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Consider an insurance company exposed to a stochastic economic environment that contains two kinds
of risk. The first kind is the insurance risk caused by traditional insurance claims, and the second kind is
the financial risk resulting from investments. Its wealth process is described in a standard discrete-time
model in which, during each period, the insurance risk is quantified as a real-valued random variable X

equal to the total amount of claims less premiums, and the financial risk as a positive random variable Y

equal to the reciprocal of the stochastic accumulation factor. This risk model builds an efficient platform for
investigating the interplay of the two kinds of risk. We focus on the ruin probability and the tail probability
of the aggregate risk amount. Assuming that every convex combination of the distributions of X and Y is
of strongly regular variation, we derive some precise asymptotic formulas for these probabilities with both
finite and infinite time horizons, all in the form of linear combinations of the tail probabilities of X and Y .
Our treatment is unified in the sense that no dominating relationship between X and Y is required.

Keywords: asymptotics; convolution equivalence; financial risk; insurance risk; ruin probabilities;
(strongly) regular variation; tail probabilities

1. Introduction

As summarized by Norberg [37], an insurance company which invests its wealth in a financial
market is exposed to two kinds of risk. The first kind, called insurance risk, is the traditional lia-
bility risk caused by insurance claims, and the second kind, called financial risk, is the asset risk
related to risky investments. The interplay of the two risks unavoidably leads to a complicated
stochastic structure for the wealth process of the insurance company. Paulsen [41] proposed a
general continuous-time risk model in which the cash flow of premiums less claims is described
as a semimartingale and the log price of the investment portfolio as another semimartingale. Since
then the study of ruin in the presence of risky investments has experienced a vital development
in modern risk theory; some recent works include Paulsen [42], Klüppelberg and Kostadinova
[33], Heyde and Wang [26], Hult and Lindskog [28], Bankovsky et al. [1], and Hao and Tang
[25]. During this research, much attention has been paid to an important special case of Paulsen’s
set-up, the so-called bivariate Lévy-driven risk model, in which the two semimartingales are inde-
pendent Lévy processes fulfilling certain conditions so that insurance claims dominate financial
uncertainties.
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A well-known folklore says that risky investments may impair the insurer’s solvency just as
severely as do large claims; see Norberg [37], Kalashnikov and Norberg [30], Frolova et al. [18],
and Pergamenshchikov and Zeitouny [43].

In this paper, we describe the insurance business in a discrete-time risk model in which the
two risks are quantified as concrete random variables. This discrete-time risk model builds an
efficient platform for investigating the interplay of the two risks. The ruin probabilities of this
model have been investigated by Nyrhinen [38,39], Tang and Tsitsiashvili [44,45], Collamore
[11], and Chen [6], among many others.

Concretely, for each n ∈N = {1,2, . . .}, denote by Xn the insurer’s net loss (the total amount of
claims less premiums) within period n and by Yn the stochastic discount factor (the reciprocal of
the stochastic accumulation factor) over the same time period. Then the random variables X1, X2,
. . . and Y1, Y2, . . . represent the corresponding insurance risks and financial risks, respectively.
In this framework, we consider the stochastic present values of aggregate net losses specified as

S0 = 0, Sn =
n∑

i=1

Xi

i∏
j=1

Yj , n ∈ N, (1.1)

and consider their maxima

Mn = max
0≤k≤n

Sk, n ∈ N. (1.2)

If (X1, Y1), (X2, Y2), . . . form a sequence of independent and identically distributed (i.i.d.)
random pairs fulfilling −∞ ≤ E lnY1 < 0 and E ln(|X1| ∨ 1) < ∞, then, by Lemma 1.7 of Ver-
vaat [48], Sn converges almost surely (a.s.) as n → ∞. In this case, denote by S∞ the a.s. limit.
Clearly, Mn is non-decreasing in n and

0 ≤ Mn ≤
n∑

i=1

(Xi ∨ 0)

i∏
j=1

Yj .

Thus, if −∞ ≤ E lnY1 < 0 and E ln(X1 ∨1) < ∞, then Mn also converges a.s. to a limit, denoted
by M∞, as n → ∞.

We conduct risk analysis of the insurance business through studying the tail probabilities of Sn

and Mn for n ∈ N ∪ {∞}. The study of tail probabilities is of fundamental interest in insurance,
finance, and, in particular, quantitative risk management. Moreover, the tail probability of Mn

with n ∈N∪ {∞} is immediately interpreted as the finite-time or infinite-time ruin probability.
In most places of the paper, we restrict ourselves to the standard framework in which X1,

X2, . . . form a sequence of i.i.d. random variables with generic random variable X and common
distribution F = 1 − F on R = (−∞,∞), Y1, Y2, . . . form another sequence of i.i.d. random
variables with generic random variable Y and common distribution G on (0,∞), and the two
sequences are mutually independent.

Under the assumption that the insurance risk X has a regularly-varying tail dominating that of
the financial risk Y , Tang and Tsitsiashvili [44,45] obtained some precise asymptotic formulas for
the finite-time and infinite-time ruin probabilities. The dominating relationship between X and Y
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holds true if we consider the classical Black–Scholes market in which the log price of the invest-
ment portfolio is modelled as a Brownian motion with drift and, hence, Y has a lognormal tail,
lighter than every regularly-varying tail. However, empirical data often reveal that the lognormal
model significantly underestimates the financial risk. It shows particularly poor performance in
reflecting financial catastrophes such as the recent Great Recession since 2008. This intensifies
the need to investigate the opposite case where the financial risk Y has a regularly-varying tail
dominating that of the insurance risk X. In this case, the stochastic quantities in (1.1) and (1.2)
become much harder to tackle with the difficulty in studying the tail probability of the product
of many independent regularly-varying random variables. Tang and Tsitsiashvili [44] gave two
examples for this opposite case illustrating that, as anticipated, the finite-time ruin probability is
mainly determined by the financial risk. Chen and Xie [7] also studied the finite-time ruin prob-
ability of this model and they obtained some related results applicable to the case with the same
heavy-tailed insurance and financial risks.

In this paper, under certain technical conditions, we give a unified treatment in the sense that
no dominating relationship between the two risks is required. That is to say, the obtained formu-
las hold uniformly for the cases in which the insurance risk X is more heavy-tailed than, less
heavy-tailed than, and equally heavy-tailed as the financial risk Y . In our main result, under the
assumption that every convex combination of F and G is of strongly regular variation (see Defi-
nition 2.1 below), we derive some precise asymptotic formulas for the tail probabilities of Sn and
Mn for n ∈ N ∪ {∞}. All the obtained formulas appear to be linear combinations of F and G.
Hence, if one of F and G dominates the other, then this term remains in the formulas but the
other term is negligible; otherwise, both terms should simultaneously present. These formulas
are in line with the folklore quoted before, confirming that whichever one of the insurance and
financial risks with a heavier tail plays a dominating role in leading to the insurer’s insolvency.

