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Let B, =S, (S, + anTN)_l, where S, and Ty are two independent sample covariance matrices with
dimension p and sample sizes n and N, respectively. This is the so-called Beta matrix. In this paper, we
focus on the limiting spectral distribution function and the central limit theorem of linear spectral statistics
of B,,. Especially, we do not require S,; or T to be invertible. Namely, we can deal with the case where
p >max{n, N} and p <n + N. Therefore, our results cover many important applications which cannot be
simply deduced from the corresponding results for multivariate F matrices.
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1. Introduction

In the last two decades, more and more large dimensional data sets appear in scientific research.
When the dimension of data or number of parameters becomes large, the classical methods could
reduce statistical efficiency significantly. In order to analyze those large data sets, many new
statistical techniques, such as large dimensional multivariate statistical analysis (MSA) based
on the random matrix theory (RMT), have been developed. In this paper, we will investigate a
widely used type of random matrices in MSA which are called Beta matrices.

Firstly we introduce some definitions and terminology associated with Beta matrices. Let X, =
(xij) pxn» Where {x;;} are independent and identically distributed (i.i.d.) random variables with
mean zero and variance one, and similarly let Ty = N ’]XNX’;\, be another sample covariance
matrix independent of S,,, where Xy = (X;;) pxn and {x;;} arei.i.d. random variables with mean
zero and variance one. The Beta matrix is defined as

B, =S,(Sy +a,Ty) ™, (1.1)

where «, is a positive constant. For any n x n matrix A with only real eigenvalues, we denote FA

as the empirical spectral distribution function (ESDF) of A, that is FA (x) = % Y ()L;fA <x),
where )»f* denotes the ith smallest eigenvalue of A and [ () is the indicator function. In addition,

we shall call f F(xX)dFA(x) = % Yol f (AkA) a linear spectral statistics (LSS) of matrix A. In
this paper, we focus on the limiting ESDF and the central limit theorem (CLT) of LSS of B,,.
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One motivation to study Beta matrices is that their ESDFs are very useful in MSA, such
as in the test of equality of k£ (k > 2) covariance matrices, multivariate analysis of variance,
the independence test of sets of variables, canonical correlation analysis and so on. There is a
huge literature regarding this kind of matrices. One may refer to [1,9,11] for more details. For
pedagogical reasons, we provide one statistical application of Beta matrices as follows.

Let {zgl), cee, z,(il)} be an i.i.d. sample drawn from a p-dimensional distribution and {z(lz), e,
z%)} be an i.i.d. sample drawn from another p-dimensional distribution. Suppose u; = Ezgl) =0
and X; = Varz?), i=1,2. Write ZE.I) = z{/zx(_,j) and zjz) = Zi/ZX(,,j) where X(. ;) (X(. j) is
the jth column of X,, (X) and )3[.1/ s any square root of X;. We wish to test

Hy: X1 =%y vs. Hi:X1#X).

This is one of the most elementary problems in MSA, for which there are lots of test statistics.
If we write Z\) = n~! > z?l)(zgl))* and Zﬁ) =N"1! Z?:] zﬁ.z) (zg.z))*, then all the following
Lj,j=1,2,...,5 are the most frequently used test statistics for Hy (see Chapter 8 in [11]).

1z - 12|
L1 =log 0 ’\(]2) = /(n log(x/cp) — Nlog((l — x)/cN)) dFB (x),
lenZy, +CNZN |n+N

1—x

Ly=w(ZP(ZP) ) =p / dFBr(x),

L3 = 10g|Zfll)(Z£ll) +anZ§3))_l| = p/logx dFB (x),

opXx

(1.2)
Ls= tr(ZE,l)(Zfll) +anZ§3))_l) = p/xdFB” (x),

Ls = ey tr(ZP (caZ® + enZP) ' = 1) + en (2P (enZ) + enZP) ' 1)

:c,,p/(cn_]x — 1)2dFB"(x)+ch/(c;,l(l —Xx) — 1)2dFB”(x),

where ¢, =n/(n+ N),cy = N/(n+ N) and o, = N /n. Apparently all the above test statistics
are linear functionals of the ESDF of Beta matrices B,,, which are all the LSS of B,,. It is already
well known that the classical limit theorems for those LSS are not valid when the dimension
is large. So it is crucial to investigate the sequence {F®} in the large dimensional case. The
following result tells us the limiting behavior of {F B"} as p,n, N — oo.

Theorem 1.1 (Limiting spectral distribution function (LSDF)). Assume on a common prob-
ability space:

(i) Foreachi, j,n, x;j = xp;j are i.i.d. with Ex;; =0, E|X11|2 =1.
() ay >a>0and y,=p/n—y>0.
(iii) Foreachk,l, N, Xy =xXpyg are i.id. withlEx;; =0, E|x; |2 =1.

(iv) Yx =p/N - Y >0and ;25 — 57 € 0, D).
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(v) sup, E|x1; |* < 0o and supy E|x11 |* < o0.

Then with probability 1, F®"— F weakly, where F is a non-random distribution function whose
density function is

V@ =Y) =1+ )2 +da)(t, — 1)t — 1)
2nt (1 —1)(y(1 — 1) + atY)

0, otherwise,

, whent; <t <t

_ (20=(=p[e(=Y)—1+y]F2a/y=yV+¥
where 1, tr = ( (@(1=V)—I+y)>+da

mass 1 —1/y att =0;whenY > 1, F(t) has a pointmass 1 —1/Y att = 1.

). In addition, when y > 1, F(t) has a point

Remark 1.2. Condition yY/(y+7Y) < 1 is to guarantee that the random matrix S, + o, T is in-
vertible almost surely because yY/(y +Y) > 1 ensures that the dimension p could be eventually
larger than the number of observations n + N. This would imply that S,, +«,, T y is singular. Con-

dition (v) gives us the a.s. bounds of the limit of the smallest and largest eigenvalues, A?”JF%TN

and A?,”JFO‘"TN respectively, of the random matrix S,, 4+ «, T since by the definition of B,, we
can rewrite

S, +a, Ty
1 oapn
= ;(szf + TXNXTV>
) X11 o Xip X110+ XN X1 Xip X1 Xav\ o
= . . . . . . T
n+N . . . . . .
xpl _xpn Xpl XpN -xpl xpn Xpl XpN
Here
n+ N
n
n+ N
_ n
r= nxn 1+ Nary
N
(n+ N)ay
N NXN/ (n+N)x(n+N)

is a diagonal matrix. Thus under (v), for any ¢ > 0 and any / > 0, there exist two positive con-
stants v = min{l,aY/y}- (1 + y/Y)(1 — 1/yy_l_—yy)2 and v» = max{l,aY/y}- (1 +y/Y)(1 +
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\/ %)2 such that almost surely

lim AT >y lim STy <) (1.3)
p.,n,N—00 p.n,N—o00
and
P(A?”H”T’V <v—g)= o(n*l), IP’()LE"*"‘"TN > +te)= o(n*l). (1.4)

One may refer to [2] for the proof of (1.3) and (1.4).

Remark 1.3. Under the assumptions (i) and (ii) in Theorem 1.1, it is proved that the ESDF
of the sequence {S,} has a non-random limit which is known as the Marchenko—Pastur (M—P)
distribution [2,10]. Yin [15] and Silverstein [12] investigated the LSDF of the sequence {S, Ty}
assumilng (i)—(ii) of Theorem 1.1. If Ty is invertible, Bai et al. [5] gave the LSDF of the sequence
{S, Ty}

Remark 1.4. 1If max{y, Y} < 1, by (v) we know that at least one of the matrices S,, and Ty is
invertible a.s. Without loss of generality, we assume Y < 1. So Ty is invertible a.s. Then we
have

B, =S, Ty (S,Ty' +aad) ", (1.5)

which is a function of SnT&l. Via f = a,t/(1 —t) we can recover Theorem 5.3 in [5] from
our Theorem 1.1 directly. Thus our Theorem 1.1 includes Theorem 5.3 in [5] as a special
case.

Remark 1.5. From the density function in Theorem 1.1, we can find that the condition HLN —

yy+—Yy € (0, 1) is necessary, which is to make sense of /y +Y — yY.

