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We prove the compact law of the iterated logarithm for stationary and ergodic differences of (reverse or not)
martingales taking values in a separable 2-smooth Banach space (for instance a Hilbert space). Then, in the
martingale case, the almost sure invariance principle is derived from a result of Berger. From those results,
we deduce the almost sure invariance principle for stationary processes under the Hannan condition and
the compact law of the iterated logarithm for stationary processes arising from non-invertible dynamical
systems. Those results for stationary processes are new, even in the real valued case. We also obtain the
Marcinkiewicz–Zygmund strong law of large numbers for stationary processes with values in some smooth
Banach spaces. Applications to several situations are given.
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1. Introduction

Let (X , | · |X ) be a separable Banach space and X ∗ be its topological dual. Let (�,F ,P) be a
probability space and let (Xn)n≥0 be a strictly stationary sequence of X -valued random variables.
We are interested in the P-a.s. behaviour of (Sn/

√
2nL(L(n)))n≥1, where Sn := X0 +· · ·+Xn−1

and L := max(1, log).

Definition 1.1. We say that (Xn)n≥0 satisfies the bounded law of the iterated logarithm (bounded
LIL or BLIL) if (Sn/

√
2nL(L(n)))n≥1 is P-a.s. bounded.

Definition 1.2. We say that (Xn)n≥0 satisfies the compact law of the iterated logarithm (compact
LIL or CLIL) if (Sn/

√
2nL(L(n)))n≥1 is P-a.s. relatively compact.

When (Xn)n≥0 is a sequence of independent random variables, the bounded and compact LILs
are well understood, thanks to a characterization due to Ledoux and Talagrand [22]. When the
compact LIL holds, the cluster set of Sn/

√
2nL(L(n)))n≥1 may be identified thanks to a result

of Kuelbs [21]. When X0 is pregaussian (see next section), we have an almost sure invariance
principle as well.

For Banach spaces of type 2 (see next section for the definition), the result of Ledoux–
Talagrand takes the following particularly simple form.

Theorem 1.1 (Ledoux and Talagrand [23], Corollary 8.8). Let (Xn)n≥0 be a sequence of
i.i.d. random variables with values in a Banach space of type 2. Then, (Xn)n≥0 satisfies the
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bounded LIL (resp. the compact LIL) if and only if E((x∗(X0))
2) < ∞ for every x∗ ∈ X ∗

(resp. ((x∗(X0))
2)x∗∈X ∗,|x∗|X∗≤1 is uniformly integrable), E(|X0|2X /L(L(|X0|X ))) < ∞ and

E(X0) = 0.

In particular, a sequence of i.i.d. variables (Xn)n≥0 with values in a Banach space of type 2
satisfies the compact LIL (hence, the bounded LIL) as soon as:

E
(|X0|2X

)
< ∞ and E(X0) = 0. (1)

Now (see Remark 2.4), by a result of Pisier [30], if X is a Banach space for which any sequence
of X -valued i.i.d. variables, such that (1) holds, satisfies the bounded LIL, then, X must be of
type p for any 1 < p < 2.

We are interested here in the case where (Xn)n≥0 is a general stationary sequence, including
the case of martingale differences (and of reverse martingale differences). The analogue of the
notion of Banach space of type 2 in the case of martingale differences is the notion of 2-smooth
Banach space (see the next section for the definition). One could wonder whether Theorem 1.1
is true in this context, or, at least, whether (1) is sufficient for the bounded LIL or the compact
LIL, when (Xn)n≥0 is a stationary sequence of martingale differences.

As far as we know, the latter question remained unsolved. Let us however mention some re-
sults in that direction. Morrow and Philipp [27] (see also [28] for an improved version) obtained
an almost sure invariance principle (see the next section for the definition), hence a compact LIL
(with an ad hoc normalization), for sequences of non-necessarily stationary martingale differ-
ences taking values in a Hilbert space. Dehling, Denker and Philipp [16] proved a bounded LIL
in the same context. When applied to stationary sequences of martingale differences, the above
results require higher moments than 2.

In this paper, we prove that condition (1) is sufficient for the compact LIL when (Xn)n≥0
is a stationary sequence of martingale differences with values in a 2-smooth Banach space.
When the sequence is ergodic, the cluster set of (Sn/

√
2nL(L(n)))n≥1 is identified as well as

lim supn |Sn|X /
√

nL(L(n)). Then, using a result of Berger [2], we obtain an almost sure invari-
ance principle for (Sn)n≥1. Those results (except for the invariance principle) extend to reverse
martingale differences. We do not know whether our results could be extended beyond the scope
of 2-smooth Banach spaces. However, the above mentioned result of Pisier shows some limita-
tion.

To prove those results, we first obtain integrability properties of the “natural" maximal function
arising in that context, hence generalizing a result of Pisier [30] for i.i.d. variables. This step
is crucial not only to prove the results for martingales (and reverse martingales), but also in
order to extend the results to general stationary processes under projective conditions, such as
the Hannan condition, see Theorem 2.10 or the Maxwell–Woodroofe condition, see Cuny [4].
We note that the almost sure invariance principle for Hilbert-valued stationary processes under
mixing conditions have been obtained by Merlevède [26] and Dedecker and Merlevède [13].
Their results have different range of applications.

We also investigate the Marcinkiewicz–Zygmund strong law of large numbers for stationary
processes taking values in a smooth Banach space. The maximal function arising in that other
context has been studied by Woyczyński [31], for stationary martingale differences. We investi-
gate the case of stationary processes under projective conditions. The main argument used is the
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same as the one for the law of the iterated logarithm. The Marcinkiewicz–Zygmund strong laws
in smooth Banach spaces have been also studied by Dedecker and Merlevède [12] for stationary
processes satisfying mixing conditions.

In the next section, we set our notations and state our results for martingales and then, for
stationary processes, including non-adapted processes, functionals of Markov chains or iterates
of non-invertible dynamical systems. In Section 3, we give several examples to which our condi-
tions apply. In Section 4, we prove our martingale results and in Section 5 we prove our results
for stationary processes. Finally, we postpone some technical proofs or results to the Appendix.

2. Main results

Let (�,F ,P) be a probability space. We will consider Banach-valued random variables. We refer
to the book by Ledoux and Talagrand [23] for the basic facts on the topic (definition, conditional
expectation. . . ).

Let (X , | · |X ) be a separable real Banach space. We endow X with its Borel σ -algebra. Denote
by L0(X ) the space (of classes modulo P) of measurable random variables on � taking values in
X . We define, for every p ≥ 1, the usual Bochner spaces Lp and their weak versions, as follows

Lp(�,F ,P,X ) = {
Z ∈ L0(X ): E

(|Z|pX
)
< ∞};

Lp,∞(�,F ,P,X ) =
{
Z ∈ L0(X ): sup

t>0
t
(
P
(|Z|X > t

))1/p
< ∞

}
.

For every Z ∈ Lp(�,F ,P,X ), write ‖Z‖p,X := (E(|Z|pX ))1/p and for every Z ∈ Lp,∞(�,

F ,P,X ), write ‖Z‖p,∞,X := supt>0 t (P(|Z|X > t))1/p .
For the sake of clarity, when they are understood, some of the references to �, F or P may

be omitted. Also, in the case when X = R, we shall simply write ‖ · ‖p or ‖ · ‖p,∞. Recall that
for every p > 1 there exists a norm on Lp,∞(P,X ) (see, for instance, [23], Chapter “Notation”),
equivalent to the quasi-norm ‖ · ‖p,∞,X , that makes Lp,∞(P,X ) a Banach space.

The Banach spaces we will consider are the so-called smooth Banach spaces.

Definition 2.1. We say that X is r-smooth, for some 1 < r ≤ 2, if there exists L ≥ 1, such that

|x + y|rX + |x − y|rX ≤ 2
(|x|rX + Lr |y|rX

) ∀x, y ∈X .

Definition 2.2. We say that (dn)1≤n≤N ⊂ L1(�,F ,P,X ) is a sequence of martingale differ-
ences, if there exists non-decreasing σ -algebras (Gn)0≤n≤N such that for every 1 ≤ n ≤ N , dn is
Gn-measurable and E(dn|Gn−1) = 0 P-a.s. If (Gn)1≤n≤N+1 is non-increasing and E(dn|Fn+1) =
0 P-a.s., we speak about differences of reverse martingales.