In the rest of this paper, Section 2 displays our results and some related discussions after
introducing the assumptions, Section 3 prepares some necessary lemmas, and Section 4 proves
the results.

2. Preliminaries and results

Throughout this paper, all limit relationships hold for x → ∞ unless otherwise stated. For two
positive functions a(·) and b(·), we write a(x) � b(x) or b(x) � a(x) if lim supa(x)/b(x) ≤ 1,
write a(x) ∼ b(x) if both a(x) � b(x) and a(x) � b(x), and write a(x) 	 b(x) if both a(x) =
O(b(x)) and b(x) = O(a(x)). For a real number x, we write x+ = x ∨ 0 and x− = −(x ∧ 0).

2.1. Assumptions

We restrict our discussions within the scope of regular variation. A distribution U on R is said to
be of regular variation if U(x) > 0 for all x and the relation

lim
x→∞

U(xy)

U(x)
= y−α, y > 0,
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holds for some 0 ≤ α < ∞. In this case, we write U ∈ R−α . However, such a condition is
too general to enable us to derive explicit asymptotic formulas for the tail probabilities of the
quantities defined in (1.1) and (1.2). To overcome this difficulty, our idea is to employ some
existing results and techniques related to the well-developed concept of convolution equivalence.

A distribution V on [0,∞) is said to be convolution equivalent if V (x) > 0 for all x and the
relations

lim
x→∞

V (x − y)

V (x)
= eαy, y ∈R, (2.1)

and

lim
x→∞

V 2∗(x)

V (x)
= 2c < ∞ (2.2)

hold for some α ≥ 0, where V 2∗ stands for the 2-fold convolution of V . More generally, a dis-
tribution V on R is still said to be convolution equivalent if V (x)1(x≥0) is. In this case, we
write V ∈ S(α). Relation (2.1) itself defines a larger class denoted by L(α). It is known that the
constant c in relation (2.2) is equal to

V̂ (α) =
∫ ∞

−∞
eαxV (dx) < ∞;

see Cline [9] and Pakes [40]. We shall use the notation V̂ (·) as above for the moment generating
function of a distribution V throughout the paper. The class S(0) coincides with the well-known
subexponential class. Examples and criteria for membership of the class S(α) for α > 0 can be
found in Embrechts [14] and Cline [8]. Note that the gamma distribution belongs to the class
L(α) for some α > 0 but does not belong to the class S(α). Hence, the inclusion S(α) ⊂ L(α)

is proper. Recent works in risk theory using convolution equivalence include Klüppelberg et al.
[34], Doney and Kyprianou [13], Tang and Wei [46], Griffin and Maller [23], Griffin et al. [24],
and Griffin [22].

For a distribution U on R, define

V (x) = 1 − U(ex)

U(0)
, x ∈ R, (2.3)

which is still a proper distribution on R. Actually, if ξ is a real-valued random variable distributed
as U , then V denotes the conditional distribution of ln ξ on ξ > 0. For every α ≥ 0, it is clear
that U ∈R−α if and only if V ∈ L(α). We now introduce a proper subclass of the class R−α .

Definition 2.1. A distribution U on R is said to be of strongly regular variation if V defined by
(2.3) belongs to the class S(α) for some α ≥ 0. In this case, we write U ∈ R∗−α .

Examples and criteria for membership of the class R∗−α can be given completely in parallel
with those in Embrechts [14] and Cline [8]. This distribution class turns out to be crucial for our
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purpose. Clearly, if ξ follows U ∈R∗−α for some α ≥ 0, then

Eξα+ = U(0)E
(
eα ln ξ |ξ > 0

)
< ∞

since the conditional distribution of ln ξ on ξ > 0 belongs to the class S(α).
Our standing assumption is as follows:

Assumption 2.1. Every convex combination of F and G, namely pF + (1 − p)G for 0 < p < 1,
belongs to the class R∗−α .

Some interesting special cases of Assumption 2.1 include:

(a) F ∈R∗−α and G(x) = o(F (x)); or, symmetrically, G ∈ R∗−α and F(x) = o(G(x)).
(b) F ∈ R∗−α , G ∈ R−α , and G(x) = O(F (x)); or, symmetrically, G ∈ R∗−α , F ∈ R−α , and

F(x) = O(G(x)).
(c) F ∈ R∗−α , G ∈ R∗−α , and the function b(x) = F(ex)/G(ex) is O-regularly varying (that

is to say, b(xy) 	 b(x) for every y > 0).

For (a) and (b), recall a fact that, if V1 ∈ L(α), V2 ∈ L(α), and V1(x) 	 V2(x), then V1 ∈ S(α)

and V2 ∈ S(α) are equivalent; see Theorem 2.1(a) of Klüppelberg [32] and the sentences before
it. This fact can be restated as that, if U1 ∈ R−α , U2 ∈R−α , and U1(x) 	 U2(x), then U1 ∈R∗−α

and U2 ∈ R∗−α are equivalent. By this fact, the verifications of (a) and (b) are straightforward.
For (c), by Theorem 2.0.8 of Bingham et al. [2], the relation b(xy) 	 b(x) holds uniformly on
every compact y-set of (0,∞). Then the verification can be done by using Theorems 3.4 and 3.5
of Cline [9].

2.2. The main result

In this subsection, we assume that {X,X1,X2, . . .} and {Y,Y1, Y2, . . .} are two independent se-
quences of i.i.d. random variables with X distributed as F on R and Y as G on (0,∞). Under
Assumption 2.1, by Lemma 3.5 below (with n = 2), we have

Pr(XY > x) = Pr(X+Y > x) ∼ EYαF(x) + EXα+G(x).

Note that both EYα and EXα+ are finite under Assumption 2.1. The moments of Y will appear
frequently in the paper, so we introduce a shorthand μα = EYα for α ≥ 0 to help with the pre-
sentation. Starting with this asymptotic formula and proceeding with induction, we shall show in
our main result that the relations

Pr(Mn > x) ∼ AnF(x) + BnG(x) (2.4)

and

Pr(Sn > x) ∼ AnF(x) + CnG(x) (2.5)
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hold for every n ∈N, where the coefficients An, Bn, and Cn are given by

An =
n∑

i=1

μi
α, Bn =

n∑
i=1

μi−2
α EMα

n−i+1, Cn =
n∑

i=1

μi−2
α ESα

n−i+1,+.

Furthermore, we shall seek to extend relations (2.4) and (2.5) to n = ∞. For this purpose, it
is natural to assume μα < 1 (which excludes the case α = 0) to guarantee the finiteness of the
constants A∞, B∞, and C∞. Note in passing that μα < 1 implies −∞ ≤ E lnY < 0, which is an
aforementioned requirement for S∞ and M∞ to be a.s. finite. Straightforwardly,

A∞ = μα

1 − μα

< ∞.

