) i 1)
pvr(l)
(et ]|
k,vu u=I1
pvr(l)
<Cb,'? ZSHPEH/ ( kvlt)ﬁ]?vu(Zk—l’Zk)de . ]‘ + 0, (1).
Pl.vu w-1=Y iy | 1 la=n
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Then we have ®,, | = 0,(1) since

ﬁ” (D
k, .
V&( T W)p;? ou k=1, 2i) dz

kvu

~r,(1)
Py, v P
‘/ ( = )( lt,vu - / arplz,vu dr/> (2k—1, 2) dzi
k vu 0

ﬁr (n
k, v
/&(Tv”)lﬁc ouZh=1, 2k) dzi

k,vu

) 2 12 9.5 2 1/2
p . p .
+ {/(ar( v];’vu )) p]’;,vu de} Sup(f( rvrk’vu> p/}; vu de) ’
Pk,vu r’ Pk,vu

ELPE) /Bl vu = oo/ P P (517 = O((Ad5)2) and

=

k,vu

v v1,(1)
/arplrc vu pk v vy

T Dr.vu(Zk—1, 26) dzk
pk,Uu pk vu

1 8B 3, Y b
EEZk’l Auk

* ~k—1 n
<+ (BD*)™ l( » k=15 Oyy vk
x 3(,((AY ) N AY

+ log det(bb*) (ﬁk_l s Zk—15 Ufu))]
=0(ai¥),

where AYF = (Y, ., — 21 — Aif p@* =, 2y, o).
Similarly, &, > is estimated as

oy pt,
b, 2<CsupE|: l/ZZfW(l) Z r{k ou (Yg,vu) Hj|
k—k1<h PK.ou
~ . 3.,
< e[ o P (0 - B O] S St
k |k—K'|<h pk/,vu u=II

+0p(bn " burabt)

- - o, P,
b 1/2 Z(fkvu,(l) _ E[fkvu’(l)|]:,;k—l]) Z rv]:k ou

k Kik—h<k'<k Tk.vu

<CsupE|:

]

u=Il
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-1/2 ~vu, (1 ~vu, (1
+CS“pE[b” ! Z( > (fkw()_E[ka()|]ivkl])>
nv K Nkk'—h<k<k'

8rﬁl’;’,vu YO,vu ]

A ( u )

pk’,vu u=I1
+0,(1)

=0,(1),

by the Burkholder—Davis—Gundy inequality.
Finally, we will prove @, 3 = 0, (1). Let 0 = /& A i BT v — p (10, Y[%’”“ o” ) and

L 7}

At = =AW BR) (90 (baobley) ) = o (Baobley) ) (Y5 o) bR AW/ (280)

P det(bu) b)) 0.

* * )1 0,vu ~
2aogm U ,Uﬁu)"i‘ao(ﬂ(k)(b(k)b(k)) )(ij *Uz?u)b]gAWk,

AZ = —AWE(B}) 05 (B} (ég)*)‘l)égAWk/(zAU") - %a(, logdet(by (b})").

1 o \* (T (Fouy*y—1 vu (o \*\—1 RUZANNY
Aiw = {—5“((%) (@ @)™ = B )" ) (ry™)by)

1 detBpr(By)™) o
— —]log —& %~ ~ 0,vu Lite ’
2 o8 det(b}é?(b;;}t)*)( U )} {lk—k'|<h}

14

i o (BPEBE) T — (b (b
4 * * Pk k k k
A =~ /ﬁk/,l(Wf = W) (by) N

E]l()/ th B l{lkfk/lfh}
u

Then A}, A2, A3, A}, satisfy E[| 00 — 7200 — Al < Clfil, EQRY -
AZ2TY2 < €16y k|2 and E[|(f2" — £ — Wy (b(k’)b?k/))*lb(k/)AWk/)1{|kfk/|gh} - Az,k, -
Af PV < Cl6y e iy <ny-

Hence, we obtain

®,3<CsupE||b,'"? Z(A,i —AF Y (At A;‘,k,)> ‘n
vtk k K|k —k|<h -
+0, (b Prabf (€10 + €20)) + 0, (1) 4.8)
i -
=CsuwkE||b, "/ Z(A}C —AL D) (A +A2,k,)) ‘l‘[ +0,(1),
L k K|k —k|<h -
where we use the Cauchy—Schwarz inequality, tightness of {b, 1 (L1,n+4€2,)}n and 1y b,i/ 2+

0, (1) by the definition of «.
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Moreover, by using the Burkholder—Davis—Gundy inequality, we obtain

supE|: UZZAk ’H}
b1 . o o A
_S“pE[ TZ(“((@?) (3 ((barby) ™) = 0o (b biyy) 1))()’3’””’05’14)[’13)
X
det(bnb
+8glog76( ®5G) vou on,) )“n]+op(1)
det(b(k)b(k))

Furthermore, by applying Ito’s formula to (35 ((babfy,)~ hy — 8g((b(k)b(k)) 1)) and
0o log(det(b(k)b ))/det(b(k)b ))) 1. of Lemma A.1 in the Appendix and Lemma 4.1, we have

1/2
-1/2 1 172
supE[ ZA ‘n] <Cby (ZZAU . 'Uk)C911109|12}>
v Ll k
+Chy 23 1B al +0p (1) 4.9)
k
" B B 1/2
<ch, Y (Z 61,1, 091,12|> +o0,(1) =0p(1).
I,

We can see .Ai © can be decomposed as .Az v Zk oy -+ Op(|9~17k/|), where
{Zk<l - (=t Lot s a martingale for any i € U, E[l ;. k<l.A |4|1'I]1/4 < Cl6y p|'?

