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Approximating dependent rare events
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In this paper we give a historical account of the development of Poisson approximation using Stein’s method
and present some of the main results. We give two recent applications, one on maximal arithmetic progres-
sions and the other on bootstrap percolation. We also discuss generalisations to compound Poisson ap-
proximation, Poisson process approximation and multivariate Poisson approximation, and state a few open
problems.
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1. Introduction

The Poisson limit theorem as commonly found in textbooks of probability states that the number
of successes in n independent trials converges in distribution to a Poisson distribution with mean
λ > 0 if the maximum of the success probabilities tends to 0 and their sum converges to λ.
The case where the trials have equal success probabilities was implicitly proved by Abraham
de Moivre (1712) in his solution to the problem of finding the number of trials that gives an even
chance of getting k successes. However, it was Siméon-Denis Poisson (1837) who first gave an
explicit form of the Poisson distribution and proved the limit theorem for independent trials with
equal success probabilities, that is, for the binomial distribution. The Poisson distribution was
not much used before Ladislaus von Bortkiewicz (1898) expounded its mathematical properties
and statistical usefulness.

In his book Ars Conjectandi, published posthumously in 1713, Jacob Bernoulli (1654–1705)
considered games of chance and urn models with two possible outcomes and proved what is
now known as the weak law of large numbers. He stressed that the probability of winning a
game or of drawing a ball of a particular color from an urn (with replacement) remains the same
when the game or the drawing of a ball is repeated. This has led to the use of the term Bernoulli
trials to represent independent trials with the same probability of success. Representing success
by 1 and failure by 0, a random variable taking values 0 and 1 is called a Bernoulli random
variable. However, in this article, a set or a sequence of Bernoulli random variables need not be
independent nor take the value 1 with equal probabilities. Also, if the success probability of a
Bernoulli random variable is small, the event corresponding to success is called rare.

The Poisson limit theorem suggests that the distribution of a sum of independent Bernoulli ran-
dom variables with small success probabilities can be approximated by the Poisson distribution
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with the same mean if the success probabilities are small and the number of random variables is
large. A measure of the accuracy of the approximation is the total variation distance. For two dis-
tributions P and Q over Z+ = {0,1,2, . . .}, the total variation distance between them is defined
by

dTV(P,Q) = sup
A⊂Z+

∣∣P(A) − Q(A)
∣∣,

which is also equal to

1

2
sup
|h|=1

∣∣∣∣
∫

hdP −
∫

hdQ

∣∣∣∣ = 1

2

∑
i∈Z

∣∣P {i} − Q{i}∣∣.
For the binomial distribution Bi(n,p), Prohorov (1953) proved that

dTV
(
Bi(n,p),Po(np)

) ≤ p

[
1√
2πe

+ O

(
1 ∧ 1√

np
+ p

)]
,

where Po(np) denotes the Poisson distribution with mean np. Here, following Barbour, Holst
and Janson (1992), the formulation corrects a minor error in the original paper. This result is
remarkable in that the approximation is good so long as p is small, regardless of how large np

is.
The result of Prohorov was generalised by Le Cam (1960) to sums of independent Bernoulli

random variables X1, . . . ,Xn with success probabilities p1, . . . , pn that are not necessarily equal.
Let W = ∑

Xi and λ = ∑
pi . Using the method of convolution operators, Le Cam (1960) ob-

tained the error bounds

dTV
(
L(W),Po(λ)

) ≤
n∑

i=1

p2
i , (1.1)

and

dTV
(
L(W),Po(λ)

) ≤ 8

λ

n∑
i=1

p2
i if max

1≤i≤n
pi ≤ 1

4
. (1.2)

In terms of order, the bound in (1.1) is better than that in (1.2) if λ < 1 and vice versa if λ ≥ 1.
Combining (1.1) and (1.2), one obtains a bound of the order (1 ∧ λ−1)

∑
p2

i , which is small so
long as maxpi is small, regardless of how large λ is. This form of the error bound has become
the characteristic of Poisson approximation in subsequent developments of the subject.

In this article we will discuss the use of Stein’s ideas in the Poisson approximation to the
distributions of sums of dependent Bernoulli random variables, its historical development, appli-
cations, and some generalisations and open problems. The article is not intended to be a survey
paper but an exposition with a focus on explaining Stein’s ideas and presenting some results
and recent applications. The references are not exhaustive but contain only those papers that are
relevant to the objective of this article.

This paper is organised as follows. Section 2 is a brief introduction to Stein’s method. Section 3
gives a brief overview of two approaches to Poisson approximation using Stein’s method, and
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Sections 4 and 5 discuss the developments of these two approaches. Section 6 is devoted to two
recent applications of Poisson approximation and Section 7 discusses three generalisations of
Poisson approximation.

2. Stein’s method

In his seminal 1972 paper published in the Sixth Berkeley Symposium, Charles Stein introduced
a new method of normal approximation. The method did not involve Fourier analysis but hinged
on the solution of a differential equation. Although the method was developed for normal ap-
proximation, Stein’s ideas were very general and the method was modified by Chen (1975) for
Poisson approximation. Since then the method has been constantly developed and applied to
many approximations beyond normal and Poisson and in finite as well as infinite dimensional
spaces. It has been applied in many areas including computational biology, computer science,
combinatorial probability, random matrices, reliability and many more. The method, together
with its applications, continues to grow and remains a very active research area. See, for example,
Stein (1986), Arratia, Goldstein and Gordon (1990), Barbour, Holst and Janson (1992), Diaconis
and Holmes (2004), Barbour and Chen (2005a, 2005b), Chatterjee, Diaconis and Meckes (2005),
Chen, Goldstein and Shao (2011), Ross (2011), Shih (2011), Nourdin and Peccati (2012).

In a nutshell, Stein’s method can be described as follows. Let W and Z be random elements
taking values in a space S and let X and Y be some classes of real-valued functions defined
on S . In approximating the distribution L(W) of W by the distribution L(Z) of Z, we write
Eh(W) − Eh(Z) = ELfh(W) for a test function h ∈ Y , where L is a linear operator (Stein
operator) from X into Y and fh ∈ X a solution of the equation

Lf = h − Eh(Z) (Stein equation).

The error ELfh(W) can then be bounded by studying the solution fh and exploiting the proba-
bilistic properties of W . The operator L characterises L(Z) in the sense that L(W) = L(Z) if
and only if for a sufficiently large class of functions f we have

ELf (W) = 0 (Stein identity).