It is easy to see that

EMα∞ ≤ E

( ∞∑
i=1

Xi,+
i∏

j=1

Yj

)α

< ∞. (2.6)

Actually, when 0 < α ≤ 1 we use the elementary inequality (
∑∞

i=1 xi)
α ≤ ∑∞

i=1 xα
i for any non-

negative sequence {x1, x2, . . .}, and when α > 1 we use Minkowski’s inequality. In order for
S∞ to be a.s. finite, we need another technical condition E ln(X− ∨ 1) < ∞. The finiteness of
ESα∞,+ can be verified similarly to (2.6). Applying the dominated convergence theorem to the
expressions for Bn and Cn, we obtain

B∞ = EMα∞
μα(1 − μα)

< ∞, C∞ = ESα∞,+
μα(1 − μα)

< ∞. (2.7)

Now we are ready to state our main result, whose proof is postponed to Sections 4.1–4.3.

Theorem 2.1. Let {X,X1,X2, . . .} and {Y,Y1, Y2, . . .} be two independent sequences of i.i.d.
random variables with X distributed as F on R and Y as G on (0,∞). Under Assumption 2.1,
we have the following:

(a) Relations (2.4) and (2.5) hold for every n ∈ N;
(b) If μα < 1, then relation (2.4) holds for n = ∞;
(c) If μα < 1 and E ln(X− ∨ 1) < ∞, then relation (2.5) holds for n = ∞.

As we pointed out before, Theorem 2.1 does not require a dominating relationship between
F and G. Even in assertions (b) and (c) where μα < 1 is assumed, there is not necessarily
a dominating relationship between F and G, though the conditions on F and G become not
exactly symmetric any more. Additionally, Theorems 5.2(3) and 6.1 of Tang and Tsitsiashvili
[44] are two special cases of our Theorem 2.1(a) with G(x) = o(F (x)) and F(x) = o(G(x)),
respectively.
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Since the famous work of Kesten [31], the tail probabilities of S∞ and M∞ have been ex-
tensively investigated, mainly in the framework of random difference equations and most under
so-called Cramér’s condition that μα = 1 holds for some α > 0. Traditional random difference
equations appearing in the literature are often different from ones such as (4.1) and (4.3) be-
low associated to our model. Nevertheless, under our standard assumptions on {X1,X2, . . .} and
{Y1, Y2, . . .}, these subtle differences are not essential and the existing results can easily be trans-
formed to our framework. We omit such details here. Corresponding to our model, Kesten’s
work [31] shows an asymptotic formula of the form Cx−α assuming, among others, that Y ful-
fills Cramér’s condition and X fulfills a certain integrability condition involving Y . Kesten’s
constant C, though positive, is generally unknown. See Enriquez et al. [15] for a probabilistic
representation for this constant. Goldie [19] studied the same problem but in a broader scope and
he simplified Kesten’s argument. Note that Cramér’s condition is essentially used in these works.
Among few works on this topic beyond Cramér’s condition we mention Grey [21] and Goldie
and Grübel [20]. For the case where F ∈ R−α for some α > 0, μα+ε < ∞ for some ε > 0, and
μα < 1, indicating that the insurance risk dominates the financial risk, Grey’s work [21] shows
a precise asymptotic formula similar to ours. Goldie and Grübel [20] interpreted the study in
terms of perpetuities in insurance and finance and they derived some rough asymptotic formulas.
Corresponding to our model, their results show that S∞ exhibits a light tail if X is light tailed
and Pr(Y ≤ 1) = 1, while S∞ must exhibit a heavy tail once Pr(Y > 1) > 0, regardless of the tail
behavior of X, all being consistent with the consensus on this topic that risky investments are
dangerous. We also refer the reader to Hult and Samorodnitsky [29], Collamore [11], Blanchet
and Sigman [3], and Hitczenko and Wesołowski [27] for recent interesting developments on the
topic.

In contrast to these existing results, we do not require Cramér’s condition or a dominating
relationship between F and G in Theorem 2.1(b), (c). The coefficients B∞ and C∞ appearing
in our formulas, though still generally unknown, assume transparent structures as given in (2.7),
which enable one to easily conduct numerical estimates.

The condition μα < 1 in Theorem 2.1(b), (c) is made mainly to ensure the finiteness of B∞
and C∞. However, it excludes some apparently simpler cases such as G ∈ R∗

0 and classical
random walks (corresponding to Pr(Y = 1) = 1). The tail behavior of the maximum of a ran-
dom walk with negative drift, especially with heavy-tailed increments, has been systematically
investigated by many people; see, for example, Feller [16], Veraverbeke [47], Korshunov [35],
Borovkov [4], Denisov et al. [12], and Foss et al. [17], among many others. The study of ran-
dom walks hints that the tail probabilities of S∞ and M∞ behave essentially differently between
the cases μα < 1 and μα = 1. Actually, if μα = 1, then all of An, Bn, and Cn diverge to ∞ as
n → ∞, and Theorem 2.1 leads to

lim
x→∞

Pr(S∞ > x)

F(x) + G(x)
= lim

x→∞
Pr(M∞ > x)

F(x) + G(x)
= ∞.

This fails to give precise asymptotic formulas for Pr(S∞ > x) and Pr(M∞ > x), though still con-
sistent with Kesten and Goldie’s formula Cx−α since F(x) + G(x) = o(x−α). For this case, in-
triguing questions include how to capture the precise asymptotics other than Kesten and Goldie’s
for Pr(S∞ > x) and Pr(M∞ > x) and how to connect the asymptotics for Pr(Mn > x) and
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Pr(Sn > x) as x ∧n → ∞ to Kesten and Goldie’s formula Cx−α . The approach developed in the
present paper seems not efficient to give a satisfactory answer to either of these questions.

Admittedly, the standard complete independence assumptions on the two sequences {X1,

X2, . . .} and {Y1, Y2, . . .}, though often appearing in the literature, are not of practical relevance.
However, Theorem 2.1 offers new insights into the tail probabilities of the sums in (1.1) and
their maxima in (1.2), revealing the interplay between the insurance and financial risks. Fur-
thermore, extensions that incorporate various dependence structures into the model are expected
and usually without much difficulty. We show in the next subsection a simple example for such
extensions.