It is known, see, for instance, Proposition 1 of Assouad [1] (and its corollary), that when X is
r-smooth, there exists D ≥ 1, such that for every martingale differences (dn)1≤n≤N , we have

E
(|d1 + · · · + dN |rX

) ≤ Dr
N∑

n=1

E
(|dn|rX

)
. (2)
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When needed, we will say that X is (r,D)-smooth, where D is a constant such that condition
(2) is satisfied (notice that this definition is compatible with the definition page 1680 of [29], see
Proposition 2.5 there). Clearly, D must be greater than 1.

Any Lp space, p > 1 (of R-valued functions), associated with a σ -finite measure is r-smooth
for r = min(2,p) (one may take D2 = p − 1 if p ≥ 2, see [29], Proposition 2.1, and D2 = 2 if
1 ≤ p < 2 by [1]). Any Hilbert space is (2,1)-smooth.

Definition 2.3. We say that X is a Banach space of type r , 1 < r ≤ 2, if (2) holds for every
finite set (dn)1≤n≤N of independent variables. Hence, 2-smooth Banach spaces are particular
examples of spaces of type 2.

Our goal is to study the law of the iterated logarithm and the Marcinkiewicz–Zygmund strong
law of large numbers for the partial sums of an X -valued stationary process. We will start by
studying the maximal functions associated with these limit theorems. Let us specify some nota-
tions.

Let θ be a measurable measure preserving transformation on �. To any X ∈ L0(�,X ), we
associate a stationary process (X ◦ θn)n≥0 (when θ is invertible, we extend that definition to
n ∈ Z). Then, for every n ≥ 1, write Sn(X) = ∑n−1

i=0 X ◦ θi .
We shall assume that there exists a suitable filtration on �. In order to cover more situations,

we shall consider filtrations that are either non-decreasing or non-increasing. In spirit, the first
case arise when θ is invertible and the second one when θ is non-invertible.

In particular, we assume that we are in one of the following situations.
If F0 ⊂ F is a σ -algebra such that F0 ⊂ θ−1(F0), we define a non-decreasing filtration

(Fn)n≥0 by Fn := θ−n(F0). Define then En = E(·|Fn).
If F0 is such that θ−1(F0) ⊂ F0 (for instance, take F0 = F ), we define a non-increasing

filtration (Fn)n≥0, by Fn := θ−n(F0). Define then E
n = E(·|Fn).

Let 1 ≤ p ≤ 2. Let X ∈ Lp(�,F ,P,X ). We consider the following maximal functions

Mp(X) := sup
n≥1

|∑n−1
k=0 X ◦ θk|X

n1/p
, if 1 ≤ p < 2, (3)

M2(X) := sup
n≥1

|∑n−1
k=0 X ◦ θk|X√
nL(L(n))

, (4)

where L := max(log,1).
The maximal operator M1 is related to Birkhoff’s ergodic theorem, which asserts that for

every X ∈ L1(�,X ), ((
∑n−1

k=0 X ◦ θk)/n)n≥1 converges P-a.s. (see Theorem 2.1, page 167 of
[20] for the X -valued case). For every X ∈ L1(�,X ), by Hopf’s dominated ergodic theorem for
real-valued stationary processes (see [20], Corollary 2.2, page 8), applied to (|X|X ◦ θn)n≥0, we
have ∥∥M1(X)

∥∥
1,∞ ≤ ‖X‖1,X . (5)

Now, once we know that (5) holds, by the Banach principle (see [20], Theorem 7.2, page 64,
or Proposition C.1), in order to prove Birkhoff’s ergodic theorem, it suffices to prove it on a set
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of X’s dense in L1 (e.g., the θ invariant elements and the coboundaries). We want to use that
strategy to study the Marcinkiewicz–Zygmund strong law of large numbers and versions of the
law of the iterated logarithm. Of course, one cannot expect to have a version of (5) for Mp , when
1 < p ≤ 2 without any further assumption on (X ◦ θn)n≥0.

2.1. Results for stationary (reverse) martingale differences

In this subsection, we consider stationary sequences of (reverse) martingale differences.
Let d ∈ Lp(�,F1,X ) be such that E0(d) = 0 P-a.s. Then, by our assumptions on F0, (d ◦

θn)n≥0 is a stationary sequence of martingale differences.
Let d ∈ Lp(�,F0,X ) be such that E1(d) = 0 P-a.s. Then, by our assumption on F0, (d ◦

θn)n≥0 is a stationary sequence of reverse martingale differences, that is, for every n ≥ 0, d ◦ θn

is Fn-measurable and E(d ◦ θn|Fn+1) = 0 P-a.s.
There is no loss of generality in assuming that our stationary sequences of (reverse) martingale

differences are given that way.
Indeed, it is well known (see, e.g., Doob [17], page 456) that, given a stationary sequence

(d̃n)n≥1 on a probability space (�̃, F̃ , P̃), there exist another probability space (�,F ,P), an
invertible bi-measurable measure-preserving transformation θ on � and a random variable d on
� such that the sequences (d̃n)n≥1 and (d ◦ θn)n≥1 have the same law.

Moreover, it follows from the construction, that if (d̃n)n≥1 are martingale differences (re-
spectively, reverse martingale differences), (d ◦ θn)n≥1 are martingale differences (respectively,
reverse martingale differences) either.

Hence, since all the results we are concerned with in that paper only rely on the distribution of
the processes under consideration, we shall assume (without loss of generality) that our stationary
sequences of martingale differences are given thanks to a measure-preserving transformation.

We start with a result of Woyczyński about the Marcinkiewicz–Zygmund strong law of large
numbers.

Proposition 2.1 (Woyczyński [31]). Let 1 < p < r ≤ 2 and D ≥ 1. Let X be a separable (r,D)-
smooth Banach space. There exists Cp,r > 0 such that for every d ∈ Lp(�,F1,X ) (resp. d ∈
Lp(�,F0,X )), with E0(d) = 0 (resp. E1(d) = 0), we have∥∥Mp(d)

∥∥
p,∞ ≤ Cp,rD

r/p‖d‖p,X . (6)

Moreover, ∣∣Sn(d)
∣∣
X /n1/p → 0 P-a.s. (7)

Remark 2.2. Actually, Woyczyński proved that Mp(d) is in any Lr , r < p and worked with
martingale differences (not differences of reverse martingales). But his argument applies to ob-
tain the above proposition. We give the proof of (6) in the Appendix, for completeness. The proof
of (7) is done in [31]. The argument is very similar to the scalar case. Actually by the Banach
principle (see Proposition C.1), using (6), it is enough to show (7) in the scalar case, see for
instance the proof of Theorem 2.3.
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Next, we obtain a similar result for M2, from which we derive the compact LIL for stationary
martingale differences (or reverse martingale differences).

Theorem 2.3. Let X be a (2,D)-smooth separable Banach space, for some D ≥ 1. For every
1 ≤ p < 2, there exists a constant Cp ≥ 1, such that for every d ∈ L2(�,F1,X ) (resp. every
d ∈ L2(�,F0,X )) with E0(d) = 0 (resp. E1(d) = 0), we have∥∥M2(d)

∥∥
p,∞ ≤ CpD‖d‖2,X . (8)

In particular, (d ◦ θn)n≥0 satisfies the compact LIL. Moreover, if θ is ergodic,

lim sup
n

|Sn(d)|X√
2nL(L(n))

= sup
x∗∈X ∗,|x∗|X∗≤1

∥∥x∗(d)
∥∥

2 ≤ ‖d‖2,X P-a.s. (9)

and the cluster set of (
Sn(d)√

2nL(L(n))
)n≥1 is P-a.s. a fixed compact set whose description is given in

Appendix D.

Remark 2.4. Of course, (8) is equivalent to the fact that, for every 1 ≤ p < 2, there exists C̃p ,
such that ‖M2(d)‖p ≤ C̃pD‖d‖2,X . This bound has been obtained in [30], Théorème 1, for i.i.d.
variables with values in a Banach space of type 2. Moreover, it follows from Remarque 2 and
the proposition page 208 of [30], that if every sequence of i.i.d. variables in L2(�,X ) satisfy the
bounded LIL, the space X must be of type p, for every 1 < p < 2.

Now, we deduce an almost sure invariance principle (ASIP) from Theorem 2.3. We first give
the notations to specify what we mean by an ASIP, in the Banach space setting.

