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In this paper, we prove central limit theorems for bias reduced estimators of the structure function of several
multifractal processes, namely mutiplicative cascades, multifractal random measures, multifractal random
walk and multifractal fractional random walk as defined by Ludeña [Ann. Appl. Probab. 18 (2008) 1138–
1163]. Previous estimators of the structure functions considered in the literature were severely biased with
a logarithmic rate of convergence, whereas the estimators considered here have a polynomial rate of con-
vergence.
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1. Introduction

A random process X = {X(s), s ∈ [0, T ]} (T > 0) with stationary increments will be called
multifractal if its scaling behaviour is characterized by a strictly concave function ζ , called the
scaling function, such that for a certain range of real numbers q

E
[∣∣X(t) − X(s)

∣∣q] = c(q)|t − s|ζ(q).

If the function ζ is linear, then the process is said to be monofractal, as is the case, for instance,
for the fractional Brownian motion (FBM) BH , 0 < H < 1, which is defined as a continuous
centered Gaussian process such that BH (0) = 0 and for all s, t ≥ 0,

var
(
BH (t) − BH (s)

) = |t − s|2H .

Then, for all q > −1, E[|BH (t) − BH (s)|q ] = c(q)|t − s|qH , with c(q) = E[|BH (1)|q ].
Several truly multifractal processes with stationary increments have been defined. The earliest

one is the multiplicative cascade introduced by Mandelbrot [11] and rigorously studied by Ka-
hane and Peyrière [9]. These processes were generalized by Barral and Mandelbrot [6], Muzy and
Bacry [12] and Bacry and Muzy [5]. The latter authors introduced multifractal random measures
(MRM) and multifractal random walks (MRW) as time changed Brownian motion. Ludeña [10]
and Abry et al. [1] introduced multifractal (fractional) random walks which are conditionally
fractional Gaussian processes.
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For these processes, multifractality results from a distributional scaling property which can be
written as {

X(λt),0 ≤ t ≤ T
} law= {

UλX(t),0 ≤ t ≤ T
}

for 0 < λ < 1, Uλ is a positive random variable independent of the process X such that
E[Uq

λ ] = λζ(q) for q < qmax a certain parameter depending on the process under consideration
(and with certain additional restrictions on the values of λ for which this identiy holds in the case
of multifractal cascades, see Section 2). For the models, we will formally introduce in the sequel,
it is defined as

qmax = sup
{
q: ζ(q) ≥ 1

}
.

It is also important to note that the fixed time horizon T beyond which this scaling property need
not be true is finite, except for monofractal processes such as the FBM.

Given a multifractal process observed discretely on [0, T ], it is of obvious interest to be able
to identify the scaling function ζ .

Let t1, . . . , tN , with ti − ti−1 = � = T/N be a regular partition of [0, T ] (typically on a dyadic
scale). Typically, for q < qmax, ζ(q) is estimated by calculating logarithms of the empirical
structure function

SN(X,q) :=
N−1∑
j=0

|�Xj |q,

where �Xj = X((j + 1)�) − X(j�). Estimators of ζ can then be defined by

ζ̂N (q) := 1 + log2(SN(X,q))

log2(�)
,

ζ̃N (q) := 1 + log2

(
SN(X,q)

S2N(X,q)

)
.

These estimators have been thoroughly dealt with for multiplicative cascades in Ossiander and
Waymire [14]. The authors show that ζ̂N (q) and ζ̃N (q) are consistent estimators of ζ(q) for
q < q0, where q0 < qmax is the largest value of q such that

ζ(q) − qζ ′(q) < 1.

For q > q0, ζ̂N (q) is seen to converge almost surely to a linear function of q . Moreover, con-
ditional central limit theorems (where the limiting distribution is a mixture of normal laws) are
seen to hold for suitably normalized versions of both estimators if 2q < q0. However, as shown
in Ossiander and Waymire [14], the convergence rates for these estimators are very different. The
rate of convergence of ζ̂N (q) is of order log2(N) because of the existence of a bias term, whereas
we will show that of ζ̃N (q) is a power of N which depends on ζ .

In order to enlarge the domain of consistency of the estimators and obtain unconditional cen-
tral limit theorems, the so-called mixed asymptotic framework has been introduced by allowing
the number L of basic observations intervals to increase with N . In the case of multiplicative
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cascades and MRM, the processes over different intervals are independent. The observations are
X((jL + k)�), 0 ≤ j ≤ L − 1, 0 ≤ k ≤ N − 1, and the estimators are now modified as follows

ζ̂L,N (X,q) := 1 + log2(SL,N (X,q))

log2(�)
,

ζ̃L,N (X,q) := 1 + log2

(
SL,N(X,q)

SL,2N(X,q)

)
,

with

SN,L(X,q) :=
L−1∑
j=0

N−1∑
k=0

|�XjL+k|q .

The mixed asymptotic framework for multiplicative cascades has been recently developed in
Bacry et al. [4]. The authors show that if L = [Nχ ], where [x] stands for the greatest integer
m ≤ x with χ > 0, then ζ̂N,L(X,q) is consistent for q < qχ where qχ is the largest value of q

such that

ζ(q) − qζ ′(q) < χ + 1.

Note that as χ tends to infinity, qχ might become greater than qmax, so we will only consider
values of χ such that qχ < qmax.

However, once again, there exists a bias term bN := E[Mq

1 ]/ log2(N), which entails slow
convergence of the estimator. In analogy to the nonmixed asymptotic framework it is reason-
able to consider ratio based estimators such as ζ̃N,L(X,q) in order to improve convergence
rates. It turns out, as follows quite straightforwardly from the results of Bacry et al. [4], that
ζ̃N,L(X,q) → ζ(q), a.s., for a dyadic partition, but the authors failed to prove a central limit the-
orem, although they hint at it at the end of their Section 3. Almost sure convergence for dyadic
partitions, or in probability for general partitions, of ζ̂N,L(X,q) has also been recently consid-
ered by Duvernet [7] for χ ≥ 0 and X a Brownian MRW or a MRM. However, the author does
not prove central limit theorems nor establish convergence rates in either case. An interesting ap-
plication for testing whether a process is a semimartigale or a multifractal process is developed
in Duvernet, Robert and Rosenbaum [8] which is based on the limiting behaviour of variation
ratios, but the authors restrict their attention to log-normal multifractal random walks and q = 2.

The main goal of this paper is to obtain central limit theorems for the estimator ζ̃N,L in the
mixed asymptotic setting, for multiplicative cascades, multifractal random measures (MRM) and
multifractal random walks (MRW) that are either a time changed Brownian motion or a more
general process related to a fractional Brownian motion with Hurst index H > 1/2. Our main
results in all these cases state unconditional central limit theorems with polynomial rates of
convergence, contrary to ζ̂L,N which can only achieve logarithmic rates of convergence, and to
the case L = 1 where only conditional central limit theorems can be obtained.

For multiplicative cascades, Ossiander and Waymire [14] also considered negative values of q

such that E[Mq([0,1])] < ∞ and 0 > q > infh≤0{hψ ′(h) − ψ(h) < 1}. However, we cannot
extend such a result in full generality in the present context, since for certain MRM which are
considered here, E[Mq([0,1])] = ∞ for all q < 0. Moreover, negative moments of the Gaussian
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law are infinite for q ≤ −1, thus even if the MRM considered has finite negative moments, that
might not be the case for the MRW. For these reasons, and not to increase the length of the paper,
we do not consider the case q < 0.

The rest of the paper is organized as follows. We will consider multiplicative cascades in
Section 2, MRM in Section 3, and MRW in Section 4. Section 5 contains the main ideas of the
proofs and technical lemmas are relegated to the Appendix. To the best of our knowledge, our
results are the first to deal with the MRW in the case H > 1/2.

2. Multiplicative cascades

In this section, we give a precise formulation of consistency results for ζ̃ (q), whenever q <

qχ , and a central limit theorem whenever 2q < qχ , in the case of multiplicative cascades. The
results are a straightforward application of previous results of Bacry et al. [4] and Ossiander and
Waymire [14]. However, they provide the framework for dealing with both MRM and MRW so
will be dealt with in some detail. Before we state the main results, we shall introduce the mixed
asymptotic setting, following Bacry et al. [4].

For any given n-tuple r and i < n set r|i = (r1, . . . , ri) and if s is an i-tuple and v an
(n − i)-tuple set r = s ∗ v to be the resulting n-tuple obtained by concatenation. For each
j ∈ Z and fixed T , set I (j) := [jT , (j + 1)T ]. Over each I (j) we will construct an inde-
pendent multiplicative cascade as defined in Mandelbrot [11]. For this, consider a collection
{W(j)

r , r ∈ {0,1}n, n ≥ 1, j ∈ Z} of independent random variables with common law W such
that E[W ] = 1 and E[W log2 W ] < 1 and for each n ≥ 1 and j ∈ Z, consider the random mea-
sure defined by

λ
(j)
n (I ) = T 2−n

∑
{r∈{0,1}n:(j−1+r)T ∈I (j)}

n∏
i=1

W
(j)
r|i

for any Borel subset I of I (j), and each r = (r1, . . . , rn) ∈ {0,1}n is associated to the real number∑n
i=1 ri2n−k . It can be seen (see Kahane and Peyrière [9], Ossiander and Waymire [14] for details

on the construction and main results) that there exists a random measure λ
(j)∞ , such that

P
(
λ

(j)
n ⇒ λ

(j)∞ as n → ∞) = 1,

where ⇒ stands for vague convergence. The limiting measure verifies E[λ(j)∞ ([0, T ])] = T . By
construction λ

(j)∞ are independent random measures, defined over the disjoint intervals I (j). Set
λ∞ := ∑

j∈Z
λ

(j)∞ .

Set Fn = σ {W(j)
r , r ∈ {0,1}n, j ∈ Z} and let �

(j)
k,n := [(j + k2−n)T , (j + (k + 1)2−n)T ], k =

0, . . . ,2n − 1, be the kth diadic interval at level n, of the interval I (j). Then,

λ∞
(
�

(j)
k,n

) = 2−nZj,k,n

n∏
i=1

W
(j)

rn(k)|i ,
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where for each n, Zj,k,n, 0 ≤ k < 2n, j ∈ Z, are i.i.d. random variables with the same distribution
as λ∞([0, T ]) and independent of Fn, and rn(k) is the dyadic representation of k, that is, k =∑n

i=1 rn,i (k)2n−i for k < 2n. Moreover, Zj,2k,n+1 and Zj,2k+1,n+1 are independent of Zj,k′,n for
k′ 
= k. The above identity straightforwardly yields the scaling property:

E
[
λ

q∞
(
�

(j)
k,n

)] = 2−nζ(q)
E

[
λ

q∞
([0, T ])],

with

ζ(q) = q − log2
(
E

[
Wq

])
.