2.3. An extension

As done by Chen [6], in this subsection we assume that {(X,Y ), (X1, Y1), (X2, Y2), . . .} is a
sequence of i.i.d. random pairs with (X,Y ) following a Farlie–Gumbel–Morgenstern (FGM)
distribution

π(x, y) = F(x)G(y)
(
1 + θF (x)G(y)

)
, θ ∈ [−1,1], x ∈R, y > 0, (2.8)

where F on R and G on (0,∞) are two marginal distributions. In view of the decomposition

π = (1 + θ)FG − θF 2G − θFG2 + θF 2G2, (2.9)

the FGM structure can easily be dissolved. Hereafter, for a random variable ξ and its i.i.d. copies
ξ1 and ξ2, denote by ξ̌ a random variable identically distributed as ξ1 ∨ ξ2 and independent of
all other sources of randomness. Under Assumption 2.1, by (2.9) and Lemma 3.5 below, we can
conduct an induction procedure to obtain

Pr(Mn > x) ∼ A′
nF (x) + B ′

nG(x) (2.10)

and

Pr(Sn > x) ∼ A′
nF (x) + C′

nG(x) (2.11)

for every n ∈ N, where

A′
n = (

(1 − θ)μα + θEY̌ α
) n∑

i=1

μi−1
α ,

B ′
n =

n∑
i=1

μi−1
α

(
(1 − θ)E(Mn−i + Xn−i+1)

α+ + θE(Mn−i + X̌n−i+1)
α+
)
,

C′
n =

n∑
i=1

μi−1
α

(
(1 − θ)E(Sn−i + Xn−i+1)

α+ + θE(Sn−i + X̌n−i+1)
α+
)
.
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Additionally, under the conditions of Theorem 2.1(b), (c), letting n → ∞ leads to

A′∞ = 1

1 − μα

(
(1 − θ)μα + θEY̌ α

)
,

B ′∞ = 1

1 − μα

(
(1 − θ)E(M∞ + X)α+ + θE(M∞ + X̌)α+

)
,

C′∞ = 1

1 − μα

(
(1 − θ)E(S∞ + X)α+ + θE(S∞ + X̌)α+

)
,

where X and X̌ are independent of M∞ and S∞. It is easy to verify the finiteness of B ′∞ and
C′∞.

We summarize the analysis above into the following corollary and will show a sketch of its
proof in Section 4.4.

Corollary 2.1. Let {(X,Y ), (X1, Y1), (X2, Y2), . . .} be a sequence of i.i.d. random pairs with
common FGM distribution (2.8). Under Assumption 2.1, we have the following:

(a) Relations (2.10) and (2.11) hold for every n ∈ N;
(b) If μα < 1, then relation (2.10) holds for n = ∞;
(c) If μα < 1 and E ln(X− ∨ 1) < ∞, then relation (2.11) holds for n = ∞.

As a sanity check, letting θ = 0, the results in Corollary 2.1 coincide with those in Theo-
rem 2.1.

3. Lemmas

In this section, we prepare a series of lemmas, some of which are interesting in their own right.
We first recall some well-known properties of distributions of regular variation and convolution
equivalence. If U ∈ R−α for some 0 ≤ α < ∞, then for every ε > 0 and every b > 1 there is
some constant x0 > 0 such that Potter’s bounds

1

b

(
y−α−ε ∧ y−α+ε

) ≤ U(xy)

U(x)
≤ b

(
y−α−ε ∨ y−α+ε

)
(3.1)

hold whenever x ≥ x0 and xy ≥ x0; see Theorem 1.5.6(iii) of Bingham et al. [2]. Since U ∈R−α

if and only if V defined by (2.3) belongs to L(α), Potter’s bounds above can easily be restated in
terms of a distribution V ∈ L(α) as that, for every ε > 0 and every b > 1 there is some constant
x0 > 0 such that the inequalities

1

b

(
e−(α+ε)y ∧ e−(α−ε)y

) ≤ V (x + y)

V (x)
≤ b

(
e−(α+ε)y ∨ e−(α−ε)y

)
(3.2)
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hold whenever x ≥ x0 and x + y ≥ x0. By Lemma 5.2 of Pakes [40], if V ∈ S(α) then it holds
for every n ∈ N that

lim
x→∞

V n∗(x)

V (x)
= n

(
V̂ (α)

)n−1
. (3.3)

The first lemma below describes an elementary property of convolution equivalence.

Lemma 3.1. Let η1, . . . , ηn be n ≥ 2 i.i.d. real-valued random variables with common distribu-
tion V ∈ S(α) for some α ≥ 0. Then

lim
c→∞ lim

x→∞
Pr(

∑n
i=1 ηi > x,η1 > c,η2 > c)

V (x)
= 0.

Proof. For every x ≥ 0 and c ≥ 0, write

Pr

(
n∑

i=1

ηi > x,η1 > c,η2 > c

)

= Pr

(
n∑

i=1

ηi > x

)
− 2 Pr

(
n∑

i=1

ηi > x,η1 ≤ c

)
+ Pr

(
n∑

i=1

ηi > x,η1 ≤ c, η2 ≤ c

)
(3.4)

= I1(x) − 2I2(x, c) + I3(x, c).

By relation (3.3), we have

lim
x→∞

I1(x)

V (x)
= n

(
V̂ (α)

)n−1

and

lim
x→∞

I2(x, c)

V (x)
= lim

x→∞

∫ c

−∞
Pr(

∑n−1
i=1 ηi > x − y)

V (x − y)

V (x − y)

V (x)
V (dy)

= (n − 1)
(
V̂ (α)

)n−2
∫ c

−∞
eαyV (dy),

where in the last step we used V ∈ L(α) and the dominated convergence theorem. Similarly,

lim
x→∞

I3(x, c)

V (x)
= lim

x→∞

∫ c

−∞

∫ c

−∞
Pr(

∑n−2
i=1 ηi > x − y1 − y2)

V (x)
V (dy1)V (dy2)

= (n − 2)
(
V̂ (α)

)n−3
(∫ c

−∞
eαyV (dy)

)2

.

Plugging these limits into (3.4) yields the desired result. �
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Hereafter, for n ≥ 2 distributions V1, . . . , Vn, denote by Vp = ∑n
i=1 piVi a convex combina-

tion of V1, . . . , Vn, where p ∈ � = {(p1, . . . , pn) ∈ (0,1)n :
∑n

i=1 pi = 1}.

Lemma 3.2. Let V1, . . . , Vn be n ≥ 2 distributions and let α ≥ 0. The following are equivalent:

(a) Vp ∈ S(α) for every p ∈ �;
(b) Vp ∈ S(α) for some p ∈ � and the relation

Vi(x − y) − eαyVi(x) = o

(
n∑

j=1

Vj (x)

)
(3.5)

holds for every y ∈R and every i = 1, . . . , n.

Proof. First prove that (b) implies (a). Denote by p∗ this specific element in � such that Vp∗ ∈
S(α). For every p ∈ �, it is easy to see that Vp(x) 	 ∑n

j=1 Vj (x) 	 Vp∗(x) and that Vp ∈ L(α)

by (3.5). Thus, Vp ∈ S(α) follows from the closure of the class S(α) under weak equivalence as
mentioned in the last paragraph of Section 2.1.