Recall, that we denote by X ∗ the topological dual of X . Let X ∈ L2(�,X ) such that
E(X) = 0. We define a bounded symmetric bilinear operator K =KX from X ∗ ×X ∗ to R, by

K
(
x∗, y∗) = E

(
x∗(X)y∗(X)

) ∀x∗, y∗ ∈X ∗.

The operator KX is called the covariance operator associated with X.

Definition 2.4. We say that a random variable W ∈ L2(�,X ) is Gaussian if, for every x∗ ∈ X ∗,
x∗(W) has a normal distribution. We say that a random variable X ∈ L2(�,X ) is pregaussian,
if there exists a Gaussian variable W ∈ L2(�,X ) with the same covariance operator, that is,
such that KX =KW .

Definition 2.5. We say that (Xn)n≥0 satisfies the almost sure invariance principle (ASIP) if,
without changing its distribution, one can redefine the sequence (Xn)n≥0 on a new probability
space on which there exists a sequence (Wn)n≥0 of centered i.i.d. Gaussian variables, such that

∣∣X0 + · · · + Xn−1 − (W0 + · · · + Wn−1)
∣∣
X = o

(√
nL

(
L(n)

))
P-a.s.

We shall say that (Xn)n≥0 satisfies the ASIP of covariance K, when K =KW0 is identified.
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We now recall an important result of Berger on the ASIP for martingale differences.

Proposition 2.5 (Berger [2], Theorem 3.2). Let X be a separable Banach space. Assume
that θ is ergodic. Let d ∈ L2(�,F1,X ), with E0(d) = 0. Assume that d is pregaussian and
that (d ◦ θn)n≥0 satisfies the CLIL. Then, for every Y ∈ L2(�,X ), such that |Sn(Y )|X =
o(

√
nL(L(n))) P-a.s., ((d + Y) ◦ θn)n≥0 satisfies the ASIP of covariance Kd .

Actually, Berger proved his result in the particular case where Y = Z − Z ◦ θ for some Z ∈
L2(�,X ), but the proof applies in the slightly more general situation above.

By [23], Proposition 9.24, on any Banach space X of type 2 (in particular, on any 2-smooth
Banach space), every X ∈ L2(�,X ) is pregaussian. Hence, Berger’s result applies as soon as the
CLIL is satisfied and we deduce the following corollary.

Corollary 2.6. Let X be a 2-smooth separable Banach space. Assume that θ is ergodic. For
every d ∈ L2(�,F1,X ), with E0(d) = 0, (d ◦ θn)n≥0 satisfies the ASIP of covariance Kd .

Remark 2.7. Assume that dimX = 1 and that θ is ergodic. It follows from Corollary 2.5 of [6]
that for d ∈ L2(�,F0,X ) such that E1(d) = 0, (d ◦ θn)n≥0 satisfies the ASIP. We do not know
whether the ASIP holds when dimX ≥ 2. The proof of Proposition 2.5 given in [2] does not
seem to pass to reverse martingale differences.

2.2. Results for not necessarily adapted stationary processes

We assume all along this subsection that θ is invertible and bi-measurable, in which case we ex-
tend our filtration to (Fn)n∈Z. Then, we write F−∞ := ⋂

n∈ZFn, F∞ := ∨
n∈ZFn, and for every

n ∈ Z, En(·) = E(·|Fn) and Pn := En − En−1. We say that a random variable X ∈ L1(�,X ) is
regular if E−∞(X) = 0 and X −E∞(X) = 0.

Theorem 2.8. Let 1 < p < r ≤ 2 and D > 0. Let X be a (r,D)-smooth separable Banach space
and X ∈ Lp(�,F ,P,X ) be a regular variable. Assume moreover that

‖X‖Hp :=
∑
n∈Z

‖PnX‖p,X < ∞. (10)

Then, there exists (a universal) Cp,r > 0, such that∥∥Mp(X)
∥∥

p,∞ ≤ Cp,rD
r/p‖X‖Hp . (11)

Moreover, ∣∣Sn(X)
∣∣
X /n1/p → 0 P-a.s. (12)

Remark 2.9. Theorem 2.8 improves Corollary 1 of [32], where (12) has been proved under a
stronger condition than (10). The proof in [32] is done for real-valued variables but work in the
above Banach setting as well.



A compact LIL for Banach-valued martingales 381

Now, we give a result under condition (13), which has been introduced by Hannan [19].

Theorem 2.10. Let X be a (2,D)-smooth separable Banach space, for some D ≥ 1. Let X ∈
L2(�,F ,P,X ) be a regular random variable. Assume moreover that

‖X‖H2 :=
∑
n∈Z

‖PnX‖2,X < ∞. (13)

Then, for every 1 ≤ p < 2, there exists (a universal) Cp > 0, such that∥∥M2(X)
∥∥

p,∞ ≤ CpD‖X‖H2 . (14)

The series d = ∑
n∈Z P1(X ◦ θn) converges in L2(�,F1,X ) and E0(d) = 0. Moreover, writing

Mn := ∑n−1
k=0 d ◦ θk , we have

|Sn − Mn|X = o
(√

nL
(
L(n)

))
P-a.s. (15)

Remark 2.11. Theorem 2.10 improves Theorem 2 of Wu [32], Theorem 2.1 of Liu and Lin [24]
(for p = 2) and Corollary 5.3 of Cuny [5]. In [5,24,32] the authors prove (15) under stronger
conditions than (13) and the proof do not apply to infinite dimensional Banach spaces.

In particular, we deduce the following corollary from Theorem 2.10, Theorem 2.3 and Propo-
sition 2.5.

Corollary 2.12. Under the assumptions of Theorem 2.10, (X ◦ θn)n≥0 satisfies the CLIL and the
ASIP of covariance Kd , where, for every x∗, y∗ ∈ X ∗, Kd(x∗, y∗), Kd = ∑

n∈ZE(x∗(Xn)y
∗(X)).

Moreover, since, ‖d‖2,X ≤ ‖X‖H2 ,

lim sup
n

|Sn(X)|X√
2nL(L(n))

≤ ‖X‖H2 P-a.s.

In order to check (13) or (10), it may be easier to use the condition (16) below.

Lemma 2.13. Let 1 < p ≤ 2. Let H be a separable real Hilbert space. Assume that

∑
n≥1

‖E−n(X)‖p,H√
n

< ∞ and
∑
n≥1

‖X −En(X)‖p,H√
n

< ∞. (16)

Then X is regular and
∑

n∈Z ‖PnX‖p,H < ∞.

2.3. Functionals of Markov chains

The situation considered in the previous paragraph includes the case of stationary (ergodic)
Markov chains. Let Q be a transition probability on a measurable space (S,S) admitting an
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invariant probability m. Let (�,F , (Fn)n∈Z,P, (Wn)n∈Z) be the canonical Markov chain asso-
ciated with Q, that is, � = SZ, F = S⊗Z, (Wn)n∈Z the coordinates, Fn = σ {. . . ,Wn−1,Wn},
P ◦ W−1

0 = m and P(Wn+1 ∈ A|Fn) = Q(Wn,A). Finally, denote by θ the shift on �.
Recall that Q induces an operator on L2(S,m) that we still denote by Q. If H is a separable

real Hilbert space, we denote by Q the analogous operator on L2(S,m,H). In particular, for
every f ∈ L2(�,H) and every h ∈H, 〈Qf,h〉H = Q(〈f,h〉H).

Theorem 2.10 applies to that setting with X = f (W0), where f ∈ L2(S,H). Using Lem-
ma 2.13, it suffices to check (16). In that situation, the process is adapted, that is, X0 is F0-
measurable. Hence, the second part of condition (16) is automatically satisfied while the first
part reads as follows ∑

n≥1

‖Qnf ‖2,H√
n

< ∞. (17)

2.4. Results for non-invertible dynamical systems

Here, we assume that θ is non-invertible. Let us write Fn = θ−n(F), for every n ≥ 0. Denote
F∞ = ⋂

n≥0 Fn.
In this case, there exists a Markov operator K , known as the Perron–Frobenius operator, de-

fined by ∫
�

X(Y ◦ θ)dP=
∫

�

(KX)Y dP ∀X,Y ∈ L2(�,F ,P). (18)

Then, we have for every X ∈ L1(�,F0,P),

E
n(X) = (

KnX
) ◦ θn. (19)

If H is a separable real Hilbert space, we extend K to L2(�,F ,P,H), in a way similar to (18).
We denote by K the obtained operator.