It is shown in Kahane and Peyrière [9] that for q > 1, the condition ζ(q) > 1 implies
E[λq∞([0, T ])] < ∞.

Example 2.1. Consider the log-normal cascade, where logW = μ + σZ and Z is a standard
Gaussian random variable. The condition E[W ] = 1 implies that μ = −σ 2/2. Then it is easily
obtained that

ζ(q) = q − q(q − 1)σ 2

2 log 2
, qmax =

(
2 log 2

σ 2

)
∨ 1, q0 =

√
2 log 2

σ
,

qχ =
√

2(1 + χ) log 2

σ
.

Denote

SL,n(q) =
L−1∑
j=0

2n−1∑
k=0

λ
q∞

(
�

(j)
k,n

)
and

ζ̂ (q) := 1 − log2(SL,n(q))

n
, ζ̃ (q) = 1 + log2

(
SL,n(q)

SL,n+1(q)

)
.

Note that although in the asymptotics L will eventually depend on n, its value is the same in the
quantities SL,n and SL+1,n.

Consistency. For each n ≥ 1, let {ξ, ξj,k,n,0 ≤ j ≤ L − 1,0 ≤ k ≤ 2n − 1} be a collection of
i.i.d. random variables, independent of Fn. Define

S̃n,q = 2−nq

L−1∑
j=0

2n−1∑
k=0

n∏
i=1

(
W

(j)

rn(k)|i
)q

ξj,k,n.

In Bacry et al. [4], the following general result is shown to hold.

Proposition 2.1. For χ > 0, assume that L = [2nχ ], q < qχ and there exists ε > 0 such that
E[ξ1+ε] < ∞. If ξ is nonnegative, then

L−12−n2nζ(q)
(
S̃n,q − E[S̃n,q ]) → 0 a.s.
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Note that by construction E[S̃n,q ] = L2n2−nζ(q)
E[ξ ], so that the above result yields the almost

sure convergence L−12−n2nζ(q)S̃n,q → E[ξ ] under the stated conditions. As a consequence, by
the definition of SL,n(q), Proposition 2.1 yields

L−12−n2nζ(q)SL,n(q) → E
[
λ

q∞
([0, T ])] a.s. (2.1)

for q < qχ . Then, clearly,

ζ̂ (q) − ζ(q) + χ + log2 E[λq∞([0, T ])]
n

→ 0 a.s.,

and (2.1) also implies that ζ̃ (q) → ζ(q) a.s. On the other hand, if q > qχ , then Bacry et al. [4]
show that ζ̂ (q) → ζ ′(qχ )q, which is a linear function of q . In this case, ζ̃ (q) is also not consistent
as the normalized structure function tends to zero (Ossiander and Waymire [14]).

Central limit theorem. Based on Proposition 2.1, it is also possible to obtain a central limit
theorem for ζ̃ (q). We remark that in the mixed asymptotic framework the limiting variance is
deterministic. The proof of the central limit theorem follows from a series of corollaries of the
following general result for the mixed framework which is a direct generalization of Proposi-
tion 4.1 in Ossiander and Waymire [14] and Proposition 2.1. We first state some general notation.
Let {ξ, ξj,k,n,0 ≤ j ≤ L − 1,0 ≤ k ≤ 2n−1, n ≥ 0} be as above and define

Vn,q = 2−2nq

L−1∑
j=0

2n−1∑
k=0

n∏
i=1

(
W

(j)

rn(k)|i
)2q

, Rn,q = S̃n,q/V
1/2
n,q .

The following proposition is seen to hold true as a direct generalization of Proposition 4.1 in
Ossiander and Waymire [14], whenever 2q < qχ .

Proposition 2.2. If 2q < qχ , E[ξj,k,n] = 0, E[ξ2
j,k,n]] = σ 2 and if

sup
n

sup
j,k

E
[|ξj,k,n|2(1+δ)

]
< ∞

for some δ > 0, then

lim
n→∞ E

[
eizRn,q |Fn

] = e−σ 2z2/2

and Rn,q converges weakly to the centered Gaussian law with variance σ 2.

The proof follows exactly as that of Proposition 4.1 in Ossiander and Waymire [14], using
Proposition 2.1. The latter also yields that L−12−n2nζ(2q)Vn,q converges to 1 a.s. We can now
state a central limit theorem for the empirical structure function.

Proposition 2.3. If 2q < qχ , then

L−1/22−n/22nζ(2q)/2{SL,n(q) − 2ζ(q)−1SL,n+1(q)
} →d N

(
0,V (q)

)
,
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with

V (q) = var
(
Z

q

0 − 2ζ(q)−1−q
{
Z

q

1 W
q

1 + Z
q

2 W
q

2

})
and Z1, Z2 are i.i.d. with the same distribution as λ∞([0,1]) and independent of W1, W2, which
are i.i.d. with the same distribution as W , and Z0 = (Z1W1 +Z2W2)/2 has the same distribution
as λ∞([0,1]).

Proof. The proof follows from Proposition 2.2, by noting that SL,n(q) − 2ζ(q)−1SL,n+1(q) can
be expressed as

SL,n(q) − 2ζ(q)−1SL,n+1(q) = 2−nq
L−1∑
j=0

2n−1∑
k=0

n∏
i=1

(
W

(j)

rn(k)|i
)q

ξj,k,n

with

ξj,k,n = Z
q
j,k,n − 2ζ(q)−1−q

{
Z

q

j,2k,n+1W
q

rn(k)∗0 + Z
q

j,2k,n+1W
q

rn(k)∗1

}
,

since rn(k) ∗ 0 = rn+1(2k) and rn(k) ∗ 1 = rn+1(2k + 1). Indeed, the random variables ξj,k,n,
j ∈ Z, 0 ≤ k < 2n, are i.i.d. (for each fixed n) and it clearly holds that E[ξj,k,n] = 0, E[ξ2

j,k,n] =
V (q) and E[|ξj,k,n|2+δ] < ∞, whenever 2q < qmax for small enough δ > 0. �

Thus we obtain a central limit theorem for ζ̃ (q).

Theorem 2.4. Assume 2q < qχ . Then

2n(1+χ+2ψ(q)−ψ(2q))/2{ζ̃ (q) − ζ(q)
} →d N

(
0,V (q)/

(
E

[
λ

q∞
([0, T ])])2)

.

Proof. By Proposition 2.1 and (2.1), SL,n+1(q)2ζ(q)−1/Sn,L(q) → 1 a.s. so

ζ̃ (q) − ζ(q) = log2

(
SL,n(q)

2ζ(q)−1SL,n+1(q)

)
= − log2

(
1 − SL,n(q) − 2ζ(q)−1SL,n+1(q)

SL,n(q)

)

= SL,n(q) − 2ζ(q)−1SL,n+1(q)

SL,n(q)
× {

1 + oP (1)
}
.

The proof is concluded by applying Proposition 2.3 and noting that 2−nχL → 1. �

3. Multifractal random measures

Once again we are interested in the mixed asymptotic framework defined by the parameter χ .
The main ideas dealt with in this section are very similar in spirit to those in Duvernet [7]. We
include the proofs for completeness’ sake, since they are very similar to those which will be
developed to study multifractal random walks. We recall the main definition and properties of
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Figure 1. The set Al(u).

multifractal random measures, hereafter MRM, following Bacry and Muzy [5]. Start by defining
for l > 0, wl(u) = P(Al(u)) and set

M(I) = lim
l→0

∫
I

ewl(u) du,

where I is any Borel set in R. Here P is an independently scattered random measure on S + =
{(s, t), t > 0} such that P(

⋃∞
i=1 Ai) = ∑∞

i=1 P(Ai) if the Borel measurable sets Ai are pairwise
disjoint and then the random variables P(Ai), i ≥ 1, are independent, and

E
[
eqP (A)

] = eψ(q)μ(A), (3.1)

with μ(A) = ∫
A

t−2 ds dt and

Al(u) = {
(s, t), u − (t/2 ∧ T/2) < s < u + (t/2 ∧ T/2), t > l

}
.

It is readily checked that μ(Al(t)) = T + log(T /l), which implies, with (3.1), that

E
[
eqwl(t)

] = e(T +logT )ψ(q)l−ψ(q). (3.2)

The function ψ is the log-Laplace transform of the infinitely divisible random measure P , as-
sumed to exist for q < q∗, for some q∗ > 1. It is convex and satisfies ψ(0) = ψ(1) = 0. By the
Lévy–Khinchine representation theorem, it can be expressed as

ψ(q) = σ 2

2
+ mq +

∫ ∞

−∞
{
eqx − 1 − x1{|x|≤1}

}
ν(dx),

where ν is the Lévy measure of P and satisfies∫ ∞

−∞
(
x2 ∧ 1

)
ν(dx) < ∞.
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The assumption that ψ(q) is finite for q < q∗ entails the following condition. For all q < q∗,∫ ∞

1
eqxν(dx) < ∞.

By Bacry and Muzy [5], Theorem 4, there exists a certain infinitely divisible random variable �λ,
which is independent of M([0, T ]), such that E[eq�λ ] = λ−ψ(q) and for λ, l ∈ (0,1),

{
wλl(λu),0 ≤ u ≤ T

} law= {
wl(u) + �λ,0 ≤ u ≤ T

}
. (3.3)

The latter is known as the scaling property. This implies that

M
([0, λT ]) d= λe�λM

([0, T ]) (3.4)

for λ ∈ [0,1], so that

E
[
Mq

([0, λT ])] = λζ(q)m(q) (3.5)

with ζ(q) = q − ψ(q) and m(q) = E[Mq([0, T ])]. It is shown in Bacry and Muzy [5], Theo-
rem 3, that if ζ(q) > 1, then E[Mq([0, T ])] < ∞. As previously, set qmax to be the greatest value
of q such that ζ(q) ≥ 1 and for χ ≥ 0, define qχ as

qχ = max
{
q: qψ ′(q) < ψ(q) + 1 + χ

}
.