For the other implication, we only need to use (a) to verify (3.5). For arbitrarily fixed 0 <

ε < 1 and every i = 1, . . . , n, each of the sums Vi(x) + ε
∑n

j=1,j �=i Vj (x) and
∑n

j=1 Vj (x) is
proportional to a convolution-equivalent tail. Thus,∣∣Vi(x − y) − eαyVi(x)

∣∣
≤

∣∣∣∣∣(Vi(x − y) − eαyVi(x)
) + ε

n∑
j=1,j �=i

(
Vj (x − y) − eαyVj (x)

)∣∣∣∣∣
+ ε

n∑
j=1,j �=i

∣∣Vj (x − y) − eαyVj (x)
∣∣

≤
∣∣∣∣∣
(

Vi(x − y) + ε

n∑
j=1,j �=i

Vj (x − y)

)
− eαy

(
Vi(x) + ε

n∑
j=1,j �=i

Vj (x)

)∣∣∣∣∣
+ ε

n∑
j=1

Vj (x − y) + εeαy

n∑
j=1

Vj (x)

= o(1)

(
Vi(x) + ε

n∑
j=1,j �=i

Vj (x)

)
+ 2ε

(
eαy + o(1)

) n∑
j=1

Vj (x).

By the arbitrariness of ε, relation (3.5) follows. �

The following lemma shows the usefulness of convolution equivalence in dealing with the tail
probability of the sum of independent random variables. Note that the lemma does not require
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any dominating relationship among the individual tails. Additionally, in view of Lemma 3.2,
letting α = 0 in Lemma 3.3 retrieves Theorem 1 of Li and Tang [36].

Lemma 3.3. Let V1, . . . , Vn be n ≥ 2 distributions on R and let α ≥ 0. If Vp ∈ S(α) for every
p ∈ �, then V1 ∗ · · · ∗ Vn ∈ S(α) and

V1 ∗ · · · ∗ Vn(x) ∼
n∑

i=1

(
n∏

j=1,j �=i

V̂j (α)

)
Vi(x). (3.6)

Proof. Clearly, we only need to prove relation (3.6). Introduce n independent random variables
η1, . . . , ηn with distributions V1, . . . , Vn, respectively. For every x ≥ 0 and 0 ≤ c ≤ x/n,

V1 ∗ · · · ∗ Vn(x) = Pr

(
n∑

i=1

ηi > x,

n⋃
j=1

(ηj > c)

)
.

According to whether or not there is exactly only one (ηj > c) occurring in the union, we split
the probability on the right-hand side into two parts as

V1 ∗ · · · ∗ Vn(x) = I1(x, c) + I2(x, c). (3.7)

First we deal with I1(x, c). For a real vector y = (y1, . . . , yn−1)
′, write 	 = ∑n−1

k=1 yk , and for
each j = 1, . . . , n, write

(
n∏

k=1,k �=j

dVk

)
(y) = V1(dy1) · · ·Vj−1(dyj−1)Vj+1(dyj ) · · ·Vn(dyn−1).

We have

I1(x, c) =
n∑

j=1

Pr

(
n∑

i=1

ηi > x,ηj > c,

n⋂
k=1,k �=j

(ηk ≤ c)

)

=
n∑

j=1

∫ c

−∞
· · ·

∫ c

−∞
Vj (x − 	)

(
n∏

k=1,k �=j

dVk

)
(y)

=
∫ c

−∞
· · ·

∫ c

−∞

(
n∑

j=1

Vj (x − 	)

)(
n∑

h=1

(
n∏

k=1,k �=h

dVk

)
(y)

)

−
n∑

j=1

n∑
h=1,h�=j

∫ c

−∞
· · ·

∫ c

−∞
Vj (x − 	)

(
n∏

k=1,k �=h

dVk

)
(y).
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Since
∑n

j=1 Vj (x) is proportional to a convolution-equivalent tail, by the dominated convergence
theorem,

I1(x, c) ∼
(

n∑
j=1

Vj (x)

)∫ c

−∞
· · ·

∫ c

−∞
eα	

(
n∑

h=1

(
n∏

k=1,k �=h

dVk

)
(y)

)

−
n∑

j=1

n∑
h=1,h�=j

∫ c

−∞
· · ·

∫ c

−∞
Vj (x − 	)

(
n∏

k=1,k �=h

dVk

)
(y)

=
n∑

j=1

Vj (x)

∫ c

−∞
· · ·

∫ c

−∞
eα	

(
n∏

k=1,k �=j

dVk

)
(y)

−
n∑

j=1

n∑
h=1,h�=j

∫ c

−∞
· · ·

∫ c

−∞
(
Vj (x − 	) − eα	Vj (x)

)( n∏
k=1,k �=h

dVk

)
(y).

Hence, it follows from (3.5) and the dominated convergence theorem that

lim
c→∞ lim

x→∞
I1(x, c)∑n

i=1(
∏n

j=1,j �=i V̂j (α))Vi(x)
= 1. (3.8)

Next we turn to I2(x, c). Write η̃ = max{η1, . . . , ηn}, which has a convolution-equivalent tail
proportional to

∑n
j=1 Vj (x), and let η̃1, . . . , η̃n be i.i.d. copies of η̃. Clearly,

I2(x, c) = Pr

(
n∑

i=1

ηi > x,
⋃

1≤j<k≤n

(ηj > c,ηk > c)

)

≤
∑

1≤j<k≤n

Pr

(
n∑

i=1

η̃i > x, η̃j > c, η̃k > c

)
.

Thus, by Lemma 3.1,

lim
c→∞ lim sup

x→∞
I2(x, c)∑n

i=1(
∏n

j=1,j �=i V̂j (α))Vi(x)

≤ lim
c→∞ lim

x→∞
I2(x, c)∑n
j=1 Vj (x)

lim sup
x→∞

∑n
j=1 Vj (x)∑n

i=1(
∏n

j=1,j �=i V̂j (α))Vi(x)
(3.9)

= 0.

Plugging (3.8) and (3.9) into (3.7) yields the desired result. �

Due to the connection between convolution equivalence and strongly regular variation, we
can restate Lemmas 3.2 and 3.3 in terms of strongly regular variation. Actually, the next lemma
shows an equivalent condition for Assumption 2.1.
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Lemma 3.4. Let U1, . . . ,Un be n ≥ 2 distributions and let α ≥ 0. The following are equivalent:

(a) Up ∈R∗−α for every p ∈ �;
(b) Up ∈R∗−α for some p ∈ � and the relation

Ui(x/y) − yαUi(x) = o

(
n∑

j=1

Uj(x)

)

holds for every y > 0 and every i = 1, . . . , n.

The lemma below expands the tail probability of the product of independent, nonnegative, and
strongly regular random variables, forming an analogue of the well-known Breiman’s theorem
in a different situation. For Breiman’s theorem, see Breiman [5] and Cline and Samorodnitsky
[10].