In normal approximation, where L(Z) is the standard normal distribution, the operator used
by Stein (1972) is given by Lf (w) = f ′(w) − wf (w) for w ∈ R, and in Poisson approx-
imation, where L(Z) is the Poisson distribution with mean λ > 0, the operator L used by
Chen (1975) is given by Lf (w) = λf (w + 1) − wf (w) for w ∈ Z+. However the opera-
tor L is not unique even for the same approximating distribution but depends on the prob-
lem at hand. For example, for normal approximation L can also be taken to be the generator
of the Ornstein–Uhlenbeck process, that is, Lf (w) = f ′′(w) − wf ′(w), and for Poisson ap-
proximation, L taken to be the generator of an immigration-death process, that is, Lf (w) =
λ[f (w + 1) − f (w)] + w[f (w − 1) − f (w)]. This generator approach, which is due to Barbour
(1988), allows extensions to multivariate and process settings. Indeed, for multivariate normal
approximation, Lf (w) = �f (w) − w · ∇f (w), where f is defined on the Euclidean space; see
Barbour (1990) and Götze (1991), and also Reinert and Röllin (2009) and Meckes (2009).
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3. Poisson approximation

In Poisson approximation, the main focus has been on bounding the total variation distance
between the distribution of a sum of dependent Bernoulli random variables and the Poisson
distribution with the same mean. One of the main objectives has been to obtain a bound which is
the “correct” generalisation of the bound obtained by Le Cam (1960), specifically, one with the
multiplicative factor 1 ∧ λ−1.

Broadly speaking, there are two main approaches to Poisson approximation using Stein’s
method, the local approach and the size-bias coupling approach. The local approach was first
studied by Chen (1975) and developed further by Arratia, Goldstein and Gordon (1989, 1990),
who presented Chen’s results in a form which is easy to use and applied them to a wide range
of problems including problems in extreme values, random graphs and molecular biology. The
size-bias coupling approach dates back to Barbour (1982) in his work on Poisson approximation
for random graphs. Barbour, Holst and Janson (1992) presented a systematic development of
monotone couplings, and applied their results to random graphs and many combinatorial prob-
lems. A recent review of Poisson approximation by Chatterjee, Diaconis and Meckes (2005)
used Stein’s method of exchangeable pairs to study classical problems in combinatorial proba-
bility. They also reviewed a size-bias coupling of Stein [(1986), p. 93] for any set of dependent
Bernoulli random variables.

4. The local approach

The operator L given by Lf (w) = f ′(w) − wf (w) for w ∈ R, which was used by Stein (1972)
for normal approximation, is constructed by showing that E{f ′(Z)−Zf (Z)} = 0 for all bounded
absolutely continuous functions f if Z ∼ N(0,1). This identity is proved by integration by parts.
As a discrete counterpart, the operator L given by Lf (w) = λf (w + 1) − wf (w) for w ∈ Z+,
which was used by Chen (1975) for Poisson approximation, is constructed by showing that
E{λf (Z) − Zf (Z)} = 0 for all bounded real-valued functions f if Z ∼ Po(λ), using summa-
tion by parts.

Using the Stein equation

λf (w + 1) − wf (w) = h(w) − Eh(Z), (4.1)

where |h| = 1 and Z has the Poisson distribution with mean λ > 0, Chen (1975) developed
Stein’s method for Poisson approximation for sums of ϕ-mixing sequences of Bernoulli random
variables X1, . . . ,Xn with success probabilities p1, . . . , pn. When specialised to independent
Bernoulli random variables, his results yield

dTV
(
L(W),Po(λ)

) ≤ 3

(
1 ∧ 1√

λ

) n∑
i=1

p2
i

and

dTV
(
L(W),Po(λ)

) ≤ 5

λ

n∑
i=1

p2
i ,
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where W = ∑
Xi . These results improve slightly those of Le Cam (1960).

Chen’s proofs depend crucially on the bounds he obtained on the solution of (4.1) and its
smoothness. These bounds were improved by Barbour and Eagleson (1983), who proved that for
h = IA, A ⊂ Z+,

‖fh‖∞ ≤ 1 ∧ 1.4√
λ

(4.2)

and

‖�fh‖∞ ≤ 1 − e−λ

λ
≤ 1 ∧ 1

λ
, (4.3)

where ‖ · ‖∞ denotes the supremum norm and �f (w) = f (w + 1) − f (w).
It is perhaps instructive to see how easily Le Cam’s results, with substantially smaller con-

stants, can be proved by Stein’s method using (4.3).
Let W be the sum of independent Bernoulli random variables X1, . . . ,Xn with success prob-

abilities p1, . . . , pn, and let W(i) = W − Xi for i = 1, . . . , n. For any bounded real-valued func-
tion f ,

E
{
λf (W + 1) − Wf (W)

} =
n∑

i=1

E
{
pif (W + 1) − Xif (W)

}

=
n∑

i=1

piE
{
f (W + 1) − f

(
W(i) + 1

)}

=
n∑

i=1

piE
{
Xi�f

(
W(i) + 1

)}

=
n∑

i=1

p2
i E�f

(
W(i) + 1

)
.

By choosing f = fh, a bounded solution of (4.1), where h = IA and A ⊂ Z+, we obtain

dTV
(
L(W),Po(λ)

) = sup
A⊂Z+

∣∣P[W ∈ A] − P[Z ∈ A]∣∣
(4.4)

≤ ‖�fh‖∞
n∑

i=1

p2
i ≤

(
1 ∧ 1

λ

) n∑
i=1

p2
i .

We wish to remark that the solution fh is unique except at w = 0, but the value of fh at w = 0 is
never used in the calculation. So it has been conveniently set to be 0.

The above proof of (4.4) is given in Barbour and Hall (1984), who also proved that

dTV
(
L(W),Po(λ)

) ≥ 1

32

(
1 ∧ 1

λ

) n∑
i=1

p2
i .
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This shows that (1 ∧ λ−1)
∑

p2
i is of the best possible order for the Poisson approximation.

Indeed, it has been proved by Deheuvels and Pfeifer (1986), using a semigroup approach, and
also by Chen and Choi (1992) and Barbour, Chen and Choi (1995), using Stein’s method, that
dTV(L(W),Po(λ)) is asymptotic to

∑
p2

i (respectively (2πe)−1/2λ−1 ∑
p2

i ) as maxpi → 0 and
λ → 0 (respectively λ → ∞).

We end this section by stating a theorem of Arratia, Goldstein and Gordon [(1989, 1990),
Theorem 1], which was proved using (4.2) and (4.3).

Theorem 4.1. Let {Xα :α ∈ J } be Bernoulli random variables with success probabilities pα ,
α ∈ J . Let W = ∑

α∈J Xα and λ = EW = ∑
α∈J pα . Then, for any collection of sets Bα ⊂ J ,

α ∈ J ,

dTV
(
L(W),Po(λ)

) ≤
(

1 ∧ 1

λ

)
(b1 + b2) +

(
1 ∧ 1.4√

λ

)
b3

and

∣∣P[W = 0] − e−λ
∣∣ ≤

(
1 ∧ 1

λ

)
(b1 + b2 + b3),

where

b1 =
∑
α∈J

∑
β∈Bα

pαpβ, b2 =
∑
α∈J

∑
β∈Bα\{α}

E(XαXβ),

b3 =
∑
α∈J

∣∣E(Xα|Xβ,β /∈ Bα) − pα

∣∣.
If for each α ∈ J , Xα is independent of {Xβ :β /∈ Bα}, then b3 = 0, and we call {Xα :α ∈ J }

locally dependent with dependence neighbourhoods {Bα :α ∈ J }. An m-dependent sequence of
random variables, which is a special case of a ϕ-mixing sequence, is locally dependent.

