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In this paper, we prove central limit theorems for bias reduced estimators of the structure function of several
multifractal processes, namely mutiplicative cascades, multifractal random measures, multifractal random
walk and multifractal fractional random walk as defined by Ludefia [Ann. Appl. Probab. 18 (2008) 1138—
1163]. Previous estimators of the structure functions considered in the literature were severely biased with
a logarithmic rate of convergence, whereas the estimators considered here have a polynomial rate of con-
vergence.
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1. Introduction

A random process X = {X(s),s € [0, T]} (T > 0) with stationary increments will be called
multifractal if its scaling behaviour is characterized by a strictly concave function ¢, called the
scaling function, such that for a certain range of real numbers g

]EHX(t) - X(S)’q] = C(q)|[ _S|§(q).

If the function ¢ is linear, then the process is said to be monofractal, as is the case, for instance,
for the fractional Brownian motion (FBM) By, 0 < H < 1, which is defined as a continuous
centered Gaussian process such that By (0) =0 and for all 5,7 > 0,

var(Bp (1) — B (s)) = |t — s|*.

Then, for all ¢ > —1, E[|By (t) — By (s)|?]1 =c(q)|t — 5|97, with c(q) = E[| By (1)]4].

Several truly multifractal processes with stationary increments have been defined. The earliest
one is the multiplicative cascade introduced by Mandelbrot [11] and rigorously studied by Ka-
hane and Peyriére [9]. These processes were generalized by Barral and Mandelbrot [6], Muzy and
Bacry [12] and Bacry and Muzy [5]. The latter authors introduced multifractal random measures
(MRM) and multifractal random walks (MRW) as time changed Brownian motion. Ludefia [10]
and Abry et al. [1] introduced multifractal (fractional) random walks which are conditionally
fractional Gaussian processes.
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For these processes, multifractality results from a distributional scaling property which can be

written as
{X(a),0<1t<T]) faw U X(1),0<t < T}

for 0 < A < 1, U, is a positive random variable independent of the process X such that
E[U;f 1=1%@ for ¢ < gmax a certain parameter depending on the process under consideration
(and with certain additional restrictions on the values of A for which this identiy holds in the case
of multifractal cascades, see Section 2). For the models, we will formally introduce in the sequel,
it is defined as

gmax = sup{q: £(g) = 1}.

It is also important to note that the fixed time horizon T beyond which this scaling property need
not be true is finite, except for monofractal processes such as the FBM.

Given a multifractal process observed discretely on [0, 7], it is of obvious interest to be able
to identify the scaling function ¢.

Letty,...,ty, witht; —#;,_1 = A =T /N be a regular partition of [0, 7] (typically on a dyadic
scale). Typically, for ¢ < gmax, {(g) is estimated by calculating logarithms of the empirical
structure function

N-1
SN(X.q) =) |AX;l9,
j=0

where AX; =X ((j +1)A) — X (jA). Estimators of ¢ can then be defined by

log, (SN (X, 9))
log,(A)
Sn(X, q) )
Sv(X.q) )

In(g) =1+

3

tn(g) =1 +10g2<

These estimators have been thoroughly dealt with for multiplicative cascades in Ossiander and
Waymire [14]. The authors show that {y(g) and {x(g) are consistent estimators of ¢(g) for
q < qo, where qo < gmax 1s the largest value of ¢ such that

¢(q) —qi’ (@) < 1.

For ¢ > qo, SN (g) is seen to converge almost surely to a linear function of g. Moreover, con-
ditional central limit theorems (where the limiting distribution is a mixture of normal laws) are
seen to hold for suitably normalized versions of both estimators if 2q < go. However, as shown
in Ossiander and Waymire [14], the convergence rates for these estimators are very different. The
rate of convergence of g:N (q) is of order log, (N) because of the existence of a bias term, whereas
we will show that of £y (¢) is a power of N which depends on ¢.

In order to enlarge the domain of consistency of the estimators and obtain unconditional cen-
tral limit theorems, the so-called mixed asymptotic framework has been introduced by allowing
the number L of basic observations intervals to increase with N. In the case of multiplicative



336 C. Ludeiia and P. Soulier

cascades and MRM, the processes over different intervals are independent. The observations are
X((JL4+Kk)A),0<j<L—-1,0<k<N —1, and the estimators are now modified as follows

N 1 S X’
aNX,q) =1+ log, (S~ (X, @)

logz(A)
. SL.(X,q)
CL,N(Xa ) = 1 + 10 (’7 3
1 82\ 5 v (X, )
with

L—-1N-1

SnL(X.q) =) Y IAXjLld.
j=0 k=0

The mixed asymptotic framework for multiplicative cascades has been recently developed in
Bacry et al. [4]. The aut}Alors show that if L = [NX], where [x] stands for the greatest integer
m < x with x > 0, then ¢y 1 (X, q) is consistent for g < g, where g, is the largest value of g
such that

t(q)—qt'(@) < x + 1.

Note that as x tends to infinity, ¢, might become greater than gmax, so we will only consider
values of x such that ¢, < gmax.

However, once again, there exists a bias term by := ]E[Mf] /log,(N), which entails slow
convergence of the estimator. In analogy to the nonmixed asymptotic framework it is reason-
able to consider ratio based estimators such as EN, (X, q) in order to improve convergence
rates. It turns out, as follows quite straightforwardly from the results of Bacry ef al. [4], that
EN, L(X,q) — ¢(q), a.s., for a dyadic partition, but the authors failed to prove a central limit the-
orem, although they hint at it at the end of their Section 3. Almost sure convergence for dyadic
partitions, or in probability for general partitions, of Z‘N,L(X , q) has also been recently consid-
ered by Duvernet [7] for x > 0 and X a Brownian MRW or a MRM. However, the author does
not prove central limit theorems nor establish convergence rates in either case. An interesting ap-
plication for testing whether a process is a semimartigale or a multifractal process is developed
in Duvernet, Robert and Rosenbaum [8] which is based on the limiting behaviour of variation
ratios, but the authors restrict their attention to log-normal multifractal random walks and g = 2.

The main goal of this paper is to obtain central limit theorems for the estimator EN, L in the
mixed asymptotic setting, for multiplicative cascades, multifractal random measures (MRM) and
multifractal random walks (MRW) that are either a time changed Brownian motion or a more
general process related to a fractional Brownian motion with Hurst index H > 1/2. Our main
results in all these cases state unconditional central limit theorems with polynomial rates of
convergence, contrary to g:L, ~ which can only achieve logarithmic rates of convergence, and to
the case L = 1 where only conditional central limit theorems can be obtained.

For multiplicative cascades, Ossiander and Waymire [14] also considered negative values of g
such that E[M4 ([0, 1])] < oo and 0 > ¢ > infy<o{h{'(h) — ¥ (h) < 1}. However, we cannot
extend such a result in full generality in the present context, since for certain MRM which are
considered here, E[MY ([0, 1])] = oo for all g < 0. Moreover, negative moments of the Gaussian
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law are infinite for g < —1, thus even if the MRM considered has finite negative moments, that
might not be the case for the MRW. For these reasons, and not to increase the length of the paper,
we do not consider the case g < 0.

The rest of the paper is organized as follows. We will consider multiplicative cascades in
Section 2, MRM in Section 3, and MRW in Section 4. Section 5 contains the main ideas of the
proofs and technical lemmas are relegated to the Appendix. To the best of our knowledge, our
results are the first to deal with the MRW in the case H > 1/2.

2. Multiplicative cascades

In this section, we give a precise formulation of consistency results for Z(q), whenever ¢ <
gy, and a central limit theorem whenever 2g < g, in the case of multiplicative cascades. The
results are a straightforward application of previous results of Bacry et al. [4] and Ossiander and
Waymire [14]. However, they provide the framework for dealing with both MRM and MRW so
will be dealt with in some detail. Before we state the main results, we shall introduce the mixed
asymptotic setting, following Bacry et al. [4].

For any given n-tuple r and i < n set r|i = (r1,...,r;) and if s is an i-tuple and v an
(n — i)-tuple set r = s x v to be the resulting n-tuple obtained by concatenation. For each
j €Z and fixed T, set I := [jT,(j + 1)T]. Over each 1Y) we will construct an inde-
pendent multiplicative cascade as defined in Mandelbrot [11]. For this, consider a collection
{W,(j ), r €{0,1}",n > 1, j € Z} of independent random variables with common law W such
that E[W] =1 and E[W log, W] < 1 and for each n > 1 and j € Z, consider the random mea-
sure defined by

. n .
w1 =T27" 3 [Tw%

(re{0,1):(j—14r)TelW}i=1

for any Borel subset / of 1) and each r = (r1,...,ry) €{0, 1}" is associated to the real number
YT 27—k 1t can be seen (see Kahane and Peyriere [9], Ossiander and Waymire [14] for details

on the construction and main results) that there exists a random measure Aéé) , such that
) () _
IP’()»,, = A asn—)oo)_l,

where = stands for vague convergence. The limiting measure verifies E[xﬁ,{}([o, TD1=T.By
construction Aéﬁ) are independent random measures, defined over the disjoint intervals 7). Set
hoo 1= X e M-

Set Fy = o (W) r € 0,1y, j € Zy and let AY) := [(j + k27T, (j + (k + D271 k =
0,...,2" — 1, be the kth diadic interval at level n, of the interval 1), Then,

n
DY\ _ A=y )
hoo(A3) =27"Zj ke 1_[ Wi
i=l1
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where foreachn, Zj ;. »,,0 <k <2", j € Z, are i.i.d. random variables with the same distribution
as Ao ([0, T]) and independent of F,,, and r, (k) is the dyadic representation of k, that is, k =
Z?:l Tn.i (k)2" for k < 2". Moreover, Zjokn+1 and Z; op 41,41 are independent of Z; ;s , for
k' # k. The above identity straightforwardly yields the scaling property:

E[2%(A7)] =27 @E[RL (10, T1)],
with

t(q) =q —log, (E[W1]).

It is shown in Kahane and Peyriere [9] that for g > 1, the condition ¢(q) > 1 implies
E[AL ([0, T])] < oo.

Example 2.1. Consider the log-normal cascade, where logW = u 4+ 0Z and Z is a standard

Gaussian random variable. The condition E[W] = 1 implies that s = —c'2/2. Then it is easily
obtained that
q(g — o? 2log?2 V2Tog2
=9 —F7—, dmax = 5 Vv, qo = ,
2log?2 o o
V2(1 4 x)log2
G="—""""
o
Denote
L—12"—1 .
Sea@ =y > 2&(a)
j=0 k=0
and
A log,(SL,x(9)) ~ SL.n(q)
(q)=1- =20 L) =1+logy | " ).
n SL.n+1(q)

Note that although in the asymptotics L will eventually depend on n, its value is the same in the
quantities Sy, , and Sp41,,.