for any [ and E[|A> |4|1'1]1/4 < C|AUR2

k' k
. Hence by Lemmas 4.1 and A.1,

KR (U*=1,0%Ch, 1)
we obtain
supE|: 1/22./42 Z 'Akk/ )H:|
ks |k —k| <h
~1/2 o112 =
<sup [ >4 SN FRH O DD SRR Y)
K5 |k —k|<h k K:lk'—k|<h

1/2
~1/2 ~ ~
+ Cbn / bZ{ Z |01,11 |1/2|01,12|1/2 + ZZAUkl{[Ukl,Uk)Cél,[lﬂél,lz}}
L1l =] <2h il k
(4.10)

1/2ZA2 Yo A

k';|k'—k|<h

<supE[

:| + Op(bn ern(zl n+42 n))
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1/2
—1/2 2 2 5 5
+cby Y bz{ Lo (0 + ) + (Zwl,zlﬂem) }
11.h

<supE[ ]/ZZAz ]+0p(1)
k
Moreover, by using Lemma A.l with relations E[IA%I“II'I]I/4 < C and E[IAz k,|4|1'l]1/4 <
Clél,k/ll/z, we obtain
DD D n|
k';0<|k'—k|<h

12
st;”zb,ﬁ( > |91,12|‘/2|91,k5|‘/2) 4.11)

1o Ky 1o~k | <2h

< Chy PP (01 + o) - (465 + 1)) 2 =0, (D).

\Ak k/
ks |k —k| <h

supE[

By (4.8)—(4.11), we obtain

;<C{supE|: ’11/22"4]( Z Akk’ }
k K|k —k|<h
+supE[ I/ZZAZA i|}+op(1).

By using It6’s formula, the Burkholder—Davis—Gundy inequality and Lemma A.1 1. similarly,
we obtain @, 3 =0,(1). O

We proceed to the second step. We will prove

]?, B PZ vu(fvu (1))
log = (V) — b e / Z & W" dv(Yr)) =7 0
0

as n — oo under [A1’], [A2] and [A3']. To this end, we need to estimate

52,vu , Fou,(1) 32,vu , Fou, (1)
_1/2 / Z & (fk Lay,) dv(Yn) — b_l/zu/l Z B Ui L) dv(Ym)
n

2, Vit
M vu 0 k Pk (133’4)

by /1 Ly B Py
0 PO ]fpi,vu(lBX/I)

M,ou  k

X (exp< Z (fo — logﬁ,?/yw)) - l)l%]P’Su dzdv(Yn).

lk—k'|<h
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If I@i’v“ ( fk""’(l) lgr)/ }f"i’”” (11 ) has good properties, we can apply techniques from Itd calculus
similarly to the proof of Lemma 4.3. So we will investigate properties of this quantity.
We prepare some additional lemmas.

Lemma 4.4. Let u € R?. Assume [A1'],[A2] and [A3']. Then {supy_, | log (B2 (1) /B) | (Y1)}
is tight.

Proof. Let }P’i’”“ =exp(}_p f;(k/), ICh (i) = {z; supy , | fo — logﬁgﬁvul(z) < b2}, and Y2 vusk

be random variables with the [T-conditional distribution IP’%’U“ (z) dz dz Py, (dzp). For any ¢ > 0,
let g’ > 2(q + 1)/(1 — 81 — 4«). Then we obtain

P[¥y € (k5)"min]

2 !’ ~ . !/
= b Y E[sup| i —log 5| " (Y111
k v

< ¥ ZE[sup|ka — f,f"|‘/(Y0)|n] (4.12)
k v
2Kq’ oy pk vu
+ Cb,, SupZ sup (Yﬁ))H
L k vu

< CORU R (0 + £2.0) = Op(br?).

Similarly, we have sup, P[Y? "e (K)S(M)IM] = Op(b,?) and sup , P[Y 2””" €

(Ky“(m)|m] = p(b,,q)foranyq > 0.
Hence, we have

-1

bn
Yn) > —- - Sup

m0
Vi

@2,vu(1 o) P
S (Ym) < M’
IP)0

PO

vu

log

P |:sup
k,v

]

<2eM'p, f sup]P’i’Wl(Kyz)c d2 dz Py, (dzo)
k,v

u=II

1
<2eMp, Y / <P§~°+ / |8U[P’,%’W|dv>l(,gz)c dz dz Py, (dzo)
0
k

u=II

3 PZvu
I(IC/ ( Zvuk ‘Hi|

anP 20k IC2) |H]+2e anSHPEH szu

k

=0p(ba")

for any ¢ > 0 and M’ > 0.
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Therefore, for any ¢ > 0, there exists N > 0 such that

@Z,vu(l ! C) b_l
P[sup‘lc_# (Yr) > =2 i| <e¢ (4.13)
k,v IP’S,, 2
for n > N by Lemma 3.10.
Moreover, for any § > 0 and M’ > 0, we have
]p]%,vu(llc) =0
P|:sup —_ 2 1‘(Yn) > 8, sup|log _”6‘ Ym) <M l'[]
k,v P?)u v ]PO
eM 2,vu 0 | 4245
< —/sup|]P’k’ Lxr —]P’Uu|dzdzPy0(dZo)
s kv 2 a=II
M’ 2,0 : 2
< _/{supmk* i _IP8| +/ sup|8UIP’k’v”1,C/ —BUIP8M|dv}d2dZPYO(dZo)
B X 2 0k 2 =T
eM/ 7\ C —K av]P)gu 0,vu
= =1 P[¥y € (K5) (DI + 0, (b,%) + sup E| | 2554 1oy (V™) [T
v vu
f,vu Fou ) 81)[;2’,W
+ sup | sup Za,,fk,, exp Z (fk, _IOng/,uu) — Z <0
v kg k' —k| <h v Prou
X 11, P9, 42 d Py, (dz0) | }
u=II
= Op(l)v
by (4.12). Hence,
PZ,vu(lK/)
P|:sup ¥—1’(Yn)>5} <s (4.14)
k,v (3M
for sufficiently large n.
Lemmas 3.4 and 3.10, (4.13) and (4.14) complete the proof. O