The wide applicability of Theorem 4.1 is illustrated through many examples in Arratia, Gold-
stein and Gordon (1989, 1990). Many problems to which Theorem 4.1 is applied are concerned
with locally dependent random variables.

5. The size-bias coupling approach

In his monograph, Stein [(1986), pp. 89–93] considered the following general problem of Poisson
approximation. Let X1, . . . ,Xn be dependent Bernoulli random variables with success probabil-
ities pi = P[Xi = 1] for i = 1, . . . , n. Let W = ∑

Xi and let λ = EW with λ > 0. Assume I to
be uniformly distributed over {1, . . . , n} and independent of X1, . . . ,Xn. Then for any bounded
real-valued function f defined on {0,1, . . . , n},

E
{
Wf (W)

} = λE
(
f (W) | XI = 1

)
. (5.1)
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If W ∗ and W are defined on the same probability space such that the distribution of W ∗ equals
the conditional distribution of W given XI = 1, then (5.1) becomes

E
{
Wf (W)

} = λEf
(
W ∗),

from which one obtains

dTV
(
L(W),Po(λ)

) ≤ (
1 − e−λ

)
E

∣∣W + 1 − W ∗∣∣. (5.2)

From (5.2), one can see that if the distribution of W +1 is close to that of W ∗, then the distribution
of W is approximately Poisson with mean λ, and (5.2) gives an upper bound on the total variation
distance.

This approach to Poisson approximation was reviewed in Chatterjee, Diaconis and Meckes
(2005), who also applied (5.2) to a variety of problems, such as the matching problem, the
coupon-collector’s problem and the birthday problem.

In their monograph, Barbour, Holst and Janson (1992) studied Poisson approximation for
Bernoulli random variables satisfying monotone coupling assumptions. We state their main the-
orem in this context as follows.

Theorem 5.1. Let {Xα :α ∈ J } be Bernoulli random variables with success probabilities pα ,
α ∈ J . Suppose for each α ∈ J , there exists {Yβ,α :β ∈ J } defined on the same probability space
as {Xα :α ∈ J } such that

L
({Yβ,α :β ∈ J }) = L

({Xα :α ∈ J | Xα = 1}).
Let W = ∑

Xα , λ = EW = ∑
pα , and Z ∼ Po(λ).

1. If

Yβ,α ≤ Xβ for all β ∈ J (negatively related), (5.3)

then

dTV
(
L(W),Po(λ)

) ≤ (1 ∧ λ)

(
1 − Var(W)

λ

)
. (5.4)

2. If

Yβ,α ≥ Xβ for all β ∈ J (positively related), (5.5)

then

dTV
(
L(W),Po(λ)

) ≤ (1 ∧ λ)

(
Var(W)

λ
− 1 + 2

λ

∑
α∈J

p2
α

)
. (5.6)

From (5.4) and (5.6), one can see that L(W) is approximately Po(λ) if Var(W)/λ is close to 1.
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The proof of Theorem 5.1 is pretty similar to that for (5.2). Let Vα = ∑
β �=α Yβ,α and W(α) =

W − Xα for α ∈ J . Then for any bounded real-valued function f defined on {0,1, . . . , |J |},

E
{
Wf (W)

} =
∑
α∈J

pαE
(
f

(
W(α) + 1

) | Xα = 1
)

(5.7)
=

∑
α∈J

pαEf (Vα + 1) = λEf (VI + 1),

where I is independent of all the Xα and Vα , and P[I = α] = pα/λ, α ∈ J .
Using the monotone properties (5.3) and (5.5), one gets

dTV
(
L(W),Po(λ)

) ≤ (
1 − e−λ

)
E

[
(W + 1) − (VI + 1)

]
for the negatively related case, and

dTV
(
L(W),Po(λ)

) ≤ (
1 − e−λ

)(
EXI + E

[
(VI + 1) − (

W(I) + 1
)])

for the positively related case. Straightforward calculations then yield (5.4) and (5.6).
Barbour, Holst and Janson (1992) also established conditions for existence of monotone cou-

plings and applied Theorem 5.1 to large number of problems in random permutations, random
graphs, occupancy and urn models, spacings, and exceedances and extremes.

The coupling approach of Stein (1986) and of Barbour, Holst and Janson (1992) can actually
be formulated under the general framework of size-bias coupling. Here is the definition of size-
biased distribution; see Goldstein and Rinott (1996).

Definition 5.1. Let W be a non-negative random variable with mean λ > 0. We say that Ws has
the W -size biased distribution if

E
{
Wf (W)

} = λEf
(
Ws

)
for all real-valued functions f such that the expectations exist.

If W is a non-negative integer-valued random variable, then P[Ws = k] = kP[W = k]/λ for
k ≥ 1. The following theorem follows immediately.

Theorem 5.2. Let W be a non-negative integer valued random variable with EW = λ > 0. As-
sume that Ws and W are defined on the same probability space, that is, assume that there is
size-bias coupling. Then we have

dTV
(
L(W),Po(λ)

) ≤ (
1 − e−λ

)
E

∣∣W + 1 − Ws
∣∣.

Note that in the case where W is a sum of Bernoulli random variables, Ws can be taken
to be W ∗ in (5.2) or VI + 1 in (5.7). Furthermore, it is clear from Theorem 5.2 that the Poisson
distribution is the only distribution such that its size-biased distribution is the original distribution
shifted by one.



Approximating dependent rare events 1251

We conclude by saying that a large portion of the literature on the coupling approach to Poisson
approximation falls under the general framework of size-bias coupling. Indeed, (5.7) provides a
general way for constructing size-bias coupling for sums of Bernoulli random variables. Cou-
plings involving the size-biased distribution, however, have found applications beyond Poisson
approximation; see for example Peköz and Röllin (2011) and Peköz, Röllin and Ross (2013).

6. Applications

A remarkable feature of Theorem 4.1 and Theorem 5.1 is that the error bounds depend only on
the first two moments of the random variables. It also happens that many interesting scientific
problems can be formulated as occurrences of dependent rare events. For example, one is often
interested in the maximum of a set of random variables ξ1, . . . , ξn. For a threshold t , define
Xi = I [ξi > t] for i = 1, . . . , n, and let W = ∑

Xi . Then

P [max ξi ≤ t] = P[W = 0]. (6.1)

Often t is large, so that {ξ1 > t}, . . . , {ξn > t} are rare events. If the X1, . . . ,Xn satisfy the con-
ditions of Theorem 4.1 or Theorem 5.1 and the error bound is small, then

P [max ξi ≤ t] ≈ e−λt where λt =
n∑

i=1

P [ξi > t].