For the purpose of multivariate inference, it is of interest to know the limiting distribution of
these LSS (1.2). Thus, we will give the central limit theorems (CLT) of LSS of Beta matrices. In
order to present this result, we need more notation. Denote

B, (x) = p(FP (x) — Fo(x)),

where Fj is the limit distribution of FB» with «, y, Y replaced by ay, y,, Yy, respectively. For
any function of bounded variation G on the real line, its Stieltjes transform is defined by

1
SG(Z)=/A—dG()»), z1eCt={zeC:3z>0).
-z
Then we have the following theorem.

Theorem 1.6. In addition to the conditions (1)—(iv) in Theorem 1.1, we further assume that:
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1. ]Exlz1 = ]Ex%1 =t E|xq; |4 =My, E|X“|4 =myx and max, , y{my, mx} < oo, where t =0,
when both X, and Xy are complex valued, and t = 1 if both real.

2. Let fi,..., fx be functions analytic on an open region containing the interval [c;, ¢, ] where
= vz_l(l — ﬁ)2, cr=1-— avz_l(l — VY)2, and v is defined in Remark 1.2.

Then, as min(n, N, p) — 00, the random vector

(/fid%n(x)), i=1,... k,

converges weakly to a Gaussian vector (G ¢,, ..., G p.) with mean functions

ot oLz (1-Y)5*()+25@) +1—y
ROR = f’<a+z>‘”"g< (1= V)5 +250) + 1 )

t < —
+ e fi(a +Z> dlog(1 — Ysz(z)(l +5(2)) 2)

my —t—2 Z -3 ..
+ T?g ﬁ(a—_m)(S(Z) +1) 7 ds(2)

mg —t—

2 f f; <aiz>(1 — Y522 (1 4+5@) ) dlog(l — ¥5*(2)(1 +§(2) )

47
and covariance functions
Cov(Gy,, G )
ot y{% Ji(zi/ (e +z1)) fj(z2/ (o + 22)) ds(z1) d§(22)

T 42 (3(z1) — §(z2))?

oy —t=2) 4 Y(mx —t—2) 7{% fiCzi/(a +2z1) fj(z2/(a + 22)) ds(z1) dS'(z2)

472 ((z1) + D2 (z2) + 1)2 ’
where
sy 2 LENA=0 —az =N+ V(A =y)A =) +az = V) —daz(l-2) 1
o 2z(1 —2)(y(1 — 2) + azY) 7’
. o Z 1 . —1 .
= — [ 1 —
5(2) (a+z)2S(a+Z> e 5@ =—z (1—-y)+ys@),
1-Y— —1-Y)2—4Y _
ho(2) = Gt P 5@ =l () + (@) a1,

2Yz

All the above contour integrals can be evaluated on any contour enclosing the interval
acy acy
[l—cl’ 1—c, 1

Remark 1.7. Actually, this result should be right under the condition that f; is analytic (or con-
tinuously differentiable) on an open region containing the interval [#, #.]. However its proof is
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more difficult at the current stage because we do not have the following results of Beta matrices:
the exact separation of eigenvalues, the limit of the smallest and the largest eigenvalues and the
convergence rate of the ESDF.

Remark 1.8. In this theorem, the notions s(z) and srﬁ;p(z) are the Stieltjes transforms of the
LSDFs of B, and Ty respectively. If Y < 1, Zheng in [16] established the CLT of the LSS of F
matrix S,,T&1 whose proof is based on [4]. It is apparent that our Theorem 1.6 covers Zheng’s
result. In addition, notice that the conclusions in Theorem 1.6 and Theorem 4.1 in [16] have the
same form. The reason is that, by calculation we can easily get

S,(Z)_i_l_y(z(1—Y)+1—y)+2zY—y\/((1—y)+z(1—Y))2—4z
oy oz 2z2(yz+7)

which has the same expression of the Stieltjes transform of the LSDF of F' matrices (see (2.6)
in [16]). Here we want to remind the reader that, when we use the last formula to calculate the
density function, that is, calculating 1 lim; | ;10 J5(z), we can find that the condition ¥ < 1 is
not needed but y + Y > yY is necessary (see page 79 in [2] for more details).

Remark 1.9. If {x;;} and {x;;} are independent standard normal random variables and p <
max{n, N}, Beta matrices can be seen as Beta—Jacobi ensemble with some parameter 8. Some
related results about this ensemble can be found in [8] and the references therein.

This paper is organized as follows: In Section 2, we present the proof of Theorem 1.1. Theo-
rem 1.6 is proved in Section 3 and Section 4. Some technical lemmas are given in Section 5.

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. The main tool we use here is the Stieltjes
transform. Its function can be explained by the following two lemmas.

Lemma 2.1 (Lemma 1.1 in [6]). For any random matrix A,,, let F An denote the ESDF of A,
and spa, (2) its Stieltjes transform. Then, if F An s tight with probability one and for each z €
C*, span (z) converges almost surely to a non-random limit sp(z) as n — 0o, then there exists
a non-random probability distribution F taking sp(z) as its Stieltjes transform such that with
probability one, as n — 0o, FA converges weakly to F.

Lemma 2.2 (Theorem 2.1 in [14]). Let G be a function of bounded variation and xo € R.
Suppose that lim e+, v, I5G(2) exists. Its limit is denoted by Isg (xo). Then G is differentiable
at xo, and its derivative is 7' Jsg (x0).

Theorem 1.1 follows from the following Theorem 2.3.

Theorem 2.3. Under the conditions (i) and (ii) in Theorem 1.1, we assume that:
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(1) {A,} is a sequence of p x p Hermitian matrices with uniformly bounded spectral norm in
n with probability one and the ESDFs of {A,} almost surely tend to a non-random limit
FA as p — oo.

(2) The smallest eigenvalue of matrices {S, + a,A,} almost surely tends to a positive value
asn — oo and p — o0.

Then we have FB» 25 F, where B, =S,(S;, + a,A [,)_l and F is a non-random distribution
function whose Stieltjes transform s = s(z) = sf (2) satisfies

A=y —=2)(zs+ 1) +at

s= dFA (1), (2.1)
1-20 -y —2)(zs+ 1)) —azt

and in the set {s : s € CT} the solution to (2.1) is unique.

By Lemma 2.1, we know that to prove Theorem 2.3 we just need to prove three conclusions:
(1) {FBr} is tight a.s. (2) s 8, 2% 5 with s satisfying (2.1). (3) The solution to (2.1) is unique in
C™. Now we prove Theorem 2.3 step by step.

2.1. Proof of Theorem 2.3
Step 1: Applying Lemma 5.2 directly, we have for any x1, x2 >0

FB | (x1x2, 00) ) < FS'{(x1, 00)} + FS A ™ (x5 00))
(2.2)
= FS{(x1,00)} + FS T {0, 1/x)}.

It is known that, under the assumptions of Theorem 2.3, with probability one FS tends to the
M-P distribution F%p, which has a density function

1
fn);p(x) _ { %\/(b —x)(x —a), ifa<x<b, 2.3)
0

otherwise,

and has a point mass 1 — 1/y at the origin if y > 1, where a = (1 — ﬁ)2 and b = (1 + ﬁ)Z.
Thus {F S"} is tight almost surely, that is, the first term on the right-hand side of (2.2) can be
arbitrarily small by choosing x| large.

On the other hand, by the second assumption of Theorem 1.1, the second term on the right-
hand side of (2.2) can be arbitrarily small as n is large, provided that 1/x, is smaller than the
smallest eigenvalue of the matrices {S, + ;A ,}. Thus {F B,} is tight almost surely.

Step 2: Recalling the definition of Stieltjes transform we have that for z € C*

1
SFBn (Z) = -

1

B
i=1 A2

NE

_ 1 tr(B, —zD) L. (2.4)
p

S
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Here we have used the fact that B,, has the same eigenvalues as
1/2 —1gl/2
S (Su + A p) '

Denote B, =S, (S, + a,A ), + eD)~! with small & > 0. From Lemma 5.3, we have
1
L*(FB, F®) < —w(®, - B,)(B, - B,)".
n
By the fact

B, —B, =28, (Sy + nAp) " 2(Sy + anA, +eD 7S, +nA ) 73S,

< &Sy +anA,+eD!
together with condition (2) in Theorem 2.3, we obtain almost surely that L3(F B. F Ee) < Cé?,
which implies lim, _, ¢ lim,,_, oo L(FB2, FB:) = 0.