Theorem 2.14. Let (�,F ,P, θ) be a non-invertible dynamical system. Let X ∈ L2(�,H) be
such that ∑

n≥0

‖KnX‖2,H√
n

< ∞. (20)

Then, for every 1 < p < 2, there exists Cp > 0 such that

∥∥M2(X)
∥∥

p,H ≤ Cp

∑
n≥0

‖KnX‖2,H√
n

.

Moreover, there exists d ∈ L2(�,F ,P,H) with E
1(d) = 0, such that, writing Mn := ∑n−1

k=0 d ◦
θk , we have

|Sn − Mn|H = o
(√

nL
(
L(n)

))
P-a.s. (21)
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Remark 2.15. It follows from (21) that (X ◦ θn)n≥0 satisfies the CLIL, but we do not know
whether it satisfies the ASIP in general, except when H has dimension one (see Remark 2.7).

3. Applications, examples

Now, we give several applications of the previous results. We do not intend to give all possible
examples where our conditions apply, but we try to provide examples illustrating the different
situations we have considered.

For instance, our results on the Marcinkiewicz–Zygmund strong laws (and on the LIL) may
be used (in the one-dimensional case) to obtain almost-sure invariance principles with rate as in
[32] (see also [8] or [6]).

We start with a one-dimensional situation.

3.1. φ-mixing sequences

Let us recall the definition of the φ-mixing coefficients, introduced by Dedecker and Prieur [15].
Examples of φ-mixing sequences may be found there as well.

Definition 3.1. For any integrable random variable X, let us write X(0) = X − E(X). For any
random variable Y with values in R and any σ -algebra F , let

φ(F , Y ) = sup
x∈R

∥∥E(
(1Y≤x)

(0)|F)(0)∥∥∞.

For a sequence Y = (Yi)i∈Z, where Yi = Y ◦ θi and Y is an F0-measurable and real-valued
random variable, let

φY(n) = sup
i≥n

φ(F0, Yi).

We need also the following technical definition.

Definition 3.2. If μ is a probability measure on R and p ∈]1,∞), M ∈ (0,∞), let Monp(M,μ)

denote the set of functions f :R → R which are monotone on some interval and null elsewhere
and such that μ(|f |p) ≤ Mp . Let Monc

p(M,μ) be the closure in L
p(μ) of the set of functions

which can be written as
∑L

�=1 a�f�, where
∑L

�=1 |a�| ≤ 1 and f� ∈ Monp(M,μ).

Theorem 3.1. Let X = f (Y ) − E(f (Y )), where Y is an F0-measurable random variable. Let
PY be the distribution of Y and p ∈]1,∞]. Assume that f belongs to Monc

p(M,PY ) for some
M > 0, if 2 ≤ p < ∞ and that f has bounded variation if p = ∞. Assume moreover that

∑
k≥1

φ
(p−1)/p

Y (k)

k1/2
< ∞. (22)
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Then, if 1 < p < 2, (X ◦ θn)n∈Z satisfies the conclusion of Theorem 2.8 and if p ≥ 2, (X ◦ θn)n∈Z
satisfies the conclusion of Theorem 2.10.

Remark 3.2. When p = 2, Dedecker, Gouëzel and Merlevède [9] proved that the condition∑
k≥1 k1/

√
3−1/2φ

1/2
Y (k) < ∞ implies that

∑
n≥1 P(max1≤k≤2n |Sk| > C2n/2(L(n))1/2) < ∞

(which implies the bounded LIL).

Proof of Theorem 3.1. Assume first that 1 < p < ∞. Since f ∈ Monc
p(M,PY0), there exists a

sequence of functions

fL =
L∑

k=1

ak,Lfk,L,

such that for every L ≥ 1,
∑L

k=1 |ak,L| ≤ 1, for every 1 ≤ k ≤ L, fk,L is monotonic on some
interval and null elsewhere, and ‖fk,L(Y0)‖p ≤ M and such that (fL)L≥1 converges in Lp(PY0)

to f . Hence,

∥∥E0
(
f (Yn)

) −E
(
f (Yn)

)∥∥
p

= lim
L→∞

∥∥E0
(
fL(Yn)

) −E
(
fL(Yn)

)∥∥
p

≤ lim inf
L→∞

L∑
k=1

|ak,L|∥∥E0
(
fk,L(Yn)

) −E
(
fk,L(Yn)

)∥∥
p

≤ CpMφ
(p−1)/p

Y (n),

where we used Lemma 5.2 of [10] for the last estimate.
To conclude in that case, we notice first that we are in the adapted case, and that Theorem 2.8

(when 1 < p < 2) and Theorem 2.10 (when p ≥ 2) apply by Lemma 2.13.
Assume that p = ∞ and that f has bounded variation. Hence f is the difference of two

monotonic functions, to which we apply Lemma 5.2 of [10] with p = ∞. Then, we conclude as
above. �

3.2. X -valued linear processes

Let (�,F,P) be a probability space and θ be an ergodic invertible and bi-measurable trans-
formation on �. Let X be a separable r-smooth Banach space, for some 1 < r ≤ 2. Let
ξ ∈ Lp(�,F0,P,X ) for some p > 1. Assume that E(ξ |F−1) = 0 and define ξn = ξ ◦ θn, n ∈ Z.

Let (A(k))k∈Z be a (not necessarily stationary) sequence of random variables with values in
L∞(�,Fk−1,B(X )), where B(X ) stands for the Banach space of bounded (linear) operators on
X . For every k,n ∈ Z, define A

(k)
n = A(k) ◦ θn. Assume that

∑
k∈Z

∥∥A(k)
∥∥∞,B(X )

< ∞. (23)
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Then, the process

Xn :=
∑
k∈Z

A(k)
n ξn+k, n ∈ Z

is well defined in Lp(�,X ) and is stationary.

Corollary 3.3. Assume that 1 < p < r ≤ 2 or p = r = 2. Let (Xn) be a linear process as above.
Then, ∑

n∈Z
‖PnX0‖p,X < ∞. (24)

Hence, Theorem 2.8 applies when 1 < p < 2 and Theorem 2.10 applies when p = 2.

3.3. Functions of real-valued linear processes

Let (ξn)n∈Z be a sequence of independent identically distributed real random variables in
L2(�,F ,P). Let (an)n∈Z be in �1. We consider a linear process defined by

Yn :=
∑
k∈Z

akξn−k ∀n ∈ Z.

For every n ∈ Z, write Fn = σ {. . . , ξn−1, ξn}.
We denote by � the class of non-decreasing continuous and bounded functions on [0,+∞[,

such that ϕ(0) = 0, and satisfying one of the following

ϕ2 is concave;
ϕ(x) = C min

(
1, xα

) ∀x ≥ 0, for some 0 < α ≤ 1, C > 0.

Let r ≥ 1. Let f be a real valued function such that∣∣f (x) − f (y)
∣∣ ≤ ϕ

(|x − y|)(1 + |x|r + |y|r) ∀x, y ∈R. (25)

Our functions are unbounded and their continuity is locally controlled by ϕ.
We want to study the process (Xn)n∈Z given by

Xn := f (Yn) −E
(
f (Yn)

) ∀n ∈ Z.

Corollary 3.4. Let ϕ ∈ � and r ≥ 1. Let ξ0 ∈ L2r (�,F ,P) and f satisfy (25). Let (an)n∈Z ∈ �1.
Consider the process (Xn)n≥0 above. If

∑
n≥1

ϕ
(|an|

)
< ∞ or

∑
n≥1

ϕ(
∑

k≥n |ak|)√
n

< ∞,

then (Xn)n≥0 satisfies the conclusion of Theorem 2.10.
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We give the proof in the Appendix.

Remark 3.5. Notice that condition (3.1) of [24] implies (25) with ϕ(x) = min(1, x). Hence,
Corollary 3.4 improves Corollary 3.1 of [24] when p = 2.

3.4. A non-adapted example

We now consider an example of a non-adapted process for which new ASIP with rates have been
obtained very recently, see Dedecker, Merlevède and Pène [14] and the references therein.

Let d ≥ 2 and θ be an ergodic automorphism of the d-dimensional torus � = �d = R
d/Zd .