Since the appearance of Theorems 4.1 and 5.1, Poisson approximation has been applied to a
large number of problems in many different fields, which include computational biology, random
graphs and large-scale networks, computer science, statistical physics, epidemiology, reliability
theory, game theory, and financial mathematics. In computational biology, Poisson approxima-
tion is typically used to calculate p-values in sequence comparison, while in random graphs,
it is used to count the copies of a small graph in a large graph. Here is a sample of publica-
tions on problems in different fields, in which Poisson approximation is applied: Dembo, Kar-
lin and Zeitouni (1994), Neuhauser (1994), Waterman and Vingron (1994), Waterman (1995),
Embrechts, Klüppelberg and Mikosch (1997), Karlin and Chen (2000), Barbour and Reinert
(2001), Lange (2002), Lippert, Huang and Waterman (2002), Grimmett and Janson (2003),
Franceschetti and Meester (2006), Hart, Rinott and Weiss (2008), Draief and Massoulié (2010),
Falk, Hüsler and Reiss (2011).

In what follows, we will present two recent applications of Poisson approximation, one by
Benjamini, Yadin and Zeitouni (2007) on maximal arithmetic progressions, and the other by
Bollobás et al. (2013) on bootstrap percolation.

6.1. Maximal arithmetic progressions

The occurrences of arithmetic progressions in subsets of the set of positive integers are of interest
in number theory. Tao (2007) gave a historic account of the topic, in particular, Szemerédi’s
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theorem, which states that any “dense” subset of positive integers must contain arbitrarily long
arithmetic progressions.

Benjamini, Yadin and Zeitouni (2007, 2012) analyse the following probabilistic variant of
arithmetic progressions. Let ξ1, . . . , ξn be i.i.d. Bernoulli random variables with success prob-
ability 0 < p < 1. We say that there is an arithmetic progression of length at least t , starting
at a + s with a common difference s, if ξa = 0 and ξa+s = ξa+2s = · · · = ξa+ts = 1 as long as
a + ts ≤ n. Let Un denote the length of the maximal arithmetic progression among ξ1, . . . , ξn.
We have the following result.

Theorem 6.1 [Benjamini, Yadin and Zeitouni (2007)]. Let x ∈ R be fixed and let 0 ≤ δn < 1
be such that x − 2 logn

logp
+ log logn

logp
− δn is integer valued. Then

P

[
Un + 2 logn

logp
− log logn

logp
< x − δn

]
∼ exp

(
(1 − p)px−δn logp

4

)
(6.2)

as n → ∞.

Note that the distribution of Un is of Gumbel-type. However, the rounding effect of δn does
not vanish, since Un is integer-valued and, as one can show, the variance of Un is of order 1.
Therefore, limiting distributions only exist along subsequences n1, n2, . . . for which limm→∞ δnm

exists, in which case the limiting distribution is a discretised Gumbel distribution.

Idea of proof. Denote by In,t the set of pairs (a, s) of positive integers that satisfy a + ts ≤ n,
and for each such (a, s) ∈ In,t define

Xa,s = I[ξa = 0, ξa+s = ξa+2s = · · · = ξa+ts = 1].

Let Wn,t = ∑
(a,s) Xa,s , were the sum ranges over all pairs (a, s) ∈ In,t . Then Wn,t counts the

arithmetic progressions of length at least t in {1,2, . . . , n}. Following (6.1), we have

P[Un < t] = P[Wn,t = 0].

We claim that

P[Wn,t = 0] ≈ e−λn,t , (6.3)

where

λn,t = |In,t |qpt

with q = 1 − p. It is not difficult to see that

|In,t | =
� n−1

t
�∑

s=1

(n − ts) ∼ n2

2t
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if n, t → ∞ as long as t = o(n). We let

t = x − 2 logn

logp
+ log logn

logp
− δn, (6.4)

which is integer-valued by definition of δn. Since with this choice of t we have

λn,t ∼ −qpx−δn logp

4

as n → ∞, we have established (6.2).
It remains to justify (6.3) for t defined as in (6.4), which we will accomplish via Theorem 4.1.

To this end, let Aa,s = {a, a + s, . . . , a + ts} for each (a, s) ∈ In,t . Note that Xa,s and Xa′,s′
are independent whenever the sets Aa,s and Aa′,s′ are disjoint. Denote by Da,s(k) be number of
pairs (a′, s′) ∈ In,t with s′ �= s, such that |Aa,s ∩Aa′,s′ | = k. From Benjamini, Yadin and Zeitouni
[(2007), Proposition 4] we have the estimate

Da,s(k) ≤
⎧⎨
⎩

(t + 1)2n, if k = 1,
(t + 1)2t2, if 2 ≤ k ≤ t/2 + 1,
0, if k > t/2 + 1.

We can now apply Theorem 4.1. Let Na,s ⊂ In,t be the set of pairs (a′, s′) such that Aa,s ∩Aa′,s′
is non-empty. It is clear then that b3 = 0. Now,

b1 ≤
∑
a,s

(
1 +

t∑
k=1

Da,s(k)

)
p2(t+1) = O

(
n2

t
· (1 + t2n + t5) · p2t

)
= o(1),

where we used that p2t = O(log(n)/n4). Since E(Xa,sXa′,s′) = p2(t+1)−k if |Aa,s ∩ Aa′,s′ | = k,
we also have

b2 ≤
∑
a,s

t∑
k=1

Da,s(k)p2(t+1)−k = O

(
n2

t
· (t2n + t4p−t/2) · p2t

)
= o(1).

Hence, by Theorem 4.1, |P[Wn,t = 0] − e−λn,t | → 0 as n → ∞, justifying (6.3). �

We refer to Benjamini, Yadin and Zeitouni (2007, 2012) and Zhao and Zhang (2012) for further
details and refinements.

6.2. Bootstrap percolation

Consider the d-dimensional torus lattice T
d
n = Z

d/nZ
d , along with the canonical 
1 distance, that

is, the smallest number of edges connecting to points. Two sites are connected if their 
1 distance
is 1. Bollobás et al. (2013) considered d-neighbour bootstrap percolation on T

d
n , a special type

of a cellular automaton. A vertex can be either infected or uninfected. At each time step, an
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uninfected vertex becomes infected if d or more of its neighbours are infected (at each time step,
this rule is applied simultaneously for all vertices). Once a vertex is infected, it stays infected.

The rules of cellular automata are usually deterministic, and in the model considered by
Bollobás et al. (2013), randomness is added only at the beginning: at time 0, each vertex is
infected with probability p and remains uninfected with probability q = 1 − p, independently
of all other vertices. With At ⊂ T

d
n denoting the set of all infected sites at time t , we shall be

interested in the first time

Tn = inf
{
t ≥ 0 : At = T

d
n

}
when all the sites are infected.

The following result says that, if we let p converge to 1 at the right speed as n → ∞, Tn

is essentially concentrated on one or two points. In order to formulate the result, we define the
combinatorial quantity

mt =
t∑

r=0

r∑
j=0

(
d

j

)
.