Lemma 3.5. Let ξ1, . . . , ξn be n ≥ 2 independent nonnegative random variables with distribu-
tions U1, . . . ,Un, respectively, and let α ≥ 0. If Up ∈ R∗−α for every p ∈ �, then the distribution
of

∏n
i=1 ξi belongs to the class R∗−α and

Pr

(
n∏

i=1

ξi > x

)
∼

n∑
i=1

(
n∏

j=1,j �=i

Eξα
j

)
Ui(x).

The next lemma shows Kesten’s bound for convolution tails without the usual requirement
V̂ (α) ≥ 1. It improves Lemma 5.3 of Pakes [40] for the case 0 < V̂ (α) < 1.

Lemma 3.6. Let V be a distribution on R. If V ∈ S(α) for some α ≥ 0, then for every ε > 0
there is some constant K > 0 such that the relation

V n∗(x) ≤ K
(
V̂ (α) + ε

)n
V (x)

holds for all n ∈ N and all x ≥ 0.

Proof. When V̂ (α) ≥ 1, the assertion has been given in Lemma 5.3 of Pakes [40]. Hence, we
only need to consider V̂ (α) < 1 (for which α > 0 must hold). Let {η,η1, η2, . . .} be a sequence
of i.i.d. random variables with common distribution V , and set c = −α−1 ln V̂ (α) > 0. Clearly,

V n∗(x) = Pr

(
n∑

i=1

(ηi + c) > x + nc

)
.

Note that the distribution of η + c still belongs to the class S(α) and Eeα(η+c) = 1. Hence, for
every δ > 0, by Lemma 5.3 of Pakes [40], there is some constant K1 > 0 such that, for all n ∈ N

and all x ≥ 0,

V n∗(x) ≤ K1(1 + δ)n Pr(η + c > x + nc) = K1(1 + δ)nV
(
x + (n − 1)c

)
. (3.10)
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By (3.2), there are some constants K2 > 0 and x0 > 0 such that, for all n ∈ N and all x ≥ x0,

V
(
x + (n − 1)c

) ≤ K2e−(α−δ)(n−1)cV (x). (3.11)

Plugging (3.11) into (3.10) and noticing that e−αc = V̂ (α), we have, for all n ∈ N and all x ≥ x0,

V n∗(x) ≤ K1K2e(α−δ)c
(
(1 + δ)ecδV̂ (α)

)n
V (x). (3.12)

For 0 ≤ x < x0, we choose an integer n0 ≥ x0/c. Then, for 0 ≤ x < x0 and n > n0, using the
same derivations as in (3.10)–(3.12), we obtain

V n∗(x) ≤ K1(1 + δ)nV
(
x + n0c + (n − n0 − 1)c

)
≤ K1K2e(α−δ)(n0+1)c

(
(1 + δ)ecδV̂ (α)

)n
V (x + n0c) (3.13)

≤ K1K2e(α−δ)(n0+1)c
(
(1 + δ)ecδV̂ (α)

)n
V (x).

At last, for 0 ≤ x < x0 and 1 ≤ n ≤ n0, it is obvious that

V n∗(x) ≤ 1 ≤ ((1 + δ)ecδV̂ (α))n

((1 + δ)ecδV̂ (α))n0 ∧ 1

V (x)

V (x0)
. (3.14)

A combination of (3.12)–(3.14) gives that, for some constant K > 0 and for all n ∈ N and all
x ≥ 0,

V n∗(x) ≤ K
(
(1 + δ)ecδV̂ (α)

)n
V (x).

By setting δ to be small enough such that (1 + δ)ecδV̂ (α) ≤ V̂ (α)+ ε, we complete the proof. �

The following lemma will be crucial in proving Theorem 2.1(b), (c).

Lemma 3.7. Let {X,X1,X2, . . .} be a sequence of (arbitrarily dependent) random variables
with common distribution F on R, let {Y,Y1, Y2, . . .} be another sequence of i.i.d. random vari-
ables with common distribution G on [0,∞), and let the two sequences be mutually independent.
Assume that there is some distribution U ∈ R∗−α for α > 0 such that

F(x) + G(x) = O
(
U(x)

)
.

Assume also that μα < 1. Then

lim
n→∞ lim sup

x→∞
1

U(x)
Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj > x

)
= 0. (3.15)

Proof. Choose some large constant K1 > 0 such that the inequality F(x) ∨ G(x) ≤ K1U(x)

holds for all x ∈ R, and then introduce a nonnegative random variable X∗ with a distribution

F ∗(x) = (
1 − K1U(x)

)
+, x ≥ 0.
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Clearly, F(x) ≤ F ∗(x) ≤ K1U(x) for all x ≥ 0 and F ∗(x) = K1U(x) for all large x. The in-
equality F(x) ≤ F ∗(x) for all x ≥ 0 means that X is stochastically not greater than X∗, denoted
by X ≤st X∗. Moreover, since U ∈ R∗−α , there is some large but fixed constant t > 0 such that
K1

∫ ∞
t

zαU(dz) < 1 − μα . For this fixed t , define

t0 = inf
{
s ≥ t :K1U(s) ≤ G(t)

}
,

and then introduce another nonnegative random variable Y ∗ with a distribution

G∗(x) = G(x)1(0≤x<t) + G(t)1(t≤x<t0) + (
1 − K1U(x)

)
1(x≥t0).

Clearly, E(Y ∗)α < 1, G(x) ≤ G∗(x) ≤ K1U(x) for all x > 0, and G∗(x) = K1U(x) for all
x ≥ t0. Thus, Y ≤st Y ∗. Let Y ∗

1 , Y ∗
2 , . . . be i.i.d. copies of Y ∗ independent of X∗.

Choose some 0 < ε < α∧ (1−E(Y ∗)α) such that E(Y ∗)α−ε < 1. By Lemma 3.6, there is some
constant K2 > 0 such that, for all i ∈N and all x ≥ 1,

Pr

(
i∏

j=1

Y ∗
j > x

)
= Pr

(
i∑

j=1

lnY ∗
j > lnx

)
≤ K2

(
E
(
Y ∗)α + ε

)i
G∗(x). (3.16)

Noticeably, the derivation in (3.16) tacitly requires that Y ∗
1 , . . . , Y ∗

j are positive. Nevertheless, in
case G∗ assigns a mass at 0, the upper bound in (3.16) is still correct and can easily be verified
by conditioning on

⋂i
j=1(Y

∗
j > 0). By Lemma 3.5,

Pr
(
X∗Y ∗ > x

) ∼ K1
(
E
(
X∗)α + E

(
Y ∗)α)

U(x). (3.17)

Moreover, by (3.1), there is some constant x0 > 0 such that, for all x > x0 and xy > x0,

U(xy) ≤ (1 + ε)
(
y−α−ε ∨ y−α+ε

)
U(x). (3.18)

Now we start to estimate the tail probability in (3.15). Choosing some large n such that∑∞
i=n+1 1/i2 ≤ 1. Clearly, for all x > x0,

Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj > x

)
≤ Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj >

∞∑
i=n+1

x

i2

)

≤
∞∑

i=n+1

Pr

(
Xi

i∏
j=1

Yj >
x

i2

)

(3.19)

≤
( ∑

i>
√

x/x0

+
∑

n<i≤√
x/x0

)
Pr

(
X∗

i∏
j=1

Y ∗
j >

x

i2

)

= I1(x) + I2(n, x),



1816 J. Li and Q. Tang

where I2(n, x) is understood as 0 in case n + 1 >
√

x/x0. First we deal with I1(x). By Cheby-
shev’s inequality,

I1(x) ≤ x−αE
(
X∗)α

∑
i>

√
x/x0

i2α
(
E
(
Y ∗)α)i

.