Consistency. Foreachn > 1,let {§,&; 1 ,,0<j <L —1,0 <k <2" — 1} be a collection of
i.i.d. random variables, independent of F,,. Define

L-12"—1 n

Sug =273 > TTW ) &ikn

j=0 k=0 i=1

In Bacry et al. [4], the following general result is shown to hold.

Proposition 2.1. For x > 0, assume that L = [2"X], q < q, and there exists ¢ > 0 such that
E[£17¢] < 00. If & is nonnegative, then

L_lZ_"Z"C(q)(S‘n’q - ]E[S‘n,q]) -0 a.s.



Estimating the scaling function 339

Note that by construction ]E[S‘n,q] = [2"2ntlq )E[S], so that the above result yields the almost
sure convergence L_12_"2"§(q)§n,q — E[£] under the stated conditions. As a consequence, by
the definition of Sz, ,(g), Proposition 2.1 yields

L1227 @, () - E[A% (10, T1)]  as. .1

for g < g, . Then, clearly,

log, E[1 (10, T])]
—
n

£(q) —¢(@) + x + 0 a.s.,

and (2.1) also implies that g:(q) — ¢(q) a.s. On the other hand, if ¢ > g,, then Bacry et al. [4]
show that E(q) — ¢'(gq4)q, which is a linear function of ¢. In this case, Z () is also not consistent
as the normalized structure function tends to zero (Ossiander and Waymire [14]).

Central limit theorem. Based on Proposition 2.1, it is also possible to obtain a central limit
theorem for £ (¢). We remark that in the mixed asymptotic framework the limiting variance is
deterministic. The proof of the central limit theorem follows from a series of corollaries of the
following general result for the mixed framework which is a direct generalization of Proposi-
tion 4.1 in Ossiander and Waymire [14] and Proposition 2.1. We first state some general notation.
Let{,&j40,0<j<L-10<k=< =l > 0} be as above and define

L—12"—1 n

Vig =272 Z Z H(Wr(jgk)u)zqv Rug = Sn»q/an,/q%

j=0 k=0 i=1
The following proposition is seen to hold true as a direct generalization of Proposition 4.1 in

Ossiander and Waymire [14], whenever 2g < g, .

Proposition 2.2. If2q < g, E[£x..]1 =0, E[gi k] =07 and if

supsupIE[|.§j,k,n|2(l+8)] <00
n j,k

for some & > 0, then

. : )
lim E[e‘ZR"vﬂfn] =e 7 T/2
n—o0

and Ry, 4 converges weakly to the centered Gaussian law with variance o2

The proof follows exactly as that of Proposition 4.1 in Ossiander and Waymire [14], using
Proposition 2.1. The latter also yields that L~'27727¢(24) Vi,q converges to 1 a.s. We can now
state a central limit theorem for the empirical structure function.

Proposition 2.3. If 2q < q,, then

L™12pmn2gnt Q2L g, () — 28D, (@)} —a N(0, V(g),
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with
V(q) = var(zd — 28@W-1~a{zIw] + zIw]})

and Z1, Z» are i.i.d. with the same distribution as ,o ([0, 1]) and independent of W1, W5, which
are i.i.d. with the same distribution as W, and Zo = (Z1 W1 + Z,W3) /2 has the same distribution
as oo ([0, 17).

Proof. The proof follows from Proposition 2.2, by noting that Sy, ,(g) — 28(g)—1 Sr.n+1(g) can
be expressed as

L—-12"—1 n

SLan(q) = 25D7ISL pyi(q) =274 Z Z H(W;'(,{()k)li)qgj»kv”

j=0 k=0 i=1
with
79 _~t@-1-q[ 54 q q q
é],k,n - Zj,k,n 2 {Zj,Zk,n—H Wrn(k)*O + Zj,2k,n+1 Wr,,(k)*l }’

since 7, (k) * 0 = r,41(2k) and r, (k) * 1 =r,4+1(2k + 1). Indeed, the random variables &; i .,

J€Z,0<k <2" areii.d. (for each fixed n) and it clearly holds that E[£; ; ,] =0, E[S},k’n] =

V(g) and E[|&; r.x |>+9] < 00, whenever 2g < qmax for small enough § > 0. O
Thus we obtain a central limit theorem for Z(q).
Theorem 2.4. Assume 2q < qy. Then
XV @VCDRIE (g) — ¢ (g)} —a N(0, V(@)/(E[2%(10, T1)])°).
Proof. By Proposition 2.1 and (2.1), S7.,+1(¢)25@~1/S, 1.(¢) — 1 as. so

S1.a(q) | Se.a(q) —26@718; ()
stoTie )= "logy( 1 -
20@=18; L 11(q) St (q)

_ SL,n(Q) - 2§(q)_lSL,n+l(('I) %
SL,n(‘])

t(q) —¢(q) = 10g2<

{1+op(D}.

The proof is concluded by applying Proposition 2.3 and noting that 27"X L — 1. (|

3. Multifractal random measures

Once again we are interested in the mixed asymptotic framework defined by the parameter .
The main ideas dealt with in this section are very similar in spirit to those in Duvernet [7]. We
include the proofs for completeness’ sake, since they are very similar to those which will be
developed to study multifractal random walks. We recall the main definition and properties of
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Figure 1. The set A;(u).

multifractal random measures, hereafter MRM, following Bacry and Muzy [5]. Start by defining
forl > 0, w;(u) = P(A;(u)) and set

M) =llin(1)/ew’(“) du,
g 1

where I is any Borel set in R. Here P is an independently scattered random measure on ST =
{(s, 1), t > 0} such that P(U?il Aj) = Zloil P(A;) if the Borel measurable sets A; are pairwise
disjoint and then the random variables P(A;), i > 1, are independent, and

E[e1PW] = eV @n4), 3.1)
with u(A) = [, t~>dsdr and
Aiw)={(s.0),u— (/2 AT/2) <s <u+(1/2AT/2),t>1}.
It is readily checked that (A;(¢)) = T + log(T /), which implies, with (3.1), that

]E[eqwl(t)] — T Hlog T (q) =¥ (q) (3.2)

The function v is the log-Laplace transform of the infinitely divisible random measure P, as-
sumed to exist for g < g*, for some g* > 1. It is convex and satisfies ¥ (0) = (1) = 0. By the
Lévy-Khinchine representation theorem, it can be expressed as

02 00
Iﬁ(CI)=7+mq+/ {eqx - l—xl{msl}}v(dx),
—00

where v is the Lévy measure of P and satisfies

foo (x2 A 1)v(dx) < co.
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The assumption that v (g) is finite for ¢ < ¢* entails the following condition. For all ¢ < ¢*,

o0
/ e v(dx) < co.
1

By Bacry and Muzy [5], Theorem 4, there exists a certain infinitely divisible random variable €2;,
which is independent of M ([0, T']), such that E[e?**] = A=Y@ and for A, € (0, 1),

{w ), 0 < < TV fwy () + Q4,0 <u < T). (3.3)

The latter is known as the scaling property. This implies that

M(10,2T1) £ 2e% M ([0, T]) (3.4)
for A € [0, 1], so that
E[M?(10,T1)] = 2*Pm(q) (3.5)

with ¢(q) =q — ¥ (g) and m(q) = E[M4([0, T])]. It is shown in Bacry and Muzy [5], Theo-
rem 3, that if £ (g) > 1, then E[MY ([0, T])] < co. As previously, set gmax to be the greatest value
of g such that £(g) > 1 and for x > 0, define g, as

gy =max{q: q¥'(q) < ¥ (q) + 1+ x}.

Assume moreover that x is such that g, < gmax. Then, for all p such that pg < g, it holds that

0<¥(pg)—py¥(g) <(p—DA+ ). (3.6)

See Section 5 for a proof.

Example 3.1. Consider the Poisson cascade introduced by Barral and Mandelbrot [6]. Let N be
a Poisson point process with intensity measure @ on (—o00, 00) x (0, oo]. Let I';, i € Z denote
the points of N and let {W, W;} be a collection of i.i.d. positive random variables such that
E[W] = 1. Define the random measure P by

P(A)=) log(W)lir;ea)

for all relatively compact Borel sets A € (—00, 0c0) x (0, 00]. Then (3.1) holds with ¥ (gq) =
E[W9] — 1 and

gmax = max{q: E[W?] <q}, g, =max{q: gE[WI(log(W) —1)] <1+ x}.

Example 3.2. The random measure P can be a Gaussian random measure. Then P(A) ~
N(—021(A)/2, 0% (A)) and ¥ (q) = 0>q(g — 1)/2 so that we get the same values of gmax,
qo and g,, as for the multiplicative cascade of the previous section, up to the log 2 term. Note that
in this case, var(P(A)) = ¥"(0)u(A) is finite if and only if w(A) < oo.
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Example 3.3. Let« € (0, 1) and P be a totally skewed to the left a-stable random measure, that
is, ¥(q) = 0%(g — q%). Then gmax > 1 if and only if 0%(1 — &) < 1 and then gmnax = oo and
for x >0, g, = o N + x)/(1 —a))/*. It is noteworthy that, contrary to the previous case,
we have here that E[| P(A)|] = oo and E[e?P®)] = oo for all A such that u(A) > 0 and for all
q <0, though E[|P(A)|P]= cpﬁao/’/JL(A)/’/"‘ if p <o and u(A) < oo.

Example 3.4. Let« € (1,2) and P be a totally skewed to the left o-stable random measure, that
is, ¥ (q) = 0%(@®* — q). Then gmax > 1 if and only if 0% (e — 1) < 1 and then gmax < o0o. For
x=0,q, =011+ x)/(a«— 1"

Define, as in the previous section, L = [2"X], A,((ji =[(j+k2™T,(+ *k+ D27 T] and

L—-12"—1
SLaM.q) =YY M4(aP),
=0 k=0
~ SL l’l(M7 Q)
En@) =1+1o <7 .
1 S\ S (M. q)

Consistency. For convenience, denote 7(g) = ¢(g) — 1. We have the following result, whose
proof is in Section 5.

Proposition 3.1. For g < gy,
L2 @g; (M, q) = m(q)  as.
Plugging this into the definition of Z3;(¢) yields the consistency of Zy;(q).

Corollary 3.2. Forq < gy,
tn(q) = ¢(q) a.s.