Theorem 6.2 [Bollobás et al. (2013), Theorem 3]. Fix a positive integer t . If, for some function
ω(n) → ∞, (

ω(n)

nd

) 1
mt−1 ≤ qn ≤

(
1

ω(n)nd

) 1
mt

(6.5)

then Ppn [Tn = t] → 1. If instead, for some slowly varying function ω(n),

(
1

ω(n)nd

) 1
mt ≤ qn ≤

(
ω(n)

nd

) 1
mt

(6.6)

then Ppn [Tn ∈ {t, t + 1}] → 1.

Idea of proof. As in the previous application, we reformulate the problem as an extremal
problem. Although we assume that t is fixed throughout, the arguments can be extended to
t = o(logn/ log logn). For each i ∈ T

d
n , let Yi be the time when vertex i becomes infected, that

is

Yi = inf{t ≥ 0 : i ∈ At }.
Now clearly Tn = maxi∈Td

n
Yi . For each i ∈ T

d
n , let Xt,i = I[Yi > t] be the indicator that vertex

i is uninfected at time t . Note that, although Yi and Yj are not independent for any i and j ,
the indicators Xt,i and Xt,j are independent whenever the 
1-distance between i and j is larger
than 2t + 1, since infections can only propagate an 
1-distance 1 per time step. With Wn,t =∑

i∈Td
n
Xt,i , we have

Pp[Tn ≤ t] = Pp[Wn,t = 0]. (6.7)
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We claim that

Pp[Wn,t = 0] ≈ e−λn,t , (6.8)

where

λn,t =
∑
i∈Td

n

Pp[i is uninfected at time t ] = ndρn,t (p)

with ρn,t (p) = Pp[0 is uninfected at time t ].
Bollobás et al. [(2013), Theorem 17] gave the following results about the behaviour of ρn,t (p).

If there exists C = C(t, d) > 0 such that

qmt
n ≤ C

nd
, (6.9)

for all n, then

ρn,t (pn) ∼ d32d−1qmt
n (6.10)

as n → ∞. Hence, if

qmt
n ≤ 1

ndω(n)
(6.11)

for some function ω(n) → ∞, we have that λn,t (pn) = ndρn,t (pn) → 0, so that, under (6.11),

Ppn[Tn ≤ t] → 1. (6.12)

If, in contrast, we have

qmt
n ≥ ω(n)

nd
(6.13)

for some function ω(n) → ∞, we can argue as follows. A simple coupling argument yields
that the system is monotone, that is, if p̃ ≤ p, we have ρn,t (p̃) ≥ ρn,t (p), and hence λn,t (p̃) ≥
λn,t (p). Since by (6.10) we have

λn,t (pn) ∼ Cd32d−1

for arbitrarily large C, we must have

λn,t (pn) → ∞

if (6.13) is true, thus yielding

Ppn[Tn ≤ t] → 0. (6.14)

Since the first inequality in (6.5) is just (6.13) with t replaced by t − 1, we have from (6.14)
that Ppn[Tn ≤ t − 1] → 0. On the other hand, the second inequality of (6.5) is just (6.11), hence
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(6.12) implies Ppn [Tn ≤ t] → 1. Thus, Ppn [Tn = t] → 1. The proof of the second statement is
analogous by observing that (6.6) implies

(
ω̃(n)

nd

) 1
mt−1 ≤ qn ≤

(
1

ω̃(n)nd

) 1
mt+1

,

where, with α = mt−1/mt < 1,

ω̃(n) = nd(1−α)

ω(n)α
→ ∞.

It remains to justify (6.8). Again, by monotonicity it is enough to consider (6.9), since p̃ ≤ p

implies Pp̃[Tn ≤ t] ≤ Pp[Tn ≤ t]. Let

ρ̃n,t (p) = max
j :d(0,j)≤2t

Pp[0 and j are uninfected at time t ].

Bollobás et al. [(2013), Lemma 19] showed that, if (6.9) holds, then

ρ̃n,t (pn) = o
(
ρn,t (pn)

)
.

Let now Ni = {j ∈ T
d
n : d(i, j) ≤ 2t}. It is clear that Xt,i is independent of (Xt,j )j /∈Ni

, hence
b3 = 0. With the crude bound |Ni | ≤ td , we have

b1

λn,t (pn)
≤ ndtdρn,t (pn)

2

λn,t (pn)
= tdρn,t (pn) = o(1)

and

b2

λn,t (pn)
≤ ndtd ρ̃n,t (pn)

λn,t (pn)
= td

ρ̃n,t (pn)

ρn,t (pn)
= o(1),

justifying (6.8). �

7. Generalisations and open problems

In this section we will discuss three generalisations of Poisson approximation and touch briefly
on two other generalisations, the three generalisations being compound Poisson approximation,
Poisson process approximation and multivariate Poisson approximation. Compound Poisson dis-
tributions on the real line, the distributions of Poisson point processes, and multivariate Poisson
distributions are all compound Poisson distributions if viewed in an appropriate way, but the three
approximations have been studied separately because of the different contexts in which they arise
and the different problems to which they are applied.
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7.1. Compound Poisson approximation

In many probability models (see Aldous (1989)), events occur in clumps at widely scattered
localities or at long irregular intervals in time. In such situations, the Poisson approximation
for the number of events occurring either fails or performs poorly. If the number of clumps is
approximately Poisson, the clumps are roughly independent and their sizes close to identically
distributed, then the number of events occurring can be approximated by a compound Poisson
distribution. A typical example of events occurring in clumps is earthquakes exceeding certain
magnitude. Often such an earthquake is followed by a quick succession of several earthquakes
before normalcy is resumed.

We illustrate further the notion of clumps by presenting the example of the longest head run
discussed in Arratia, Goldstein and Gordon (1989, 1990). Note that this example is a special case
of the maximal arithmetic progressions in Section 6.1. Suppose a coin is tossed repeatedly where
the probability of falling heads is p (0 < p < 1). Let Rn be the length of the longest run of heads
starting from within the first n tosses. What is the asymptotic distribution of Rn as n → ∞?

Let Z1,Z2, . . . be independent Bernoulli random variables with success probability p (0 <

p < 1), where {Zi = 1} represents the event that the coin falls heads at the ith toss. Let J =
{1,2, . . . , n} and let t ≥ 1. Define Yi = ZiZi+1 · · ·Zi+t−1 for i = 1,2, . . . , n, and define

Xi =
{

Y1, if i = 1,
(1 − Zi−1)Yi, if 2 ≤ i ≤ n.

Let W = ∑
Xi and let λ = EW . Then {Rn < t} = {W = 0}.

Define Bi = {j ∈ J : |i − j | ≤ t}, i = 1,2, . . . , n. Then {Xi : i ∈ J } is locally dependent with
dependence neighbourhoods {Bi : i ∈ J }. Applying Theorem 4.1, we obtain b3 = b2 = 0, and
b1 < λ2(2t + 1)/n + λpt .