Next, we consider the LSDF of B,.. Noticing that the matrix o, A, + €l is invertible for any
& > 0, we have

B.=1-B,+D!,

where B, =S, (c, A, +£D)~!. Thus, we get that FB (x) = FB: (-1 — 1) and

S () = —— (), (2.5)
F l—z (1—=2)2 F\1-z

Silverstein in [12] derived that for any z € C™, the Stieltjes transform of the ESDF of EE has a
non-random limit, denoted by s;(z), which satisfies the equation

1
5:(2) =/ [0y v @) 2

where FA is the LSDF of («,A,, + ¢I)~!. Note that 3(z/(1 — z)) = |1 — z| 723z > 0. Thus by
(2.5) we get that almost surely sgs, (z) tends to a non-random limit, denoted by s,(z), which
satisfies

dFA @),

(1-2)%s, () —(1-2)

Z/ L dFA(D),
=y —y/0d=-)(1-2)%,(2) —0-2))—z/(1-2)

By definition of F, ? and FA, we have that

-1
l‘ —
dFA (1) = —dFA<78).
(07
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Therefore letting € — 0, we have

1=y =2)zs+ 1)+ at

5= dFA®). (2.6)
1-200—y(A —2)(zs+ 1)) —azt

Step 3: From Lemma 2.1, we conclude that there exists a distribution function G with support
Ws C [0, 1] satisfying for any z € CT,

1
;@r=/ 46w 27
Ve X —Z

G —

Noticing that Iz (o + 2) "' =ala + z]723z > 0, we infer from (2.7) that

o b4 1 o 1
2£< )— = > — dG(x) — —
(@+2)*"\a+z a+z (a+2)° Sy, x—z/(@+72) a+z

1—x 1 X
=/ —————dﬁm=/ w( )
v, ax —z(1 —x) 0 X—2 o+ x

.. o Z 1
s=35(z) = (a+z)2£(a+z> T atz (2.8)

Thus

is a Stieltjes transform of the distribution function G ( with x € [0, 0o0). Notice that even if

a7
1-x y = 0. Thus, (2.6) can be represented as

ax—z(1—x

o 1 oAl
£(Z)_/wt(l—y—yZQ(z))—zd(l i <t>>

where RT™ = {t:¢ € R, t > 0}. It is shown that the solution of the last equation is unique in CT
(see [12]). Thus, we obtain that (2.6) has a unique solution in C*, which completes the proof of
Theorem 2.3.

G (x) has a point mass at x = 1, we have

2.2. Proof of Theorem 1.1

Using Theorem 2.3 and Remark 1.2, we know that the Stieltjes transform of F is the unique
solution in C™ to the equation

S_/ (I-y(d—=2)(zs+ 1) +at
) =2 —y(d—2)(zs+ 1)) —azt

ARy, (). 2.9

Here Frgp is the limit of FT¥ which is also the M—P distribution. After elementary calculations,
we may represent the last equation as

__ ! = 1 .
T e ) A om ey (2.10)
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where @ =1 — y(1 — z)(zs + 1). Recalling (2.8), we have that

_ 1 n o [ az
S@O=17 (l—z)2s<1—2>

and

o ~ . ayz [ az
o=1-yl-2)@+)=1-y (l—z)s<1—1)’

which implies

1-2m (A-2(1-y) < az )
= —ys .

oz oz 1—z

~_az ~ (= Z)W

Noticing that I= > 0, we have I——

/ 1 (t) _ ((1 Z)w‘(Z))
r—((1 —z)ZU/(az)) Fmp oz '

where s} p 1s the Stieltjes transform of the M-P distribution Frgp. Since

< 0 and

Y—z4+/@—1-Y)2—
2Yz

1
Smp(2) =

the equation (2.10) implies

1 o (1—Y—((l—z)w/(az))—i—\/(((l—z)w/(az))—l—Y)2—4Y>

s=—o 2
7 az? 2Y((1 =)o /(az))

where, and throughout this section, the square-root of a complex number is specified as the one
with positive imaginary part. The solution to this equation is

s(2) = 14+ =2) —az(1 =Y) + /(1 = y)(1 —2) +az(l = Y))2 —daz(l —z) 1
B 2z(1 = 2)(y(1 — 2) + azY) z

Now using Lemma 2.2 and letting z | x 410, 7~ !Js(z) tends to the density function of the LSDF
of B,,. Thus, the density function of the LSDF of B, is

Vaax(1—x) — (1 = y)(1 —x) +ax(1 — Y))?
2nx(1 —x)(y(1 —x) +axY)
if dax(1 —x) — ((l -y —-x)+ax(1— Y))2 >0
0, otherwise.

3
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Or equivalently,

V@1 =Y) =1+ )2 +4a)(x, —x)(x —x)

2nx (1 —x)(y(1 —x) + axY)
0, otherwise,

, if x; < x < x5

20— (1—y)[a(1-Y)—1+y]F2a/y—yY+Y
(a(1-Y)—14y)2+4a
and 1. When z — 0 with 3z > 0, we have

where x;, x, = ( ). Now we determine the possible atom at 0

S[((1 =01 —2) +az(1 = Y))* —daz(l —2)]
=23z{[(1 = V)a = 1+ y][(1 = »)(1 = R2) + (1 — Y)NRz] — 2(1 — 2%2)} <O.

By the fact that the real part of 1/g(z) has the same sign as that of the imaginary part of g(z), we
obtain that %v/((1 — y)(I — z) + az(1 — ¥))2 —4az(l —z) < 0. Thus

J =00 =2 +az(l = 7)) —daz(1 — 1) > 1 — y1.

Consequently,

1
1—y|—1-— 2 ; .
F{O}:-limzs(z):|y|2—y+1: ity
0 Y 0, otherwise.

When z — 1 with Jz > 0, we have

I[((1 = —2) +az(l = 1))* —daz(l - 2)]
=23z{[(1 = V)a — 1+ y][(1 = »)(1 = Rz) + (1 — Y)NRz] — 2(1 —2%2)} > 0.

Hence, we get R/ ((1 — y)(1 —z) + az(1 — Y))2 — 4az(1 — z) > 0. Thus,

\/((1 - =2 +az(l - Y))2 —daz(1—2)—>a|l =Y|.
Consequently,

Y—1
|1—Y|—(1—Y): —~ ifY >1;

2y 0, otherwise.

F{l}=—1lim(z — 1)s(2) =
z—1
Then the proof of Theorem 1.1 is complete.

3. Framework of proving Theorem 1.6

In this section, we will give the proof of Theorem 1.6. Recall the definition of the Stieltjes
transform of a distribution function G(x). Now we extend the Stieltjes transform to the whole
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complex plane except the interval [c;, ¢, ] analytically. Since every f;(x) is analytic on an open
region containing the interval [c;, ¢,], we assume that the analytic region contains the contour
C={zeC:Nzelcg—0,c,+0],3z=20}U{z€C:Nze{c;—0,cr +6},3z €[—0,0]}. Here
6 can be small enough. By Cauchy’s integral formula

1
feo) = 7 % A&,
mJoz—x

we have for [ > 1 and complex constants a, ..., a,

1 1
Zakp< / fe) dFB () — / fk(X)dFo(X)) == “—k.yf f@Si@dz,  (G.D)
=1 P 2mi Je

where S;,(z) = p(sn(z) — s0(2)) and s9(z) is the Stieltjes transform of F with constants y and Y
replaced by y, = p/n and Y,, = p/N. We remind the readers to notice that the above equality
may not be correct when some eigenvalues of B, fall outside the contour. However, by Re-
mark 1.2, Lemma 5.7 and the exact separation theorem in [3], we know for y > 1 (or Y > 1) and
sufficiently large n (or N), the mass at the origin (one) of FB» will coincide exactly with that
of Fy and with overwhelming probability all the other eigenvalues of B, fall in [¢; — 0, ¢, + 6].
Thus to prove Theorem 1.6, it suffices for us to derive the limiting distribution of (3.1).
Write

$n(2) = p(sn(@) — sn0(2)) + p(sn0(2) — 50(2)) := Sp1 + Sn2.
where sy((z) is the unique root of the equation

(A =yl =2)(zsno(2) + 1) + ant

= dF™N (1)
(1 =201 =y, (1 —2)(zsno + 1)) — anzt

SNO

ap Z _ 1 o —
(ot +Z)2 SNO ( oap+z ) oy+z° S0 =

in the set {syo(z) € CT}. Using the notation Syo = syo(z) =

Un

$0(2) = Grmso(g5s) — a—nlﬂ, §n0(2) = =27 (1 = yp) + yasno(2) and So(z) = —z7'(1 —
¥n) + ynS0(z) we have

1 dFTN (¢ 1 dFXN (1)
Z:_”—“‘yn/.f() and z=—7~|—yn/L...
SNO 4+ syo Y} 4+ 50

Making difference of the two identities above yields that

So—8wo _ [ Go=5wo) dFTY (1) / dFT™Y (1) — dFd (1)
505N 0 " (t +Sn0) (1 + So) " 1+ 5o '