Assume moreover that χ is such that qχ < qmax. Then, for all p such that pq < qχ , it holds that

0 < ψ(pq) − pψ(q) < (p − 1)(1 + χ). (3.6)

See Section 5 for a proof.

Example 3.1. Consider the Poisson cascade introduced by Barral and Mandelbrot [6]. Let N be
a Poisson point process with intensity measure μ on (−∞,∞) × (0,∞]. Let 
i , i ∈ Z denote
the points of N and let {W,Wi} be a collection of i.i.d. positive random variables such that
E[W ] = 1. Define the random measure P by

P(A) =
∑

log(Wi)1{
i∈A}

for all relatively compact Borel sets A ∈ (−∞,∞) × (0,∞]. Then (3.1) holds with ψ(q) =
E[Wq ] − 1 and

qmax = max
{
q: E

[
Wq

] ≤ q
}
, qχ = max

{
q: qE

[
Wq

(
log(W) − 1

)] ≤ 1 + χ
}
.

Example 3.2. The random measure P can be a Gaussian random measure. Then P(A) ∼
N(−σ 2μ(A)/2, σ 2μ(A)) and ψ(q) = σ 2q(q − 1)/2 so that we get the same values of qmax,
q0 and qχ as for the multiplicative cascade of the previous section, up to the log 2 term. Note that
in this case, var(P (A)) = ψ ′′(0)μ(A) is finite if and only if μ(A) < ∞.
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Example 3.3. Let α ∈ (0,1) and P be a totally skewed to the left α-stable random measure, that
is, ψ(q) = σα(q − qα). Then qmax > 1 if and only if σα(1 − α) < 1 and then qmax = ∞ and
for χ ≥ 0, qχ = σ−1((1 + χ)/(1 − α))1/α . It is noteworthy that, contrary to the previous case,
we have here that E[|P(A)|] = ∞ and E[eqP (A)] = ∞ for all A such that μ(A) > 0 and for all
q < 0, though E[|P(A)|p] = cp,ασpμ(A)p/α if p < α and μ(A) < ∞.

Example 3.4. Let α ∈ (1,2) and P be a totally skewed to the left α-stable random measure, that
is, ψ(q) = σα(qα − q). Then qmax > 1 if and only if σα(α − 1) < 1 and then qmax < ∞. For
χ ≥ 0, qχ = σ−1((1 + χ)/(α − 1))1/α .

Define, as in the previous section, L = [2nχ ], �
(j)
k,n = [(j + k2−n)T , (j + (k + 1)2−n)T ] and

SL,n(M,q) =
L−1∑
j=0

2n−1∑
k=0

Mq
(
�

(j)
k,n

)
,

ζ̃M(q) = 1 + log2

(
SL,n(M,q)

SL,n+1(M,q)

)
.

Consistency. For convenience, denote τ(q) = ζ(q) − 1. We have the following result, whose
proof is in Section 5.

Proposition 3.1. For q < qχ ,

L−12nτ(q)SL,n(M,q) → m(q) a.s.

Plugging this into the definition of ζ̃M(q) yields the consistency of ζ̃M(q).

Corollary 3.2. For q < qχ ,

ζ̃M(q) → ζ(q) a.s.

Central limit theorem. We next give a central limit theorem for ζ̃M(q) in the mixed asymptotic
framework. Define the centered random variables

Dj,k,n,q := Mq
(
�

(j)
k,n

) − 2τ(q)
(
Mq

(
�

(j)

2k,n+1

) + Mq
(
�

(j)

2k+1,n+1

))
(3.7)

and Dj,n,q = ∑2n−1
k=0 Dj,k,n,q . By construction, the variables Dj,k,n,q are centered, and sta-

tionary and 2-dependent with respect to j . We will start by proving a central limit theorem
for (LE[D2

0,n,q ])−1/2 ∑L−1
j=0 Dj,n,q . Since the random variables Dj,n,q , 0 ≤ j ≤ L − 1, are 2-

dependent, it suffices to show that for some p > 1,

lim
n→∞

L1−p
E[D2p

0,n,q ]
(E[D2

0,n,q ])p = 0. (3.8)
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We will need the order of magnitude of D0,n,q . Set

dq = E
[
Mq

([0, T ] − 2τ(q)
{
Mq

([0, T /2]) + Mq
([T/2, T ])})2]

and dk,q = 2nζ(2q)
E[D0,0,n,qD0,k,n,q ]. By the scaling property, E[D2

0,0,n,q ] = 2−nζ(2q)dq and
dk,q does not depend on n. Then,

E
[
D2

0,n,q

] = 2−nτ(2q)dq + 2 · 2−nτ(2q)
2n−1∑
k=1

(
1 − k2−n

)
dk,q .

By Lemma A.4, we have dk,q = O(k−{ψ(2q)−2ψ(q)+1}). Since ψ(2q) − 2ψ(q) > 0, this im-
plies that the series

∑ |dk,q | is convergent, so the Cesaro mean above has a finite limit
and thus limn→∞ 2nτ(2q)

E[D2
0,n,q ] = dq + 2

∑∞
k=1 dk,q . By Lemma A.5 we have E[D4

0,n,q ] =
O(n2−nτ(4q) +2−2nτ(2q)). If 4q < qχ , then ψ(4q)−2ψ(2q) < 1+χ , thus (3.8) holds for p = 2.
The above discussion leads to the following result.

Proposition 3.3. If 4q < qχ , then there exists a constant �q such that

L−1/22−nτ(2q)/2
L−1∑
j=0

Dj,n,q →d N(0,�q).

We can now prove the asymptotic normality of ζ̃M(q). Denote

Rn = SL,n(M,q) − 2τ(q)SL,n+1(M,q)

SL,n(M,q)

= 2n{2ψ(q)−ψ(2q)−2ψ(q)−1−χ}/2
L−1/22−nτ(2q)/2 ∑L−1

j=0 Dj,n,q

L−12−nτ(q)SL,n(M,q)
.

By (3.6) applied with p = 2 and 2q < qχ , it holds that 1 + χ + 2ψ(q) − ψ(2) > 0. Thus, by
Propositions 3.1 and 3.3, we have that Rn = o(1) a.s., so a second order Taylor expansion yields

ζ̃M(q) − ζ(q) = log2

(
SL,n(M,q)

2τ(q)SL,n+1(M,q)

)
= − log(1 − Rn) = Rn + OP

(
R2

n

)
.

Applying Propositions 3.1 and 3.3 yields the next result.

Theorem 3.4. If 4q < qχ , then

2n(1+χ−ψ(2q)+2ψ(q))/2(ζ̃M(q) − ζ(q)
) → N

(
0,m−1(q)�q

)
.

For q, q ′ < 4qχ , it can be shown that 2n(1+χ)(2n{2ψ(q)−ψ(2q)}/2(ζ̃M(q) − ζ(q)),
2n{2ψ(q ′)−ψ(2q ′)}/2(ζ̃M(q ′) − ζ(q ′))) converges to a bivariate Gaussian distribution with depen-
dent components. The same comment holds for the results of the next section.
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4. Multifractal random walk

Throughout this section, the MRM M and the process {wl(u)} will be as defined in the previous
section. A multifractal random walk (MRW) is the process X obtained as the L2 limit as l → 0
of the integral

∫ t

0 ewl(u) dBH (u) where BH is a standard fractional Brownian motion independent
of M ; see Abry et al. [1], Bacry, Delour and Muzy [3], Bacry and Muzy [5], Ludeña [10]. Recall
that BH is a continuous centered Gaussian process with BH (0) = 0 and

var
(
BH (t) − BH (s)

) = |t − s|2H

for all t, s ∈ [0,1]. For H = 1/2, B1/2 is the standard Brownian motion and will be simply de-
noted by B . Thus, X is the conditionally (with respect to M) Gaussian process whose covariance
function is defined in (4.1) or (4.2) below according to whether the Hurst parameter of the fBm
is H = 1/2 or H > 1/2. Except for the case H = 1/2, which is ordinary Brownian motion, it is
worthwhile to remark that this conditionally Gaussian process X is not the time changed process
BH (M[0, t]).

Throughout this section →M will stand for conditional convergence in distribution given M

and EM and varM stand for the conditional expectation and variance given M . We consider the
following two cases.

• Case H = 1/2 Bacry, Delour and Muzy [3], Bacry and Muzy [5]. The MRW X is defined
as the centered, conditionally Gaussian process with conditional covariance


(s, t) = lim
l→0+

∫ t∧s

0
ewl(u) du = M(s ∧ t). (4.1)

The scaling function is ζ1/2(q) = ζ(q/2), since by (3.4) and (3.5), for λ ∈ (0,1),

{
X(λt),0 ≤ t ≤ T

} law= λ1/2e�λ/2{X(t),0 ≤ t ≤ T
}
,

E
[∣∣X(t)

∣∣q] = E
[
EM

[∣∣X(t)
∣∣q]] = cqE

[
Mq/2(t)

] = cqm(q/2)tζ(q/2),

where cq = E[|N(0,1)|q ] and m(q) = E[Mq([0,1])].
• Case H > 1/2 Abry et al. [1], Ludeña [10], Muzy and Bacry [12]. The MRW X is defined

as the centered, conditionally Gaussian process with conditional covariance


H (s, t) = lim
l→0+

∫ t

0

∫ s

0

ewl(u)ewl(v)

|u − v|2−2H
dudv =

∫ t

0

∫ s

0

M(du)M(dv)

|u − v|2−2H
. (4.2)

This process is well defined whenever H −ψ(2)/2 > 1/2, cf. Ludeña [10]. Convexity of ψ

yields ψ(2) > 0. The scaling function ζH is defined by

ζH (q) = qH − ψ(q),

since by (4.2) and (3.4) we have

{
X(λt),0 ≤ t ≤ T

} law= λH e�λ
{
X(t),0 ≤ t ≤ T

}
,

E
[∣∣X(t)

∣∣q] = cqmH (q)(t/T )qH−ψ(q),
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with

mH (q) = E

[{∫ T

0

∫ T

0
|u − v|2H−2M(du)M(dv)

}q/2]
. (4.3)

Since we are considering the mixed asymptotic framework, we assume we have a collection
of MRM M(j), j = 0, . . . ,L − 1, which are independent, defined over consecutive intervals
of length T . For j = 0, . . . ,L − 1 and k = 0, . . . ,2n−1, define �Xj,k,n = X(j+(k+1)2−n)T −
X(j+k2−n)T . As above, we will investigate the asymptotic properties of the estimator ζ̃X(q) de-
fined by

ζ̃X(q) = log2

(
SL,n(X,q)

SL,n+1(X,q)

)
+ 1,

where now

SL,n(X,q) =
L−1∑
j=0

2n−1∑
k=0

|�Xj,k,n|q .