Hence ∣∣P[Rn < t] − e−λ
∣∣ ≤

(
1 ∧ 1

λ

)(
λ2(2t + 1)/n + λpt

)
. (7.1)

Requiring that λ remains bounded away from 0 and from ∞ and that the error bound
tends to 0 as n → ∞ leads to the following conclusion: for a fixed integer c, P[Rn −
�log1/p(n(1 − p))� < c] → exp{−pc−r} along a subsequence of n if and only if log1/p(n(1 −
p)) − �log1/p(n(1 − p))� → r ∈ [0,1] along the same subsequence.

Now let V = ∑
Yi and let μ = EV . Then we also have {Rn < t} = {V = 0}. The difference

between the Xi and the Yi is that while Xi indicates a run of at least t heads starting from the ith
toss preceded by a tail, Yi indicates a run of at least t heads starting from the ith toss regardless
of what precedes it. For a run of more than t heads starting from the ith toss, say, Zi−1 = 0,
Zi = · · · = Zi+m−1 = 1, Zi+m = 0, where m > t , Xi = 1, Xi+1 = · · · = Xi+m−t = 0, whereas
Yi = Yi+1 = · · · = Yi+m−t = 1. Thus while W counts the clumps, which consist of runs of at
least t heads, V counts the clumps and their sizes. The way the Xi are defined so that W counts
only the clumps is called declumping.

If we apply Theorem 4.1 to V , we will obtain a bound on |P[Rn < t]− e−μ|. Since {Yi : i ∈ J }
is locally dependent, b3 = 0. But b2 does not tend to 0 if we require μ to be bounded away from 0
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and from ∞. Thus Poisson approximation fails. However, Arratia, Goldstein and Gordon (1990)
showed that the distribution of V is approximately compound Poisson through an extension of
Poisson approximation to Poisson process approximation.

We pause for a moment to remark that there are two equivalent representations of the com-
pound Poisson distribution on Z+ = {0,1,2, . . .}. Let ξ1, ξ2, . . . be i.i.d. positive integer-valued
random variables with P[ξ1 = k] = γk for k = 1,2, . . . , and let N be a Poisson random vari-
able with mean ν > 0, independent of the ξi . The distribution of ξ1 + ξ2 + · · · + ξN , which is
compound Poisson, is the same as that of

∑
iZi , where the Zi are independent Poisson ran-

dom variables with means νγi respectively. Let γ be the common distribution of the ξi . Then
γ = ∑

γiδi , where δi is the Dirac measure at i. We denote this compound Poisson distribution
by CP(νγ ) = CP(

∑
νγiδi) and call νγ the generating measure.

Arratia, Goldstein and Gordon (1990) showed that by representing {Yi : i ∈ J } as a Bernoulli
process indexed by J × {1,2, . . .} where J denotes the location of clumps and {1,2, . . .} the
clump sizes, {Yi : i ∈ J } can be approximated in total variation by a Poisson process, which is
a collection of independent Poisson random variables indexed by J × {1,2, . . .}. By taking an
appropriate projection and using the above alternative representation of the compound Poisson
distribution, Arratia, Goldstein and Gordon (1990) obtained a bound on the total variation dis-
tance between the distribution of V and a compound Poisson distribution. This in turn provides
an error bound for |P[Rn < t] − e−ν |, where ν is the mean of the Poisson number of terms in the
compound Poisson distribution and is less than μ = EV . This error bound is of the same order as
that in (7.1), but without the factor 1∧λ−1. However, it leads to the same asymptotic distribution
for Rn as n → ∞ because λ is bounded away from 0 and from ∞.

The factor 1 ∧ λ−1 is lost because Poisson process approximation for the Bernoulli process
representing {Yi : i ∈ J } requires too much information extraneous to the compound Poisson
approximation for V . A direct approach using Stein’s method, which partially recovers the factor
1 ∧ λ−1, was developed by Barbour, Chen and Loh (1992). Let λi ≥ 0, i = 1,2, . . . such that∑

λi < ∞. Barbour, Chen and Loh (1992) used the Stein equation∑
iλif (w + i) − wf (w) = I(w ∈ A) − P[Z ∈ A] for w ∈ Z+, (7.2)

where A is a subset of Z+, Zi , i ≥ 1, are independent Po(λi), and Z = ∑
iZi .

By solving (7.2) analytically as well as writing f (w) = g(w) − g(w − 1) and using the
generator approach to solve (7.2), they obtained the following bounds on the solution fA. For
A ⊂ Z+ = {0,1,2, . . .},

‖fA‖∞ ≤ (
1 ∧ λ−1

1

)
eν, ‖�fA‖∞ ≤ (

1 ∧ λ−1
1

)
eν, (7.3)

where ν = ∑
λi , and if iλi ↓ 0, then

‖fA‖∞ ≤
{1, if λ1 − 2λ2 ≤ 1,

2

(λ1 − 2λ2)1/2
− 1

λ1 − 2λ2
, if λ1 − 2λ2 > 1,

and

‖�fA‖∞ ≤ 1 ∧
(

1

4(λ − 2λ2)2
+ log+(2(λ1 − 2λ2))

λ1 − 2λ2

)
.
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As in the case of Poisson approximation, the solution fA is unique except at w = 0. Since its
value at w = 0 is never used in the calculation, it has been conveniently set to be 0. Using the
bounds on ‖�fA‖∞, Barbour, Chen and Loh (1992) proved the following theorem for locally
dependent Bernoulli random variables.

Theorem 7.1. Suppose {Xα : α ∈ J } are locally dependent Bernoulli random variables with
success probabilities pα and dependence neighbourhoods Bα ⊂ Cα , α ∈ J , such that for each
α ∈ J , Xα is independent of {Xβ : β ∈ Bc

α} and {Xβ : β ∈ Bα} is independent of {Xβ : β ∈ Cc
α}.

Let W = ∑
Xα and let Yα = ∑

β∈Bα
Xβ . Define λi = i−1 ∑

EXαI[Yα = i] for i = 1,2, . . . , let

ν = ∑
EXαY−1

α = ∑
λi , and let γ = ∑

(λi/ν)δi .

1. We have

dTV
(
L(W),CP(νγ )

) ≤ (
1 ∧ λ−1

1

)
eν

∑
α∈J

∑
β∈Cα

pαpβ.

2. If iλi ↓ 0 as i → ∞, then we have

dTV
(
L(W),CP(νγ )

)
≤ 2

[
1 ∧

(
1

4(λ1 − 2λ2)2
+ log+(2(λ1 − 2λ2))

λ1 − 2λ2

)]∑
α∈J

∑
β∈Cα

pαpβ.

If λi = 0 for i ≥ 3 and λ1 < 2λ2, it can be shown that both ‖fA‖∞ and ‖�fA‖∞ grow expo-
nentially fast with ν (see Barbour and Utev, Barbour and Utev (1998, 1999)). This shows that
the bounds in (7.3) cannot be much improved. To circumvent this difficulty Barbour and Utev
(1998, 1999) considered bounds on

Ha
0 (νγ ) := sup

A⊂Z+
sup
w>a

∣∣fA(w)
∣∣,

Ha
1 (νγ ) := sup

A⊂Z+
sup
w>a

∣∣fA(w + 1) − fA(w)
∣∣.