Then we get

L . / dF™ (1) — dFinp (1) (1 - / dF™ (1) )‘1 42
50 = SN0 = YnS0S — YnS0S P R E—— . .
poeT £+ 50 IONO G Sno) ( + o)
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Let sTV be the Stieltjes transforms of F T and then from (6.32) in [16] we have the conclusion
that

/ dF™ (1) —dFan (1)

P p(s™ (=50) — sy (=50))

converges weakly to a Gaussian process ®; on C with mean function

L YEQ@PI+5@)]? Y[5()P[1 +5(2)] 3
PO = s s T ™ T T Ty sorn sor. Y
and covariance function
(§(z1)) (5(22)) 1
Cov(®1(z1), @ =@t+ D= - — -
ov(P1(z1), Pi(z2)) = (t+ )<[s(zl)—s(zz)]2 (S(Zl)_S(Z2))2> o
(g — t— 2y Y EED) E2)

(145D +5(z2)*

where §(z) = 50 (=§(2)), §7,() = —z7'(1 = ¥) + Y} (2) and (3(2)) = £50 (D=5
i =1,2. And {S,>(-)} forms a tight sequence on C and S,,g(a%_z) converges weakly to a Gaussian
process —(« + 2)2§ (z)® (z) with mean function

E(—(1+ 2% (2)®1(2)) = —(@ + 2% (2) - (3.3)
and covariance function
Cov(—(a + z)% (1) ®1(21), — (@ + 22)°5 (22) @1 (22))
= (@ + 2% (@ +22)%5 (21)5 (z2) - (3.4).

Recall the notation @ =1 — y(1 — z)(zs + 1) and suppose we have the following lemma.

Lemma 3.1. Under the conditions of Theorem 1.1 and z € C, we have that given Ty = {all Ty},
{Sn1(-)} forms a tight sequence on C and S,1(z) converges weakly to a two-dimensional Gaussian
process ®>(z) satisfying

E(P2(2)|Tw)

. f(Oéy(l - z)zzr3t/((1 —w — Zott)3)dFmYp(t)
U=y [(1=2*@/((1 = Do —zan))dFL,(1)?

3.5)
+ (my — t=2)(1 — )y

[/ =@ —zat)dFY () [(@t/(1 — )@ — zat)?) dFy (1)
1—y [((1=2*@?/((1 - )& —zat)?) dF} (1)
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and

Cov(P2(z1), P2(22)|TN) (3.6)

82
= t+1
021022 <( )

y /[( Yy —z)( —2)w)w(22) dFrﬁp(t))

(1 =z —z1at) (1 — 20) — Z001)

-
o (1_I/( yd -z —2)w (2w (z2) dFrﬁp(t)> dt:|

(1 —zno —z10)((1 — 22)w — Zpat)

+ (my —t=2)y

(1 -z (z1) anylp(t)/(l(l_ZZ)w(ZZ) an{p(t)>.

(I -z —zjat — )W — 20t

(3.7)

We postpone the proof of this lemma to the next section. Now we use the notation s = §(z) =
< y— L and§(z)=—z"'1—y)+ys@z) to get

—E s (A=
(ot+z)2 a+z a+z
()=~ s( - ) (3.8)
1—1z2 1—1z2

which can be used to rewrite (3.5) and (3.6) as

TENTEy
Y +2)? [ar (523G + 03 dFY (0

1=y [(@)*E @) +0)72dF,(1))?
+ (mx —t- 2)

(3.9)

(3.10)
@ +9? [GQ/GE +0) AR 0 [ arG@)/G@) + 0 AR (0

1— yf(S(Z))2(S(Z) + 072 AR (1)

21 22
Cov| @ , P T
V( 2<a+z1> 2(a+22>‘ N)

§(z21)5 (z2) 1 )

(G —5@2))? (21 —22)?

+ (my —t—2)y(x +Z1)2(oz +Z2)2

ats’(z1) ats’(z2) FY
Ge+17 mp()/(()+r>2d Fan 1)

and

— (t+ 1)(01+Z1)2(a+z2)2(
(3.11)
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Here we used the fact that (similar to (3.2))

2 _ S —§(z2)
TR T )iz

As the mean and covariance of the limiting distribution are independent of the conditioning
TN, we conclude that S;,1 and S),» are asymptotically independent. Then from the above argument
and page 473 in [16] we can get that Sn(ﬁ) converges weakly to a Gaussian process —(1 +

235 ()1 () + @2(11?) and together with (3.1) and Lemma 5.1 implies Theorem 1.6.

<1 _)’/E(ZI)E(Zz)('S'(Zl)+l)71(§(Z2)+t)7] anylp(t)>.

4. Proof of Lemma 3.1

In this section, we give the proof of Lemma 3.1. Following the similar truncation steps in [4] we
may truncate and renormalize the random variables {x;;} as follows:

xij| < 8un/m, Ex;j=0 and Elx;/*=1.
Here §, — 0 which can be arbitrarily slow. Based on this truncation, we can verify that:
Elx;;|* = my +o(1), 4.1)
and if X, is complex valued,
Ex?, = O(n_l).

We will introduce some notation and provide some bounds in the first part of this section. The
proof of Lemma 3.1 will be given in the next part. The main procedures of the proofs, including
the Stieltjes transform, the martingale decomposition and Burkholder’s inequality, are routine in
RMT, hence we will outline them without detailed descriptions. Interested readers are referred
to Bai and Silverstein [2]. Throughout the rest of the paper, constants appearing in inequalities
are represented by C which are nonrandom and may take different values from one appearance
to another.

4.1. Definitions and some basic results

In this part, we introduce some notation and some useful results. First, we assume z = u + i6
with 6 > 0. For simplicity, write S=S, and B=B,. Let D=D(z) =B —zI, F=F(z) =
(1 —2)S — za, Ty and I be the identity matrix. Define r; = n_l/zX(.,-) where Xy is the ith
column of X, S; =S —r;rf, B; =8§;(S; + o, Ty)",D; =D;(z) =B; —zl and F; =F;(z) =
(1—=2)S; —zo,Ty.LetE; = E(-|Ty,rq,...,1;) and Eg = E(:|Ty). Moreover, introduce
w; = wi(2) = 1* —— o' =0@)= — 1 —
14+ (1 —2rfF; (2)r; 1+n~1(1—-2)uF; (2)

1

1+n~1(1 - )EotrF ' (2)

wiE = wiE(Z) =
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vi=vi@@)= r;“Fi_lr,' —n'Ey trFl._l, N =n;(2) = r;“Fi_lr,' —n! trFi_l,
g =@ =n" trFi—1 - n_lEotrFl._l,
Sn=sn(@) =s5pm(2),  s=5@)=sp @), 50="50(2) =Spmm(2).

Obviously we have,

vi(@) = 0i(2) +§i(2),

2 2
o =o — (1 - ol =2 — (1 -2)(o7) v + (1 - (o) @iy?

and
wi=w— (-l om=0"—(1- Z)(witr)2ni +(1— z)z(witr)zwiniz.
It is easy to verify that
A=) =01 -2
and
SIF; (1 = 0rF; 1 (2)(Si + o, TY)F; ' @)y
have the same sign. Therefore from the definition of @;, we have

1 1 1 —z|
<

|wi|: —1 —=
l=21/0—2)+rfF; (Qr; 0

Similarly we can obtain

11—z
T

|| < || <

11—z
9 9

By the fact that
IF7 @] = D} @S +aTw) ™! | < Co™!

and Lemma 5.4, we have for any [/ > 2

214

Cé
E”Ii(z)’l < nnel

1553

4.2)
4.3)

(4.4)

(4.5)

(4.6)

A7

(4.8)

(4.9)

(4.10)

In the last inequality we used |x;;| < 8,+/n. For any invertible matrices M, M + r;r} and N,

using

M4rnr) ' =———rM, M N =N M-NM

@.11)
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we obtain that
F ') -F '@ =-(-2oF 'rrfF 4.12)
which together with (4.6)—(4.9) implies that for any Hermitian matrix M with |M| < C,
|eF ' (@M - trF; ' (2)M]| = |(1 — 2)o;x{F; 'MF; 'r; | < co™'. (4.13)
Lemma 4.1. Under the conditions of Theorem 1.6, we have for any non-random Hermitian
matrix M with |[M|| < C and [ > 2,

24
C13nl

W, Wh€r€Z=M+19.