Central limit theorem. We next give a central limit theorem for Z7(¢) in the mixed asymptotic
framework. Define the centered random variables

Djkngi=MI(AL)) =27 D (M9 (AF, 1)+ MU(AT i1)) 3.7)

and D;,, = Z,%n:f)l Dj i.n.q. By construction, the variables D jiking are centered, and sta-
tionary and 2- dependent w1th respect to j. We will start by proving a central limit theorem
for (L]E[D2 ]) 1/22 0 DJ n,q- Since the random variables D, 4, 0 < j < L — 1, are 2-
dependent, it sufﬁces to show that for some p > 1,

L'-PE[D;", o

nli>oo (E[D 3.8)

an])
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We will need the order of magnitude of Dy, 4. Set
dy =E[M9([0, T] - 279 { M ([0, T/21) + M4 ([T /2, T1)})?]

and di 4 = 2"4(2’1)E[D0,0,n5qDo)k,n,q]. By the scaling property, E[D(%,O,n,q] = 2_”5(2‘1)dq and
dy,4 does not depend on n. Then,

]
E[D&n,q] =270, 4 2. 27D Z (1 —k27")drq-
k=1

By Lemma A.4, we have di, = O(k—V D=2V @+l Since ¥ (29) — 2¢¥/(¢g) > 0, this im-
plies that the series ) |di 4| is convergent, so the Cesaro mean above has a finite limit
and thus lim,_ 2"T(2")IE[D(2)’nyq] =d; + ZZZOZI di,q. By Lemma A.5 we have ]E[Dé,n,q] =
O(n277(49) 1221729 If 4q < q,, then ¥ (4q) — 21 (2q) < 1+ x, thus (3.8) holds for p = 2.
The above discussion leads to the following result.

Proposition 3.3. If 4q < q,, then there exists a constant ©4 such that

L—1
[~1/29-n7(29)/2 Z Djnq—>aN(0,0,).
j=0

We can now prove the asymptotic normality of £y (). Denote

_ SaM.q)=2"DSp ,1(M, q)
" SL.a(M.q)

_ — L—1
L 1/22 nt(2q)/2 Zj:O Dj,n,q

— 2n2¥ (@)=Y 22y (@)—1—x)/2
L1271 @Sy (M, q)

By (3.6) applied with p =2 and 2g < ¢, it holds that 1 4+ x + 2v(g) — ¥ (2) > 0. Thus, by
Propositions 3.1 and 3.3, we have that R,, = o(1) a.s., so a second order Taylor expansion yields

SL,n (Ms Q)
27D S 1 (M, q)

Z'M(q)—C(q)=logz( >=—10g(1 — Ry) =R, +0p(Ry).

Applying Propositions 3.1 and 3.3 yields the next result.
Theorem 3.4. If 4g < q,, then
211(1+X*1//(2q)+21ﬂ(61))/2(5M(q) — ((61)) — N(O, m ] (6])®q)-

For ¢q,q' < 4q,, it can be shown that 20 M2V D=V COV2 (74 (q) — ¢(q)),
22¥ (@) =¥ 24"}/ 2(EM (q") — ¢(q"))) converges to a bivariate Gaussian distribution with depen-
dent components. The same comment holds for the results of the next section.
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4. Multifractal random walk

Throughout this section, the MRM M and the process {w;(u)} will be as defined in the previous
section. A multifractal random walk (MRW) is the process X obtained as the L? limitas [ — 0
of the integral fot e”!™ dBy (1) where By is a standard fractional Brownian motion independent
of M; see Abry et al. [1], Bacry, Delour and Muzy [3], Bacry and Muzy [5], Ludefa [10]. Recall
that By is a continuous centered Gaussian process with By (0) =0 and

var(Bp (t) — B (s)) = |t — s|*"

for all ¢,s € [0, 1]. For H =1/2, By > is the standard Brownian motion and will be simply de-
noted by B. Thus, X is the conditionally (with respect to M) Gaussian process whose covariance
function is defined in (4.1) or (4.2) below according to whether the Hurst parameter of the fBm
is H=1/2 or H > 1/2. Except for the case H = 1/2, which is ordinary Brownian motion, it is
worthwhile to remark that this conditionally Gaussian process X is not the time changed process
By (MIO0,]).

Throughout this section — 3, will stand for conditional convergence in distribution given M
and Ej; and vary, stand for the conditional expectation and variance given M. We consider the
following two cases.

e Case H = 1/2 Bacry, Delour and Muzy [3], Bacry and Muzy [5]. The MRW X is defined
as the centered, conditionally Gaussian process with conditional covariance

NS
I'(s, 1) :111%1+ eV dy = M(s A 1). 4.1)
- 0

The scaling function is ¢1,2(g) = (g /2), since by (3.4) and (3.5), for A € (0, 1),

{X (), O<t<T} A2 X 1), 0<t < T},
E[|X(0)|*] = E[Eu[|X®]"]] = ¢ E[ MY (1)] = cqm(q/2)t* 4,

where ¢; = E[|IN(0, 1)|?] and m(q) = E[M4 ([0, 1])].
e Case H > 1/2 Abry et al. [1], Ludefia [10], Muzy and Bacry [12]. The MRW X is defined
as the centered, conditionally Gaussian process with conditional covariance

et Wewi(v) L[S M(du)M (dv)
Th(s, )= lim // I dudv:/ — . 4.2)
0 0 J0

10+ lu —v[22H lu —v|2—2H

This process is well defined whenever H — 4/ (2)/2 > 1/2, cf. Ludefia [10]. Convexity of v
yields ¥ (2) > 0. The scaling function ¢y is defined by

CH(q) =qH — ¥ (q),
since by (4.2) and (3.4) we have

[X(),0<1 < T} He2 X (1),0 <1 <T),

E[|X0)|] = cqmu(q)t/T)1H V@,
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with
T pT q/2
mH(q):IEH/ / lu —U|2H—2M(du)M(dv)} } (4.3)
0 0
Since we are considering the mixed asymptotic framework, we assume we have a collection
of MRM MWW, j=0,...,L — 1, which are independent, defined over consecutive intervals

of length T. For j =0,...,L —1 and k=0,...,2""!, define AXjrkn = X(jrt+12-mT —
X(j+k2-myr- As above, we will investigate the asymptotic properties of the estimator tx(q) de-
fined by

St (X,
L,n( Q) )+1’

x(@ =1°g2<SL (X.q)

where now

L—-12"—1

SLaX, @)=Y ) |AX xal’.

=0 k=0
Denote 1 = {(q) — 1 and T, (X, q) = S (X, q) — 2" DSy ,11(X, q). Then

Tn(X»Q)>

SL,n(X,q)

tx(q) — ¢u(q) =—log<1 -

We will prove that 7,,(X, q)/SL » (X, q) — 0 a.s. so that a Taylor expansion is valid and yields

Tn(qu)(

1+ o0(1)).
SL.n(X,q) )

tx(q) —¢u(q) =

In order to study the ratio above, we will first prove that if H = 1/2, then
L7127 (X, q) — cgm(q/2).

and if H > 1/2 then,
L_IZHTH(q)SL,n (X,q) — cqu(q),

with mp (q) as in (4.3) and ¢, = E[|N(0, 1)|7] in both cases. To study 7, (X, g), we write
Tu(X,q) =Tu(X,q) —En[Tn(X. )| + Em [T (X, q)].

We will prove that in both cases, T,,(X, q) — Ey[T,(X, ¢)] and Ey[T,, (X, q)] converge jointly
to independent centered Gaussian distributions with the same normalization. This will yield the
asymptotic normality of Zx(q) — ¢ (q). Because of the different nature of the conditional de-
pendence structure, which yields different scaling functions, we will consider the cases H = 1/2
and H > 1/2 separately.
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4.1. The case H =1/2
In this case, it holds that

IEMl:SL,n(X» Q)] =cqSL.n(M,q/2),

vary (SL.a(X,q)) =0, SL.a(M, q),
where qu = var(I|N(0, 1)|7). By Proposition 3.1, if g < g,, we get

L2 WE,[SLa (X, )] > ¢qm(q/2)  as.,

L™12""D vary (Sp (X, @) — crqzm(q) as.
This implies that L~12"7@/2§; (X, q) converges in probability to c,m(g/2). Since Sy ,(X, q)
is the sum of L2" conditionally independent terms, by an application of Borel-Cantelli’s lemma

similar to the one used in the proof of Proposition 3.1, almost sure convergence also holds, that
is,

L7127, (X, q) — cqm(q/2)  as. (4.4)
Using the notation (3.7) of the previous section, we have

L—-12"—1

Eum[Th(X, )] =cg2" P SL n1(M, q/2) = cgSL.a(M.q/2) =—c4 Y > Djkng-
j=0 k=0

Thus, by Proposition 3.3, if ¢ < g, then L~122m @/, [T, (X, ¢)] converges to a centered
Gaussian random variable with variance ¥ (1/2, q), say. By the conditional independence of B
and M, T,,(X, q) — Eyq[T, (X, q)] is a sum of centered and conditionally independent random
variables with conditional variance

vary (T,(X, q)) = aquL,,,(M, q) + 0(]2(22“‘1/2) - ZT(‘I/Z)H)SL,nH M, q).

By Proposition 3.1, L~'2"7@ vary, (T, (X, ¢)) converges almost surely to the positive constant
I'(1/2, q) defined by

L(1/2.9) = o m(g){1 + (2°74/? —2r@/2 )@}
Thus,
L™t @RI (X, q) — Em[Th(X, )]} = m N(0,T(1/2, 9)). 4.5)

Since the variance is deterministic, this assures unconditional convergence to the stated Gaus-
sian random variable. Moreover, the conditional independence of B and M also implies that the
sequence of random vectors

L™ @DR(T,(X, q) — En[Tu(X, )] En[Tu(X. 9)])
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converges weakly to (Z1, Z,) where Z| and Z; are independent Gaussian random variables with
zero mean and variance I'(1/2, g) and £(1/2, g), respectively. The previous considerations yield

the central limit theorem for ¢x(q).