Let K , = {(z0. 2): infiy B2 (17, ) (20, 2) > 0} and

Pi,vu(ﬁvu,(l)lBXl) ~ ]pi,vu(f‘;(vu,(l))
B2 (1) B (1)

K3, () = Ky (i) N {(zo, 2); sup

(20.2) sb;l} NK5 i

foru e RY, i e, 1 <k < Lo(it) and M > 0.

Lemma 4.5. Let u € RY. Assume [A1'],[A2] and [A3']. Then for any & > 0, there exists M’ > 0
and {Nyyp=m C N such that sup,,- y, P[Yr1 € (K3,)°(ID)] <& for M > M'.
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Proof. By (4.13), for any & > 0, there exists N| € N such that P[Squ,v(EDi'W(lB;,’l1(K’2)f)/
PY,)(Yn) > b, /2] <& forn > N| and M > 0. Moreover, by (4.5), we have

H‘»Z,vu(an 1)
L S 1‘(Y1-[)>8} <e

P |:sup

k,v PO

vu

for any 8, ¢ > 0 and sufficiently large n and M, similarly to the derivation of (4.14).
Therefore, there exist Nﬁ e N and M, > 0 such that

. o2, 0U
P[}(l}f]P’k (1g)(Yr) > 0] ~1—¢
and

P[suphog(@i,uu(%)/@gu);(yn) > 5] <e 4.15)
k,v

for M > M and n > N. Moreover, we have sup |I_P,%’””(ﬁ<””’(1))/]f”gu|(Yn) =0,0b2).
Since

~5 ~vu, (1 — ~
]P)k,vu(fkvu ( )135{4) B Pi,vu(fkvuq(l))

2, 2,
Py (1) Py (1)
= D2, Fou, (1)
__ ]P)gu Pk W(fkvu 1(81’\‘4)")
Py (1gn) Py,
= = 2, zou, (1) 2,
B, B, PR BT (s
B g ) B B, Pl

there exist M’, M1 > 0 and {Na}y>p C N such that
P[¥n € (k%) ()]
< P[¥n € (K3) (I U (K3,4)]

D2, Fou, (1
I (T | P
P,

IP%W (L ye)

2 +4b3 __M ‘(Yn)>b,,_l}+e

+ P|:sup
kv

32, ~ou, (1) 52,
P A ey e Ly o Py (Lpy el icy)
, TR

vu

§P|:sup2 Ym) > 2,
k,v

log

m0
Vi

m0

HDO

sup (Yn)§M11| + 5S¢
v

< E[<4bneM1 / Sup{(2|f;vu,(l) | + 4bZ)Pgu } I(BX/I)L. l]sz dz dZPY() (dZO)
kv

) A 1i| + 5¢
=TI
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< CE[(biP[YU € (Byy) 1] + b, 2 (€10 + L2n)

<b4+b Zsup|f“ <>|)1(Bn)c ‘H})/\l:|+58

0

[8}}1’
+sup E
v

vu

< 6¢

for M > M’ and n > Ny, by (4.15) and similar arguments to (4.12) and (4.13). O

In the following, we see that the integral [exp(}_, <k'< fk“,”) dz has a simple representation
of a function of increments for 1 < v < x < Lo(u). To see this, we will define some notation
related to the observation times and increments of processes in the interval (12”_1, uX].

For it = ((s')!, ¢/)/)eUd and 1 <v < x < Lo(&), let

Loy = ({ki@®}, nv. x = 1) U{v -1, x},
Tox = ({keD}; N v x = 1) N {v =1, x},
I‘:X :Iv,x\{X}’ j\:x:jv,x\{x}-

Moreover, for z = (xg, yk)kO( ) define

2oy = (0w k= —1.kg (ki ()}: (yk)vgkgx—l,k¢{k2(j)}j),
Ll L,
x(Ly,y) = {xip — xi Lt Y(Jo ) ={vjx = Vi =t >

L L3 . . .
where 7, , = {ix}; 4 To.x = Ukley and v — 1 =ig < --- <ip =X V- l=jp<--<

jLz =x.For p=1,2,keZ,, and | € Jy, let 15,': = byl = b Xy i ol
= [s'=1, sy N vt ax), Jk = [t/ )y N v, aX), where i, ] satlsfy k=1, 0k ¢
[s’ 1,s)and[u’ Laby e~ l,ﬂ).LetLv,XzL +12 Ky =["1, %) and

v, X’
diag<{2|l;]1,|2|f]ﬂ’jx N Ky } )
— I<k<L} ,
Sy.x = RN T
{Zbk/ 'bk/‘lnl)’fx N JJ,IX n Kk/|}
— I<i<L}, 1<k<L}
{Zbk/ bk/
diag({Z’blz’}zljv{'x N Ky
k/

Let ¢(x; V) be the density function of N (0, V) for a symmetric, positive definite matrix V.
The following lemma enables us to calculate integrals of exponential functions of f;*.