Eln~' e F ' @M —n""EouF (M <
Proof. The martingale decomposition (one can refer to [2] for more details) gives

n
wF'M—EourF~'M =) (& —E_) tr(F'M - F;'M)
i=1

n
=-(1-2)) (B —E,_Doir/F; 'MF; 'r;

i=1

n
=@ -1 (B —E_)o/rF; 'MF; ',

i=1
n
+(1—2)? Z(Ei - Ei—l)wgtrwiml’fFi_lMFi_ll‘i-
i=1
Here we used (4.12) and (4.4). From (4.9) and Lemma 5.4, we obtain that

C52l_4
n
no2l -

E|rfF ' MF; 'y, —n o B MF <

Thus it follows from (4.8) and Lemma 5.6 that
n 1
Z(IE,- —Ei—) o r/F; 'MF; 'r;

i=1

E

Cnl/Za%l—4

=E = no3l

n
> (B — i) (cfF; MF; 't —n e F; ME])
i=1

On the other hand, from (4.8), (4.13), (4.10) and Lemma 5.6 we also have

Cnl/2521-4

n
DB =B o mirF M | < —— i —,

i=1

E

which completes the proof. ]



Convergence of ESDF of Beta matrices 1555

Remark 4.2. From the last lemma and (4.13), one can easily verify that for any / > 2,

1/2421—4
Cﬂl/an

E|cF; (M - EuF; ' @M < (4.14)
no3!
Furthermore, by combining (4.2), (4.10) and (4.14) with M = I, we have for any [ > 2,
C 82174
Elyi|' <~ —. 4.15)
n

Denote S;; =S —r;r} —I,r; r* for i # j. Correspondingly, let B;; =S;;(S;; +a,Ty)"! D;; =
D;j(z) = Bij — 2, Fl-] = F,,(z) = (1-2)S;j — zaTy and assume [|(S;; + &, Tn)~ 1|| < 0.
Moreover, we have

1
1+7 —z)erU (@)r;
1
l+n-1(1— Z)EotrFi‘(Z)’

1
1+n71(1 - 2)rF;}' @)

t t
wij =w;j(z) = wur ur(z) =

E_ __E _
wij = wij(z) =

Vij = J/ij(Z) J t/ (Z)rj —nilEotI‘FU (2),
nij = 0ij(2) —r]Fl] (2)r; —n~! trFi_j (2),

We can get the same bound as we did in (4.2)—(4.13) by changing the subscript i to ij. Thus
from now on when we consider these bounds we will ignore the subscripts. Let Hj = Hj2(z) =
(1-2)%= 1 wul za, Tiv. We have the following lemma.

Lemma 4.3. Under the conditions of Theorem 1.6 and 7z = u + 10, we have for any 1 <k < p,
1 <i < n and non-random matrix M with |M|| < C

Eoe;F; ' (z)Mey = e;H}, (z:)Mey + O(n~'/2), (4.16)

where ey is the p-dimensional vector with the kth coordinate being 1 and the remaining being
zero.

Proof. Using (4.11), we can check that

S0 =10+ 22U T S g o5 ) - )
J#L

1
—+ w ZHIZ ( )F,] (Z) - (1 - Z) ZleHl_2 (Z)r/ J l] (Z) (417)
j#i J#

=Hy) () + Hu) — Ho) — H),
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where

E 1—
Hey = W 2 HL OF @) - Fjl ),

JF#i

Hpy = (1 - 2wy, ) (Hy @rriF; (o) —n ' HY (OF;; (2),
J#i

Hpy = (1-2) ) (@i — o) Hy) @reiF; ().

J#

Note that, similar to (4.5), either the real parts or the imaginary parts of (1 — z)le2 and —z have
the same sign. Thus, we have for any > 0

n—1_g e
Wiy — Z0nt =3

4.18)

>

n

‘(1 —2)
which implies
[ @ < 55 (4.19)
Then it follows from (4.9), (4.19) and Lemma 5.4 that
Eo|efH,) (2)r; riji_jl (z)Mey |2
< Cn2efH}) (OH;) Q)erEoefMF! )F ;' @OM* ey +n~2Eo|efH, ()F;;' () Me|”.
From (4.19), we have
lefH) (z)ex| and efH},) (H, Dex (4.20)
are both bounded from above. In addition, by (4.9) we get that
MF;' Q)F ;' @)Me < C[F;,'(0)|* < Co~2 @21)
and
|e;H ) (Z)F;jl(Z)Mek] <co™. 4.22)
Thus combining (4.3), (4.8), (4.15), (4.12), (4.21), (4.22) and Holder’s inequalitywe obtain
EolHayl=0(n™") and Eo|Hg)l =O0(n"'/?).

Apparently we have [EgH(2) = 0. Thus the proof of the lemma is complete. ]
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Lemma 4.4. Under the conditions of Theorem 1.6 and z = u + 10, we have for any 1 <k < p,
1 < j < n and non-random matrix M with |M| < C

E|efF~" (2)Me; — EoefF~' (2)Me;|* = 0(n ")
and
E|efF; ' (:)Me; — Eoe;F ' (z)Mey ?=0(n).

Proof. Similarly to the proof of Lemma 4.1 and Lemma 4.3, we can easily get this lemma and
we omit details. O

Lemma 4.5. For any non-random matrix M with |M|| < C and 71 = u1 + 101,22 = up + 16>
with min{0;, 0} > 0, we have

1 1 2
E| -~ MF; ! (2)E; (F; ' (z2) — Eo<;trMF;‘<m)Ei (F;‘@))) =0(n7?).

Remark 4.6. Checking the proof of Lemma 4.5, we see that Lemma 4.5 holds as well when
we replace [E; (Ff] (z2)) by F; ! (z2). The main difference in the arguments is that we do not
distinguish between the cases j < i and j > i when dealing with the latter.

Proof of Lemma 4.5. Using the martingale decomposition, we have

%trMFi_l(zl)Ei (F ' (z2)) — Eo(% trMF; ! (z))E; (F;l(zz)))
1 n
= Y (B —E;)[rMF; ' 2)E; (F; ' (22)) + t MF};' z)Ei (F};' (22)) ]
J#i
] n
= Z(Ej —E; DK + K2+ K3),
J#i
where (via (4.12))
K1 = mij(z)riF;; Ya)E (w,j(zz)F,J (z2)r;rF;; (Q))MF,J (zprj,
Kz = —wij(z)rF (m)E (F_ (Z2))MF,, (zprj,
K3 = —twMF; "enE; (wl](zz)Flj (z2)r;rF; (@)
Note that by (4.13)
i | |FF S @) | = | F @F @ | < 4.23)

which implies that K is bounded.
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When j > i, applying (4.3) to get
E; —E;_DK1 = E; —E;_)o5z) (K1 — Ki),
where K12 = yxj(z1)K; and
K11 = rF- L (z)E; (wij (Zz)Gk(zz))MF,;l(Zl)l‘j

Jrij
—n~ trFi_jl(zl)IE,' (w‘,'j(Z2)Gij(ZZ))MFi_jl(Zl)

with G;;(z2) = (zz)r] f u (zz) We conclude from (4.23), (4.8), (4.15), Lemmas 5.4, 5.6
and |[M| <C that
P my o)
Z(]E —E;-DKn—Kp)| = _Z(]E|IC11|2 +EIK1l?) < ok
[>l />l
On the other hand, when j < i, we define Fl_jl(z) @y -(z) and Y, (z) using ri,...,r;—1,
| SERTIUIES FENTS CRPRRRTS M- F (z) @ij(z) and yij(z) are deﬁned using ry,...,rj_1,
rjyl,...,Fi—1,Ti41,...,T,. Here gl,... r, are i.i.d. copies of r; and independent of {r;, j =

.,n}. Let

Riji(z1,22) =1;F; (Zl)Ei_j](Zz)rj, Rijz(m,zz)—l'*E,_] (Zz)MF,] (zpr;.