Denote by F the Borel σ -algebra of � and take P to be the Lebesgue measure on �.
For every k = (k1, . . . , kd) ∈ Z

d , write |k| := max1≤i≤d |ki |. If H is a Hilbert space and if
f ∈ L2(�,F ,P,H), we denote by (ck)k∈Zd = (ck,H)k∈Zd its Fourier coefficients, that is, ck,H =∫
[0,1]d f (x)e−2iπ〈x,k〉dP(dx), for every k ∈ Z

d , where 〈·, ·〉d stands for the inner product on R
d .

Corollary 3.6. Let H be a Hilbert space and f ∈ L2(�,H). Assume that there exists β > 2 and
C > 0 such that ∑

|k|≥m

|ck|2H ≤ C

L(m)(L(L(m)))β
∀m ≥ 1.

Then, (f ◦ θn)n≥0 satisfies the ASIP with covariance operator given by K(x, y) :=∑
m∈ZE(〈x,f 〉H〈y,f ◦ θn〉H), for every x, y ∈H.

Remark 3.7. Dedecker, Merlevède and Pène [14], Theorem 2.1, obtained the ASIP when H =
Rm and their condition requires β > 4. When m = 1, rates in the ASIP are also provided in [14].

Proof of Corollary 3.6. It follows from the proof of Propositions 4.2 and 4.3 of [14] (notice that
the proofs work in the Hilbert space setting) that there exists a filtration (Fn)n∈Z (defined at the
beginning of paragraph 3 of [14]) such that Fn = θ−n(F0) and

∥∥E−n(f )
∥∥

2,H = O

(
1√

nL(n)β

)
and

∥∥En(f ) − f
∥∥

2,H = O

(
1√

nL(n)β

)
.

Then, the result follows from Lemma 2.13. �

3.5. Cramer–von Mises statistics

We use our previous notations, see Section 2.2.
Let Y ∈ L0(�,F0,P). For every n ∈ Z, let Yn := Y ◦ θn and Xn := t �→ 1Yn≤t − F(t), where

F(t) = P(Y ≤ t).
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Let 1 < r ≤ 2. For every σ -finite Borel measure μ on R, we may see (Xn)n∈Z as a process
with values in the r-smooth Banach space Lr(R,μ), as soon as∫ ∞

0

(
1 − F(t)

)r
μ(dt) +

∫ 0

−∞
F(t)rμ(dt) < ∞, (26)

which is satisfied whenever μ is finite.
Define Fμ by Fμ(x) = −μ([x,0[) if x ≤ 0 and Fμ(x) = μ([0, x[) if x ≥ 0. Let 1 < p ≤ 2.

Then, under (26), X0 ∈ Lp(�,Lr(μ)) if and only if

E
(∣∣Fμ(Y0)

∣∣p/r)
< ∞. (27)

We want to understand the asymptotic behaviour of the process Fn = Sn(X)/n (with values
in L2(R,μ)), and more particularly of Dn(μ) := ‖Fn‖2,μ. When μ = PY = P ◦ Y−1, Dn(μ)2 is
known as the Cramer–von Mises statistics.

It follows from Lemma 2.13, that if (Xn)n∈Z satisfies

∑
n≥1

(E(‖E−n(X0)‖p

2,μ))1/p

n1/2
< ∞, (28)

for some 1 < p ≤ 2, then (Xn)n∈Z satisfies Theorem 2.8 if 1 < p < 2 and Theorem 2.10 if p = 2.
Hence, we have the following corollary.

Corollary 3.8. Let 1 < p < r ≤ 2 or p = r = 2. With the above notations, assume that (26), (27)
and (28) be satisfied. Then,

lim
n

n1−1/pDn(μ) = 0 P-a.s. if 1 < p < 2;

lim sup
n

n1/2

(2L(L(n)))1/2
Dn(μ) = �μ P-a.s. if p = 2,

where �2
μ := sup‖f ‖2,μ,R≤1

∫
R2 f (s)f (t)C(s, t)μ(ds)μ(dt) and C(s, t) := ∑

n∈Z(P(Y0 ≤ s,

Yn ≤ t) − F(s)F (t)).

Proof. Apply Lemma 2.13, Theorem 2.8 and Theorem 2.10. The expression of �2
μ follows, for

instance, from Proposition 1 of Merlevède [26]. �

In the context of φ-mixing sequences, when μ is finite, Corollary 3.8 applies as soon as∑
n≥1

φY(n)1/2

n1/2 < ∞.
Other examples where (28) is satisfied may be found in [11].

4. Proof of the results for Banach-valued martingales

Proof of Theorem 2.3. Let us prove (8). We start with the case d ∈ L2(�,F1,P) and E0(d) = 0.
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When d ∈ L2(�,F0,P) and E
1(d) = 0, the proof is the same, with the obvious changes,

noticing that for every n ≥ 1, (Sn(d) − Sn−k(d))0≤k≤n is a (Fn−k)0≤k≤n-martingale and that
max1≤k≤n |Sk(d)|X ≤ 2 max1≤k≤n |Sn(d) − Sn−k(d)|X .

Clearly, by homogeneity, it suffices to prove the result when ‖d‖2,X = 1. Let λ > 0 and 1 ≤
p < 2. Let us prove that there exists Cp ≥ 1, independent of λ such that

λp
P
(
M∗ > λ

) ≤ DpC
p
p , (29)

where

M∗ = M∗(d) := sup
s≥0

max1≤k≤2s |Sk(d)|X
2s/2(L(s))1/2

.

Since M2(d) ≤ CM∗, this will imply the desired result. Notice that (29) holds trivially when
0 < λ < D. Assume then that λ ≥ D.

Let S ≥ 1 be an integer, fixed for the moment. For simplicity, we write Sn := Sn(d).
We have, using Doob’s maximal inequality for the submartingale (|Sn|X )n≥1, and (2)

P

(
sup

1≤s≤S

max1≤k≤2s |Sk|X
2s/2(L(s))1/2

> λ

)
≤ 1

λ2

S∑
s=1

E(max1≤k≤2s |Sk|2X )

2sL(s)

(30)

≤ 2

λ2

S∑
s=1

E(|S2s |2X )

2sL(s)
≤ 2D2S

λ2
.

We make use of truncations. Let α > 0 be fixed for the moment. Let us write dn := d ◦ θn−1,
n ≥ 1. For every s ≥ 1, k ≥ 1 define

e
(s)
k := dk1{|dk |X ≤αλ2s/2/(L(s))1/2}; d

(s)
k := e

(s)
k −E

(
e
(s)
k |Fk−1

); d̃
(s)
k := dk − d

(s)
k ,

S
(s)
k :=

k∑
i=1

d
(s)
i ; S̃

(s)
k := Sk − S

(s)
k ,

Ts := 4
2s∑

i=1

E
(|di |2X |Fi−1

); T (s)
s :=

2s∑
i=1

E
(∣∣d(s)

i

∣∣2
X |Fi−1

)
.

Notice that, for every s ≥ 1,

T (s)
s ≤ Ts. (31)

Let β > 0 be fixed for the moment. Define the events

As :=
{

max1≤k≤2s |Sk|X
2s/2(L(s))1/2

> λ

}
; Bs :=

{
max1≤k≤2s |S(s)

k |
2s/2(L(s))1/2

> λ/2

}
,

Cs :=
{

max1≤k≤2s |S̃(s)
k |X

2s/2(L(s))1/2
> λ/2

}
; Ds :=

{
Ts

2s
> βλ2

}
; Es := Bs ∩

{
T

(s)
s

2s
≤ βλ2

}
.
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Using (31), we see that Bs ∩ Dc
s ⊂ Es . In particular, we have

As ⊂ Bs ∪ Cs; Bs ⊂ Ds ∪ Es.

Hence, {
sup
s≥S

max1≤k≤2s |Sk|X
2s/2(L(s))1/2

> λ

}
=

⋃
s≥S

As ⊂
(⋃

s≥S

Cs

)
∪

(⋃
s≥S

Ds

)
∪

(⋃
s≥S

Es

)
.