Theorem 4.1. If g < gy, then

L2 @DV @D I Ey (0) — 11 5(g)) —a N(O, I'(1/2,9) + £(1/2, 61))

cam®(q/2)

4.2. Case H > 1/2

12[

We begin by studying Ea[T;,(X, ¢)]. Define a; g .zt =y, [(AX  x..)?]. Then

L—12"—1
_ tH(q) [ ,49 q _ 9
EM[T'!(X’ ‘1)] =Cq Z Z (2 {aj,Zk,n+1,H + aj,2k+1,n+1,H} aj,k,n,H)'
j=0 k=0
. —otE(g 9 q _ 1 N2y
Denote Uj x,n =2 {ajVZk,nJrl,H +aj,2k+1’n+1’H} a4 knH anddefine Ujn:=» 1o Ujkn-

Then the collection {U; ,}o<;<r—1 is centered, 2-dependent and identically distributed. Remark
that ¥ (¢) = 2"¢1# 29 var(U; k) depends only on g. By stationarity, for j =0,...,L —1,

21
var(U; ,) = 27" 0y, 4 207171 @) Z (2" — k)2"51 CD cov (Ug,0.n, Uok,n)-
k=1

By Lemma A.7, 276 CD| cov(Ug .0, Uy nx)| < Ck— VD=2V @+ This series is convergent,
thus the Cesaro mean above converges to its sum. Arguing as in the proof of Proposition 3.3, in
order to prove the central limit theorem for Ey/ [T, (X, ¢)], since the centered random variables
Ujn,0<j <L —1,are 2-dependent, it suffices to show that

_ L'"PELU§, ]
lim =
n>00 (E[UZ, )
This is done as in Lemma A.5 using Lemma A.7. We then have the following result.
Proposition 4.2. If 2q < q,, there exists a positive constant £ (H, q) such that
L2711 QD var(Ey [T,(X, 9)]) — S(H, ).
Moreover, if 4q < qy, then
L™ CORE Y [T,(X, )] —u N(0, Z(H, ). (4.6)

We next need a result which parallels (4.5). Its proof is more involved and is postponed to
Section 5.
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Proposition 4.3. Let H < 3/4. If 2q < qy, then there exists a positive constant I'(H, q) such
that
L1271 D vary (T (X, q)) = T(H,q)  as. 4.7

and if 4q < qy, then
L2 CORAT (X, q) — Em[Th (X, 9)]} = m N(0, T(H, q)). 4.8)

As for the case H = 1/2, the fact that I'(H, ¢) is deterministic establishes unconditional con-
vergence in distribution. The proof of (4.8) is based on the recent results of Nualart and Pec-
cati [13] on the convergence of sequences of random variables in a Gaussian chaos. Altogether,
(4.6) and (4.8) yield the asymptotic normality of the estimator.

Theorem 4.4. If4q < q, and H < 3/4, then

XV CORID2(E () — £y ()] > N(O, I'(H,q)+ 2(H,q)>.

2 (@)

5. Proofs

In all the proofs, without loss of generality, we set 7 = 1. We start by proving (3.6). The con-
vexity of ¥ and ¥ (1) = 0 implies that gmax > 1 if and only if ¥/'(1) < 1, and ¥/ (gmax) > 1.
This in turn implies that 1 < g9 < gmax- The convexity of i also implies that the function
q '+ qV¥'(q) — ¥ (q) is increasing, thus g, > go for all x > 0. Consider the positive and increas-

ing function p — ¥ (pq) — py(¢). By convexity, for p > 1, % (pq) — ¥ (q) < ¥'(pq)(pq — p).
This yields, for p > 1 and pg < gy,

0 <v(pg)— p¥(q)=p¥(pg) — p¥(q) —(p— DY (pq)
<(p—D{pg¥' (pa) — ¥ (pg)} < (p — DA+ ).

This proves (3.6).

We will also repeatedly use an argument of m-dependence. If &, ..., &y are m-dependent
random variables with zero mean and finite stationary pth moment, 1 < p <2, then there exists
a constant C which depends only on p such that

T

N
Z&'
i=1

p
] < CmP 'NE[I&|7]. (5.1

5.1. Proof of Proposition 3.1

Let ng > 2 be an integer, « = 1/ng and [, =2~1~®" Fix ¢ < qy - We can choose a < x small
enough so that ¢ < g, with x' < x — . Then, we can also choose p > 1, close enough to 1,
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such that pg < ¢,/ and without loss of generality, we can also impose that p — 1 < a(g Vv 1)/2.
Define

L=12"=1 gy, (j+27"k)

Tog=27"L7"3" 3 T

=0 k=0
L—12"-1 (5-2)

— 2Ll V@O 3 e (427
j=0 k=0

We will prove that for & and p > 1 chosen as above, there exist constants C, n > 0 such that

E[|Tyq — 117] < C27, (5.3)
P
E| |F, — okt @) |7} oo, (5.4)
o E[SL. (M, g)]

The above inequalities and an application of Borel-Cantelli’s lemma yield that T,,,q — 1, as.
and

SL,n(Ms Q) kad

— - 7 -0 a.s.
E[SL.(M,q)1 ™7

For all j, k, n, we have E[M4(A)] =27"¢@m(q), so that E[Sy , (M, q)] = L27"* @ m(q).
Thus, Proposition 3.1 follows.

Proof of (5.3). Define ¢ = p — 1. The variables e?%in U275 _E[eqwi G+27"0)] are 2-dependent
(in j) and centered, so there exists a constant C > 0 such that
P
| } .

E[|Tn,q _ 1|P] < Czn{(1-“){1//(174)—171//(!])—5/}—8)(}.

1 22l eqw, @70

2= @ V@

-~ C
E[|T,q — 117] < EE[

By Lemma A.1, for any ¢’ < ¢, there exists a constant C such that

By (3.6), since pg < q,’ < q,, we have

(- W (pg) — p¥(q) — €'} —ex < 1 —a)fe(l+x') — '} —ex
<(-a)fe(l+x—a)—¢&}—ex
=(l-a)fedl —a)—¢'} —asy.

This can be made negative by choosing ¢’ > (1 — a)e. ]
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Proof of (5.4). We start by using again the argument of 2-dependence in j, to obtain, for some

constant C,
P C p
} =< EE|: i| (5.5)

For clarity, we now omit the superscript (0) in A,(((El. Let M,, denote the random measure with
density e~ "i» with respect to M. By construction, the measure M,, is independent of the pro-
cess wy,. Indeed, for any Borel set A, M,(A) = lim;_,g fA et =wy, () gy and for [ < I,
w; — wy, 1s independent of w;, , by the independent increment property of the random measure P.
Denote

1 n_1 Mq (AI(CO}),L) eqwln (k27m)

on kX:(:) 2~ @Dm(q) V@@

E[SL.(M,q)] ™1

n M’ aud
]EH Sp.a(M,q) 7

2" —1
Sn —ont(@) Z Wi (szn)Mn(Ak’n).
k=0

Applying the bound (A.15) in Lemma A.2, we obtain

|

Since we have chosen ¢ < a(g Vv 1)/2, by (3.6), we have

2"—1

S0 —2""@ " M(Agn)
k=0

P
:| < C27 "V 2pn{Y (pg)=p¥ (@)

Y(pg) —p¥(g)—algVv1)/2—ex <e—algVv1)/2<0.

Define m,(q) = e¥ @1,V P2 OE[MI (A)]. By (A.14), we have lim,_ oo ma(q) = m(q)
and thus E[M,! (Ag.,)] ~ 1V @2-n¢@e=¥(@p(q). Next, we note that the random variables
M, (Ag ) are 2"l,-dependent and e¥» is independent of M,. Thus, applying (5.1) condition-

ally on wy, yields
P P

]E[
< Cl”—l/f(pq)+m/f(q)—sE|:‘ ng(AO,n)
E[M}; (Ao,n)]

< C2MV (PO —pY(@)—e(l-a)]

Sn —n — edWin *k27")

2—)’!

2°-1 edwi, (k27") ( Mg(Ak,n) _1>
= v @1, V@O \EM (Agn)]

|

mn(q) = v @ V9

Using the fact that pg < g,, (3.6) and x < x — «, we obtain
v(pg) —p¥(@) — (I —e—ex <e(1+x) - (1 —a)e—ex =e(x'+a—x) <0.

This concludes the proof of (5.4). (]
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5.2. Proof of Proposition 4.3

Define a; x n,u = E%z[(AX i, k,,,)z] and the conditionally standard Gaussian random variables

Yjkn=AXjkn/0jknH-
Let G4(x) = |x|? — c,. With this notation, we have

L—-12"—1

SL,n(Xv q) — IEM[SL,n(Xy CI)] = Z Z aj,k’n,HGq(Yj,k,n)
=0 k=0

Let g-(g), r > 0, be the coefficients of the expansion of G, over the Hermite polynomials
{H,,r > 0} (which are defined in such a way that E[ H; (X) H;(X)] = k! if kK = [ and O otherwise),
thatis, g, (q) = E[H,(V)G4(V)] where V is a standard Gaussian random variable. Since G, is a
centered even function, g,(q) = 0 for r =0, 1. Since ]E[Gfl (X)] < oo, the series ) ,_, g,2 (g@)/r!

is summable and G, = Zroi2 %Hr. Then, by Mehler’s formula (see, e.g., Arcones [2]), we
have
o gr(q)*
L7270 vary (S (X, @) = Y 220, (),
’ r!
r=2
with

L—-12"—1
Co(r,q) = L™12"H@ -1y~ yary, (Z > a;{k’n’HH,(Yj,k,n))

j=0 k=0
L-1 2"—1
— 1~ lontu(g) Z Z r . N g q
=L""2 pH,n(]l’]z’k’k)ajl,k,n,Hajz,k/,n,H
J1,J2=0k,k’'=0

for r € N, r > 2, and the conditional correlations (which are zero if H = 1/2) are
IEM [ijl,k,n Ang,k’,n]

Ajykn,HAjy k' .n, H

o (j1s j2. k. k') =covp (Y kns Yk ) =

By Lemma 3.1 in Ludeiia [10], for j; < j, and k < k’, we have the bound

prn(jis j2. kK'Y <min(1, C|Ga — j0)2" + (K — k)77 7%) (5.6)

for some deterministic constant C. We start by proving that for H < 3/4 and 2g < ¢q,, there
exists a constant I'(r, ¢) such that

lim 2"V @OV COHHOR[T, (r, )] = T(r, ). (5.7)

n—oo
By the scaling property,

Ela? ., n]=2"""Pmp(q),
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with g (q) = qH — ¥ (g). Thus, denoting v, (q) = 2v¥(q) — ¥ (2q) + 1 + x, by stationarity, we
have

2" DE[T,(r, q)]

=mp (2q) + 272" D Z E[p,, (0.0, k. K')ag 1, 50 4 1] (5-8)
e
4 2~ n(+x09ntn 2q) Z Z]E[p;l,n i jk, k) e, Haj, . H]
J#J kK

Consider the middle term. Recall that

P;,H(O 0, k, k)aOkn HaOk/n H

(k+127"  p’+1)27" r
= f / lu — v|2H—2M(du)M(dv)}
k k

2}1 /2’1

X

(k+1)2 n (k+1)2 n (g—r)/2
|u —v|2H2M(du)M(dv)}

x lu — v 2 M (du)M (dv)