Applying the equality for @ ; (z2) similar to (4.3) yields

E; —E;-DKi = E; —E;-)[@ij(@)@;;(22)Riji (21, 22) Rijo (21, 22)]
=E; —E;_ DKz +Kis — K15 — Kie),

where

Kiz =@ij(z1)@;;(22)Tiji(z1, 22)Rij2 (21, 22),
K4 = GE,’(ZOQU(Zz)n_l trF; (Z1)E,; (22)Tijo(z1, 22),

'(22)MF};' 1),

Kis —wlz(m)wlz(zz)_,,(Zz)gij(zz)n* wF ' @)E; (22) rF;

Kis = @i3@)@ij @) yij )@y n > uF @)F; (@2) F ! 22)MF; (21)
with
Tiin(z1,22) =Rin —n~ ! trF;; Yz)F;;

K H(z2),

Tija(z1,22) = Ria —n™ ' wE; () MF;; (20).
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Apparently E,-_jl(Z), @;;(z) and y . (z) have the same bound as Fl.;l(z), w;j(z) and y;j(2), re-

spectively. Thus it follows from Lemma 5.4, (4.9) and (4.23) that

C C
Emjl(z1,22)|2§ o Emjz(z1,Z2)|2§ - (4.24)

and
neF @OE; @) <€ a7 eES (@)MFS @) < C. (4.25)
Therefore combining (4.15), (4.7), (4.8), (4.24) and (4.25), we can obtain that for r =3, 4,5, 6,
2 _
E|E; —E;—)Ki| =0(n"").
This via Lemma 5.6 implies that
2
= O(n_z).

1 n
E|{- E,—E;_nDK
}’ZZ( j j DK

j<i

The terms X and K3 can be similarly proved to have the same order. Then the proof of
Lemma 4.5 is complete. O

Now we use (4.17) to write that
1 -1 -1
SUME; ! GDEF; ()

1 _ _ 1 _
= — o MH) CDEF; ' (22) + —trMH) (2D F; "(z2) (4.26)

n
1 _ 1 _
— ;trMH(z)(m)]EiFi l(Zz) - ;trMH@) (z)E;F; 1(22)-
Then we have the following lemmas.

Lemma 4.7. For any non-random matrix M with |M| < C and z1 = uy + 161,22 = uz + 6>
with min{6;, 0} > 0, we have

|Eo tr MH(1y (z0)E; (F; ' (22))| = 0, (1) 4.27)
and
By trt MH) (2)E; (F; ' (22))] = 0, (D). (4.28)
Proof. By (4.12), we obtain that
trMH 1) (z1)E: (F; ' (z2))

E 1—
- w 3 @i (OFF (OB (B (22))MH]) GOF ;.
J#i



1560 Bai, Hu, Pan and Zhou

As Hl_zl (2) F; "), Fi_j1 (2), waz(z) and @, (z) are all bounded when Iz > 0, we can get directly
that for j > i,

|Eo tr MH 1) (z1)E; (F; ' (z0))| < C.
When j < i, note that we also have

UEO trMH (1) (21)E; (Fi;l(z2))| =C.

Then from (4.12), E|x;;| < oo and the definition of E,-_jl (2), @ (z) and Zij (z) in Lemma 4.5 we
have
[Eowij z)F;; DE: (F; ' (22) — F};' (22))MH,) 2DF (20 |

= [Eowij (z0)@;; (203 F; GO @)r e F; () MH )F; @0y = 0(D),

which completes the proof of (4.27).
Now consider (4.28). When j < i, using (4.3) we rewrite the left-hand side of (4.28) as

(1 — 2@ (DB Y @i (z1)yij OFF (2DE: (F ! (z2))MHY,) (zl)r,»’
J#

4.29)
=|(1 — zD@5(z1)Eo Z wij(z1)Yij (20 Tij3(21, 22)
J#i
+ (1 =z 15 @)Eon !
(4.30)

)

x Y @i ()i (20 wF (2DE; (F; ' (22))MH) (21)
JF#

where

Tij3(z1,22) = 0F;; GDE: (F; ! (22))MHL,) z)rj —n ™' oF; 2DE: (F ! (22))MH) (20).

From Lemma 5.4, we have E|7;;3(z1, 22)|*> = O(n~!) which together with (4.15) and Holder’s
inequalityimplies

(4.29) = O(1).

For (4.30), we apply (4.3) again and obtain that

|4.30) = |((1 = 20w @) Eon ™" Y wij@)yd @) wF; (@) E; (F; ! (22)) MHY (21)|.
J#
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Here we have used the fact that [n 1 tr Fi_jl(z DE; (Fi_l(zz))MH]_zl (z1)] is bounded. Thus from
(4.15), we get that

(4.30) =0O(1).

On the other hand, when j > i, the above argument apparently also works if we replace
E; (Fi_l (z2)) with E; (Fi_j1 (z2)). And the remaining term can be expressed as

(1 —z2)o3EDE Y mij(z)@;;(22)vij (2)rF; @DE!
J#

=(1- 11)6712(21)E2wz] (2@ (22)vij(z) Tijir;E
J#i

+ (1 —z2)@iEDE Y wij(z) @) (22)yij () wF @DF;!
J#

— (1 —z)(1 — )@ (z1) @5 (22)En > Zwzj(zl)_,j(ZZ)Vij(Zl)Vij(Z2)
J#

wF 2DF (@) uF L (@2)MH) (21)

(z2)r; jEfJ (z2)MH, (z)r;

fLuT 7 G)MH) (z))r; (4.31)

(22)Tij2(z1, 22)

— (1= 2@ BE)) En Y wijemy; ) (v @)’ 4.32)
J#i

wF; @)F; (22) wF (22)MHY (21).

By Lemma 5.4 and a similar argument in (4.27), we can show that (4.31) and (4.32) are all
bounded. Then the proof of Lemma 4.7 is complete. (]

Lemma 4.8. For any non-random matrix M with |M| < C and z1 = u1 +101,20 = uz + 16>
with min{0;, 0} > 0, we have

Eon ! trMH ) (2)E; (F; ' (22))
=—(@i—Dn (1 —2)(1 — )@ 321 13(22)
-trHy, (22)MH, (2)Eo trF; ! 2)F; ! (z2) + 0, (1).

Proof. It follows from (4.12), (4.8), (4.9), (4.19) and E|x;;| < C that

EotrMH ) (z1)E; (Fl-_l(Z2))
=—(1—-2z1)1 - Zz)w%(Zl)

x Y Eow,; ()i F; (OF; zo)rriF () MHL) z)r; (4.33)

j<i
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+ 1=z —22)@51)

1
X ;Z]Eowl] (z22)r}F; '(z2)MH ) (zDF;; (Z)Elj (zo)r;j

j<i
and

(=2 — )l Y Eomy; ()riF; (2)MH, DF; (F;; 22)r; = 0, ().

j<i
Applying (4.3) to rewrite the first term of (4.33) as

Y Eom,; ()riF @F; (2)rrE (2)MHY) (20

j<i
=m3(z2n 7y EotrF; (2DE; (22) rE; (z2)MH) (21) (4.34)
j<i
+@15(22) ZEoﬁjl (z1,22)Tija(z1, 22) (4.35)
j<i
_wu(ZZ)ZEO_U(Zz)V (22)rF; (Z)E,, (Zz)rjr,_,, (z)H},) (zD)r;, (4.36)
j<i

where T;j4(z1,22) = r*EU (Zz)Mle (zpr; — n’ltrE;l(zg)MHle(zl). The arguments in

(4.31) and (4.32) and (4.24) ensure that
(4.35)=0,(1) and (4.36) =0,(1).
In addition, from (4.12) and (4.13), we have
Eo trF_ (zz)H12 (z1) =Eg trF_ (zz)le (z1) +0,(1).

Then using (4.17) again and repeating similar arguments as in the proof of Lemma 4.7 we obtain
that

EotrF; ' (z2)H; (z1) = tr H, (22)H}, (21) + 0, (1).
Combining the above arguments, we conclude that
Eon ™' ttMH ) (z)E; (F; ' (22))

=@ — Dn 21— 2)(1 — )@ o5 (2) -t Hy (22)MH],) (21)Eo tr F; H (z)E; ! (22)
+0,(1),

which complete the proof of the lemma. ]
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Remark 4.9. LetHi =H(x) = — z)wl I — za,, Ty. We conclude from the above arguments
and the fact |?D'1Ez — w{E| =0 ") that

e;F; (e = efH, ' (2)ex + 0, (n~1?) (4.37)

and

1

— ¥, 2)E: (F; ' (z2)

" (4.38)
1/n) trH_ (zz)H_ (z1)

TS - DA - oD@ () /n?) rH] @) H]  (z1)

Here we have used the fact that the denominator of (4.38) is bounded when min{6y, 6>} > 0.