Now,
⋃

s≥S Ds = {sups≥S
Ts

2s > βλ2}, hence by Hopf maximal inequality (5), using that
E(|d1|2X ) = 1,

P

(⋃
s≥S

Ds

)
≤ P

(⋃
s≥1

Ds

)
≤ 4

βλ2
. (32)

We also easily see that, interverting
∑

and E in (33),

P

(⋃
s≥S

Cs

)
≤ 2

λ

∑
s≥0

E(max1≤k≤2s |S̃(s)
k |X )

2s/2(L(s))1/2

(33)

≤ 4

λ

∑
s≥1

2s/2

(L(s))1/2
E

(|d1|X 1{|d1|X ≥αλ2s/2/(L(s))1/2}
) ≤ 4C

αλ2
,

where we also used that there exists C > 0 such that for every u > 0,

∑
s≤u

2s/2/
(
L(s)

)1/2 ≤
∑

s≤√
u

2s/2 + 1

(L(
√

u))1/2

∑
√

u<s≤u

2s/2 ≤ C2u/2/L(u)1/2.

It remains to deal with
⋃

s≥S Es . We need the following lemma from Dedecker, Gouëzel and
Merlevède [9], Proposition A.1 (see also Merlevède [26], Lemma 1), whose proof follows from
Pinelis [29], Theorem 3.4. The proof in [9] is done in the scalar case (and in [26] in the Hilbert
case) but it easily extends to 2-smooth Banach spaces, since Theorem 3.4 in [29] is proved in
that setting. A related inequality in the scalar case is stated in Freedman [18], Theorem 1.6.

Lemma 4.1. Let X be a (2,D)-smooth Banach space. Let c > 0. Let (Fj )j≥0 be a non-
decreasing filtration and (dj )j≥1 a sequence of random variables adapted to (Fj )j≥0, such that
for every j ≥ 1, |dj |X ≤ c a.s. and E(dj |Fj−1) = 0 a.s. Then, for all x, y > 0 and all integer
n ≥ 1, we have

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

di

∣∣∣∣∣
X

> x;
n∑

i=1

E
(|di |2X |Fi−1

) ≤ y/D2

)
≤ 2 exp

(
− y

c2
h

(
xc

y

))
, (34)

where h(u) = (1 + u) log(1 + u) − u.
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Let s ≥ S. Let us apply the lemma to the sequence of martingale differences (d
(s)
i ) (in this case,

we may take c = 2αλ2s/2/(L(s))1/2), with x = λ2s/2−1(L(s))1/2, y = βD2λ22s and n = 2s . We
obtain, taking α = D2β ,

P(Es) ≤ 2 exp

(
−D2βL(s)

4α2
h

(
α

D2β

))
= 2 exp

(
−L(s)h(1)

4D2β

)
= 2

sh(1)/4D2β
.

Hence, if h(1)/(4D2β) > 1, we see that

∑
s≥S

P(Es) ≤ 2

(h(1)/4D2β − 1)Sh(1)/4D2β−1
.

Take β = (2−p)h(1)

8D2 and S = [λ2−p]. Then, h(1)/4D2β − 1 = 2/(2 − p) − 1 = p/(2 − p) and

∑
s≥S

P(Es) ≤ C

(2 − p)λp
. (35)

Recall that we assume that λ ≥ D, in particular 1
λ2 ≤ Dp−2

λp . Combining (30), (32), (33) and (35),
we infer that, there exists C > 0, such that

λp
P
(
M∗ > λ

) ≤ CDp

2 − p
,

which ends the proof of (8).
Let us prove that (d ◦ θn)n∈N satisfies the CLIL. We shall use the Banach principle, see Propo-

sition C.1. By definition of the Bochner spaces, there exists (d(m))m≥1, converging in L2(�,X )

to d , such that for every m ≥ 1, there exist km ≥ 1, α1, . . . , αkm ∈ X and A1, . . . ,Akm ∈ F1 such
that

d(m) =
km∑
i=1

αi1Ai
.

Write d̃(m) := d(m) − E0(d
(m)). Then, (d̃(m))m≥1 converges in L2(�,X ) to d . Hence, by the

Banach principle, it suffices to prove that (d̃(m) ◦ θn)n∈N satisfies the CLIL for every m ≥ 1. But,
by construction, (d̃(m) ◦ θn)n∈N is a stationary sequence of martingale differences taking values
in a finite dimensional Banach space (i.e., Vect{αi : 1 ≤ i ≤ km}), in which case the compact LIL
and the bounded LIL are equivalent. But the bounded LIL in that case follows from (8), hence
the result.

It remains to prove (9). By the bounded LIL the variable lim supn
|Sn(d)|X√
2nL(L(n))

is well-defined P-

a.s. and must be θ -invariant. By ergodicity, there exists S ≥ 0, such that lim supn
|Sn(d)|X√
2nL(L(n))

= S

P-a.s. Let M := sup|x∗|X∗≤1 ‖x∗(d)‖2. Let us prove that S = M . Let ε > 0. There exists x∗
ε ∈X ∗,

with |x∗
ε |X ∗ ≤ 1, such that ‖x∗

ε (d)‖2 ≥ M − ε. Since, |Sn(d)|X ≥ |x∗
ε (Sn(d))|, it follows from

the LIL for real-valued martingales (with stationary ergodic increments) that

S ≥ M − ε.
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Letting ε → 0, we see that S ≥ M . Let us prove the converse inequality.
Let x∗ ∈ X ∗. By the LIL for real-valued, stationary and ergodic martingale differences,

lim supn Sn(x
∗(d))/

√
2nL(L(n)) = ‖x∗(d)‖2 P-a.s. Hence, by the compact LIL and Proposi-

tion D.1, there exists a compact set K ∈ X , such that for P-a.e. ω ∈ �, the cluster set of
{Sn(d)(ω)/

√
2nL(L(n)), n ≥ 1} is K . Let x ∈ K be such that |x|X = S, and let x∗ ∈ X ∗ be

such that |x∗|X ∗ = 1 and x∗(x) = |x|X . For P-a.e. ω ∈ �, there exists (nk = nk(ω))k≥1 such that

Snk
(d)(ω)

√
2nkL(L(nk))

|·|X−→
k→∞x. In particular

x∗(Snk
(d)(ω)

√
2nkL

(
L(nk)

)) |·|X−→
k→∞x∗(x) = S ≤ lim sup

n
Sn

(
x∗(d)

)
(ω)

√
2nL

(
L(n)

)
.

But, by the real LIL, for P-a.e. ω ∈ �,

lim sup
n

Sn

(
x∗(d)

)
(ω)

√
2nL

(
L(n)

) ≤ ∥∥x∗(d)
∥∥

2 ≤ M,

which ends the proof. �

5. Proof of the results for stationary processes

5.1. Proof of Theorem 2.10

Recall that we assume here θ to be invertible. Let X be a 2-smooth Banach space.
Define

H2 :=
{
Z ∈ L2(�,X ): E−∞(Z) = 0,E∞(Z) = Z,

∑
n∈Z

‖PnZ‖2,X < ∞
}
. (36)

It is not difficult to see that, setting ‖Z‖H2 := ∑
n∈Z ‖PnZ‖2,X , (H2,‖ · ‖H2) is a Banach space.

By our regularity conditions, we have, Z = ∑
k∈Z PkZ in L2(�,X ) and P-a.s. Hence, writing

Sn = Sn(Z) = ∑n−1
i=0 Z ◦ θi , we have

Sn =
∑
k∈Z

n−1∑
i=0

(PkZ) ◦ θi .

This splitting of Sn into a series of martingales with (stationary) increments has been used already
in [32] and [7] in a similar context. This idea seems to appear first (explicitly) in a paper by
McLeish [25]. We deduce that

M2(Z) ≤
∑
k∈Z

M2
(
Pk(Z)

)
.
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But, for every k ∈ Z, ((PkZ) ◦ θi)i≥1 is a stationary sequence of martingale differences. Hence,
by Theorem 2.3, for every 1 ≤ p < 2, there exists Cp , such that

∥∥M2(Z)
∥∥

p,∞ ≤ CpD

(∑
k∈Z

‖PkZ‖2,X

)
. (37)

We define a continuous operator D on H2 with values in {d ∈ L2(�,F1): E(d1|F0) = 0}, by
setting, for every Z ∈ H2, DZ := ∑

n∈Z P1(Z ◦ θn). Write d =DZ. Let Mn := ∑n−1
i=0 d ◦ θi . We

want to prove that

|Sn − Mn|X = o
(√

nL
(
L(n)

))
P-a.s. (38)

Since M2(Z − d) ≤ M2(Z) + M2(d), using (37), Theorem 2.3 and the Banach principle (see
the Appendix), we see that the set {Z ∈ H2: (38) holds} is closed in H2, and, by linearity, that
set is a vector space.