(NJ) ka/\}

1<k<L}) v lslsL?j X

}1<1<L2 )

v, X




LAMN for nonsynchronously observed diffusion 2059

Lemmad.6. LerucRY icld,neNand1 <v < X < Lo(u). Assume [A1]. Then det S, , >0
and

/exp( Z fk“,”(z)> Az = 0((x T ;0% Y(Tox)*) "5 Suy)- (4.16)

v<k'<x

Proof. We see detS, , > 0 by a similar argument to the proof of Proposition 1 in Ogihara and
Yoshida [19], so we omit the details.

We prove (4.16) by induction on x. The results obviously hold true for x = v.

Let x > v and assume the results hold for x — 1. We give the proof only for the case X~ ¢
(s"); and i¥~! € (t/) ;. The other cases are proved similarly.

By the induction assumption, we obtain

/exp< Z f]cv/u) dzv,x

v=<k'<x
= / (@01 Y (To g =) Sox1)9 (25 = 25-13 DY (BY)" Adi* ) doey 1.

Let Z; and Z; be random variables independent of each other, satisfying Z; ~ N (0, Sy y—1)
and Zp ~ N(O,E;”(E;")*AIZX). Moreover, let D be an (L, y—1 + 1) x (Ly y—1 + 2) matrix
with Dy = 8p 4 for 1 < p,g < Lyy—1, Dpg =1 for (p,q) = (L}, |, Luy-1 + 1) or
(Ly,y—1+1, Ly y—1+2),and D,,; = 0in other cases. Then the covariance matrix of D(Z7, Z3)*
is

Sy y—1 0 )
D( X L vy | DY =8,
0 b;“(b;”) AuX VX
Hence, we obtain the result by considering relations between densities of Zj, Z, and

D(Zt, Z3)*. 0

Remark 4.1. We emphasize that we can prove the above lemma because l;;’(” does not depend
ON Zy, x -

We now give another representation of IP’,%’W ( fkv“’(l)) / I@’i’v“ (1)(z0, Z) consisting of a quadratic
form of increments. This representation is useful to apply It6’s rule and martingale properties.

Let O(n,k, ;i) = {i;1 <i < L', st > gk=h=DV0 i o gktrLloy  Q(n, k,2; i) =
(sl <)< L2071 > qh=bv0 ) < g(taloy M = g(@(n, k, 1; ) + £(O (1, k, 2; )

and
* * *
2 — ((xklm - xiq(i—l)) <y/<2(./') - Ykz(./—1)> )
st—st=b Jicomk 1) VI —ti=1 ) icomr, i

for it = ((s)Eg, (1)) €U and z = ()25, ()25 ) € RAE0@+D),
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Lemma 4.7. Let u € R?. Assume [A1'],[A2] and [A3']. Then there exist an R? @ RM @
RM_yalued function Q]I’H(Z(),Z,IZ), R?-valued functions {Ql,{,’”(z(),Z,L_t)}i:2 (vel0,1], u=

((Si)i,(tj)j) eU, 1 <k < Lo(u)) and a constant C > 0 such that Q]{‘U(Yﬁr‘v/”,ﬁ) and
k, v -
Qv (Y, i) are Finfd((k—h—1)v1,2:7)-Measurable,

sup (|9 o, )| v |94 (zo i i)|) < C,

n,v,u,k,z0,2

sup E[|Q5" (v m)|"im]? < cn 20 as.,

r,k,v,v
k,v . —-q
Supk,v |Q4 (Yl'[, H)l = Op(bn ) and

EDZ,vu(fvu,(l)) . 4
W(zo, D=2 Q" (@0, 2D 2z 0y + ) Q' (0.2, 1) (4.17)
k p=2

forv, v, rel0,1,n>n,,q>0,i= ((si)i, (tj)j) el and 1 <k < Lo(ir). Moreover,

wp Pi,vu(ﬂuu,(l)) ~ ff;vu,(l)exp(zk, f/?u)dz
kol BEMCD Jexp(Ty fi) dz

(Ym) =0, (by ) (4.18)

forany g > 0.

: 1 2 1 2
Proof. We only consider the case that Lk—h,k—l A Lk—h_,k—l A Lk+1,k+h A Lk+1,k+h >1, k>
h+1,k+h<LoG), u ", ik ¢ (s'); and ¥, ik € (7). Other cases are proved in a similar
way.
The proof is rather complicated. It is divided in several steps.

Step 1. In this step, we will have an expression of ]f”,%’v" (ﬁv“’(l))/lﬁ’i’v“(l) similar to (4.17) by
using elementary formulas (Lemma 4.6 and Lemma A.2 in the Appendix) of Gaussian distribu-
tions. ‘ ‘

Let Ly = Lk—p k-1, L]]( = Lljc—h,k—l for j =1,2, Tx = Zk—p k-1, Tk = Tk—hk—1 and Sx =
Sk—n.k—1. Then Lemma 4.6 yields

/fkvu,(l)exp< Z f{k/’vu)(z)dfl,k

k' k' <k
1 Lo (b)) ™Dz 00
—/<_§(Zk—1kl) NG (zk — 2k-1)

1 -
~ 500 log det(b b)) (2 a;lu)) (4.19)
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x (2 — zk—13 AT DY (BR) ) (x (@)™, y(Ti)*)"s Sk) dxk—1

X exp( Z f”f‘) dZ1k—n-

k'<k—h—1

Let M1 = ((S¢ i)y jert» M2 = (S )iy M3 = (S D 1 22 =2 (@) 21 =
@ (Z)*, y(T)*)*\ 22, v1 = (B (bp")* M)~ 1y and