Denote τH = ζH (q) − 1 and Tn(X,q) = SL,n(X,q) − 2τH (q)SL,n+1(X,q). Then

ζ̃X(q) − ζH (q) = − log

(
1 − Tn(X,q)

SL,n(X,q)

)
.

We will prove that Tn(X,q)/SL,n(X,q) → 0 a.s. so that a Taylor expansion is valid and yields

ζ̃X(q) − ζH (q) = Tn(X,q)

SL,n(X,q)

(
1 + o(1)

)
.

In order to study the ratio above, we will first prove that if H = 1/2, then

L−12nτ(q/2)SL,n(X,q) → cqm(q/2),

and if H > 1/2 then,

L−12nτH (q)SL,n(X,q) → cqmH (q),

with mH (q) as in (4.3) and cq = E[|N(0,1)|q ] in both cases. To study Tn(X,q), we write

Tn(X,q) = Tn(X,q) − EM

[
Tn(X,q)

] + EM

[
Tn(X,q)

]
.

We will prove that in both cases, Tn(X,q) − EM [Tn(X,q)] and EM [Tn(X,q)] converge jointly
to independent centered Gaussian distributions with the same normalization. This will yield the
asymptotic normality of ζ̃X(q) − ζH (q). Because of the different nature of the conditional de-
pendence structure, which yields different scaling functions, we will consider the cases H = 1/2
and H > 1/2 separately.
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4.1. The case H = 1/2

In this case, it holds that

EM

[
SL,n(X,q)

] = cqSL,n(M,q/2),

varM
(
SL,n(X,q)

) = σ 2
q SL,n(M,q),

where σ 2
q = var(|N(0,1)|q). By Proposition 3.1, if q < qχ , we get

L−12nτ(q/2)
EM

[
SL,n(X,q)

] → cqm(q/2) a.s.,

L−12nτ(q) varM
(
SL,n(X,q)

) → σ 2
q m(q) a.s.

This implies that L−12nτ(q/2)SL,n(X,q) converges in probability to cqm(q/2). Since SL,n(X,q)

is the sum of L2n conditionally independent terms, by an application of Borel–Cantelli’s lemma
similar to the one used in the proof of Proposition 3.1, almost sure convergence also holds, that
is,

L−12nτ(q/2)SL,n(X,q) → cqm(q/2) a.s. (4.4)

Using the notation (3.7) of the previous section, we have

EM

[
Tn(X,q)

] = cq2τ(q/2)SL,n+1(M,q/2) − cqSL,n(M,q/2) = −cq

L−1∑
j=0

2n−1∑
k=0

Dj,k,n,q .

Thus, by Proposition 3.3, if q < qχ then L−1/22nτ(q)/2
EM [Tn(X,q)] converges to a centered

Gaussian random variable with variance �(1/2, q), say. By the conditional independence of B

and M , Tn(X,q) − EM [Tn(X,q)] is a sum of centered and conditionally independent random
variables with conditional variance

varM
(
Tn(X,q)

) = σ 2
q SL,n(M,q) + σ 2

q

(
22τ(q/2) − 2τ(q/2)+1)SL,n+1(M,q).

By Proposition 3.1, L−12nτ(q) varM(Tn(X,q)) converges almost surely to the positive constant

(1/2, q) defined by


(1/2, q) = σ 2
q m(q)

{
1 + (

22τ(q/2) − 2τ(q/2)+1)2−τ(q)
}
.

Thus,

L−1/22nτ(q)/2{Tn(X,q) − EM

[
Tn(X,q)

]} →M N
(
0,
(1/2, q)

)
. (4.5)

Since the variance is deterministic, this assures unconditional convergence to the stated Gaus-
sian random variable. Moreover, the conditional independence of B and M also implies that the
sequence of random vectors

L−1/22nτ(q)/2(Tn(X,q) − EM

[
Tn(X,q)

]
,EM

[
Tn(X,q)

])
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converges weakly to (Z1,Z2) where Z1 and Z2 are independent Gaussian random variables with
zero mean and variance 
(1/2, q) and �(1/2, q), respectively. The previous considerations yield
the central limit theorem for ζ̃X(q).

Theorem 4.1. If q < qχ , then

L1/22n(ψ(q/2)−ψ(q)/2+1/2)
{
ζ̃X(q) − ζ1/2(q)

} →d N
(

0,

(1/2, q) + �(1/2, q)

c2
qm2(q/2)

)
.

4.2. Case H > 1/2

We begin by studying EM [Tn(X,q)]. Define aj,k,n,H = E
1/2
M [(�Xj,k,n)

2]. Then

EM

[
Tn(X,q)

] = cq

L−1∑
j=0

2n−1∑
k=0

(
2τH (q)

{
a

q

j,2k,n+1,H + a
q

j,2k+1,n+1,H

} − a
q
j,k,n,H

)
.

Denote Uj,k,n = 2τH (q){aq

j,2k,n+1,H +a
q

j,2k+1,n+1,H }−a
q
j,k,n,H and define Uj,n := ∑2n−1

k=0 Uj,k,n.
Then the collection {Uj,n}0≤j≤L−1 is centered, 2-dependent and identically distributed. Remark
that ϑ(q) = 2nζH (2q) var(Uj,k,n) depends only on q . By stationarity, for j = 0, . . . ,L − 1,

var(Uj,n) = 2−nτH (2q)vq + 22−nτH (q)
2n−1∑
k=1

(
2n − k

)
2nζH (2q) cov(U0,0,n,U0,k,n).

By Lemma A.7, 2nζH (2q)| cov(U0,n,0,U0,n,k)| ≤ Ck−{ψ(2q)−2ψ(q)+1}. This series is convergent,
thus the Cesaro mean above converges to its sum. Arguing as in the proof of Proposition 3.3, in
order to prove the central limit theorem for EM [Tn(X,q)], since the centered random variables
Uj,n, 0 ≤ j ≤ L − 1, are 2-dependent, it suffices to show that

lim
n→∞

L1−p
E[U4

0,k,n]
(E[U2

0,k,n])2
= 0.

This is done as in Lemma A.5 using Lemma A.7. We then have the following result.

Proposition 4.2. If 2q < qχ , there exists a positive constant �(H,q) such that

L−12−nτH (2q) var
(
EM

[
Tn(X,q)

]) → �(H,q).

Moreover, if 4q < qχ , then

L−1/22−nτH (2q)/2
EM

[
Tn(X,q)

] →M N
(
0,�(H,q)

)
. (4.6)

We next need a result which parallels (4.5). Its proof is more involved and is postponed to
Section 5.
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Proposition 4.3. Let H < 3/4. If 2q < qχ , then there exists a positive constant 
(H,q) such
that

L−12nτH (2q) varM
(
TL,n(X,q)

) → 
(H,q) a.s. (4.7)

and if 4q < qχ , then

L−1/22nτH (2q)/2{Tn(X,q) − EM

[
Tn(X,q)

]} →M N
(
0,
(H,q)

)
. (4.8)

As for the case H = 1/2, the fact that 
(H,q) is deterministic establishes unconditional con-
vergence in distribution. The proof of (4.8) is based on the recent results of Nualart and Pec-
cati [13] on the convergence of sequences of random variables in a Gaussian chaos. Altogether,
(4.6) and (4.8) yield the asymptotic normality of the estimator.

Theorem 4.4. If 4q < qχ and H < 3/4, then

2n(1+χ−ψ(2q)+2ψ(q))/2{ζ̃X(q) − ζH (q)
} →d N

(
0,


(H,q) + �(H,q)

c2
qm2

H (q)

)
.

5. Proofs

In all the proofs, without loss of generality, we set T = 1. We start by proving (3.6). The con-
vexity of ψ and ψ(1) = 0 implies that qmax > 1 if and only if ψ ′(1) < 1, and ψ ′(qmax) > 1.
This in turn implies that 1 < q0 < qmax. The convexity of ψ also implies that the function
q �→ qψ ′(q) − ψ(q) is increasing, thus qχ > q0 for all χ > 0. Consider the positive and increas-
ing function p �→ ψ(pq)−pψ(q). By convexity, for p > 1, ψ(pq)−ψ(q) ≤ ψ ′(pq)(pq −p).
This yields, for p > 1 and pq < qχ ,

0 < ψ(pq) − pψ(q) = pψ(pq) − pψ(q) − (p − 1)ψ(pq)

≤ (p − 1)
{
pqψ ′(pq) − ψ(pq)

}
< (p − 1)(1 + χ).

This proves (3.6).
We will also repeatedly use an argument of m-dependence. If ξ1, . . . , ξN are m-dependent

random variables with zero mean and finite stationary pth moment, 1 ≤ p ≤ 2, then there exists
a constant C which depends only on p such that

E

[∣∣∣∣∣
N∑

i=1

ξi

∣∣∣∣∣
p]

≤ Cmp−1NE
[|ξ1|p

]
. (5.1)

5.1. Proof of Proposition 3.1

Let n0 ≥ 2 be an integer, α = 1/n0 and ln = 2−(1−α)n. Fix q < qχ . We can choose α < χ small
enough so that q < qχ ′ with χ ′ < χ − α. Then, we can also choose p > 1, close enough to 1,
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such that pq < qχ ′ and without loss of generality, we can also impose that p − 1 < α(q ∨ 1)/2.
Define

T̃n,q = 2−nL−1
L−1∑
j=0

2n−1∑
k=0

eqwln (j+2−nk)

E[eqwln (0)]
(5.2)

= 2−nL−1e−ψ(q)l
ψ(q)
n

L−1∑
j=0

2n−1∑
k=0

eqwln (j+2−nk).

We will prove that for α and p > 1 chosen as above, there exist constants C,η > 0 such that

E
[|T̃n,q − 1|p] ≤ C2−nη, (5.3)

E

[∣∣∣∣T̃n,q − SL,n(M,q)

E[SL,n(M,q)]
∣∣∣∣
p]

≤ C2−nη. (5.4)

The above inequalities and an application of Borel–Cantelli’s lemma yield that T̃n,q → 1, a.s.
and

SL,n(M,q)

E[SL,n(M,q)] − T̃n,q → 0 a.s.