Assuming that the generating function of γ = ∑
(λi/ν)δi has a radius of convergence R > 1 and

assuming some other conditions, Barbour and Utev (1999) proved that there exist constants C0,
C1 and C2 depending on γ such that for any a > C2νm1 + 1, where m1 is the mean of γ ,

Ha
0 (νγ ) ≤ C0ν

−1/2,

and

Ha
1 (νγ ) ≤ C1ν

−1.

The expressions for C0,C1 and C2 are complicated but explicit. Sufficient conditions can be
found under which these constants are uniformly bounded. Using the bound on Ha

1 (νγ ), Barbour
and Månsson (2000) proved the following theorem.
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Theorem 7.2. For n ≥ 1, let λin > 0 for i = 1,2, . . . . Let Wn, n = 1,2, . . . , be a sequence
of non-negative, integer-valued random variables such that for each n ≥ 1 and each bounded
f : Z+ → R, ∣∣∣∣E

(∑
i≥1

iλinf (Wn + i) − Wnf (Wn)

)∣∣∣∣ ≤ ‖�f ‖∞εn.

Let νn = ∑
i≥1 λin < ∞ and γin = λin/νn. Assume that

(i) lim
n→∞γin = γi for each i ≥ 1, (ii) inf

n≥1
γ1n > 0,

(iii) sup
n≥1

∑
i≥1

γinR
i < ∞ for some R > 1, (iv) inf

n≥1
νn > 2.

Then there exist positive constants K < ∞ and c < 1 such that for any x satisfying c < x < 1
and any n for which EWn ≥ (x − c)−1,

dTV
(
L(Wn),CP(�n)

) ≤ K(1 − x)−1(ν−1
n εn + P

(
Wn ≤ (1 + x)EWn/2

))
,

where the generating measure �n = ∑
λinδi = νn

∑
γinδi .

In their efforts to obtain bounds on the solution of the Stein equation (7.2) so that the bounds
resemble or “correctly” generalise those in the Poisson approximation, Barbour and Xia [(1999),
Theorem 2.5] obtained the following theorem by treating compound Poisson approximation as a
perturbation of Poisson approximation.

Theorem 7.3. Let λi ≥ 0, i ≥ 1, satisfy

θ := 1

λ

∑
i(i − 1)λi <

1

2
where λ =

∑
iλi < ∞.

Then for any subset A ⊂ Z+, the Stein equation (7.2) has a bounded solution f = fA satisfying

‖fA‖∞ ≤ 1

(1 − 2θ)λ1/2
, ‖�fA‖∞ ≤ 1

(1 − 2θ)λ
.

Using the bound on ‖�fA‖∞ for the locally dependent Bernoulli random variables defined in
Theorem 7.1, we obtain the following theorem.

Theorem 7.4. Let {Xα : α ∈ J } be locally dependent Bernoulli random variables as defined in
Theorem 7.1. Let W = ∑

Xα and let Yα = ∑
β∈Bα

Xβ . Define λi = i−1 ∑
EXαI[Yα = i] for

i = 1,2, . . . . If θ := λ−1 ∑
i(i − 1)λi < 1

2 , where λ = ∑
iλi < ∞, and γ = ∑

(λi/ν)δi , then

dTV
(
L(W),CP(νγ )

) ≤ 2

(
1 ∧ 1

(1 − 2θ)λ

)∑
α∈J

∑
β∈Cα

pαpβ.
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Much progress has been made on bounding the solution of the Stein equation (7.2) in com-
pound Poisson approximation. The results presented in this section are quite satisfactory although
many conditions on the λi or the generating measure are required. It still remains a tantalising
question as to what general results one could obtain by using a different Stein equation or by
using a non-uniform bound on its solution, and to what extent one could do away with those
conditions on the λi . Roos (2003) used the generating function approach of Kerstan to study
compound Poisson approximation for sums of independent random variables without imposing
any condition on the λi , but the method works only under the condition of independence. Even
for sums of independent random variables it is unclear if the results of Roos (2003) can be proved
using Stein’s method. For further reading on compound Poisson approximation, see Barbour and
Chryssaphinou (2001), and Erhardsson (2005).

7.2. Poisson process approximation

In Poisson process approximation, both the number of rare events that occur and the respective
locations at which they occur are approximated by a Poisson point process on a metric space. In
the longest head run example discussed in Arratia, Goldstein and Gordon (1990), the information
on the locations where the events occur is used in the calculation of the compound Poisson
approximation. In Leung et al. (2005), a Poisson process approximation for palindromes in a
DNA is used to provide a mathematical basis for modelling the palindromes as i.i.d. uniform
random variables on an interval. The total variation distance is used for the Poisson process
approximation in the longest head run example, but in general such a distance is not appropriate.
For example, the total variation distance between a Bernoulli process indexed by {i/n : i =
1,2, . . . , n} with success probability λ/n and a Poisson process on [0,1] with rate λ is always 1,
although the Bernoulli process converges weakly to the Poisson process as n → ∞. A distance
which is commonly used in process approximations is the Wasserstein distance.

By writing f (w) = g(w) − g(w − 1), Barbour (1988) converted the Stein equation (4.1) to
a second order difference equation and introduced the generator approach to extend Poisson
approximation to higher dimensions and to Poisson process approximation. Following the gener-
ator approach, Barbour and Brown (1992) established a general framework for Poisson process
approximation. In this framework, a compact metric space � endowed with a metric d0 ≤ 1 is
the carrier space, � is a point process on � with finite intensity measure λ of total mass λ, where
λ(A) = E�(A) for every Borel set in �, and Z is a Poisson point process on � with the same
intensity measure λ. Let X be the configuration space {∑1≤i≤k δαi

: αi ∈ �,k ≥ 0}. Define a
metric d1 ≤ 1 on X by

d1

( ∑
1≤i≤m

δxi
,

∑
1≤i≤n

δyi

)
=

{1, if m �= n,
n−1 min

∑
d0(xi, yπ(i)), if m = n,

where the minimum is taken over all permutations π of {1,2, . . . n}.
Define H = {h : X → R : |h(ξ1)− h(ξ2)| ≤ d1(ξ1, ξ2)}. The Wasserstein distance with respect

to d1 between the distributions of two point processes �1 and �2 on � with finite intensity
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measures is defined by

d2
(
L(�1),L(�2)

) = sup
h∈H

∣∣Eh(�1) − Eh(�2)
∣∣.

Note that d2 is a metric bounded by 1. The Stein equation for approximating the distribution of
the point process � by that of the Poisson point process Z is

Ag(ξ) :=
∫

�

[
g(ξ + δx) − g(ξ)

]
λ(dx) +

∫ [
g(ξ − δx) − g(ξ)

]
ξ(dx)

(7.4)
= h(ξ) − Eh(Z),

where h ∈ H and A is the generator of a measure-valued immigration-death process Yξ (t) with
immigration intensity λ, per capita unit death rate, Yξ (0) = ξ , and stationary distribution L(Z).