This means that I1(x) converges to 0 at least semi-exponentially fast since E(Y ∗)α < 1. Thus,

lim
x→∞

I1(x)

U(x)
= 0. (3.20)

Next we deal with I2(n, x). We further decompose it into three parts as

I2(n, x) =
∑

n<i≤√
x/x0

Pr

(
X∗

i∏
j=1

Y ∗
j >

x

i2
,0 < X∗ ≤ x

i2

)

+
∑

n<i≤√
x/x0

Pr

(
X∗ >

x

i2
,

i∏
j=1

Y ∗
j > 1

)

(3.21)

+
∑

n<i≤√
x/x0

Pr

(
X∗

i∏
j=1

Y ∗
j >

x

i2
,

i∏
j=1

Y ∗
j ≤ 1

)

= I21(n, x) + I22(n, x) + I23(n, x).

By conditioning on X∗ and then applying (3.16)–(3.18), we obtain

I21(n, x) ≤ K2

∑
n<i≤√

x/x0

(
E
(
Y ∗)α + ε

)i Pr

(
X∗Y ∗ >

x

i2

)

∼ K1K2
(
E
(
X∗)α + E

(
Y ∗)α) ∑

n<i≤√
x/x0

(
E
(
Y ∗)α + ε

)i
U

(
x

i2

)

≤ (1 + ε)K1K2
(
E
(
X∗)α + E

(
Y ∗)α)

U(x)
∑

n<i≤√
x/x0

i2(α+ε)
(
E
(
Y ∗)α + ε

)i
.

Since E(Y ∗)α + ε < 1, it follows that

lim
n→∞ lim sup

x→∞
I21(n, x)

U(x)
= 0. (3.22)

Applying both (3.16) and (3.18), we have

I22(n, x) ≤ (1 + ε)K1K2G∗(1)U(x)
∑

n<i≤√
x/x0

i2(α+ε)
(
E
(
Y ∗)α + ε

)i
,
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which implies that

lim
n→∞ lim sup

x→∞
I22(n, x)

U(x)
= 0. (3.23)

Similarly, applying (3.18) twice,

I23(n, x) ≤ K1

∑
n<i≤√

x/x0

∫ 1

0
U

(
x

i2y

)
Pr

(
i∏

j=1

Y ∗
j ∈ dy

)

≤ (1 + ε)K1

∑
n<i≤√

x/x0

U

(
x

i2

)(
E
(
Y ∗)α−ε)i

≤ (1 + ε)2K1U(x)
∑

n<i≤√
x/x0

i2(α+ε)
(
E
(
Y ∗)α−ε)i

,

which, together with E(Y ∗)α−ε < 1, gives that

lim
n→∞ lim sup

x→∞
I23(n, x)

U(x)
= 0. (3.24)

A combination of relations (3.19)–(3.24) completes the proof. �

4. Proofs

4.1. Proof of Theorem 2.1(a)

We first prove relation (2.4). It is easy to verify that

Mn
d= (Xn + Mn−1)+Yn, n ∈N, (4.1)

where
d= denotes equality in distribution; see also Theorem 2.1 of Tang and Tsitsiashvili [44].

We proceed with induction. For n = 1, it follows from Lemma 3.5 that

Pr(M1 > x) = Pr(X1,+Y1 > x) ∼ μαF(x) + EXα+G(x) = A1F(x) + B1G(x). (4.2)

Thus, relation (2.4) holds for n = 1. Now we assume by induction that relation (2.4) holds for
n − 1 ≥ 1 and prove it for n. By this induction assumption and Assumption 2.1, we know that
every convex combination of the distributions of Xn and Mn−1 belongs to the class R∗−α ⊂ S(0).
Applying Lemma 3.3 with α = 0, we have

Pr(Xn + Mn−1 > x) ∼ (1 + An−1)F (x) + Bn−1G(x),
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which, together with Assumption 2.1, implies that every convex combination of the distributions
of Xn + Mn−1 and Yn belongs to the class R∗−α . Applying Lemma 3.5, we obtain

Pr(Mn > x) = Pr
(
(Xn + Mn−1)+Yn > x

)
∼ μα Pr(Xn + Mn−1 > x) + E(Xn + Mn−1)

α+G(x)

∼ AnF(x) + BnG(x).

Therefore, relation (2.4) holds for n.
Next we turn to relation (2.5). Introduce a sequence of random variables {Tn;n ∈ N} through

the recursive equation

Tn = (Xn + Tn−1)Yn, n ∈ N, (4.3)

equipped with T0 = 0. It is easy to see that Sn
d= Tn for n ∈ N. Then the proof of relation (2.5)

can be done by using the recursive equation (4.3) and going along the same lines as in the proof
of relation (2.4) above.

4.2. Proof of Theorem 2.1(b)

Note that An and Bn increasingly converge to the finite constants A∞ and B∞. Also recall
Lemma 3.7. Hence, for every δ > 0, there is some large integer n0 such that both

(A∞ − An0) + (B∞ − Bn0) ≤ δ (4.4)

and

Pr

( ∞∑
i=n0+1

Xi,+
i∏

j=1

Yj > x

)
� δ

(
F(x) + G(x)

)
(4.5)

hold. Now we start to deal with Pr(M∞ > x). On the one hand, for every ε > 0, by Theo-
rem 2.1(a), relation (4.5), and Assumption 2.1, in turn, we obtain

Pr(M∞ > x) ≤ Pr
(
Mn0 > (1 − ε)x

) + Pr

( ∞∑
i=n0+1

Xi,+
i∏

j=1

Yj > εx

)

� An0F
(
(1 − ε)x

) + Bn0G
(
(1 − ε)x

) + δ
(
F(εx) + G(εx)

)
(4.6)

∼ (1 − ε)−α
(
An0F(x) + Bn0G(x)

) + δε−α
(
F(x) + G(x)

)
≤ (

(1 − ε)−αA∞ + δε−α
)
F(x) + (

(1 − ε)−αB∞ + δε−α
)
G(x).