For all j, k, n, we have E[Mq(�
(j)
k,n)] = 2−nζ(q)m(q), so that E[SL,n(M,q)] = L2−nτ(q)m(q).

Thus, Proposition 3.1 follows.

Proof of (5.3). Define ε = p−1. The variables eqwln (j+2−nk) −E[eqwln (j+2−nk)] are 2-dependent
(in j ) and centered, so there exists a constant C > 0 such that

E
[|T̃n,q − 1|p] ≤ C

Lε
E

[∣∣∣∣∣ 1

2n

2n−1∑
k=0

eqwln (2−nk)

eψ(q)l
−ψ(q)
n

− 1

∣∣∣∣∣
p]

.

By Lemma A.1, for any ε′ < ε, there exists a constant C such that

E
[|T̃n,q − 1|p] ≤ C2n{(1−α){ψ(pq)−pψ(q)−ε′}−εχ}.

By (3.6), since pq < qχ ′ < qχ , we have

(1 − α)
{
ψ(pq) − pψ(q) − ε′} − εχ < (1 − α)

{
ε
(
1 + χ ′) − ε′} − εχ

< (1 − α)
{
ε(1 + χ − α) − ε′} − εχ

= (1 − α)
{
ε(1 − α) − ε′} − αεχ.

This can be made negative by choosing ε′ > (1 − α)ε. �
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Proof of (5.4). We start by using again the argument of 2-dependence in j , to obtain, for some
constant C,

E

[∣∣∣∣ SL,n(M,q)

E[SL,n(M,q)] − T̃n,q

∣∣∣∣
p]

≤ C

Lε
E

[∣∣∣∣∣ 1

2n

2n−1∑
k=0

Mq(�
(0)
k,n)

2−nζ(q)m(q)
− eqwln (k2−n)

eψ(q)l
−ψ(q)
n

∣∣∣∣∣
p]

. (5.5)

For clarity, we now omit the superscript (0) in �
(0)
k,n. Let Mn denote the random measure with

density e−wln with respect to M . By construction, the measure Mn is independent of the pro-
cess wln . Indeed, for any Borel set A, Mn(A) = liml→0

∫
A

ewl(u)−wln (u) du, and for l < ln,
wl −wln is independent of wln , by the independent increment property of the random measure P .
Denote

S̃n = 2nτ(q)

2n−1∑
k=0

eqwln (k2−n)Mn(�k,n).

Applying the bound (A.15) in Lemma A.2, we obtain

E

[∣∣∣∣∣S̃n − 2nτ(q)
2n−1∑
k=0

M(�k,n)

∣∣∣∣∣
p]

≤ C2−nα(q∨1)/22n{ψ(pq)−pψ(q)}.

Since we have chosen ε < α(q ∨ 1)/2, by (3.6), we have

ψ(pq) − pψ(q) − α(q ∨ 1)/2 − εχ < ε − α(q ∨ 1)/2 < 0.

Define mn(q) = eψ(q)l
−ψ(q)
n 2nζ(q)

E[Mq
n (�k,n)]. By (A.14), we have limn→∞ mn(q) = m(q)

and thus E[Mq
n (�0,n)] ∼ l

ψ(q)
n 2−nζ(q)e−ψ(q)m(q). Next, we note that the random variables

Mn(�k,n) are 2nln-dependent and ewln is independent of Mn. Thus, applying (5.1) condition-
ally on wln yields

E

[∣∣∣∣∣ S̃n

mn(q)
− 2−n

2n−1∑
k=0

eqwln (k2−n)

eψ(q)l
−ψ(q)
n

∣∣∣∣∣
p]

= E

[∣∣∣∣∣2−n
2n−1∑
k=0

eqwln (k2−n)

eψ(q)l
−ψ(q)
n

(
M

q
n (�k,n)

E[Mq
n (�k,n)]

− 1

)∣∣∣∣∣
p]

≤ Cl
−ψ(pq)+pψ(q)−ε
n E

[∣∣∣∣ M
q
n (�0,n)

E[Mq
n (�0,n)]

∣∣∣∣
p]

≤ C2n{ψ(pq)−pψ(q)−ε(1−α)}.

Using the fact that pq < qχ ′ , (3.6) and χ ′ < χ − α, we obtain

ψ(pq) − pψ(q) − (1 − α)ε − εχ ≤ ε
(
1 + χ ′) − (1 − α)ε − εχ = ε

(
χ ′ + α − χ

)
< 0.

This concludes the proof of (5.4). �
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5.2. Proof of Proposition 4.3

Define aj,k,n,H = E
1/2
M [(�Xj,k,n)

2] and the conditionally standard Gaussian random variables

Yj,k,n = �Xj,k,n/aj,k,n,H .

Let Gq(x) = |x|q − cq . With this notation, we have

SL,n(X,q) − EM

[
SL,n(X,q)

] =
L−1∑
j=0

2n−1∑
k=0

a
q
j,k,n,H Gq(Yj,k,n).

Let gr(q), r ≥ 0, be the coefficients of the expansion of Gq over the Hermite polynomials
{Hr, r ≥ 0} (which are defined in such a way that E[Hk(X)Hl(X)] = k! if k = l and 0 otherwise),
that is, gr(q) = E[Hr(V )Gq(V )] where V is a standard Gaussian random variable. Since Gq is a
centered even function, gr(q) = 0 for r = 0,1. Since E[G2

q(X)] < ∞, the series
∑

r=2 g2
r (q)/r!

is summable and Gq = ∑∞
r=2

gr (q)
r! Hr . Then, by Mehler’s formula (see, e.g., Arcones [2]), we

have

L−12nτH (2q) varM
(
SL,n(X,q)

) =
∞∑

r=2

gr(q)2

r! 
n(r, q),

with


n(r, q) = L−12nτH (q)(r!)−1 varM

(
L−1∑
j=0

2n−1∑
k=0

a
q
j,k,n,H Hr(Yj,k,n)

)

= L−12nτH (q)

L−1∑
j1,j2=0

2n−1∑
k,k′=0

ρr
H,n

(
j1, j2, k, k′)aq

j1,k,n,H a
q

j2,k
′,n,H

for r ∈ N, r ≥ 2, and the conditional correlations (which are zero if H = 1/2) are

ρH,n

(
j1, j2, k, k′) = covM(Yj1,k,n, Yj2,k

′,n) = EM [�Xj1,k,n�Xj2,k
′,n]

aj1,k,n,H aj2,k
′,n,H

.

By Lemma 3.1 in Ludeña [10], for j1 < j2 and k < k′, we have the bound

ρH,n

(
j1, j2, k, k′) ≤ min

(
1,C

∣∣(j2 − j1)2
n + (

k′ − k
)∣∣2H−2) (5.6)

for some deterministic constant C. We start by proving that for H < 3/4 and 2q < qχ , there
exists a constant 
(r, q) such that

lim
n→∞ 2n(2ψ(q)−ψ(2q)+1+χ)

E
[

n(r, q)

] = 
(r, q). (5.7)

By the scaling property,

E
[
a

q
j,k,n,H

] = 2−nζH (q)mH (q),
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with ζH (q) = qH − ψ(q). Thus, denoting vχ(q) = 2ψ(q) − ψ(2q) + 1 + χ , by stationarity, we
have

2nvχ (q)
E

[

n(r, q)

]
= mH (2q) + 2−n2nζH (2q)

∑
k 
=k′

E
[
ρr

H,n

(
0,0, k, k′)aq

0,k,n,H a
q

0,k′,n,H

]
(5.8)

+ 2−n(1+χ)2nζH (2q)
∑
j 
=j ′

∑
k,k′

E
[
ρr

H,n

(
j, j ′, k, k′)aq

j,k,n,H a
q

j ′,k′,n,H

]
.

Consider the middle term. Recall that

ρr
n,H

(
0,0, k, k′)aq

0,k,n,H a
q

0,k′,n,H

=
{∫ (k+1)2−n

k2−n

∫ (k′+1)2−n

k′2−n

|u − v|2H−2M(du)M(dv)

}r

×
{∫ (k+1)2−n

k2−n

∫ (k+1)2−n

k2−n

|u − v|2H−2M(du)M(dv)

}(q−r)/2

×
{∫ (k′+1)2−n

k′2−n

∫ (k′+1)2−n

k′2−n

|u − v|2H−2M(du)M(dv)

}(q−r)/2

.

Assume that k < k′ and denote � = k′ − k + 1. By the scaling property and the stationarity of the
increments of M , we have

ρr
n,H

(
0,0, k, k′)aq

0,k,n,H a
q

0,k′,n,H

(law)= (
�2−n

)r(2H−2)+2re2r��2−n

{∫ 1/�

0

∫ 1

1−1/�

|u − v|2H−2M(du)M(dv)

}r

× (
�2−n

)(q−r)(H−1)+q−re(q−r)��2−n

{∫ 1/�

0

∫ 1/�

0
|u − v|2H−2M(du)M(dv)

}(q−r)/2

× (
�2−n

)(q−r)(H−1)+q−re(q−r)��2−n

{∫ 1

1−1/�

∫ 1

1−1/�

|u − v|2H−2M(du)M(dv)

}(q−r)/2

= (
�2−n

)2qH e2q��2−n Qr
�a

q

� b
q

� ,

with

a2
� =

∫ 1/�

0

∫ 1/�

0
|u − v|2H−2M(du)M(dv),

b2
� =

∫ 1

1−1/�

∫ 1

1−1/�

|u − v|2H−2M(du)M(dv),
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Q� =
∫ 1/�

0

∫ 1
1−1/�

|u − v|2H−2M(du)M(dv)

a�b�

.

With this notation, the middle term in (5.8) can be expressed as

2 · 2nζH (2q)
2n−1∑
�=1

(
1 − �2−n

)(
�2−n

)2qH
E

[
e2q��2−n

]
E

[
Qr

�a
q

� b
q

�

]

= 2 · 2nζH (2q)2−n{2qH−ψ(2q)}
2n−1∑
�=1

(
1 − �2−n

)
�2qH−ψ(2q)

E
[
Qr

�a
q

� b
q

�

]

= 2
2n−1∑
�=1

(
1 − �2−n

)
�ζH (2q)

E
[
Qr

�a
q
� b

q
�

]
.