My= (Mot (@ gy ai) ) 0 ),
0 1

h _ ) th—h.k—l _ ) L%—h,k—l .
where x(Zy) = {x(Zp)i}; 2, and y(Jx) = {y(Jk)]}j:1 . Then we obtain

(x(Z0)*, y(T)*) S (x (T)*, y(T0*)
= Z;f./\/llgl + 22?/\4222 + 25M3Z,~’2
. . 3 N (4.20)
= (2 + M3 M3 Z1) M3(22 + M5 M3 21)
+ ZI M 21 — ZE Mo MG ME 2,

By (4.19), (4.20) and Lemma A.2 in the Appendix, we have

f £ exp(Z f'kx””)(z) Az 4

k' <k
S *80((5(1()5?]())_1) = fk,vu S
=/{—33M4TM4Z3+T6}CXP<Zf’ )(z)dsz,

k' <k
where kj = rnaka:h’kfl, Zy = (xp — Xy, + M;1M§Z~1, Yk — Yk—1)* and Y¢ = —30((15(10 X

b)) "D (AER) T w1 + M3)1/2 — 9, logdet(bybYy,) /2.
Moreover, a similar argument yields

/fk""’(l) exp(Z /k,’vu>(z)d2
k/
2Ank

N N (Y i N ,
=/{—25*M1&M425 + 50, 2; ﬁ)}exp(z f,j‘;”“)(z) dz,
k/

where P = {L} ., Liciids Mhy = (S, Dipigp.jeps My = (Sl Dipijers 2] =
C@e=n 0" Y (Te=n ODVNE@e—n) ) > Y The=ngdp2 ) Ms = (St gan)iDiz1, Mo =
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(51;11‘“;,)11, Zy = Trgrdrn)*s Y T 1ksn)D)* \ X @it kan)1. Ky = minTeg 1 arn \ (kD).

Zs = (M(J((Mé)n +M6)_1 _(Mé)lz((Mg)u +M6)_1>

0 1
xk,_xk,+M6—1Mgz?4> i }
x ER + (MY T (ML) 2
(et (M) (M) 2

+ (M5 M3Z1,0)" = (M5) T (M) 2],
and
V(20,7 i) = Yo — (M3 (b by~ )Ma)y (M) + Me) ™/ (24i5).

Let Z5 be a vector obtained by substituting 0 for x(Zg)1, y(Ti) 1. X Tik—n.k) 15 Y(Tk—h.1)1,
. 5 . Z Sk, v
x(Ik+]’k+h)L1£+l.k+h and y(jk+l'k+h)l‘z+l,k+h in Zs. Then since My, Z5 and @, do not de-
pend on Z, we obtain

Pi,vu (f';(vu,(l))

¥ ((baybr )™
- * )7 (k) M
Py (1)

(z0.2) = —Z3M; SATK 4Zs

. o . o 4.21)
+ Q5 (2o, z;u) + Q4 (20, 23 1),

where T7 = (Z5 4 Z5)* M3do (bybt,) "I Ma(Z5 — Z5)/(2AiF) and

(k)

s fren( L] oo £ 7)o

Step 2. We will prove sup,, ; IQﬁ‘”(Yn; M| =o0,(b, 7y for any g > 0 in this step. We follow the
approach in Section 2 of Ogihara and Yoshida [19].

Let
v 2 H .\ .
Dk=diag<<2|b,1/| |1k”_h,k_1m<k,> | (Z!bk/l s lkar> ]),
- p=l \p =

,..ip
11—

~]q

G — { k=1 "V i—p -1l }
Fip 7Ja ’
L e /SR AR SRV E N

52 | il
~k={zk’b b lhk]m‘lk hklka’|}
((Dk)p,p)l/z((Dk)q_;_L}(,q_FLl'{) /2 1<p<L] 1<q<L2

=P=L 124>

Then we obtain

£ -GGy

~G1 (£ — GGy)

-1

(-GGG
L, ") 1")(02)‘/2, (422)

(€ —GiGr)~
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by a standard formula for block matrices.
Moreover, the argument in Lemma 2 of Ogihara and Yoshida [19] yields

IGkl v ||GE| < p@ Gl v | GE|| < 6, (4.23)
where
i) = p(z0, 2, if)
b} - B _ ,
= sup m ve[0,1],1 <k < Lo(n) and there exist /1, I such that
k3 1%k,

71 7l > - 7l > > 7l
L pon VNl kn D Ky Kig C Ly gy and Koy, Ky C th,k+h}~

Let [;(k; i) = min{l € Zy; (GG )le)1 > 0}, then (4.22), (4.23) and relations (£ —
GG =320(GkG}) and (€ — G;Gy)~ 1 =372 (Gt G yield

1/2 1/2 1/2 1/2
|( ) (M2 )1(Dk)L]1€,L]1(| v |(DIL)L11{+1,LI£+1(M2)L (Dk) L1|
~ (4.24)
<Cp /(1 pa@)?)
if p(u) < 1.
On the other hand, we have
_ * —1
M; = (Sk)L,L,L,L - ((Sk)i,L}{)i;éL,'((((Sk)ij)i,j;éL]]() ((Sk)i,L}c)i;éL}(
by a standard formula for block matrices, and hence
(D) M3 (D) | = € (1= @)™ (4.25)

if p() < 1.
Moreover we have

UMz (1= ) (B (B A 1y + Sy ) 2 (1= 57) Sk 1

and consequently we obtain (vi + M3)~! < C(1—p?) "1 Auk @k~ — ik )/ @ik — ik ). Similarly
we have (M})11+Me) ' < C(1— pH) =@k — ik @hs — iy @hs — k).
Therefore, we obtain
5(Ym; H)z([l(kin)Aiz(k;n))*l
(1— p(Yr; 20