4.2. Proof of Lemma 3.1

Note that the contour C of the integration contains four segments: two horizontal lines and two
vertical lines. We need to calculate the limit of S,1(z) at the four segments respectively. First of
all, considering the top horizontal line C' = {z € C : Rz € [¢; — 6, ¢, + 0], Iz = 0}, we know that
there exists some event Q,, with P(Q,,) — 1 such that,

E|s(2) — sn ()1 (Qu)] < (32)7'P(Q5) — 0

In this part, we let Q = Q, = {||(S, + @, Ty)~'|| < C} with some C < oo. By (1.4) we have
that for any [ > 0, P(Q°) < n~!. It is known that )»SJF“"TN > AS‘ ronTy o AS"+a" N
which implies

for any i, j,

Q2929

Here Q; = {|I(Si + &, Ty) 71| < C} and Q;; = {||(Sij + @ Tn)~!|| < C}. Notice that we also
have

P(Qf) <n! and ]P’(ij) <nt,
Now we rewrite S,1(z) as S,1 = S(l) Sr(lzl) + 0, (1) with

S(ll) = p(sn ()1(Q) — Ey [sn (z)I(Q)]) covariance part,

S(l = P(Eosn @)I1(Q) — So(Z)I(Q)) mean part.
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4.2.1. The covariance part

The martingale decomposition used in the proof of Lemma 4.1 gives that

S =3 @ —E_)u(D' =D 1(Q) +o0,(1)

i=1

=Y (B —Ei_)w(S —SHF ()1 (Q)

i=1

+ ) (B —Eio) (S + aaTw) (F = F;7 ') 1(Q0) + 0, (1)

i=1

=Y E—Ei_)ni@1(Q)—Di —Dr+0,(1),

i=1

where

Dy = Z(Ei —E_)d - Z)wil‘TFfl(Z)ril‘?‘Ffl(Z)l‘il(Qi),

i=1

Dy=Y (B —Ei 1)(I — )wir}F; (S + o TVF; (ri 1(Q)).

i=1

Here we used (4.12) and the fact that

P(I(Q) #1(Q) <n”". (4.39)
Check that

s —1 wp—1 2 2 —1 1 —1 ?
r’F @ (@ =n@) +-n@uF;, @+ |-uF;, (2] .
l 1 n l n l

Applying (4.4), (4.10) and Lemma 5.6 we obtain

n _ tro. N2 (e tN2 2
E‘Dl -y E —E‘—l)(qui—l - w(w;lf)l(gi) —o(1).

e n n
Similarly we have

E‘Dz - (®i- Ei_l)((l —2)o{'Ki(2)
i=1
2 (T2 2
/S +anTN>)1<Qi> =o(1),
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where K;(z) = r;"Fi_l(z)(Si + anTN)Fi_l(z)ri —n! trFi_z(z)(Si + o, Tyy). Thus we have

P(sn(2) —Esp(2))1(Q)
= ZE‘ ((wl_tr)Zm —(1—2)@"Ki(z)
i=1

N (1 =Xy

p rF; 1 (2) (S +anTN)F;1(z>)1(Q,~) +o0,(1).
Check that

A1 — D @)m:
_& Z)‘;’; O _ (1 e @K @) + (0 @) (@)

N (1= 2@ ()i (2)

wF;2(2)(Si +an T,
n

which implies

/ F@p(sa(2) — Esp(2))1(Q;)dz

2mi

T 2w 2/ F@E Q) (1 = )" @)ni(2) +0p(1).

Apparently, {E; I (Q;)d(1 — z)witr(z)n,- (z)/dz} is a martingale difference sequence so we can
resort to the CLT for martingale (see Theorem 35.12 in [7]). By Lemma 5.4 and (4.9), we can get

E|K; ()1 (9" < ==,

which together with (4.10) and (4.8) implies

Y E[1(Q)d(1 - Dya @i (2)/dz|* = 08,) — 0.

k=1

This ensures the Lyapunov condition. Thus, it is sufficient to investigate the limit of the following

covariance function
47[2/ / f(Zl)f(Zz)

gn (z1,22)dz1 dzp, (4.40)
where

Gn(z1,22) = ZEi—l[Ei (A =z o @i @D (Q))Ei ((1 — 22)@" (22)ni (22) 1 (Q))).

i=1
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From the arguments in [4], we need to show G, (z1, z2) converges in probability. Applying (4.8),
(4.10), (4.14) and the fact @ = zzri]E - witrwi]EEi, we have
Gn(z1, 22)
n
=(1-z2)( -2 ) @ @)o) @B [Ei(ni ) 1(Q))Ei (ni (z2)1(Q0)] + 0, (1).
i=1

By Lemma 5.5, we have

E;_ [ (771 (z1(9Qy) ) (771 (ZZ)I(QI))]

4.41)
_Eix 4 —|Ex | — N
i 12 Fl@1(Q0) B (F (22)1(Q0) ;]
Ex? +1
=l (R @ Q) (F @)1 (@), (“4.42)
Using (4.37), we have
2 n
(4.42) = ———= > [(H;' @) ;(H; ' (22) ;] + 0p(D).
j=1

It is worthy to remind the reader that in order to satisfy the condition in the last subsection we
used here the fact

P(1(Q) #1(Qij) <n”".
And by (4.38), we have

t+1 (1/my e H; ' (z)H] ' (21)

(4.42) =
no1—(((— D1 -z2)( - 2)@E@)oE())/n?) v H  (2)H] ! (21)

+o,(D).
From the arguments of the next part, we can conclude that for z € C*

Eosn(2) = 50(2) + O(n ") = s(2).
Thus we get in probability
Gn(z1,22)

L4 D/[( yd =z — )@ (2w (22) dF,ﬁp(t)>

(1 —zpw —z1at) (1 — 20)w — Z20t)

-1
o (1 w yd -z — 2w (21)@ (22) an’;p(t)) j|du)

(I -zDw —z1at)((1 — Zz)w — zo0t)

. (I —z)w (z1) —22)@ (22) Y

—Z1)@ —zlat 2w — oot
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which is (3.6).
In addition, by definition of S}(lll) we get

B[Sy ) = S\ @)|* =21 = 2 PElr D™ @)D (z2) = Bor D~ 2D~ (22) |1 (Q).
Therefore using (4.12), Lemmas 4.1, 4.5 and the fact that
D '@ =(0-2'I+aTyF (),
we can easily check that

2
ElsY @) - SV @l <Clzi -, z,z2el, (4.43)

nl

which implies the sequence { Slgll)(-)} forms a tight sequence on C".

4.2.2. The mean part

From the definition of the Stieltje transform of s, (z), we have

1 1
$n(2) =SBy = 5 D! = ;tr(Sn +a, TV)F(2)

1—z\1 1 1 1
= <1+ Z)—tlrSnF_l(z)——z—t1rS,,F_l(z)——.
z )p zZ zp Z
Using (4.11) we get that

n
S,F () =) minrfF; !, (4.44)

i=1

which implies

Thus we have

% Y @i =1yl = Dsu + 1) (4.45)
i=1
and
Eow11(Q1) =1 — yu(1 — 2)(zEos, 1 (Q1) + 1). (4.46)

Denote A, = Eo(w11(91)) (Eo(m1 1 (Q1) 4+, Ty) !,

C,=A,—AR)=Ey and s,(z)1(Q)) —p 'trC,.
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Then we obtain that

1 _ Eow11(Q1) + ant Ty
P trC,,_f T b 10— s 0. (4.47)

Recalling the definition of @y and (2.9) we have

l—wy 1 1 1 ot T
— - = + dF™ (1),
zydl—2) z 11—z 1—zJ) (1—-2)wy—zaut

which implies

wy) = (1 —|—y/ LdF‘TN(I))I
(1 = )m@o — zant '
According to (4.46) and (4.47), we get that

Eow11(Q1)

_ (1-2) Ty N -
_<1+y/(I—Z)]EOWII(QI)—Zande O+ (Bom 1(Qu) oy Zm”) '

The difference of the above two identities yields
Eow1 1 (QD)woy(1 — 2)*(wo — Eow11(Q1))
[(1 — 2)w@o — zant][(1 — 2)Eow1 1 (Q1) — zant]
+ wozy(1 — 2)A,.

@y — B 1(Q)) = dF™ (1)

Thus we use (4.39) to obtain that

Eosn (2)1(Q) — s0(2) (4.48)

(1 = 2)*Bom1 1(Q1)mo AF T m)‘l_
[(1 = 2)@o — zant][(1 — 2)Eow11(Q1) — zant]

=y, <1 —
We will use the following lemma.

Lemma 4.10. For z € C;

(my —t—2)a, (1 — 2)(@])?
pn

L= (@) a,

PA(Z) = trHal(z) trHaz(z)TN

trHy ()T +o(1).

Proof. It follows from the definition of D,, and C,, that

D,'-C,'=C,'A,-B,)D,; ! =C,'A,D,;' —C,'B,D, .