Moreover, a� ≥ �2−2H M([0,1/�]), b� ≥ �2−2H M([1 − 1/�,1]), and the numerator in Q� is
bounded from above by (1 − 2/�)2H−2M([0,1/�])M([1 − 1/�,1]). Thus,

Q� ≤ C�2H−2 (5.9)

for some deterministic constant C. This and Hölder’s inequality yields

E
[
Qr

�a
q
� b

q
�

] ≤ C�r(2H−2)
E

1/2[a2q
�

]
E

1/2[b2q
�

]
.

Applying the scaling property of M yields E[a2q
� ] = E[b2q

� ] = �−ζH (2q)mH (q), hence

�ζH (2q)
E

[
Qr

�a
q

� b
q

�

] ≤ C�r(2H−2).

Since r ≥ 2 and H < 3/4, the series �r(2H−2) is summable, and thus

lim
n→∞

2n−1∑
�=1

(
1 − �2−n

)
�ζH (2q)

E
[
Qr

�a
q

� b
q

�

] =
∞∑

�=1

�ζH (2q)
E

[
Qr

�a
q

� b
q

�

]
.

Consider now the last term in (5.8), say RRn. Using the bound (5.6), the scaling property, the
fact that the aj,k,n,H are 2-dependent, and H < 3/4, we have

RRn ≤ C2n{ζH (2q)−2ζH (q)}
L∑

j=1

2n∑
k=1

(
j2n + k

)2H−2 = O
(
2n{2ψ(q)−ψ(2q)}) = o(1). (5.10)

This proves (5.7). We now prove that if H < 3/4, for each r ≥ 2,


n(r, q)/E
[

n(r, q)

] → 1 a.s. (5.11)
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or equivalently

2n{1+χ−ψ(2q)+2ψ(q)}
n(r, q) → 
(r, q) a.s.

Write 2n{1+χ−ψ(2q)+2ψ(q)}
n(r, q) = Sn,1 + Sn,2 + Sn,3 with

Sn,1 = 2nτH (2q)L−1
L−1∑
j=0

2n−1∑
k=0

a
2q
j,k,n,H ,

Sn,2 = 2nτH (2q)L−1
L−1∑
j=0

∑
0≤k 
=k′<2n

ρr
H,n

(
j, j, k, k′)aq

j,k,n,H a
q

j,k′,n,H
,

Sn,3 = 2nτH (2q)L−1
∑

0≤j 
=j ′<L

2n−1∑
k,k′=0

ρr
H,n

(
j ′, j ′, k, k′)aq

j,k,n,H a
q

j ′,k′,n,H
.

The bound (5.10) and Borel–Cantelli’s lemma implies that Sn,3 → 0 a.s. Define ãj,k,n,H =
ewln (tj,k)δ̃j,k,n,H with

δ̃2
j,k,n,H =

∫
�

(j)
k,n

∫
�

(j)
k,n

|u − v|2H−2Mn(du)Mn(dv).

By Lemma A.6, we have, if 2q < qχ ,

lim
n→∞ 2nζH (2q)eψ(2q)l

−ψ(2q)
n E

[
δ̃

2q
j,k,n,H

] = mH (2q). (5.12)

By 2-dependence with respect to j , Jensen’s inequality, (3.6) applied to 2q < qχ and the
bound (A.28), we obtain, some η > 0,

E

[∣∣∣∣∣2nτH (2q)L−1
L−1∑
j=0

2n−1∑
k=0

(
a

2q
j,k,n,H − ã

2q
j,k,n,H

)∣∣∣∣∣
p]

≤ CL1−p2npζ(2q)
E

[∣∣a2q
j,k,n,H − ã

2q
j,k,n,H

∣∣p]

≤ CL1−p2nψ(2pq)−pψ(2q)−η ≤ C2n(p−1−η).

Choosing p − 1 < η and Borel–Cantelli’s lemma yield that

2nτH (2q)L−1
L−1∑
j=0

2n−1∑
k=0

(
a

2q
j,k,n,H − ã

2q
j,k,n,H

) → 0 a.s. (5.13)

Recall the definition of T̃n,2q in (5.2) and define further

S̃n,1 = 2nτH (2q)L−1
L−1∑
j=0

2n−1∑
k=0

ã
2q
j,k,n,H ,

mn,H (2q) = 2nζH (q)
E

[
ã

2q

0,0,n,H

] = 2nζH (q)eψ(q)l
−ψ(q)
n E

[
δ̃

2q

0,0,n,H

]
.
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We have already shown in the proof of Proposition 3.1 that if 2q < qχ , then T̃n,2q → 1 a.s.
Moreover, by the argument of 2-dependence with respect to j , we have

E

[∣∣∣∣ S̃n,1

mn,H (2q)
− T̃n,2q

∣∣∣∣
p]

≤ CL1−p
E

[∣∣∣∣∣2−n

n∑
k=1

e2qwln (k2−n)

eψ(2q)l
−ψ(2q)
n

(
δ̃

2q

0,k,n,H

E[δ̃2q

0,k,n,H ]
− 1

)∣∣∣∣∣
p]

.

As in the proof of Proposition 3.1, we now use the fact that wln is independent of the measure Mn,
the 2nln-dependence of the variables δ̃0,k,n,H and (5.12) to obtain

E

[∣∣∣∣∣2−n
n∑

k=1

e2qwln (k2−n)

eψ(2q)l
−ψ(2q)
n

(
δ̃

2q

0,k,n,H

E[δ̃2q

0,k,n,H ]
− 1

)∣∣∣∣∣
p]

≤ Cl
ε−ψ(2pq)+pψ(2q)
n E

[
δ̃

2pq

0,0,n,H

(E[δ̃2q

0,0,n,H ])p
]

≤ Clεn2n{ψ(2pq)−pψ(2q)}.

Now, as in the proof of Proposition 3.1, we must choose α small enough so that 2q < qχ ′ , for
χ ′ < χ − α, and ε such that 2pq < qχ ′ with p = 1 + ε. Such a choice and (3.6) applied with
2pq < qχ ′ yield

E

[∣∣∣∣ S̃n,1

mn,H (2q)
− T̃n,2q

∣∣∣∣
p]

≤ C2−εχ lεn2nε(1+χ ′) = C2nε(χ ′+α−χ).

This last bound and Borel–Cantelli’s lemma yield that m−1
n,H (2q)S̃n,1 − T̃n,2q → 0, a.s. This

and (5.13) finally prove that S̃n,1 → mH (2q) a.s.
In order to prove that Sn,2 → 0 a.s., by stationarity and 2-dependence in j , it is enough to

prove that, for p = 1 + ε,

E

[∣∣∣∣2nτH (2q)
∑

0≤k 
=k′<2n

ρr
H,n

(
0,0, k, k′)aq

0,k,n,H a
q

0,k′,n,H

∣∣∣∣
p]

= O
(
2(εχ−η)n

)
(5.14)

for some η > 0 and apply Borel–Cantelli’s lemma. Since all quantities involved are nonnegative,
we can use the bound (5.6), and thus it suffices to obtain a bound for

E

[∣∣∣∣2nτH (2q)
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2)
a

q

0,k,n,H a
q

0,k′,n,H

∣∣∣∣
p]

.

Define

δ̃2
k =

∫
�n,k

∫
�n,k

|u − v|2H−2Mn(du)Mn(dv).

Then ã0,k,n,H = δ̃keqwln (k2−n) and using the bound (A.29) and (3.6), we obtain

E

[∣∣∣∣2nτH (2q)
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2){
a

q

0,k,n,H a
q

0,k′,n,H
− ã

q

0,k,n,H ã
q

0,k′,n,H

}∣∣∣∣
p]

= O
(
2(εχ−η)n

)
.
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Thus, we need to obtain a bound for E[Sp

n,4] where

Sn,4 = 2nτH (2q)
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2)
ã

q

0,k,n,H ã
q

0,k′,n,H
,

which we further decompose as Sn,4 = Sn,5 + Sn,6 with

Sn,5 = 2nτH (2q)
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2){
δ̃
q
k δ̃

q

k′ − E
[
δ̃
q
k δ̃

q

k′
]}

eqwln (k2−n)+qwln (k′2−n),

Sn,6 = 2nτH (2q)
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2)
E

[
δ̃
q
k δ̃

q

k′
]
eqwln (k2−n)+qwln (k′2−n).

Since H < 3/4 and r ≥ 2, we have that r(2H −2) < −1 and the series
∑

kr(2H−2) is summable.
Thus, applying Cauchy–Schwarz’ inequality yields

E

[∣∣∣∣2−n
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2)eqwln (k2−n)+qwln (k′2−n)

∣∣∣∣
p]

≤ CE

[∣∣∣∣∣2−n
2n−1∑
k=0

eqwln (k2−n)

∣∣∣∣∣
2p]

.

Next, applying Lemma A.1 with p such that 2pq < qχ and ε′ < p − 1 yields

E

[∣∣∣∣2−n
∑

0≤k 
=k′<2n

∣∣k − k′∣∣r(2H−2)eqwln (k2−n)+qwln (k′2−n)

∣∣∣∣
p]

≤ Cl
−{ψ(2pq)−ε′}
n . (5.15)

By (A.27), it holds that E[δ̃q
k δ̃

q

k′ ] ∼ C(k, k′)lψ(2q)
n 2−nζH (q) where C(k, k′) is uniformly bounded,

thus

E
[
S

p

n,6

] ≤ Cl
−{ψ(2pq)−pψ(2q)−ε′}
n .

If 2pq < qχ , applying (3.6), we have

(1 − α)
{
ψ(2pq) − pψ(2q) − ε′} − εχ ≤ (1 − α)ε(1 + χ) − ε′ ≤ ε − ε′ − αε(1 + χ),

which can be made negative by choosing ε′ close enough to ε. To deal with the last term, as in
the proof of Proposition 3.1 we use the conditional 2αn dependence of the random variables δk .
We obtain the bound

E
[
S

p

n,5

] ≤ C2n{ψ(2pq)−pψ(2q)−ε} = O
(
2n(εχ−η)

)
for small some η > 0. We have proved (5.14), and thus (5.11) holds. We can now define


1(q) =
∞∑

r=2

gr(q)2

r! 
(r, q).
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As
∑∞

r=2(r!)−1gr(q)2 < ∞ and 
n(r, q) ≤ 
n(2, q), then by the bounded convergence theorem,
the previous series is convergent and thus we have obtained that

L−12nτH (2q) varM
(
SL,n(X,q)

) → 
1(q) a.s.