Let Z ∈ H2. Clearly, Z = ∑
k∈Z PkZ in H2. Hence it suffices to prove (38) for PkZ, for every

k ∈ Z. Now, D(PkZ) = (PkZ) ◦ θ1−k . Let k ≤ 0. We have

Sn(PkZ) − Mn(PkZ) =
n−1∑
�=0

(
(PkZ) ◦ θ� − (PkZ) ◦ θ�+1−k

)

=
−k∑
�=0

(PkZ) ◦ θ� −
( −k∑

�=0

(PkZ) ◦ θ�

)
◦ θn = o(

√
n) P-a.s.,

where we used that for any X ∈ L2(�,X ),
∑

n≥1 P(|X ◦ θn|X > ε
√

n), for every ε > 0, which
implies that X◦θn = o(

√
n) P-a.s., by the Borel–Cantelli lemma. The case k ≥ 1 may be handled

similarly.

5.2. Proof of Theorem 2.8

As in the proof of Theorem 2.10, we define a Banach space

Hp :=
{
Z ∈ Lp(�,X ): E−∞(Z) = 0,E∞(Z) = Z,‖Z‖Hp :=

∑
n∈Z

‖PnZ‖p,X < ∞
}
.

We see that

‖MpZ‖p,∞ ≤ Cp,rD
1/p‖Z‖Hp,

where Cr,p is the constant appearing in Proposition 2.1, and that the operator D may be extended
in a continuous operator from Hp to {d ∈ Lp(�,F1,X ): E0(d) = 0}. Then, the proof follows
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the one of Theorem 2.10. We first see that |Sn − Mn|X = o(n1/p) P-a.s. and then we use that the
Marcinkiewicz–Zygmund strong law of large number is known for r-smooth valued stationary
martingale differences, see, for example, [31].

5.3. Proof of Corollary 2.12

We only have to prove that Kd is given as in the corollary. By (13), we have
∑

n∈Z ‖P1Xn‖2,X <

∞. Hence, for every f,g ∈ X ∗, we have, with absolute convergence of all the series,

Kd(f, g) =
∑

m,n∈Z
E

(
P1

(
f (Xn)

)
P1

(
g(Xm)

)) =
∑

m,n∈Z
E

(
f (X0)P1−n

(
g(Xm−n)

))

=
∑

m,n∈Z
E

(
f (X0)P−n

(
g(Xm)

)) =
∑
m∈Z

E
(
f (X0)g(Xm)

)
.

6. Proof of Lemma 2.13

Since the sequences (‖E−n(X)‖p,H) and (‖X − En(X)‖p,H) are non-increasing, (16) is equiv-
alent to ∑

n≥0

2n/2
∥∥E−2n(X)

∥∥
p,H < ∞ and

∑
n≥0

2n/2
∥∥X −E2n(X)

∥∥
p,H < ∞.

In particular, X is regular.
Assume p = 2. For every n ≥ 0, using Cauchy–Schwarz and that E(〈P−kX,P−�X〉H) = 0 for

every k �= �, we have

(
2n+1−1∑
k=2n

‖P−kX‖2,H

)2

≤ 2n
∑
k≥2n

E
(|P−kX|2H

) ≤ 2n
E

(∣∣E−2n(X)
∣∣2
H

)
,

and (
2n+1−1∑
k=2n

‖PkX‖2,H

)2

≤ 2n
∑
k≥2n

E
(|PkX|2H

) ≤ 2n
E

(∣∣X −E2n(X)
∣∣2
H

)
.

Assume 1 < p < 2. By Hölder’s inequality twice we have, with 1/p + 1/q = 1,

(
2n+1−1∑
k=2n

‖P−kX‖p,H

)p

≤ 2np/q
E

(
2n+1−1∑
k=2n

|P−kX|pH
)

≤ 2np/2
E

((∑
k≥2n

|P−kX|2H
)p/2)

≤ C2np/2
∥∥E−2n(X)

∥∥p

p,H,
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and

(
2n+1−1∑
k=2n

‖PkX‖p,H

)2

≤ 2np/q
E

(
2n+1−1∑
k=2n

|PkX|pH
)

≤ 2np/2
E

((∑
k≥2n

|PkX|2H
)2/p)

≤ C2np/2
∥∥X −E2n(X)

∥∥p

p,H,

where we used Burkholder’s inequality in Hilbert spaces, see [3]. Then, we conclude as above.

6.1. Proof of Theorem 2.14

For every n ≥ 0 define P (n) := E
n − E

n+1. It suffices to prove the theorem under the weaker
condition

E
∞(X) = 0 and

∑
n≥0

∥∥P (n)(X)
∥∥

2,H < ∞.

The fact that (20) implies the above condition may be proved as Lemma 2.13, using (19).
Then, the proof may be done exactly as the proof of Theorem 2.10 except that we make use of

reverse martingales.

Appendix A: Proof of Proposition 2.1

We start with the case d ∈ Lp(�,F1,P) and E0(d) = 0. Define

M∗ = M∗(d) := sup
s≥0

max1≤n≤2s |Sn(d)|X
2s/p

.

Let s ≥ 0. For every 2s ≤ n ≤ 2s+1 − 1, we have

|Sn(d)|X
n1/p

≤ max1≤n≤2s |Sn(d)|X
2s/p

≤ M∗.

Hence, it suffices to prove the result for M∗ instead of Mp(d). Let λ > 0. We proceed by trun-
cation. For every s ≥ 0, k ≥ 1 define

e
(s)
k := dk1{|dk |X ≤λ2s/p}; d

(s)
k := e

(s)
k −E

(
e
(s)
k |Fk−1

);
ẽ
(s)
k := dk − e

(s)
k ; d̃

(s)
k := dk − d

(s)
k ;

M
(s)
k :=

k∑
i=1

d
(s)
i ; M̃

(s)
k := Mk − M

(s)
k .
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Let λ > 0. Then,

P
(
M∗ > λ

)
≤

∑
s≥0

P

(
max1≤n≤2s |M̃(s)

n |X
2s/p

> λ/2

)
+

∑
s≥0

P

(
max1≤n≤2s |M(s)

n |X
2s/p

> λ/2

)

≤ 4

λ

∑
s≥0

2(1−1/p)s
E

(∣∣ẽ(s)
1

∣∣
X

) + 2r

λr

∑
s≥0

E(max1≤n≤2s |M(s)
n |rX )

2rs/p
.

Now, by Fubini and stationarity,

∑
s≥0

2(1−1/p)s
E

(∣∣ẽ(s)
1

∣∣
X

) ≤ CE(|d1|pX )

λp
.

To deal with the second term, we use Doob’s maximal inequality in Lr , for the submartingale
(|Mn|X )n≥1, and (2). We obtain

∑
s≥0

E(max1≤n≤2s |M(s)
n |rX )

2rs/p
≤

∑
s≥0

Cr

2rs/pλr
E

(∣∣M(s)
2s

∣∣r
X

)
(39)

≤ DrCr

∑
s≥0

2(1−r/p)s
E

(∣∣d(s)
1

∣∣r
X

) ≤ DrCr,pE(|d1|pX )

λp−r
,

which proves the proposition, in that case. When d ∈ L2(�,F0,P) and E
1(d) = 0, the proof is

the same, with the obvious changes, noticing that for every n ≥ 1, (Sn(d) − Sn−k(d))0≤k≤n is a
(Fn−k)0≤k≤n-martingale and that max1≤k≤n |Sk(d)|X ≤ 2 max1≤k≤n |Sn(d) − Sn−k(d)|X .

Appendix B: Proof of Corollary 3.4

Notice that, by (25), for every x,h,h′ ∈ R, we have∣∣f (x + h) − f
(
x + h′)∣∣ ≤ 2rϕ

(∣∣h − h′∣∣)(1 + |x|r) + 2r−1K
(|h|r + ∣∣h′∣∣r). (40)

Recall that for every concave ψ with ψ(0) = 0, x → ψ(x)/x is non-increasing on ]0,+∞[ and
ψ is sub-additive.

We want to apply Theorem 2.10 and Lemma 2.13. We shall evaluate ‖P0(Xn)‖2, ‖E0(Xn)‖2
and ‖Xn −En(Xn)‖.