{kZ" k2—n

(k +1)27" (k +1)27" (g—r)/2
k’2 n k’2 n }

Assume that k < k" and denote £ = k’ — k + 1. By the scaling property and the stationarity of the
increments of M, we have

r / q q
pn,H(O’ 0.k, k )aO,k,n,HaO,k/,n,H

, /¢ pl r
12 (eammy AR 2 { / / e — UIZHZM(du)M(dv)}
1-1/¢

1/¢ 1/¢ (g—r)/2
% (Ez—n)(f]—r)(H—l)-Hi—re(q—r)sz,n {/ f |M _ v|2H_2M(dM)M(dU)}

(g—r)/2
(ﬁz )(q rY(H=1)+q—r (q Q- n{ / 2H 2M(dL{)M(dU)}
1-17¢J1 1/@

—n\2qH
= (27" 9% ]

with

1/¢ 1/@
f / v 2 M (du) M (dv),
0

/ / lu — v 2 M (du)M (dv),
-1/ J1-1/¢
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k" fll_l/g |lu — v*H=2M (du) M (dv)

aeby

Q¢ =

With this notation, the middle term in (5.8) can be expressed as

2n—1
5. 2,,(H(2q) Z (1 B gz—n)(gz—n)MHE[eZngz—n ]E[QZasz]
=1
2n71
=22/ QR Q) N7 (1 g2m) 24V COR] 07! b
=1

on—1
=23 (1— 2 ") CDE[Qpalb]].
=1

Moreover, a; > €227 M ([0,1/€]), by > > 2H M([1 — 1/¢,1]), and the numerator in Q is
bounded from above by (1 —2/¢)*#=2M ([0, 1/£])M ([1 — 1/£, 1]). Thus,
Q< et (5.9)

for some deterministic constant C. This and Hoélder’s inequality yields

B[ Qjalb] = CoPH IRV R[]
Applying the scaling property of M yields E[azzq] = E[b,?q] = 072D m (), hence

Y1 Qq)E[QZaZbZ] < CceorCH=-2)

Since r > 2 and H < 3/4, the series ¢"2H=2) i summable, and thus

2n—1

oo
- _ g2 gt (29) 9597 — tH(2q) qp4
A ;(1 27" e VR Qfay by | = ;E "EPE[Qpayby]-

Consider now the last term in (5.8), say RR,;,. Using the bound (5.6), the scaling property, the
fact that the a; ¢ ,, g are 2-dependent, and H < 3/4, we have

L 2"
RR, < C2"8u 2q)=2¢n (9} Z Z(jzn + k)2H72 — 0(211{21//((1)*1ﬁ(2(1)}) =o(l). (5.10)
j=1k=1

This proves (5.7). We now prove that if H < 3/4, for each r > 2,

T, @) /E[Ta(r,)] > 1  as. (5.11)
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or equivalently
2n{1+x—1//(24)+21/f(61)}rn(r’ q) = T'(r,q) a.s.
Write 21+ X—V QO+ OID, (r, ) = S,.1 + Sp.o + Sp.3 with

L—-12"—1

_2an(2q)L 1 Z Z ajkn .

j=0 k=0

Snl:znm(zq)rlz Z Py n(js ik K)al Jana]k/nH,
=0 0<kz£k'<2n

2"—1

__~ntg(2q) 7 —1 r YA N .9 q
Sn3 =2 L7 3 X0 P3Nk KA o n
0<j#j' <L k,k'=0

The bound (5.10) and Borel-Cantelli’s lemma implies that S, 3 — 0 a.s. Define a;x , n =
e (tjvk)gj,k’nyy with

ZH 2
/an /(j) /A(” M, (du) M, (dv).
By Lemma A.6, we have, if 2g < g,
nllpgozan(zq)e‘//(zq)l W(ZQ)E[ 5qkn H] mH(Zq) (512)

By 2-dependence with respect to j, Jensen’s inequality, (3.6) applied to 2g < g, and the
bound (A.28), we obtain, some n > 0,

L—12"—1 b4

yQ2q) 7 —1 ~2q 1— c(2q) ~2q P

E|:2n11 91~ ZZ ]an ]an) ]<CL —hanh qEHa ko, H jan ]
j=0 k=0

< CL'=PYCpD—rYQa)—n < con(p=1-m)

Choosing p — 1 < n and Borel-Cantelli’s lemma yield that

L-12"—-1

2" HCO LTINS (=, ) >0 as. (5.13)
j=0 k=0

Recall the definition of fn,zq in (5.2) and define further

L—-12"—1

< - ~2
Se =2MCOLTEY ) dl e

j=0 k=0

ma, i (2q) = 20 DE[a0h ] =200 @l @ VOR[F .
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We have already shown in the proof of Proposition 3.1 that if 2¢g < g, then f’n,zq — 1 as.
Moreover, by the argument of 2-dependence with respect to j, we have
p:|

gn,l = b 1-p ' 2qwl" k27" 50 k.n,H
EH— - Tn,2q < CL E| 27 Z el//(Zq)l 729 —1

M, 1 (2q) ]143[50 A
As in the proof of Proposition 3.1, we now use the fact that wy, is independent of the measure M,
the 2"1,-dependence of the variables 8o x ,, # and (5.12) to obtain

o

Now, as in the proof of Proposition 3.1, we must choose o small enough so that 2g < g,-, for
x' < x —a, and ¢ such that 2pg < g, with p =14 ¢. Such a choice and (3.6) applied with

2pg < q, yield

S, N
]EH L — Tn,2q
mu, b (2q)

32pq

<lel—x/f(2pq>+pw<2q>E[ 80.0.n.H }
- (E[‘Soony])”

< Clzzn{W(qu)—pw(Zq)}_

2711

L e2awn k27 S(z)qk nH !
-1
ew(zq)l ¢(2q>< )

[Oan]

p
} < c2—exeqne(l+x’) _ oone(x'+a—yx)
J— n .

This last bound and Borel-Cantelli’s lemma yield that m H(Zq)Sn 1 — T, zq — 0, a.s. This

and (5.13) finally prove that S,,,l —mpy((2q) as.
In order to prove that S, » — 0 a.s., by stationarity and 2-dependence in j, it is enough to
prove that, for p =1+ ¢,

1

for some n > 0 and apply Borel-Cantelli’s lemma. Since all quantities involved are nonnegative,
we can use the bound (5.6), and thus it suffices to obtain a bound for
l

E[

P
P T 0.0k e ] | 2OETT) 1t

0<ks£k! <21

nty (2q) Z r(2H-2) al q
2 ’k k| Ao k.n, HA k' .n, H
0<kk' <2n

Define
82 _f / o122 M, (du) M, (dv).
nk nk

Then ao x n. 0 = Sped®in k27" and using the bound (A.29) and (3.6), we obtain

|

nty (2q) Z o r@QH=-2)1 ¢ q _~q ~q
2 |k k \ {ao,k,n,HaO,k/,n,H aO,k,n,HaO,k/,n,H}
0<ks#k' <21

p
] — 0(2(8)(*77)").
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Thus, we need to obtain a bound for ]E[S,’l7 4] where
_ T (2q) _/|F@H=2) ~q ~q
Sna =21 Z |k k | A0 k.0, HY k' 0, H*
0<ks£k' <2n

which we further decompose as S, 4 = S, 5 + Sp.6 With
2H-2 ~ o~ ~a~ —n In—n
Sp.s = ot (29) Z ’k _ k/‘r( ){3252/ _ E[SZ(SZ,]}eqwlﬂ (k27" +qwy, (K2 )’
0<kk' <21
S, 6= NTH 29) Z |k - k/|r(2H_2)E[SZ(§Z/]qu]" (k27" +qwy, (k/2_").

0<ks£k! <27

Since H < 3/4 and r > 2, we have that r (2H —2) < —1 and the series ) k" 2H=2) js summable.
Thus, applying Cauchy—Schwarz’ inequality yields

p 21 2p
E[‘z—n Z |k _ k/ ’r(zH_z)eqwln (k2’")+qwln (k/27n) :| < CE[ 2—" Z eqwz,l (k27 :| .
0<k##k' <2 k=0

Next, applying Lemma A.1 with p such that 2pg < g, and ¢’ < p — 1 yields

EHZ_n Z |k K i”(ZH—2)eqw1n (k27™)+qwy, (K'27™)
O<kk' <2

P :
] <cl, VPl (515

By (A.27), it holds that ]E[SZSZ,] ~ C(k, k/)l,lf(zq)Z_”fH @ where C(k, k') is uniformly bounded,
thus

E[S? ] < Cl;{w(qu)fpw(Zq)fe’}
6] = .
If 2pq < gy, applying (3.6), we have
A=) {y2pg) — py(2q) —¢'} —ex < (1 —a)e(l+ x) —&' <e —¢&' —ae(l + x),

which can be made negative by choosing &’ close enough to ¢. To deal with the last term, as in
the proof of Proposition 3.1 we use the conditional 2** dependence of the random variables §y.
We obtain the bound

E[Sps] < MW 2pa)—py(29)—¢} — O(zn(sx—n))
n5] =

for small some 1 > 0. We have proved (5.14), and thus (5.11) holds. We can now define

r.

o0 2
r@ =3 re ).
r=2
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As Z;’Ozz(r!)’1 8r(@)? <ooand Ty (r, q) <T,(2, q), then by the bounded convergence theorem,
the previous series is convergent and thus we have obtained that

L_12’”H(2q)VarM(SL’n(X,q)) —T1(q) a.s.
This also yield that there exists a constant I'2(g) such that
L1271 29 yary, (ZTH(q)SL,n_H (X, q)) — Ta(q) a.s.
By similar techniques, we also obtain that there exists a constant I'3(¢g) such that
L7127 D cov iy (Spa(X. @), SLag1(X. @) > Talg)  as.

Finally, since T,(X,q) = Srt..(X,q) — ZTH(‘I)SL,,,_H(X,q), the last three convergences
yield (4.7).

Proof of (4.8). By Nualart and Peccati [13], Theorem 1, the proof will follow by checking that

L=222m DR, (T,(X, q) — En[T(X, q)]}4] —3I'(H,q)>  as. (5.16)
Define
T, (X,q)
L—-12"—-1
_ ()[4 . q .
= Z Z 2 {"j,zk,n+1,HHr(Yﬂk,nH) +“j,2k+1,n+1,HHr(Y1»2k+1,n+1)}
j=0 k=0

- a?,k,n,H H, (Yj,k,n)-
Then, from the definition of 7,,(X, ¢) and recalling the expansion G, = Zf’;z g’r—(!q)Hr in terms
of the Hermite polynomials, to show (5.16) it is enough to check that
3

En[(To (X, @)'] = Gy BT (X 0]+ Rata. ), (5.17)

with L™222""HCD R, (q,r) — 0 a.s. In order to calculate the fourth order moment in (5.17)
we use a standard application of the Diagram formula, for which we use the notation in Sur-
gailis [15]. Given a centered stationary Gaussian process {X;};>1 with positive covariance
c(ti, tj) = cov(Xy;, X;;) and variance one, and a triangular array of positive elements {bt}f’: h
define Sy (b) := Ziv: 1 bi H-(X;). We introduce the following basic lattice notation. Let W be a
4 row table, whose rows correspond to the size r vectors W; = (i,...,i),i =1, ..., 4. Consider
the collection I' of Gaussian flat connected diagrams y, that is, of partitions of W defined by the
disjoint subsets {V,} with W = | J, V¢, such that, respectively, |V¢| =2, no V, C W; and it is not
possible to write W = Wy U W5, where W and W can be partitioned by the diagram separately.
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Then, we have that (see, e.g., Surgailis [15])

N 2
E[(Sn ()] =3< > btlbncr(tl,tz)>

t,1h=1

+Z Z by - l_[ i (1, 17),

yelt, ..., 1<i<j§4

(5.18)

where /; ; is the number of elements V; in the diagram that pair row i with row j. Because
the diagram is connected and each row must appear at least once, for each pair i, j we have
1 <1; j <r. Also, the fact that the diagrams in I" are flat (i.e., that no V, C W;) assures that the
second sum is over 4-tuples of pairwise distinct indices. On the other hand, since 0 < c(i, j) <1
and r > 2, for each y € T, by symmetry

Zb,]~--b,4 1_[ Cli’j(ti’tj)

Iyeees 14 I<i<j<4
(5.19)
< Y by eeebyclt, D)et, B)es, )elis, 1),
Iyeeny 14
Applying (5.18) and (5.19) to T, (X, q), we obtain (5.17) if we show that
L-1 21
L2 N N T @ g g PG g2 k1 k) pr (s J3 K2 k)
Floeeja=1k1,.. .ky=11<i<4
X pH.n(J3, ja, k3, ka) (5.20)

X pa.n(j1, j2. k1, ka) — 0 a.s.