Convergence of ESDF of Beta matrices 1569

Using (4.44), we have
n
C,'B,D;' =C' ) “minrfF;(2)
i=1
and
n
C,'AB, — D' =C AN @i F (2) + 0, G ATV ().
i=1
Then from the definition of A(z) and (4.11) we have
pAy = nEomr{F ! (2)CT' AR 1(Q))
+ Eoan r ATNF 1 (2)CT'1(Q)) — n]Eow'erFl_l(Z)C_lril(Ql)
=d\ +dy+dz+ds,
where
di = nEow 1(QDIF; ' (2)C™'Ar| — g 1 (Q)EotrFy ' (2)C7 A,
dy =B 1(QDEo trF ' (2)C™'A — Eow 1 (Q)Eo tr F ! (2)C A,
d3 = Eow 1 1(QDEo rFy ' (2)C™" — nEow 1 (QDFiF] ' (2)C 'ry,
dy =B 1(Q1)Eo rF~! ()C™" — Eo1 1 (QEo rFy ' (2)C ™.
First, consider d;. We apply (4.3) and (4.2) to represent d; as
di = —n(l — z)(w{E)onm (ciF'C'Ar —n T wFICTTA) Q) (4.49)
+ (1 — 2)(w]) Eok (rF; ' C A — Eo trF ' C1A) 1(Q)) (4.50)
+n(1 — 2*(@l) (Bow 1 y2riF; ' C 1Ay \
4.51)
—n"Eom y{Eotr Fy ' CT1A)1(Q)).

Note that similar to (4.18) we can get that ||C~!|| and ||[AC~!| are both bounded when z € C’.
Thus by Lemma 4.1 and Lemma 5.4 we obtain that

E[rF] ' (z)C'A - BotrFy ' (2)C A" = 0(D),
E[r'F ' ()C ' Ar —n o FT @) C A = 0(n ).
These together with (4.10), (4.8), (4.14) and Holder’s inequalityimply that

(4.50)=0,(n""?) and (4.51)=0,(82).

n
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Using Lemma (5.5), we have

(4.49) = —(my —t—2)(1 — z)(w]E)zanEo(Fl_l(z))u(Fl_l(z)C’lA)HI(Ql)
_ (t+ DA =)@’

n

Eo trFl_Z(z)CflAI(Qll

For d;, we use (4.12) to get

dr = (1 — 2)Eow Eo (w1 1 (QDYF; () CT'AF ! (2)1(Q)ry)

_ E\2
L b2 e AL(Q) 40, (1),

Similarly, we can get

dy = (my —t—2)(1 = 2)(o7) B0 (F7 ' (@), (FT ' @C™"),, 1(QD)
N t+ DA —z)(wIE)Z]E

n

otrF72(2)C™1(Q)) +0,(1)

and

B E\2
dy= _% twF () C +0,(D).

Therefore combining the above four equations, we conclude that
EotrD, '1(Q1) —trC; !
(my —t=2)(A —)(@)p e
= L 2R (Fi ' (@), (FT ' (@C A= A)),, 1(QD)

n
N t(1 —z)(w}E)ZE
n

QtrFfz(Z)C71 I-A)I(Qy)+ Op(l)'
By Lemmas 4.3-4.5 and the fact that
|C' A= A)| = T ((1 = 2o 1(QDI - za, Ty) | < C,

we have that

my — t— e, (1 — 2) ()2
EoturD, ! —trC; ! = (m, )p"n( (@) trHy () tr Hy > (2) Ty
L= (@) ay
n

trH, > (2)Tw +0p(1),

which complete the proof of this lemma. ]
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. . l1—y+z o l—y4z
Noting the transform §,(z) = msn(lz?) - ﬁ, S0(z) = ﬁm(ﬁ) - z(%; and
(3.12) in [3] we have that for z € C;

-1
(-] T ™)
[(A - 2D)Ew — zant][(1 — 2)wo — zo,t]

Thus we have Es, = so + O(n~!) — s, which combined with (4.48) gives (3.5).

We so far have proved Lemma 3.1 under the condition that z € C'. It is easy to check that the
above arguments evidently work when z belongs to the bottom line due to symmetry.

When z belongs to the left vertical line of the contour, that is z € = MRz=¢c; —0,3z €
[—6, 61}, we split ¢! into two parts Ci + Cé where

< Cy.

Cl={fz=c—6,n""e, <32/ <0} and Ch={Nz=c;—0,|3z1 <n"'e,}

with &, = n—# for some B € (0, 1). We truncate s,, at each part, that is

i () sn(2), zel;
Splz) =
" sn(f}iz—i—in’len), ze(,’é.

Then from a similar argument in [4] we can get that the limit of p(§,(z)I(Q) — sg) has the same
form as Lemma 3.1 provided. Here Q = {||(S,, + o, Ty) ' <CIn {A?" > ¢; — (} with small
enough ¢ > 0. And the situation is the same if z belongs to the right vertical line of the contour
due to symmetry. We omit the details.

5. Some basic lemmas
In this section, we give some basic lemmas which are used in the paper.

Lemma 5.1 (Lemma 6.1 in [16]).
_ S@E @ +1—-y)
@ +1/0-Y)H(1-Y)’
@+ 1/A-Y)(A-Y)

= o+ D
(@) = - (@) +1/0 =)l —Y)?
T 1=V +25@) + 11—y’
/ = — $@) :
§)+t P (@) +1/0=Y)(1-Y)
(5(2))?

. 72
/ 1(5) +1) " dFy(0) = (1—YV)5@)2+25@) + 1’
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o U=V +2B@+1 . 0 2\ e
$ (Z) - (S(Z))Z(S(Z) + 1)2 (S(Z)) - (l Y(S(Z)) (S(Z) + l) )S (Z)(S(Z)) 4
2y [arG@Y @ +n0 dFg, () ( (1-Y)5(2)* +25(x) + 1 — y>’
1=y [G@?E@) +D72dFE ) (1=-Y)5@?2>+25@)+1 )’

2§ Q@) ER) +07
(1 —Y(E@)2E@) + 1D)2)2

2 (e 2
(log(1-Y(5(2) (5@ +1)7))".
Lemma 5.2 (Lemma 2.3 in [13]). Let x, y be arbitrary non-negative numbers. For A and B
square matrices of the same size,
FV (AB)(AB)* {(xy’ OO)} S F«/AA* {(X, OO)} + F\/BB* {(y, OO)}

Lemma 5.3 (Lemma A.45 and Corollary A.41 in [2]). Let A and B be two n x n Hermitian
matrices. Then

1
L(FA FB) <|A—B| and L3(FA, F®) < -tr(A—-B)A-B)*,
n
where L(-, -) denotes the Lévy distance and || - || denotes the spectral norm.

Lemma 5.4 (Lemma 9.1 of [2]). Let A be an n X n nonrandom matrix bounded in norm by
M, and X = (x1,...,x,)* be a random vector of independent entries. Assume that Ex; = 0,
Elx;|2 = 1, ]Elxj|4 < 00 and |x;| < 8y/n with 8, — 0 slowly. Then for any given 2 <1 <
b log(nélz) with some b > 1, there exists a constant C such that

E|X*AX — A <nl(ns?)~ (MCs2).

Lemma 5.5 ((1.15) of [4]). Let A = (aij)pxp and B = (b;jj) pxp be nonrandom matrices
and X = (x1,...,xp)* be a random vector of independent entries. Assume that Ex; = 0 and
E|x;|?> = 1. Then we have,

E(X*AX —trA)(X*BX —tuB) =

1

p
(Elx;|* — [Ex?|* — 2)aiibi; + tr A,BI +trAB, (5.1)
=1

where A, = (Exizai Dpxp> Bx = (Exizb,- ) px p and the superscript T s the transpose of a matrix.

Lemma 5.6 (Burkholder inequality). Let {X} be a complex martingale difference sequence
with respect to the increasing o -field Fi, and let Ey denote conditional expectation with respect
to Fi. Then we have

(a) forp>1,

E

p n p/2
< Kp1E<Z |Xk|2) ; (5.2)

k=1

n
>
k=1
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(b) for p =2,

E

p n p/2 n
=K, (E(ZEk—lleF) +EZ|Xk|p>- (5.3)
k=1 k=1

n
DX
k=1

Lemma 5.7. Let A and B be two n x n non-negative definite Hermitian matrices. )»? and )LlB
denote the ith smallest eigenvalue of A and B, respectively. Then we have

MAB <AAB < OMB anag aAMB <MB <P =1,
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