sup|Q4 (Ym; H)|<Cs up 0, (€1 +€2,0)°) (4.26)
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on {p(Yn; I1) < 1} by Lemma 4.4, (4.24), (4.25) and similar estimates for {M;}><;<¢ and
{M;}i=2,3, where

i 5
G — { |Iki—1,k+h N Jkil,k+h| }
k— ~i ~j
|Ikz-1,k+h|1/2|ka—1,k+h|l/2 L=P=Ligy gon V<AL g
and I (k; it) = min{/ € Zy; ((G;{(G;{)*)IG;C)]’L%H’H}! > 0}.
By the definitions of [ 1, we obtain
(201 (k; i) +2) max(|s" — 5" v |t/ — I 7H) = @b — gk 4.27)
iJ

for any k. Moreover, since the numbers of elements of (s); N [@X~"=1, #*=1] or (¢/) i N
[ik="=1 k=17 is equal to or greater than (h + 1)/2, [A2] and [A3'] yields

1iminf1>[inf|Uk*1 — U s b (R4 1) /2 — 1)] > liminf P[A,] =1,  (4.28)
n— 00 k n—o00
where

n,jo _ Qn,j
A= ) Hw>b;l—“ﬁfjlvjzszl,n}
PR lj2 = il
J2—J11=by
|TmJ2 — TmJt| s
Q{W>b;_3lfj1\/‘]2§£2,n}i|
—J1

By (4.27) and (4.28), we have

lim P[inf[l (k; TT) > pX 015 /5] ~1. (4.29)
n—o00 k
Similarly, we obtain
lim P[infl}(k; ) > <015 /5] ~1. (4.30)
n—o00 k

Let p=sup; ¢ |61~ b%| b - b?|(t, x, y, o). Then by virtue of [A1] and the relation
det(bb*) = |b'|2|b22 — (b - b*)2, we obtain s < 1. Moreover, we obtain

lim P[p(Ym; ) > 1—(1—p)/2]=0, 4.31)
n—o0
since r, —?” 0 and b(¢, x, y, o) is continuous with respect to (¢, x, y, o).

By (4.26), (4.29), (4.30) and (4.31), we have sup,, ; |Q§’U(Yn; I = op(b;q) for any ¢ > 0.
Furthermore, we can write

H‘Di,vu(fkvu,(l))

- * Ak, =, = 5k, =, = 5k, =, =
By (20,2) = Z; Q1" (20, ;) Zx + Q3" (0. 21 ) + Q¥ (20, T 10),

where sup, |0} (z0, Z; )|l < C(1 — 32(@)) ™S and supy., |05 (z0, 2 )| < C(1 — p(@)?)~>.
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Step 3. We now complete the proof.
Let Q’;,’” be obtained by substituting the same values in Q/;,’” as

_ ~ 1 2\
Q" (z0, %5 it) = Oy (z0, (g )iy» (vg,)521): @)
for p = 1,2, where 121,122 are the maximum integers satisfying ﬁ’gl = s, ﬁ’gz =/, st v <
inf(8(k —h — 1,2; u)) for some i and j. Then we have

sup (”91 (20, Z; u)||\/|Qz (20, 2 u)|)<C (1- _2) ‘<c.

n,v,i,k,z0,2

Therefore, by setting

k *( Ak, k, Nk, k,
Q7" = (ZH(Q" — Q)&+ Q" = Q) p@=<1-1-p)2)-
k, Sk, *( Ak, k, Sk, k,
Q= +(Z(A - Q)&+ Q" = Q) @ 1-1-p)/2)
. — 1/2 3 2
we obtain sup; , |Q§’U(Yn; | = op(bnq), SUP,, kv (P 2,3l

1]'/) < C as. by (4.31).
Furthermore, a similar argument for

/‘J;'kvu,(l)exp(z fliu> di//exp(Z fkliu) RE
k' k'

ENQS (v |

yields
kol BPU(D) Jexp(Yy fi)dz
<Oy (W1 + L) - HEDHEOARETT) 4o (1 0) =0, (b )
for any ¢ > 0. 0

The following lemma enables us to replace 1@2 and 1@8 in log(IP’ /IP> ) by the function
[exp(Xy fi)dz and [exp(Y", Q) dZ, respectively.

Lemma 4.8. Let u € R?. Assume [A1'],[A2] and [A3']. Then

Lin 2 vu(fvu (1))
log O(Y ) — by, / Z = W" dv(Y) =70

asn— oQ.
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Proof. Let
A (20,2) = Z; Q4 (20,2, D) 2]z + Q5 (20, Z,0) + Q4 (20, 2, )
and
Ko @) = I3y @) 1 { (20, 2 sup| & c0. 2 )| = b

for M >0and u e U.
By Lemmas 4.3, 4.5 and 4.7 and the definition of K2 , it is sufficient to show that

Ip;2,vu (fvu,(l)l 0 ) @Z,Uu(fvu,(l)l u )
-1/2 k k B k k B
) :SUPE[ b Z( T T mw )1/ci4(n> (Y“)‘H] —"o
v k P v P gy
asn — oo forany M > 0.
Fix M > 0. Then Lemma 4.7 and the definition of IC?W yield
PZ,vu(fvu,(l)an ) E‘DZ,vu(an )
c1>’=sup15[b;”2 k_-k M < kM —1)1,@ - (Yn)‘l'l]
@Z,vu(l n)
—1/2 5 k B
< sng[ b ZA,(,U(YH)(TM - 1>1Wn) (Yn)\n}
k M,vu
EDZ,UM(I . )
-3/2 k B
+2513pE|:bn 23 TM—I‘IK?W(H)(YH)‘H]

k M ,vu

The second term of the right-hand side in the above inequality is equal to or smaller than