This also yield that there exists a constant 
2(q) such that

L−12nτH (2q) varM
(
2τH (q)SL,n+1(X,q)

) → 
2(q) a.s.

By similar techniques, we also obtain that there exists a constant 
3(q) such that

L−12nτH (2q) covM

(
SL,n(X,q), SL,n+1(X,q)

) → 
3(q) a.s.

Finally, since Tn(X,q) = SL,n(X,q) − 2τH (q)SL,n+1(X,q), the last three convergences
yield (4.7).

Proof of (4.8). By Nualart and Peccati [13], Theorem 1, the proof will follow by checking that

L−222nτH (2q)
EM

[{
Tn(X,q) − EM

[
Tn(X,q)

]}4] → 3
(H,q)2 a.s. (5.16)

Define

Tn,r (X,q)

=
L−1∑
j=0

2n−1∑
k=0

2τH (q)
{
a

q

j,2k,n+1,H Hr(Yj,2k,n+1) + a
q

j,2k+1,n+1,H Hr(Yj,2k+1,n+1)
}

− a
q
j,k,n,H Hr(Yj,k,n).

Then, from the definition of Tn(X,q) and recalling the expansion Gq = ∑∞
r=2

gr (q)
r! Hr in terms

of the Hermite polynomials, to show (5.16) it is enough to check that

EM

[(
Tn,r (X,q)

)4] = 3

(r!)2
E

2
M

[
T 2

n,r (X,q)
] + Rn(q, r), (5.17)

with L−222nτH (2q)Rn(q, r) → 0 a.s. In order to calculate the fourth order moment in (5.17)
we use a standard application of the Diagram formula, for which we use the notation in Sur-
gailis [15]. Given a centered stationary Gaussian process {Xj }j≥1 with positive covariance
c(ti , tj ) = cov(Xti ,Xtj ) and variance one, and a triangular array of positive elements {bt }Nt=1

define SN(b) := ∑N
t=1 btHr(Xt ). We introduce the following basic lattice notation. Let W be a

4 row table, whose rows correspond to the size r vectors Wi = (i, . . . , i), i = 1, . . . ,4. Consider
the collection 
 of Gaussian flat connected diagrams γ , that is, of partitions of W defined by the
disjoint subsets {V�} with W = ⋃

� V�, such that, respectively, |V�| = 2, no V� ⊂ Wi and it is not
possible to write W = W1 ∪ W2, where W1 and W2 can be partitioned by the diagram separately.
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Then, we have that (see, e.g., Surgailis [15])

E
[(

SN(b)
)4] = 3

(
N∑

t1,t2=1

bt1bt2c
r(t1, t2)

)2

(5.18)
+

∑
γ∈


∑
t1,...,t4

bt1 · · ·bt4

∏
1≤i<j≤4

cli,j (ti , tj ),

where li,j is the number of elements V� in the diagram that pair row i with row j . Because
the diagram is connected and each row must appear at least once, for each pair i, j we have
1 ≤ li,j < r . Also, the fact that the diagrams in 
 are flat (i.e., that no V� ⊂ Wi ) assures that the
second sum is over 4-tuples of pairwise distinct indices. On the other hand, since 0 ≤ c(i, j) ≤ 1
and r ≥ 2, for each γ ∈ 
, by symmetry∑

t1,...,t4

bt1 · · ·bt4

∏
1≤i<j≤4

cli,j (ti , tj )

(5.19)
≤

∑
t1,...,t4

bt1 · · ·bt4c(t1, t2)c(t2, t3)c(t3, t4)c(t4, t1).

Applying (5.18) and (5.19) to Tn,r (X,q), we obtain (5.17) if we show that

L−222nτH (2q)
L−1∑

j1,...,j4=1

2n−1∑
k1,...,k4=1

∏
1≤i≤4

a
q
ji ,ki ,n,H ρH,n(j1, j2, k1, k2)ρH,n(j2, j3, k2, k3)

× ρH,n(j3, j4, k3, k4) (5.20)

× ρH,n(j1, j2, k1, k4) → 0 a.s.

The fact that the sum is over pairwise distinct indices assures that (ji, ki) 
= (j�, k�) for i 
= �,
however it is necessary to distinguish several cases:

• Case ji ≡ j for all i = 1, . . . ,4. We prove that

L−222nτH (2q)

L−1∑
j=1

2n−1∑
k1,...,k4=1

∏
1≤i≤4

a
q
j,n,ki ,H

ρH,n(j1, j2, k1, k2)

× ρH,n(j, j, k2, k3)ρH,n(j, j, k3, k4) (5.21)

× ρH,n(j, j, k1, k4) → 0 a.s.

This will be achieved by showing that the expectation of the l.h.s. of (5.21) tends to zero.
By stationarity of increments and Hölder’s inequality, we have

E

[ ∏
1≤i≤4

a
q

0,n,ki ,H

]
≤ E

1/2[a2q

0,0,n,H a
2q

0,k2−k1+1,n,H

]
E

1/2[a2q

0,0,n,H a
2q

0,k4−k3+1,n,H

]
.
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In addition, by the scaling property, we have that

E
[
a

2q

0,0,n,H a
2q

0,k2−k1+1,n,H

]
= 2−nζH (4q)(k2 − k1 + 1)ζH (4q)−2ζH (2q)C(k1, k2),

with C(k1, k2) ≤ mH (4q). This and the deterministic bounds on the covariance (5.6) yield
that the expectation of the l.h.s. of (5.21) is bounded by

L−12−2n2n{ψ(4q)−2ψ(q)}
2n−1∑

k1,...,k4=0

|k1 − k2|2H−2−(ψ(4q)−2ψ(2q))/2

× |k3 − k4|2H−2−(ψ(4q)−2ψ(2q))/2|k2 − k3|2H−2

× |k1 − k4|2H−2

≤ CL−12−2n2n{ψ(4q)−2ψ(q)}
2n−1∑

k1,k2=0

|k1 − k2|2(2H−2)

(
2n−1∑
k=0

k2H−2−(ψ(4q)−2ψ(2q))/2

)2

≤ CL−12−n
2n−1∑

k

k2(2H−2)

(
2n{ψ(4q)−2ψ(q)}/2

2n−1∑
k=0

k2H−2−(ψ(4q)−2ψ(2q))/2

)2

.

Since H > 3/4, the first series is summable, and since ψ(4q)−2ψ(2q) > 0, the second one
is of order n2n({ψ(4q)−2ψ(2q)}∨(4H−2))/2 (where the factor n only arises if the two exponents
are equal). Recalling that ψ(4q) − 2ψ(q) < 1 = χ yields (5.21).

• Case j1 = j2 = j3 = j . In this case |ki − k4| = O(2−n(2H−2)), i = 1,2,3 and by Hölder’s
inequality and independence of aj ′,k4,n,H and

∏
1≤i≤3 aj,ki ,n,H we have

E

[
a

q

j ′,k4,n,H

∏
1≤i≤3

a
q
j,ki ,n,H

]
= O

(
2−nζ(4q)/22−nζ(2q)/22−nζ(q)

)|k2 − k3|(ψ(4q)−2ψ(2q))/2.

Using again the bound (5.6), we obtain

L−222nτH (2q)
L−1∑
j=0

L−1∑
j ′=0

2n−1∑
k1,...,k4=1

E

[ ∏
1≤i≤3

a
q
j,ki ,n,H a

q

j ′,k4,n,H
ρ2

H,n

(
j, j ′, k1, k4

)

× ρH,n(j, j, k2, k3)ρH,n(j, j, k3, k1)

]
(5.22)

= O
(
L−12n(4H−3)2−n(ψ(2q)/2−ψ(q))

)
.

As before, 2n(4H−3) → 0 under H < 3/4 and ψ(2q)/2 − ψ(q) > 0 by convexity of func-
tion ψ .
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• Case j1 = j2 and j3 = j4. The bound for the expectation of the l.h.s. of (5.20) is then

L−222nτH (2q)
L−1∑

j,j,j ′,j ′

2n−1∑
k1,...,k4=1

E
[
a

q
j,k1,n,H a

q
j,k2,n,H a

q

j ′,k3,n,H
a

q

j ′,k4,n,H

× ρ2
H,n

(
j, j ′, k1, k4

)
(5.23)

× ρH,n(j, j, k1, k2)ρH,n

(
j ′, j ′, k3, k4

)]
≤ C2n(4H−3),

by independence of a
q
j,n,k1,H

and a
q

j ′,n,k2,H
whenever j 
= j ′.

• Case all ji are different. The bound is then

L−222nτH (2q)

L−1∑
j1,j2,j3,j4

2n−1∑
k1,...,k4=1

E

[ ∏
1≤i≤4

a
q
ji ,n,ki ,H

ρ2
H,n(j1, j2, k1, k4)

× ρH,n(j2, j3, k2, k3)ρH,n(j3, j4, k3, k4)

]
(5.24)

≤ C2n(−2ψ(2q)+4ψ(q))2n(2+χ)(4H−3).

As before, 2n(2+χ)(4H−3) → 0 under H < 3/4 and we use ψ(2q) > 2ψ(q).

The proof follows by gathering (5.21), (5.22), (5.23) and (5.24). �

Appendix: Additional lemmas

Bounds for infinitely divisible random measures. We now state some results using the proper-
ties of infinitely divisible random measures. The infinitely divisible measure P introduced in
Section 3 can be decomposed as P = P0 + P1 where P0 and P1 are independent and

E
[
eqPi(A)

] = eμ(A)ψi(q),

with

ψ0(q) = σ 2

2
q2 + mq +

∫ ∞

−1

{
eqx − 1 − qx1{|x|≤1}

}
ν(dx),

ψ1(q) =
∫ −1

−∞
{
eqx − 1

}
ν(dx).