The fact that the sum is over pairwise distinct indices assures that (j;, k;) # (je, k¢) for i # £,
however it is necessary to distinguish several cases:

e Case j; =jforalli =1,...,4. We prove that

L-1 2'-1

L2 N N T al s praGi ok ka)

j=1ky,..., ka=11<i<4
X pH,n(j»jv ka, k3)/0H,n(j,j, k3, ka) (5.21)
X pHn(j, J k1, k4) — 0 a.s.

This will be achieved by showing that the expectation of the Lh.s. of (5.21) tends to zero.
By stationarity of increments and Holder’s inequality, we have

q 172 1/2
E[ l_[ aO,n,ki,Hi| <E [a00n HaO Ko—ki+1,n, H]E [aOOn H“O ky—kz+1,n, H]

1<i<4
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In addition, by the scaling property, we have that

2q 2q
E[ao,o,n,Hao,krkﬁl,n,ﬂ]
— 2*n§H(4(1)(k2 — ki + 1)§H(411)*2§H(2(1)C(k17 k2),

with C(k1, k2) < mp (4q). This and the deterministic bounds on the covariance (5.6) yield
that the expectation of the Lh.s. of (5.21) is bounded by

2" -1
L~ 1p=2nonty (49) =29 (¢)} Z kg — k2|2H—2—(w(4q)—21//(2q))/2
kiyeoekg=0
X |k3 — k4|2H—2—(1//(4q)—21ﬂ(2q))/2|k2 _ k3|2H_2

2H-2
x k1 — kal

2n—] 2n—1 2
< L1 v -2y (@)} Z ki — kp|2CH-2) < Z sz—z—(¢(4q>—2w<2q)>/2>
ky,ko=0 k=0

pL| 2M—1 2
<cL 'y Y peeH (2n{w<4q>—2w(q)}/2 3 kZH—2—<w<4q>—2w(2q)>/2> .
k k=0

Since H > 3/4, the first series is summable, and since 1 (4g) — 21 (2g) > 0, the second one
is of order n2"(V 49) =2V Q}V(EH=2))/2 (where the factor n only arises if the two exponents
are equal). Recalling that ¥ (4g) — 2% (q) < 1 = x yields (5.21).

e Case j; = jo = j3 = j. In this case |k; — k4| = 0(2_"(2H_2)), i =1,2,3 and by Holder’s
inequality and independence of @ g, . and [ [, ;3@ x;.n,m We have

E[a]q,’kmﬂ I a?,k,-,n,Hi| — 02 2 NECR 29 ME@ ) ey ey VD20 Qa2
1<i<3
Using again the bound (5.6), we obtain

L-1L-1 2'-1

2420ty (2 q q 2 (.
L2 3y Y ]E[ TT @@ P 1K)
j=0 j'=0kq,....ka=1 1<i<3
X pH,n(j’ j7 k27 kS)pH,n(]’ j7k37 kl)} (522)

— O(L"2"HH =D 2=V @),

As before, 2"“H=3) _ 0 under H < 3/4 and ¥ (2¢)/2 — ¥/ (q) > 0 by convexity of func-
tion .
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e Case j; = j» and j3 = js. The bound for the expectation of the Lh.s. of (5.20) is then

- 2"—1

—292nty (29) Z Z q a?
2 ]klnHajkana/kgnH i ks, H

Jodid’ 0 ke kg =1

x 0%, (j. J' k1. ka)
(5.23)

X pH,n(jv j! kl’ k2))0H,n(j/’ j/v k3, k4)]

< C2}1(4H—3)

by independence of a* ik, g and a’ ik H whenever j # j'.

e Case all j; are dlfferent The bound is then

2"—1
212 2 q 2 I
[~292ntH(29) E E |: H aj,-,n,k,v,HpH,n(le]Z’kl’k“)
J1sJ2,J3Ja kiy.. kg=1 I<i<4

x pH.n(J2, 73, k2, k3) pH 0 (J3, J4, k3, k4)] (5.24)

< M2 QY (@) pn ) GH=3)

As before, 2"ZH0@H=3) _ 0 ynder H < 3/4 and we use ¥ (2q) > 2% (q).
The proof follows by gathering (5.21), (5.22), (5.23) and (5.24). O

Appendix: Additional lemmas

Bounds for infinitely divisible random measures. We now state some results using the proper-
ties of infinitely divisible random measures. The infinitely divisible measure P introduced in
Section 3 can be decomposed as P = Py + P; where Py and P; are independent and

E[eq Py (A)] = M AVi(@)

with

2 )
Yo(q) = —61 +m4+/1 {e7" — 1 — gx1jq <y pr(dx),

-1
@ =/ [ — 1}u(dx).

—00

Note that by assumption, ¥ is infinitely differentiable on [0, co), whereas ¥ is infinitely dif-
ferentiable on (0, co) only. Then, for A such that u(A) <1,g > 0and p > 1 such that pq < g%,
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it holds that
E[|Po(a)|"] = O([n(a)] "), (A1)
E[[e?P™ — 1 —gPy(A)|"] = O(u(A)), (A.2)
E[[e?") —1]7] = O(u(A)). (A3)

2+ < xz(ex + 1), with x4 = max(x, 0), we have

Indeed, since 0 <e* — 1 —x <x
E[|e?f0) — 1 — g Py(A)|"]
< CE[P;” (A)e? ] 4 CE[ ;7 (4)].

Denote L(s) = E[e’PA)] = e¥0®) ;1 (A). The function L is infinitely differentiable on [0, ¢*) and
L™ (g) = O(u(A)) forall g > 0 and n > 1. This yields (A.1) by the Cauchy—Schwarz inequality.
Let n be an integer greater than p. Then, for 0 < g < ¢*, (A.3) follows from the following bound:

E[pozl’ (A)equO(A)] < E[Pg(A)equO(A)] + E[POZ" (A)equo(A)]
= L"(pq) + L (pg).

To prove (A.2), note that P;(A) is a coumpond Poisson distribution with negative jumps, thus
P1(A) <Oforall A, and for all p > 1,

EHequ(A) _ 1|1’] <1-— eV1(@u(A) _ O(M(A)).
Further, write
eI —1—gPy(A)
(A.4)
— {equ(A) _ l}eqPO(A) +eqPO(A) —1—gPy(A).
This decomposition, (A.2), (A.3) and the independence of Py and P; yield, forg > 0and p > 1,
E[[e?"™ — 1 — g Py(A)|"] = O(1u(A)). (A.5)

Since P, Py and P; are independently scattered, these inequalities yield martingale maximal
inequalities. For A such that u(A) < 1, and for C,, an increasing sequence of measurable subsets
of A, it holds that

E[sup| Po(C)["] =0 (0),  pz1, (A.6)

E[sup|eqp(c“) _ 1|”] =O(u(a) PPV, p>1, (A7)
u

E[suple?” % —1 =g Po(Co)|"] = O(u).  p=1. (A8)
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Approximation and covariance bounds for the MRM.

Lemma A.l. Let o = 1/ng for some arbitrary integer ny > 2. For all p > 1 such that
E[e??%1 O] < 0o, for any €' € (0, p — 1), there exists a constant C such that

1 aqwy, (w) P !
E[( / et du) } < ciWeo-pr@=e) (A.9)
0 ]E[equun( )]
M1 eqwln(sz"’) p W (pa) v (q) 8/}
n e —{¥(pg)—pr¥(@)—
El (2 kZO E[et O] <Cl, . (A.10)

Proof. The choice of « implies that (1 — a)ng = ng — 1 is an integer. Denote g,(u) =
e?Win ) /E[eqWh 0], Fix some integer ko, and define n; = kong. If n; < n, then

1 1 1
/O gn(u)du :/(; gnl(”)d”+/ {gn(u)_gnl(u)}du
2(1—a)n1_1

=/0 gn, () du + Z / {8n(u) — gn, ()} du

Ak, (1-a)n

(A.11)

We bound the first integral by applying Jensen’s inequality:

1 P
E[(/ gnl(u)du) } < E[gfl’l (())] — o=y (¥ (p)—p¥ (@)} (A.12)
0

Since wy, is independent of wy, — wy, , we can write

Wi (u)—qw/nl (u)
gn(u)_gnl(u):gnl(u){ 1}

Ee?Vn @—qwn, O

Thus we see that the integrals f A {gn(u) — gn, (u)} du are centered and 2-dependent condition-
RO
2(1701)111 —1

ally on F,,, the sigma-field generated by {wlnl (u), u € [0, 1]}. Thus by von Bahr and Esseen [16],
Theorem 2, there is a constant C such that
p
> / {8 (@) = gn, ()} du }
k=0 Ak, (1-a)n

E[
< Cz(l—a)nlE[ / {gn (1) — gn, (u)} du
Ao, (1-a)n
/ gn(u)du / gm(”) du
Ao, (1—ayn Ao, (1—ayn

p
< Czp—lza—a)mE[(/ . (u)du) ] 4 2P 1l (PP @) —en
Ao, (1-a)n

|

P
< C2p_12(1_a)"1E|: :| + Czp—lz(l—a)nlE[

|
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Since I, /1, = l,—n,, by the scaling property (3.3), we have

1 1
w ] law Q w
/ eqwl”(”)du:lm/ ey tny () g, 120 Iy e’ ml/ e "in—n ) gy
AO,(]—m)nl 0 0

Thus,

P (E[eqwl"”ll (0)])1) 1 V4
E d — 2(1—a>n1(¢(pq)—p)—E[</ _ d ) ]
|:<»/A()_(1_a)nl gn(u) u) ] (E[eqwln(o)])P 0 &n nl(u) .