On the other hand, by Theorem 2.1(a) and relation (4.4),

Pr(M∞ > x) ≥ Pr(Mn0 > x)� (A∞ − δ)F (x) + (B∞ − δ)G(x). (4.7)

By the arbitrariness of δ and ε in (4.6) and (4.7), we obtain relation (2.4) for n = ∞.
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4.3. Proof of Theorem 2.1(c)

First we establish an asymptotic upper bound for Pr(S∞ > x). As in the proof of Theorem 2.1(b),
for every δ > 0, suitably choose some large integer n0 such that relations (4.4), (4.5), and the
relation

−δ ≤ C∞ − Cn0 ≤ δ (4.8)

hold simultaneously. For every ε > 0, by Theorem 2.1(a), relation (4.5), Assumption 2.1, and
relation (4.8), in turn, we obtain

Pr(S∞ > x) ≤ Pr
(
Sn0 > (1 − ε)x

) + Pr

( ∞∑
i=n0+1

Xi,+
i∏

j=1

Yj > εx

)

�
(
An0F

(
(1 − ε)x

) + Cn0G
(
(1 − ε)x

)) + δ
(
F(εx) + G(εx)

)
∼ (1 − ε)−α

(
An0F(x) + Cn0G(x)

) + δε−α
(
F(x) + G(x)

)
≤ (

(1 − ε)−αA∞ + δε−α
)
F(x) + (

(1 − ε)−α(C∞ + δ) + δε−α
)
G(x).

Since δ and ε are arbitrary positive constants, it follows that

Pr(S∞ > x) �A∞F(x) + C∞G(x).

For the corresponding asymptotic lower bound, as analyzed in the proof of Theorem 2.1(a), it
suffices to prove that

Pr(T∞ > x) � A∞F(x) + C∞G(x), (4.9)

where T∞ is the weak limit of the sequence {Tn;n ∈ N} defined by (4.3). We apply the method
developed by Grey [21] to prove (4.9). Consider the stochastic difference equation

T∞
d= (X + T∞)Y, (4.10)

which inherits a stochastic structure from (4.3). Note that the weak solution of (4.10) exists and
is unique. Furthermore, the limit distribution of Tn is identical to this unique solution and, hence,
it does not depend on the starting random variable T0. See Vervaat [48] and Goldie [19] for these
and related statements.

It is easy to check that q = Pr(T∞ > 0) > 0; see the proof of Theorem 1 of Grey
[21] for a similar argument. Construct a new starting random variable T̃0 independent of
{X1,X2, . . . ;Y1, Y2, . . .} with tail

Pr(T̃0 > x) = q Pr(XY > x)1(x≥0) + Pr(T∞ > x)1(x<0). (4.11)

Starting with T̃0, the recursive equation (4.3) generates the sequence {T̃n;n ∈ N} correspond-
ingly. Comparing (4.11) with (4.10), we see that T̃0 and, hence, every T̃n are stochastically not
greater than T∞; namely, it holds for all x ∈R and all n ∈ {0} ∪N that

Pr(T∞ > x) ≥ Pr(T̃n > x). (4.12)
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Furthermore, it holds that

Pr(T̃0 > x) ∼ q Pr(X+Y > x) ∼ qμαF(x) + qEXα+G(x),

where the last step is analogous to (4.2). Thus, by Assumption 2.1, the distribution of T̃0 belongs
to the class R∗−α . Then, by going along the same lines of the proof of Theorem 2.1(a) and using
equation (4.3) starting with T̃0, we obtain

Pr(T̃n > x) ∼ ÃnF (x) + C̃nG(x) (4.13)

with

Ãn =
n∑

i=1

μi
α + qμn+1

α , C̃n =
n∑

i=1

μi−2
α ET̃ α

n−i+1,+ + qμn
αEXα+.

Since T̃n weakly converges to T∞
d= S∞ and μα < 1, it is easy to see that limn→∞ Ãn = A∞

and limn→∞ C̃n = C∞, with the latter subject to a straightforward application of the dominated
convergence theorem. Thus, substituting (4.13) into (4.12) and letting n → ∞ on the right-hand
side of the resulting formula, we arrive at relation (4.9) as desired.

4.4. Sketch of the proof of Corollary 2.1

Clearly, the recursive equations (4.1), (4.3), and the identity Sn
d= Tn for n ∈ N still hold since

{(X1, Y1), (X2, Y2), . . .} is a sequence of i.i.d. random pairs. Introduce four independent random
variables X′, X̌′, Y ′, and Y̌ ′ with distributions F , F 2, G, and G2, respectively, and let them be
independent of {(X1, Y1), (X2, Y2), . . .}. Using decomposition (2.9), we have

Pr(Mn > x) = Pr
(
(Xn + Mn−1)+Yn > x

)
= (1 + θ)Pr

((
X′ + Mn−1

)
+Y ′ > x

) − θ Pr
((

X̌′ + Mn−1
)
+Y ′ > x

)
(4.14)

− θ Pr
((

X′ + Mn−1
)
+Y̌ ′ > x

) + θ Pr
((

X̌′ + Mn−1
)
+Y̌ ′ > x

)
.

When n = 1, applying Lemma 3.5 to each term on the right-hand side of (4.14) gives

Pr(M1 > x) = Pr(X1,+Y1 > x) ∼ A′
1F(x) + B ′

1G(x). (4.15)

Then, as in the proof of Theorem 2.1(a), proceeding with induction according to (4.14) leads to
(2.10). Relation (2.11) can be derived similarly. This proves Corollary 2.1(a).

Corollary 2.1(b), (c) can be verified by the similar ideas used in proving Theorem 2.1(b), (c).
The key ingredient is establishing a relation similar to (3.15). Write Z = XY , Z1 = X1Y1, Z2 =
X2Y2, and so on. It follows from (4.15) that

Pr(Z > x) + G(x) 	 F(x) + G(x).
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As in the proof of Lemma 3.7, we can construct independent random variables Z∗ and Y ∗ both
with tails equal to K1(F (x) + G(x)) for all large x such that Z ≤st Z∗, Y ≤st Y ∗, and E(Y ∗)α <

1. For some large n such that
∑∞

i=n+1 1/i2 ≤ 1, we write

Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj > x

)
≤ Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj >

∞∑
i=n+1

x

i2

)

=
∞∑

i=n+1

Pr

(
Zi

i−1∏
j=1

Yj >
x

i2

)

≤
∞∑

i=n+1

Pr

(
Z∗

i−1∏
j=1

Y ∗
j >

x

i2

)
.

Then, going along the same lines of the rest of the proof of Lemma 3.7, we obtain

lim
n→∞ lim sup

x→∞
1

F(x) + G(x)
Pr

( ∞∑
i=n+1

Xi

i∏
j=1

Yj > x

)
= 0,

which suffices for our purpose.
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