Enlarging our probability space if necessary, we assume that there exists (ξ ′
n) an independent

copy of (ξn).
Then,

P0Xn = E0
(
f (An + hn) − f

(
An + h′

n

))
,
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where An := ∑
k>−n a−kξ

′
n+k + ∑

k>n akξn−k , hn := anξ0 and h′
n := anξ

′
0.

In particular, we have, by independence and using (40),

E
(
(P0Xn)

2) ≤ Cr

(
E

(
ϕ2(|an|

(|ξ0| +
∣∣ξ ′

0

∣∣)))E(|An|2r
) + |an|2r

E
(|ξ0|2r

))
.

We notice now that for every ϕ ∈ �, there exists C > 0 such that, for every n ≥ 1

E
(
ϕ2(|an|

(|ξ0| +
∣∣ξ ′

0

∣∣))) ≤ Cϕ2(|an|
)
. (41)

This follows from Jensen’s inequality and the sub-additivity of ϕ2 (using that ξ0 ∈ L1(�,F ,P))
when ϕ2 is sub-additive, and it is obvious when ϕ(x) = min(1, xα) (using that ξ0 ∈ L2α(�,

F ,P)).
Clearly, E(|An|2r ) ≤ (

∑
k∈Z |ak|‖ξ0‖2r )

2r .
Since x → ϕ2(x)/x is non-increasing, when ϕ2 is concave, we see that whenever ϕ ∈ �,

|an|2r ≤ Cϕ2(|an|).
This finishes the proof of Corollary 3.4 under the assumption on P0(Xn).
We shall now evaluate ‖E0(Xn)‖2, the case of ‖Xn −En(Xn)‖2 may be treated similarly. We

have

E0(Xn) = E0
(
f (Bn + kn) − f

(
Bn − k′

n

))
,

where Bn := ∑
k>−n a−kξn+k , kn = ∑

k≥n akξn−k and k′
n = ∑

k≥n akξ
′
n−k . Hence, using (40),

‖E0(Xn)‖2
2 ≤ Cr

(
E

(
ϕ2(|kn| + |k′

n|
)
E

(|An|2r
) + 2‖kn‖2r

2r

))
.

When ϕ2 is concave, by Jensen’s inequality,

E
(
ϕ2(|kn| +

∣∣k′
n

∣∣)) ≤ ϕ2
(

2E
(|ξ0|

)∑
k≥n

|ak|
)

≤ (
1 + 2E

(|ξ0|
))

ϕ2
(∑

k≥n

|ak|
)

.

When ϕ(x) = min(1, xα), assuming that 1/2 ≤ α ≤ 1 (otherwise we are in the previous case),
we have

E
(
ϕ2(|kn| +

∣∣k′
n

∣∣)) ≤
(∑

k≥n

|ak|‖ξ0‖2α

)2α

≤ Cϕ2
(∑

k≥n

|ak|
)

.

Clearly, E(|Bn|2r ) ≤ (
∑

k∈Z |ak|‖ξ0‖2r )
2r .

Finally, we have

‖kn‖2r
2r ≤ ‖ξ0‖2r

2r

(∑
k≥n

|ak|
)2r

.

Since x → ϕ2(x)/x is non-decreasing, when ϕ2 is concave, we see that whenever ϕ ∈ �,

‖kn‖2r
2r ≤ Cϕ2

(∑
k≥n

|ak|
)

.
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Appendix C: The Banach principle

The following is an extension of the Banach principle as stated in Theorem 7.2, page 64 of [20].

Proposition C.1. Let (�,F ,P) be a probability space and X ,B be Banach spaces. Let C be
a vector space of measurable functions from � to X . Let (Tn)n≥1 be a sequence of linear
maps from B to C. Assume that there exists a positive decreasing function L on ]0,+∞[, with
limλ→∞ L(λ) = 0, such that

P

(
sup
n≥1

|Tnx|X > λ|x|B
)

≤ L(λ) ∀λ > 0, x ∈ B. (42)

Then the set {x ∈ B: (Tnx)n≥1 is P-a.s. relatively compact in X } and the set {x ∈ B: |Tnx|X →
0 P-a.s.} are closed in B.

Proof. We prove that the first set is closed, the proof for the second one being similar, but easier.
Let x ∈ B and (xm)m≥1 ⊂ B be such that |xm − x|B −→

m→∞ 0 and such that for every m ≥ 1,

(Tnxm)n≥1 is P-a.s. relatively compact in X . We want to prove that (Tnx)n≥1 is P-a.s. relatively
compact.

By (42), for every integers m,p ≥ 1 (assume that x �= xm otherwise there is nothing to do)

P

(
sup
n≥1

∣∣Tn(x − xm)
∣∣
X > 1/p

)
≤ L

(
1

p|x − xm|B
)

∀λ > 0, x ∈ B.

Since limλ→∞ L(λ) = 0, there exists a subsequence (mk)k≥1 and a set �0 ∈ F with P(�0) = 1,
such that for every ω ∈ �0,

sup
n≥1

∣∣Tn(x − xmk
)
∣∣
X (ω) −→

k→∞ 0.

There exists �1 ∈ F , with P(�1) = 1, such that, for every ω ∈ �1 and every k ≥ 1,
((Tnxmk

)(ω))n≥1 is relatively compact in X .
Let ω ∈ �0 ∩ �1 be fixed. Let ϕ0 be an increasing function from N to N. We want to prove

that (Tϕ0(n)x(ω))n≥1 admits a convergent subsequence.
For every k ≥ 1, ((Tϕ0(n)xmk

)(ω))n≥1 admits a Cauchy subsequence. We construct by induc-
tion some increasing functions (ϕk)k≥1 such that, for every k ≥ 1, setting ψk := ϕ0 ◦ϕ1 ◦ · · · ◦ϕk ,
we have for every p ≥ n ≥ 1,∣∣Tψk(n)xmk

(ω) − Tψk(p)xmk
(ω)

∣∣
X ≤ 1/n.

Then, (Tψn(n)x(ω)) is Cauchy. Indeed, for every N ≥ 1, and every p > n ≥ N , we have∣∣Tψn(n)x(ω) − Tψp(p)x(ω)
∣∣
X

≤ ∣∣Tψn(n)xmn(ω) − T(ψn◦ϕn+1◦···◦ϕp)(p)xmn(ω)
∣∣
X + 2 sup

r≥1

∣∣Tr(xmn − x)
∣∣
X −→

N→∞ 0,

and the result follows. �
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Appendix D: Identification of the cluster set

Denote by X ∗ the topological dual of X . Let X ∈ L2(�,X ) such that E(X) = 0. Following
Kuelbs [21] (we refer to [21] for more details on the construction below), we define a bounded
linear operator S from X ∗ to X and a bounded symmetric bilinear operator K from X ∗ ×X ∗ to
R, by

S
(
x∗) = E

(
x∗(X)X

) ∀x∗ ∈ X ∗,

K
(
x∗, y∗) = E

(
x∗(X)y∗(X)

) = y∗(S(
x∗)) = x∗(S(

y∗)) ∀x∗, y∗ ∈ X ∗.

Let HX be the closure of the range of S with respect to the following inner product:

〈
Sx∗,Sy∗〉

HX
=K

(
x∗, y∗).

Notice that the definition of 〈·, ·〉HX
does not depend on the chosen representatives (i.e., if

x∗ ∈ KerS , 〈Sx∗,Sy∗〉HX
= 0 for every y∗ ∈ X ∗) and that this inner product is really posi-

tive definite.
Finally, denote by K = KX , the unit ball of (HX,‖ · ‖HX

), K is compact by (iv), Lemma 2.1
of [21]. We recall an important result of Kuelbs, see [21], Theorem 3.1, II, where we denote by
C({xn}) the cluster set of a sequence (xn) ⊂X .

Proposition D.1 (Kuelbs [21]). Let X ∈ L2(�,X ). Assume that (Xn)n≥0 satisfies the CLIL and
that,

lim sup
n

Sn(x
∗(X))√

2nL(L(n))
= ∥∥x∗(X)

∥∥
2 P-a.s. ∀x∗ ∈ X ∗. (43)

Then,

C

({
Sn(X)√

2nL(L(n))

})
= K P-a.s., (44)

and

lim sup
n

|Sn(X)|X√
2nL(L(n))

= sup
x∗∈X ∗,|x∗|X∗≤1

∥∥x∗(X)
∥∥

2 ≤ ‖X‖2,X P-a.s. (45)
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