1 p
_ 2<1a>n1(w<pq>pw<q>p)]E[< / S du) }
0
Thus we have obtained

2(1705))11 —1 p
E|: Z {gn(u)_gnl(u)}du i|
1 P
< Cz(l—a)nl(xﬁ(pq)—pl//(q)—P)E[</ 8n—n, (1) du> i|
0

k=0 Ak (1~a)n
Denote u, = I['Z[(fo1 gn(u)du)P]. Gathering (A.11), (A.12) and (A.13), we obtain the following
recurrence:

(A.13)

u, < B+ Cz(lfﬁt)nl(1*P+$(Pq)*17k0(f1))un_nl
By choosing k large enough, this yields that for any &’ € (0, ¢),

up, < B+ 2(1—a)n1(w<pq)—m/f(q)—s’)un7nl

Thus, there exists a constant D such that

u, < D2 (PO —py@)—¢).

This proves (A.9). The bound (A.10) follows by replacing the measure du with a discrete mea-
sure. ]

Lemma A.2. Let O <a <1 andl, =2=1=" For p > 1 and q > 0 such that pq < qy» there
exists a positive constant C such that

lim 2% @e? @1 VDOE[MI (Ag,)] = m(q), (A.14)

n—oo

E[|eqw’"(°)M3(Ao,n) _ Mq(Ao,,,)‘p] < C2~lqvhn/2y=nt(pq) (A.15)
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Proof. Note that (A.15) implies (A.14). So we only need to prove (A.15). Define the sets I,,
By(u), u €[0,27"] by

I, = ﬂ Ay, () = Ayy0) N Ay 1), B (u) = Ay, (u) \ 1.

O<u<2—"n

See Figure 2 for an illustration. By definition of the function ¥ and the measure u, we have,
E[e??Un)] = ¥ @iln) and

(1)—/ dsdt_/lt—Z_”dt+f°°1—2_”dt
Mn_Infz_zn 12 1 t2

=—log(ly) = 27"(L, = 1) + 1 =27" =1 —log(ly) — 27" = u(A;, (0)) —27°".

This yields wy, () = P(1,) + P(B,(u)) where the two summands are independent and
E[e?"] =E[e?n O@]{1+0(27*")}. (A.16)

Write further

277’ 2 n
M(Ao,n)=/ ewz,,<u>Mn(du)=eP<ln)/ P B pp (i)
0 0

—n

=&, / eP (Bn (M))Mn (du),
0

with &, = e M, (Ao,,) and M, (du) = M, (du)/M,(Ag,,) is a random probability measure
on Ag,,. We thus obtain

—n

2 B q
Mq(AO,n) — Wi (O)Mg(AO,n) — ";:1;] { (/ eP(Bn(M))Mn (du)) _ eqP(Bn(O)) }
0

Noting that for x > —1 and g > 0, it holds that 0 < |1 — (1 +x)7| < C,(|x| + |x|?) and since
P(I,), M,,(Ap,n) and P(B, (1)), 0 <u <27", are mutually independent, we have

2 . q P
( / eP(B"(“))Mn(du)> _ 4P B ]
0

= CE[Sr{’q]{<E[ sup |€P(B”(u)) - 1|p(qV1)])qu +E[ sup |€P(B"(u)) — 1|p]}

O<u<2—n O<u<2—"

B

Thus, applying (A.7) yields

E[|M%(Ao,n) — et O M1 (Ag,0)|"] =02 D2)E[£1?]. O
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1 1 1 1 1 1 1 1
T2 4T3 T2 2 2t ot
By (u) I By (u)
S U U Y I I |
| | \
————— L A ———
| | \
| | \
| | \
! ! ¥ 0
0 u o—n

Figure 2. The sets I, and B (u).

Lemma A.3. If g + q' < gmax, then for s, t € (0, 1) such that s +t < 1/2,

cov(MA([0, s1), M"/([l —1,11)) =0((s + t){é“(q)+§(q/)+1}).

(A.17)

Proof. Define [ =1 — s — ¢ and M;(du) = e™*' M (du). By construction, the measure M; is
independent of {w;(u)} and M, ([0, s]) is independent of M;([1 —, 1]). Define the sets A, ; and

By ; by

Asr=A1(s)\ A(1 —1),

Foru <sand v > 1 —t, define

By, =A;(1—1)\ A(s).

Cuv = A1(u) VA (v),

Ds,u = Cs,v \ Cu,v,
Et,u = Cu,l—t \ CM,Us

D, = Ar(u) \ Ai(s),
Et/,v =A;(w)\ A;(1 —1).

See Figure 3 for an illustration. Note that all these sets are above the horizontal line at level
I =1—s5—1t,hence P(A) is independent of M; and P(A) is independent of P(B), where A, B
are any two of these sets. Note also that UMSS,UZI*I Cuv=Cs1-1t, D5y CCs 14, Et y CCs14,
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tv

————— B

|
|
|
|
|
:
S

s 4+ - — — 94—

Figure 3. Thesets A, B,C, D, D' E,E’.

/ / / /
Dg , C D{and E; , C E; . We moreover have

M(Ax,t) = M(Bx,t) =1,
u(Cs,1—¢) = —log(l —s —1),

S
n(Dg o) = n(Er )=

l—s—1¢

t
l—s—t

Moreover, for u <s and v > 1 — ¢, we have the following decompositions:

wi(u) = P(Ag) + P(Cup) + P(D},) + P(Er ).
w;(v) = P(Bs) + P(Cu) + P(Dy,) + P(E, ).

Recall that the random measure P can be split into two independent random measures Py and P;
such that P = Py + P;. Fori =0, 1 and u € [0, s], define m; ; (1) = Pi(D;’u) + Pi(Cy,1—¢) and

w1 (u) = 10,1 (u) + 71,1 (u).
Similarly, fori =0, 1 and v € [1 — ¢, 1], define nl.”l(v) = Pi(E,/,v) + P;(Cs,y) and

7 (v) = 70, (v) + 7y 4 (V).
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Let M; and Z\;Il’ denote the normalized measures M;/M; ([0, s]) and M;/M;([1 —t, 1]) and
a=m(0,s1),  &=M(1-11]),
v = /Os{e”“") — 1} M (du), v = /]1 {e™® — 1} M) (dv),
—t
Ri=04+yw?—1-qy, Rl’(1+y/)q/ —1—-4'y.
This yields
M40, 51) = e?P A0l {14 gy + Ry},
MY ([1—1,11) = PBIE! 5 {14+ ¢'y1+ R}
Note that ¢; and & are independent and independent of 7; and nl’ which are independent of ;.
Thus, & is also independent of y; and Ry, and ¢; is independent of yl’ and Rl’ . Also, P(As ;) and
P (Bs.,,) are independent of all the other quantities, and E[e?”(4s.)] = E[e?P (Bs.)] = ¥ (@), Thus,
e V@OV @) coy(M9([0, 51), M7 ([1 -1, 11))
=qq'cov(¢/ . &7 vi) + 41! viR]] — aE[¢ m]E[E /] (A.18)
+ ‘I/E[quzq/RlVl/] - q'E[¢/ RI]E[Ezq/V/] + E[Czquq/RlRl/] —E[g/ RZ]E[SIq/Rl/]‘ (A.19)
We will show that all the terms on the right-hand side are of order (s + t)_l]E[EZ ]E[;f /]. Since
m; and n,’ are independent of the measure M;, using the definition of 7; and JTI’ and the fact that

the random measure P’ has independent increments, and E[ef @] =1 for all measurable set A
with finite £ measure, we have

’ B ’ s 1 / — —
cov(;lq VI, Slq yl) =FE {lqslq /o fl cov(e”’(“), el (v))Ml (du)Ml/(dv)i|
L —t

B , K 1 B B
=E|¢' /O /t var(eP(CW)Ml(du)M,’(du)]

B , s ol B _
=E ;‘lq%‘lq / / {e‘//(z)ﬂ(cu,u) _ l}Ml (dM)Ml/(dU)jI
L 0 Ji-1
< E[é-lq]E[Elq,]{eII/(Z)M(Cx,l—t) —1} < C]E[flq]E[Slq/](S o).

If g > 0, a second order Taylor expansion yields that there exists a constant Cy > 1 such that for
all x > —1,

|(1+2)7 —1—gx| < Cy(x? + [x]7Y?). (A.20)
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Applying (A.20) and Jensen’s inequality (since by definition M; is a probability measure on
[0, s1), we obtain, with r; = sup,,¢[o 51 [€™ @) _ 1|, which is independent of M;,

)
IR)| < C/ e — 1|7 4 [ — 1P} M) < (2 417,
0

Define r] = sup,, o, [€™“ — 1| and note that || < r; and |y/| < r]. We thus get
B[gf! Ry) < B[gf TE[(7 + ¢ )] < Bef T2 ( (07 + ) JE (1)
Applying (A.7), we obtain, for any h > 2,
E[r}'] = O(u(Cs.1-0) + u(Dg,)) = OCs +1).
E[r7"] = O(u(Ce1-) + u(E} ;) = OGs +1).
Thus finally

E[¢/&! Riv/] < C(s + DE[¢ B[] ].

The remaining terms in (A.18) and (A.19) are dealt with similarly and we obtain
|cov(M4(10, s1), M7 (10, £1))| < C(s + HE[¢? [E[£] .