The Stein equation (7.4) has a solution g = gh given by

gh(ξ) = −
∫ ∞

0

[
Eh

(
Yξ (t)

) − Eh(Z)
]
dt.

Using coupling, Barbour and Brown (1992) obtained the following bounds on gh:∣∣�αgh(ξ)
∣∣ := ∣∣gh(ξ + δα) − gh(ξ)

∣∣ ≤ 1 ∧ 1.65λ−1/2, (7.5)∣∣�2
αβgh(ξ)

∣∣ := ∣∣gh(ξ + δα + δβ) − gh(ξ + δα) − gh(ξ + δβ) + gh(ξ)
∣∣

(7.6)

≤ 1 ∧ 5(1 + 2 log+(2λ/5)

2λ
,

where λ is the total mass of λ.
In applications, the logarithmic term in (7.5) carries over to the error bounds in the approxima-

tion. Attempts were made to remove the logarithmic terms. Xia (1997, 2000) succeeded in some
special cases. A general result in the form of a non-uniform bound on |�2

αβgh(ξ)| was obtained
by Brown, Weinberg and Xia (2000) and later improved by Xia (2005), which is given as

∣∣�2
αβgh(ξ)

∣∣ ≤ 1 ∧
(

3.5

λ
+ 2.5

|ξ | + 1

)
, (7.7)

where |ξ | is the number of points in ξ , that is, the total measure of ξ .
Using (7.7), the error bound on the Wasserstein distance for Poisson process approximation

for Bernoulli processes has the same factor as that on the total variation distance for the Poisson
approximation for sums of independent Bernoulli random variables, namely, 1 ∧ λ−1.

Chen and Xia (2004) studied Stein’s method for Poisson process approximation from the point
of view of Palm theory. For a point process � on � with finite intensity measure, the Palm process
�α associated with � at α ∈ � has the same distribution as the conditional distribution of � given
that a point has occurred at α. A point process � on � with finite intensity measure λ is locally
dependent with neighbourhoods {Aα : α ∈ �} if L(�

(α)
α ) = L(�(α)) λ-a.s., where �

(α)
α and �(α)

are respectively the restrictions of �α and � to Ac
α for each α ∈ �.

The following theorem, which uses (7.7), is Corollary 3.6 in Chen and Xia (2004).
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Theorem 7.5. Let � be a locally dependent point process on the compact metric space � with
finite intensity measure λ and with neighbourhoods {Aα : α ∈ �}, and let Z be a Poisson point
process on � with the same intensity measure λ. Let λ be the total measure of λ. Then

d2
(
L(�),L(Z)

) ≤ E

∫
α∈�

(
5

λ
+ 3

|�(α)| + 1

)(
�(Aα) − 1

)
�(dα)

+
∫

α∈�

∫
β∈Aα

(
5

λ
+ E

3

|�(αβ)| + 1

)
λ(dα)λ(dβ),

where |ξ | is the total measure of ξ and ξ (αβ) is the restriction of ξ to Ac
α ∩ Ac

β .

This theorem gives the factor 1 ∧ λ−1 in the Wasserstein distance error bound for the Poisson
approximation for Bernoulli Processes. It has also been applied to Poisson process approximation
for palindromes in a DNA in Leung et al. (2005), and to Poisson point process approximation
for the Matérn hard-core process in Chen and Xia (2004).

For further reading on Poisson process approximation, see Xia (2005).

7.3. Multivariate Poisson approximation

For the multivariate analogue of Poisson approximation, we consider independent Bernoulli ran-
dom d-vectors, X1, . . . ,Xn with

P
[
Xj = e(i)

] = pj,i , P[Xj = 0] = 1 − pj , 1 ≤ i ≤ d,1 ≤ j ≤ n,

where e(i) denotes the ith coordinate vector in R
d and pj = ∑

1≤i≤d pj,i .
Let W = ∑

Xj , λ = ∑
pj , μi = λ−1 ∑

1≤j≤n pj,i , and let Z = (Z1, . . . ,Zd), where
Z1, . . . ,Zd are independent Poisson random variables with means λμ1, . . . , λμd . Using the
Stein equation

Ag(j) =
∑

λμi

{
g
(
j + e(i)

) − g(j)
} +

∑
j (i)

{
g
(
j − e(i)

) − g(j)
}

(7.8)
= I[j ∈ A] − P[Z ∈ A],

where A is a subset of Z
d+ and A the generator of a multivariate immigration-death process

whose stationary distribution is L(Z), Barbour (1988) proved that

dTV
(
L(W),L(Z)

) ≤
∑

1≤j≤n

p2
j ∧

(
cλ

λ

∑
1≤i≤d

p2
j,i

μi

)
, (7.9)

where cλ = 1
2 + log+(2λ).

The error bound in (7.9) looks like the “correct” generalisation of (1 ∧ λ−1)
∑

1≤j≤n p2
j in the

univariate case except for the factor cλ, which grows logarithmically with λ.
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Using the multivariate adaption of Kerstan’s generating function method, Roos (1999) proved
that

dTV
(
L(W),L(Z)

) ≤ 8.8
∑

1≤j≤n

p2
j ∧

(
1

λ

∑
1≤i≤d

p2
j,i

μi

)
, (7.10)

which improves over (7.9) in removing cλ from the error bound although the absolute constant
is increased to 8.8.

The error bound in (7.9) was obtained by bounding �ikgA in the error term in the approxi-
mation where gA is the solution of the Stein equation (7.8), �ig(k) = g(k + e(i)) − g(k) and
�ik = �i(�k). By studying the behaviour of �ikgA, Barbour (2005) showed that the order of
the bound in (7.9) is best possible for d ≥ 2 if it is proved by bounding �ikgA. By an indirect
approach to bounding the error term Barbour (2005) obtained two error bounds, one of which
comes very close to (7.10) and the other better than an earlier bound of Roos (1998).

There does not seem to be much progress on multivariate Poisson approximation using Stein’s
method since 2005. It still remains a question if one could prove (7.10) using Stein’s method, but
by another approach, perhaps by a non-uniform bound on �ikgA or by a different Stein equation.

7.4. Other generalisations

There are two interesting generalisations of Poisson approximation which we will not discuss
in this paper but will mention in passing. First, Brown and Xia (2001) developed probabilis-
tic methods for approximating general distributions on non-negative integers with a new family
of distributions called polynomial birth-death distributions. These distributions include as spe-
cial cases the Poisson, negative binomial, binomial and hyper-geometric distributions. Second,
Peccati (2011) combined Stein’s method with the Malliavin calculus of variations to study Pois-
son approximation for functionals of general Poisson random measures. This is a follow-up to
his very successful work (see Nourdin and Peccati (2012)) in normal approximation for Gaus-
sian functionals using Stein’s method and the Malliavin calculus. Both the work of Brown and
Xia (2001) and of Peccati (2011) open up new domains for Poisson-related approximations and
applications of Stein’s method.
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