Cb, " supZ/HP’,f’””l% — ), 11 |d2dZPy,(dz0)|  =o0p(1).
vy u=II
Hence, by a similar argument to the proof of Lemma 4.3, we obtain
(D/ < eM-I—l
n <
x supEan_”zZAZ,U(YS’”“){GXL)( Yo (fr- logﬁ;?/,vu)> - 1}
v k K'; k' —k| <h
x 1pn (YQ’””) H]
MINTO

+ Op(l)

—1/2 = .
< ngpE|: by ZAZ,U(Y%W) Z (= IOgPI?’,vu)lB,"w (Yg’v") Hi|

k k';|k'—k|<h
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+0, (bbb bX by ) 0, (1)

< CsupE[ 1/22«4 ') Y. (g, —log B )| (Yy™) H}
k/;lk/fklgh
+CsupE|: WZAM y) (ZAkk’ kk,>“n}+o,,(1)

k’;\k’—klih k

=@}, + P, +0,(D).

Furthermore, let fizyv(zg,Z) = Z;QII’U(ZO,Z,Q)Z;(I{ZH&@}, then Lemma 4.7 and the
Burkholder-Davis—Gundy inequality yield

—1/2 ZAk v 0 vu Z a"v]?/t’,vu (Yl(;,vu)

k/; |k’ —k|<h pk’,vu

/ <supE|: ‘l‘[]—i—o,,(l),

and

d>’2n<CsupE|:

1/22Akv Ovu Z (Z‘Akk’ kk,)“l‘[]Jrop(l)

k’;lk’—kISh k

Let 2/ = (Z/}20 (j =1,2),

) Y(v),kvu . Y()kvull ) Y(v),kvu,Z _ Y(v),kv_u,Z
Zl __U _ U Z]? — U Uk-1
0.k |12 |inf{TJ; T/ > U} — sup{TJ; T/ < Uk=1}|1/2

and QF-v-Jij2 = {(Qk-v-J1-i2), Y, ) be a certain symmetric matrix (1 < ji, jo < 2) satisfying
k. > TR
ZE Q0 2kl z0) = Z/l,jzzl(Z”)*Qk’”’“’”ZJZ. Moreover, let

2 2
vl __ N, j1, 2 S )2 N, j1, 2 21 ZJ2
= > (9 Bl EE Y Y (@ )en 2 20
J1.j2=1 b<k j1,2=1
" _ A3 4 5
zk/” Az Kk +Al,k’1{k’=k}‘

Then we have

o, p -
’ —1/2 rEk vu 1
sascuwep Y ¥ (X S,
’ B oklfi—kl<h K|k —k|<hk'<k * Ko
0N (DI R -
kk )] »r

K MW —KI<h F: [f—k | <h B <k’ Pre v

(r5)

n] +0,(1)

=o0,(1),
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by a similar argument to the estimate of @, » in the proof of Lemma 4.3.
Moveover, 4. of Lemma A.1 in the Appendix and estimates in the proof of Lemma 4.3 yield

.2 ZXI Z ‘)El%k’,k

o, <C sup E|:
ks |k 1) <h

}+op(1).

Therefore, we can see ¢, , —7 0 by using the Burkholder-Davis—Gundy inequality and esti-
mates in the proof of Lemma 4.3. ]

Proof of Theorem 2.1. By virtue of (3.2), Theorem 3.1, Lemmas 3.1 and 4.8, it is sufficient to
show that

b2 / szvu(f"w))dv(ym—(lf (0u) = Hy(0)) o (T, Y1) > 0
P2vu e e '

as n — oo under [A1'], [A2] and [A3'].
Lemmas 4.7 and 4.6 yield

]P;Z vu (fvu (1))
—1/2 k k
/ Z PZ vu dv(YH)

Fou, (1) Zouy 14

e frHd

= by f LI e D% )y 6,010
0

P Jexp(Xp fU) dz
! 1
:/O Oy ( Z*SI_LO(I'I) 3 —logdet Sy, Lo(“)) dv +o0,(1),
where Z = (Y}, = Y&, )5 (Y2, Yl 0N
Let D = diag((|I’ |),, (1J71);), then the difference between D~'/28; 1 (myD~/? and S(o?.,)

in (2.6) is only the substituted values of b!, b%. Then we can see the right-hand side of the above
equation is equal to

1
/0 8vHi1(Urjlu) dv o (IT, Y1) "l‘op(l) = (Hil(g,:l) - Hn(U*)) o (I, Ym) +0p(1),

by [A2], Lemma 4.1 and a similar argument to the proof of Lemma 13 in Ogihara and Yoshida
[19]. We omit the details. O

Appendix

Lemma A.l. Let g, L €N, (2, F,P)bea probability space, F= {.7:'/(},%:0 be a filtration. De-
note by E the integral with respect to P.
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1. Let { X x'}1<k k'<1 be random variables. Suppose {Zlgk/gl Xk,k’}lL:() is F-martingalefor

1 <k < L. Moreover, assume that there exists a sequence {Cy i’} 1<k’ <1 of positive numbers
such that E[|Xk’k/|2]1/2 <Cpp for1 <k,k' <L.Then

e fu]<($ foe)”

l1,lb=1k=1
2. Let {X }k 1l kk'}1<kk’<L be random variables. Suppose {Zl<k<lX1}lLO is