The previous considerations also yield that

s¢@ =E[M1([0,s1)] =" DE[¢]]{1 + OGs + 1)},

#£@ = E[M ([1 —1,11)] =e? @E[£! {1 + O +1))
and all the previous bounds finally yield (A.17). (]
Lemma A4. If2qg < gmax, thenfork=1,...,2" — 1,

211{(2!1)]E[D0’0’n’q Do kngl = O(k—{lﬁ(2q)—21/f(q)+1})_ (A21)

Proof. By the scaling property, and since E[Dg ., 4] = 0, we have

2”4(2(1)E[D(),0,n,q DO,k,n,q]

it (o1 ]) e (1= )
~20 (k= 5) o [o. = e (- 551])
e O ) R )
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@) o ([0, L
2k

4227 (@) 20 COV( e ([0, L]

k
@) o (e ([ L L
2%k

+ 277 @ (k — 1/2)¢ %9 cov<Mf/ ([— ——

1
, M1 —— 1
2%k—1"2k— 2k—1
402 @reCo cov (e (| L 1Y e (11— L1 ])).
2%k 2k

Applying Lemma A.3, with s and ¢ replaced by k and 2k and ¢ = ¢’, we obtain that each covari-
ance term that appears above is of order k~2@=1 which yields 2”5(2‘1)E[D0,0,n,qDo,k,,,,q] =
O(k¢@0)—=28@—1y "and since £2q) —2¢(q) =2¢¥(g) — ¥ (2g), the bound (A.21) is proved. O

—_

Lemma A.5. If4q < q,, then
E[Dé ] — O(nzfnr(4q) + 272nr(2q)).
.q

Proof. Let us compute the fourth moment of Dy ;4. For brevity, let the centered random vari-
ables Dy .4 be simply denoted by x;. We have

E[Dé,n,q] =2"E[xj] + Z E[xlzsz] + Z E[x}x/]

<ifj<on— <j£j<2n—
0<i#j<2"—1 0<iz#j<2"-1 (A22)
+ Z ]E[xizxjxk] + Z ]E[xixjxkxl].
1<i,jk<2n 1<i, j.kd<2n
#{i,j,k}=3 #{i, ]k, 1}=4

By the scaling property and Lemma A.3, obtain that
2n§(4q)k—§(4q)]E[x%x£] — O(k—2§(2q))_
Since ¢ (4q) < 2¢(2q), this yields
21
Z E[xlzx%] — O<2—nr(4q) Z k§(4q)—2£(24)> — O(n2_'”(4q) + 2—2nr(24)).
0<i#j<2"—1 k=0
Again, by Lemma A.3, we have

2”5(4‘1)k*§(4‘1)]E[x%xk] — ont(q) p—¢4q) cov(x?, Xp) = O(kf§(3q)*§(q)fl).
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By (3.6),if 4g < gy, then ¥ (4g) > 44y (3q)/3 and ¥ (3q)/3 > ¥ (q),s0 ¢ (4q) — ¢ (3q) — ¢ (q) <
0, thus

1
Z E[x?xj] — O(z—nf(“Q) Z k§(4CI)—{(3tI)—C(¢1)—1> — 0(2_’”(4‘1)).

0<i#j<2"—1 k=0

We now calculate the fourth term in the expansion (A.22) of ]E[Dg n q]. By stationarity we may
assume i = 0 and without loss of generality assume j < k/2. Set y¢ = Do ¢,log,(k),q for £ =
1,..., k. Then by the scaling property

E[xxja] = (k/2") “VE[y2y;ne]-

Since E[y,] = 0, from the definition of Dy jog, k), We may write

E[ylzyj)’k] = cov(y}y;, k)

=Y Biotgn; cov (M (A1 tog, k) MU (A log, k) (A23)

l,s,t

X MU(Aj 1og,bsk))s M (A log, (5,1)))

where r; € {1,2} and by, b, b; € {1, 2} indicate whether the scale is k or 2k. Set £ =1 — j/k.
In the notation of Lemmas A.2 and A3 set C = A¢((j — D/k, j/k) N A ((k —1)/k, 1), A} =
Ac(1/k, (j = D/K), Az = Ae((j — D)/k, j/k) N Ag(0, 1/k) and A3 = Be(j/k, (k — 1)/k). So
that A; NAs=@ fori=1,2and A; N C =g fori =1, 2, 3. Also define

G = M;lq(Ai,logz(h,k))Mg (A log, (bsk)) lip= Mg(Ak,logz(b,k)),
which by construction are independent of ¢4 and e¢”(©). Then

M9 (A log, (k) M (A logy by k) = e8P AVTPADAPADTRO 1y o (1 4 gy g + Ry,

M (Af tog, (b)) = el PANTPO g ) s (14 gyi0 + Ria),
where y;; and R;; are independent of ¢ ;, eP (4 and eP(© and satisfy E[y1.1y12] = O(1/k),
ElyiR;;1 = O(1/k) and E[R; .1 R;»] = O(1/k). Finally set K; | = E[¢;,1e21(P(AD+P(A2)
e?P4D] and K; » = E[¢2e97(43)]. Then, for each of the terms in (A.23)

cov(M" (A togy (k) M (A 1og, (b)) M (A logy (bik)))
=K1K 2 var(C)(l + O(l/k))
1

= E2[edPO)]

x E[M? (A tog, k)] log(1 — j/K)(1+0(1/K)).

(A.24)
E[M" (A 1og, (i) M7 (A j 10g,b,1)) ]
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Adding up all the terms in (A.23) and using E[Mg(Ak,logz(b,k))] = O(k’f(‘f)) for all ¢ yields

E[y2y; 3] = OG/bE[y2y, k@,

On the other hand, again by the scaling property, and because E[y;] =0, IE[yl2 yil= cov(ylz, y;)
and applying Lemma A.3 we have

E[y%yj] — O(kfi(311)]'4“(3!1)*{(2!1)*{(11)*1)' (A.25)
By (A.24) and (A.25) we obtain the bound
E[xgx/xk] — 0(2—n§(44)j§(34)—§(24)—§(q)k£(4q)—§(3q)—§(q)—1)_
Noting that by convexity of ¥, it holds that 2y (q¢) < ¥ (2q), this yields

Z E[xizxjxk] = 0(2_2’”(2‘1) + nz—”f(4q))_
1<i,jk=2n
#i,jk}=3

For the last term in (A.22) by stationarity set i = 0, and assume j < £ < k and moreover that
L —j<k/2. Write

Elx;xjxexi] = cov(xix;j, xexi) + Elyiy;j 1E[yey].

The term cov(y1y;, yeyr) can be shown to be of smaller order than the product of expectations.
Thus, applying Lemma A.4, we finally obtain

Z Elx;xjxgxe] = 0(272’”(‘1)).
1<i, j k<2
#i, j k. l)=4 0

Bounds for the MRW, case H > 1/2. Define @; j n. g = e”in "ii)§; 1,y with

5 i = /A(/) /M 772 M, (du) M, (dv)

and for ji # ja,

S Syt e = v 72 My, (du) M, (dv)
o (i, jos ko k) = —

81 kn, HO jokn, H

Lemma A.6. For p > 1 such that 2pq < q, and for r > 2, there exist n, C > 0 and uniformly
bounded constants c4 g (k, k') such that

DY COLVCVRIRE ] 0q)| =0, (A26)
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OO COB[S, L ) ()| =0, a2)
2n§H(2pq)EHa o 53‘1” 47T=002""), (A.28)
2n§H(2pq)E[|ag,k,n,Hag,k’,n,H - &O,k,n,Ha0,0,k’,n,H| ]=0(@2™). (A.29)

Proof. Note that (A.29) implies (A.27) and (A.28) implies (A.26). By stationarity of increments,
we can assume without loss of generality that k" = 0. For brevity, denote ay = ao k.n. 1, dr =
ao.k,n, g and Sk = Soyk,,,, # . Generalizing the notation of the proof of Lemma A.2, we can write
aj = EL(Ry + 1) with & = P05 1, (k) = A, (k27") \ Ay, 27", Bi(u) = Ay, () \ 1 (k)
and

R = / f {ePBlDTLB@) 441y — o220y (du) My ().
Agn J Dgn

Denote rx = SUp,ca,, lePBr@) _ 1| Then |Ri| < (1 4+ rx)? — 1, the sequence {ry, k =
0,...,2" — 1} is independent of the measures Mk, 0 <k <2"—1 and by (A.7) and Holder’s
inequality, we have, for p > 1, E[|ro|?] = O(y/u(Bo(27")) = O(2~%"/?). Thus

Bl —er" O] < Bfert O e[ o2 ),

which proves (A.28). Since E[e??(n®)] ~ E[eqh O] = e¥ @[ V@ this implies that E[5]] ~
el @211 @ Next, using the bound |(1+x)4 — 1| < C(|x| + |x|9"1) valid for x > 0, we obtain

Eflagal — 08! |"] < E[gg" &/ |(Ro + DI (R + )12 — 1]]
< B[/ |E[|(ro + DI (e + DT —1]7] < C27"E[g57]
for some 7 > 0. This proves (A.29). 0
Lemma A.7. If2q < g, then

néw(2q) |E[U0,n,07 UO,n,k]| < Ck~WCO-2¢(@+1} (A.30)

-]
=]
i

Proof. For k > 1, denote

v 2 M (du) M (dv),
— o2 M (du) M (dv),

k/l/k
k l/k
St

lu — v 2 M (du)M (dv),

/
/
i S
Vi =
1/k

1-1/2k 1-1/2k
V= / lu — v 2 M (du)M (dv).
I-1/k  J1-1/k
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Then, by the scaling property, we have

261 COE[Uo,5,0Uo,n.k]
= k510D coy(UY, V) — 2@ (k — 172)1CD) coy (U7, V2
— 2@ CD L cov(UE, V1) — cov(Us,, V) + cov(U;?, V) }
+ 22 @ (k — 172)51 2D [coy (UL, V) + cov (U7, VL))
22 @D QD feoy (U, V{T) + cov(Uf?, Vi) ).

All the covariance terms are of the same order, and we only consider the first one, cov(U g qu).
Denote [ = 1 — 2/ k, define the measure M;(du) = e~*/® M (du) and

1k pl/k
G = / / o 2H2 M, (du) M (dv),

by = / / o 242 1, (du) My (),
1-1/k J1 l/k
A= AN A =178, Bi= A1 — 10\ Ai(1/K),

Aru)=A )\ Ak,  Br(u) = Ai(u)\ By,
mi(u, v) = Po(Ar(w)) + Po(Ax(v)),
7w (u,v) = Po(By(u)) + Po(Br(v)).

| 1/k p1/k

=10 g / / lu — v* 27y (u, v) My (du) My (dv),
0 0

_ 1 1 1

Bi=¢& 1 / / lu — v 27 (u, v) My (du) My (dv).
1-1/k J1-1/k

Then we can write

U]? = eZqP(Ak);-]zH _’_ezf{P(Ak)g-kq’H&k +62qP(A")§,ZHRk,

qu — ezqP(Bk)él?,H + ezqP(Bk)sleBk + GZqP(Bk)gleRl/(,
with

1/k p1/k _ _ . . q
R = (/ f lu — v|2H—2eP<Ak(“>>+P(Ak<”>>M,(du)M,(du)) —1—qé,
0 0

1 1 _ _ q
R, = ( / / u — v|2H ~2ePBr()+P(B(v) M;(du)M;(dv)) —1—qpr.
1-1/k J1-1/k
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Note that P(A(u)), P(By (1)), ¢x and & are mutually independent and by (A.20),

IRe| <C  sup |eP<Ak(u>>+P(Ak<v)> |qv2 sup e
u,vel0,1/k] u,vel0,1/k]

P(Ar@)+P(Ar(v) _ 1|2

4O sup  [ePA@HPAW) Ly ).
u,vel0,1/k]

Applying now the bounds (A.7) and (A.8) we obtain that

E[Uf] = DE[g! ,]{1 +O(k™")} + g PE[g{ ;éu],
E[V{] = WE[g{ , {1+ Ok ")} + e VE[ , Ai].
E[Uf V] = PR[¢! 4 JE[g] 4 ]{1 +O(k)} + g PHE[g! , JE[{ yéu]

+E[¢ JE[E] yAi])-

Combining these bounds yields the requested bound for cov(U Ig , qu ) and (A.30). O
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