L

L
DN A

k=1k'=1

F-martmgale, D o< X r k’}l o IS F- -martingale for 1 <k < L. Moreover, assume that

there exist a positive constant C' and a sequence {Ck }<k<L of positive numbers such that
E[IX MY+ <C' and EN|1X Z| MV < CL for | <k, k' < L. Then

172
E|: :|<2(2g+1)C{ > clzlc,zz}.

I, lh =] <2g
LWL 2
3. Let {Xk }k=1’ {Xk Vi

martingale, {Zlgkgl Xlik/,lZ}ll;O is F-martingalefor 1<k, k' < L. Moreover, assume that

L

xSy Xy

k=1 Ki0<|k'—k|<g

}1<k v i<p be random variables. Suppose {) |, Xkl}lL:O is F-

there exist a positive constant C' and sequences {02}1<k<L and {C,? H<w i<p Of positive
numbers such that B~’[|/'\f},{l|4]1/4 <CLE |Zk o k Vi |44 < (32 and E[|X2 |4]1/4 <
C,f, pforl< kK k < L.Then

{xw ¥ va,

k=1 KiK' —kI<g k;k+k

172
Sﬁ(2g+1)cl{ Z crc, +ZZ(311 kclzk} :

I, |h—h|<2g Il k

4. Lel{Xl k}1<k1<L {x lk’

{Zl<k<p Y }L o I8 F- martingale for 1 <1,k < L. Moreover, assume that there ex-

<1 v <1, be random variables. Suppose {lekSp Xllk}ﬁzo and

Ik, k' k <L.Then
k'K —11=g k:k+£k i|

ist sequences {C ,k}1<1 k<L» {C,?,}1<k/<L and {C3 *}1<k/ i<L of positive numbers such that
ENXN N < €l BN g X7 (11 = C2 and ENX, M <C  for 1<
% 1 2
BX s ¥ Y,
k.l
2 24y1/2
1 2 1 3
AT(Zdn ¥ @) +X(Txd. ¥ o))
h l Kk —l1<g h I <l Kk =l<g
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Proof. We first prove 4. By using the Cauchy—Schwarz inequality and Lemma 9 in Ogihara and
Yoshida [19] repeatedly, we obtain

E[Z)(llk Z Z 1Kk

TR A
2
I 1 2 1 2
= E[ >0 <Xl,zl Yo XentAL, Y Xl,k’,u) ]
i1 bl Kk —l|<g Kk —ll<g

(T T ¥ )

L<li k3| —11<g

(S a ¥ )]

I hb<l Kk —l1<g

cx(sad(s 5 )]

<l k' |k'—1|<g

22D (v, T )] )

I I <l Kk —l|<g
2Y(Tdn ¥ @) eX(EXd, ¥ oa)
I I Kk —11<g I I <l Kk —l|<g

Then we obtain 4.
We obtain 3. by setting Xllk = Xk] 1{=k) in 4. We can prove 2. by setting sz, .= szk,l —i)
in 3. Moreover, we can easily check 1. |

The following lemma is proved by elementary calculation. We omit proofs.

Lemma A.2. Let A={A;; }1.2].:1 be a 2 x 2 symmetric matrix, Vi be a 2 x 2 symmetric, positive
definite matrix, o, B € R and vy > 0. Then

/(xl —vi+a,x2—=y»+pAK -y +a,x2—y2+B)*
R
x ((x1 = y1,x2 — y2)*; Vi)o(y1 — w; v2) dy;

Al
=1W,x2 — AW, x2 — . e —
{( x2—=y2+BAW, x2 —y2+B) +(V1_1)11+Uz_1}

X / @((x1 = y1.x2 = y2)*: Vi)o(y1 — wi v2) dy
R
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for xl,xz y2, w € R, where (V_l),j denotes the element of Vl_1 and W = (vz_l(xl —w) —
vy D20 — y2)/ (V- i+ vy H+ta.

Proof of Lemma 2.2. Let§ € (3/q, 52 A §3) and

2 [Thpl+1
= q ]ﬂ {Nl(b;]k)AT _Nl;'(k N~ <0y}
i= =

Then for sufficiently large n, we obtain

[T W+ 2
C — i 8
P[A%] : > PN GlOAT Nb;‘(k—1)>b”]
=1 i=1
[Thyl+1 2
—gs N 1—4é
=by ZE (h AT Nb,zl(k—l)) J=ch ™.

k=1 i=1
On the other hand, for any k € Z,
|§"2 — s <kb,' = =il < (k+ Db,
on A. Hence, we have
Lo —jil > (k+ Db = |2 — 85"t > kb, ! onA.

For sufficiently large n, if | jo — ji| > bff and w € A, there exists k € N such that (k + l)bfl <
lj2—jil < (k+ 2)b,’2. Then since |S""/2 — §™J1| > kbn_l, we have

|Sn.,j:2 — sn,jl| . kbn—l . _b—l s . b—l 5
lj2 = jil (k+2)b ~ 3

Therefore, we obtain

SnJ2 _ gt
Dbl Py < ;1‘53]§bﬁP[ Al <chy >0
22—

n

b? sup P[zl,n > j1 V j» and
L . . &
J1:72€N, | ja—j1 =By

as n — oo. Similar estimates for {77/} hold true.
In particular, under [B1], Proposition 8 in Ogihara and Yoshida [19] yields
limsup,_, o, E[b%™'r] < oo for any g > 0. Then we have [A2]. O
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