Note that by assumption, ψ0 is infinitely differentiable on [0,∞), whereas ψ1 is infinitely dif-
ferentiable on (0,∞) only. Then, for A such that μ(A) ≤ 1, q > 0 and p ≥ 1 such that pq < q∗,
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it holds that

E
[∣∣P0(A)

∣∣p] = O
([

μ(A)
](p/2)∧1)

, (A.1)

E
[∣∣eqP0(A) − 1 − qP0(A)

∣∣p] = O
(
μ(A)

)
, (A.2)

E
[∣∣eqP1(A) − 1

∣∣p] = O
(
μ(A)

)
. (A.3)

Indeed, since 0 ≤ ex − 1 − x ≤ x2ex+ ≤ x2(ex + 1), with x+ = max(x,0), we have

E
[∣∣eqP0(A) − 1 − qP0(A)

∣∣p]
≤ CE

[
P

2p

0 (A)epqP0(A)
] + CE

[
P

2p

0 (A)
]
.

Denote L(s) = E[esP (A)] = eψ0(s)μ(A). The function L is infinitely differentiable on [0, q∗) and
L(n)(q) = O(μ(A)) for all q ≥ 0 and n ≥ 1. This yields (A.1) by the Cauchy–Schwarz inequality.
Let n be an integer greater than p. Then, for 0 ≤ q < q∗, (A.3) follows from the following bound:

E
[
P

2p

0 (A)epqP0(A)
] ≤ E

[
P 2

0 (A)epqP0(A)
] + E

[
P 2n

0 (A)epqP0(A)
]

= L′′(pq) + L(2n)(pq).

To prove (A.2), note that P1(A) is a coumpond Poisson distribution with negative jumps, thus
P1(A) < 0 for all A, and for all p ≥ 1,

E
[∣∣eqP1(A) − 1

∣∣p] ≤ 1 − eψ1(q)μ(A) = O
(
μ(A)

)
.

Further, write

eqP (A) − 1 − qP0(A)
(A.4)

= {
eqP1(A) − 1

}
eqP0(A) + eqP0(A) − 1 − qP0(A).

This decomposition, (A.2), (A.3) and the independence of P0 and P1 yield, for q > 0 and p ≥ 1,

E
[∣∣eqP (A) − 1 − qP0(A)

∣∣p] = O
(
μ(A)

)
. (A.5)

Since P , P0 and P1 are independently scattered, these inequalities yield martingale maximal
inequalities. For A such that μ(A) ≤ 1, and for Cu an increasing sequence of measurable subsets
of A, it holds that

E

[
sup
u

∣∣P0(Cu)
∣∣p]

= O
(
μ(p/2)∨1(A)

)
, p ≥ 1, (A.6)

E

[
sup
u

∣∣eqP (Cu) − 1
∣∣p]

= O
(
μ(A)(p/2)∨1), p ≥ 1, (A.7)

E

[
sup
u

∣∣eqP (Cu) − 1 − qP0(Cu)
∣∣p]

= O
(
μ(A)

)
, p ≥ 1. (A.8)



Estimating the scaling function 363

Approximation and covariance bounds for the MRM.

Lemma A.1. Let α = 1/n0 for some arbitrary integer n0 ≥ 2. For all p > 1 such that
E[epqwl(0)] < ∞, for any ε′ ∈ (0,p − 1), there exists a constant C such that

E

[(∫ 1

0

eqwln (u)

E[eqwln (0)] du

)p]
≤ Cl

−{ψ(pq)−pψ(q)−ε′}
n , (A.9)

E

[(
2−n

2n−1∑
k=0

eqwln (k2−n)

E[eqwln (0)]

)p]
≤ Cl

−{ψ(pq)−pψ(q)−ε′}
n . (A.10)

Proof. The choice of α implies that (1 − α)n0 = n0 − 1 is an integer. Denote gn(u) =
eqwln (u)/E[eqwln (0)]. Fix some integer k0, and define n1 = k0n0. If n1 < n, then∫ 1

0
gn(u)du =

∫ 1

0
gn1(u)du +

∫ 1

0

{
gn(u) − gn1(u)

}
du

(A.11)

=
∫ 1

0
gn1(u)du +

2(1−α)n1−1∑
k=0

∫
�k,(1−α)n1

{
gn(u) − gn1(u)

}
du.

We bound the first integral by applying Jensen’s inequality:

E

[(∫ 1

0
gn1(u)du

)p]
≤ E

[
g

p
n1(0)

] = 2(1−α)n1{ψ(pq)−pψ(q)}. (A.12)

Since wln1
is independent of wln − wln1

, we can write

gn(u) − gn1(u) = gn1(u)

{
eqwln (u)−qwln1

(u)

E[eqwln (0)−qwln1
(0)]

− 1

}
.

Thus we see that the integrals
∫
�j,n1

{gn(u)−gn1(u)}du are centered and 2-dependent condition-

ally on Fn1 the sigma-field generated by {wln1
(u),u ∈ [0,1]}. Thus by von Bahr and Esseen [16],

Theorem 2, there is a constant C such that

E

[∣∣∣∣∣
2(1−α)n1 −1∑

k=0

∫
�k,(1−α)n1

{
gn(u) − gn1(u)

}
du

∣∣∣∣∣
p]

≤ C2(1−α)n1E

[∣∣∣∣
∫

�0,(1−α)n1

{
gn(u) − gn1(u)

}
du

∣∣∣∣
p]

≤ C2p−12(1−α)n1E

[∣∣∣∣
∫

�0,(1−α)n1

gn(u)du

∣∣∣∣
p]

+ C2p−12(1−α)n1E

[∣∣∣∣
∫

�0,(1−α)n1

gn1(u)du

∣∣∣∣
p]

≤ C2p−12(1−α)n1E

[(∫
�0,(1−α)n1

gn(u)du

)p]
+ C2p−12{1−p+ψ(pq)−pψ(q)}(1−α)n1 .
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Since ln/ ln1 = ln−n1 , by the scaling property (3.3), we have

∫
�0,(1−α)n1

eqwln (u) du = ln1

∫ 1

0
eqwln−n1 ln1

(ln1u) du
law= ln1eq�ln1

∫ 1

0
eqwln−n1

(u) du.

Thus,

E

[(∫
�0,(1−α)n1

gn(u)du

)p]
= 2(1−α)n1(ψ(pq)−p) (E[eqwln−n1

(0)])p
(E[eqwln (0)])p E

[(∫ 1

0
gn−n1(u)du

)p]

= 2(1−α)n1(ψ(pq)−pψ(q)−p)
E

[(∫ 1

0
gn−n1(u)du

)p]
.

Thus we have obtained

E

[∣∣∣∣∣
2(1−α)n1 −1∑

k=0

∫
�k,(1−α)n1

{
gn(u) − gn1(u)

}
du

∣∣∣∣∣
p]

(A.13)

≤ C2(1−α)n1(ψ(pq)−pψ(q)−p)
E

[(∫ 1

0
gn−n1(u)du

)p]
.

Denote un = E[(∫ 1
0 gn(u)du)p]. Gathering (A.11), (A.12) and (A.13), we obtain the following

recurrence:

un ≤ B + C2(1−α)n1(1−p+ψ(pq)−pψ(q))un−n1 .

By choosing k0 large enough, this yields that for any ε′ ∈ (0, ε),

un ≤ B + 2(1−α)n1(ψ(pq)−pψ(q)−ε′)un−n1 .

Thus, there exists a constant D such that

un ≤ D2(1−α)n(ψ(pq)−pψ(q)−ε′).

This proves (A.9). The bound (A.10) follows by replacing the measure du with a discrete mea-
sure. �

Lemma A.2. Let 0 < α < 1 and ln = 2−(1−α)n. For p ≥ 1 and q > 0 such that pq < qχ , there
exists a positive constant C such that

lim
n→∞ 2nζ(q)eψ(q)l

−ψ(q)
n E

[
M

q
n (�0,n)

] = m(q), (A.14)

E
[∣∣eqwln (0)M

q
n (�0,n) − Mq(�0,n)

∣∣p] ≤ C2−α(q∨1)n/22−nζ(pq). (A.15)



Estimating the scaling function 365

Proof. Note that (A.15) implies (A.14). So we only need to prove (A.15). Define the sets In,
Bn(u), u ∈ [0,2−n] by

In =
⋂

0≤u≤2−n

Aln(u) = Aln(0) ∩ Aln(2−n), Bn(u) = Aln(u) \ In.

See Figure 2 for an illustration. By definition of the function ψ and the measure μ, we have,
E[eqP (In)] = eψ(q)μ(In) and

μ(In) =
∫

In

ds dt

t2
=

∫ 1

ln

t − 2−n

t2
dt +

∫ ∞

1

1 − 2−n

t2
dt

= − log(ln) − 2−n
(
l−1
n − 1

) + 1 − 2−n = 1 − log(ln) − 2−αn = μ
(
Aln(0)

) − 2−αn.

This yields wln(u) = P(In) + P(Bn(u)) where the two summands are independent and

E
[
eqP (In)

] = E
[
eqwln (0)

]{
1 + O

(
2−αn

)}
. (A.16)

Write further

M(�0,n) =
∫ 2−n

0
ewln (u)Mn(du) = eP(In)

∫ 2−n

0
eP(Bn(u))Mn(du)

= ξn

∫ 2−n

0
eP(Bn(u))M̄n(du),

with ξn = eP(In)Mn(�0,n) and M̄n(du) = Mn(du)/Mn(�0,n) is a random probability measure
on �0,n. We thus obtain

Mq(�0,n) − eqwln (0)M
q
n (�0,n) = ξ

q
n

{(∫ 2−n

0
eP(Bn(u))M̄n(du)

)q

− eqP (Bn(0))

}
.

Noting that for x > −1 and q > 0, it holds that 0 ≤ |1 − (1 + x)q | ≤ Cq(|x| + |x|q) and since
P(In), Mn(�0,n) and P(Bn(u)), 0 ≤ u ≤ 2−n, are mutually independent, we have

E

[
ξ

pq
n

∣∣∣∣
(∫ 2−n

0
eP(Bn(u))M̄n(du)

)q

− eqP (Bn(0))

∣∣∣∣
p]

≤ CE
[
ξ

pq
n

]{(
E

[
sup

0≤u≤2−n

∣∣eP(Bn(u)) − 1
∣∣p(q∨1)

])q∧1 + E

[
sup

0≤u≤2−n

∣∣eP(Bn(u)) − 1
∣∣p]}

.

Thus, applying (A.7) yields

E
[∣∣Mq(�0,n) − eqwln (0)M

q
n (�0,n)

∣∣p] = O
(
2−αn(q∧1)/2)

E
[
ξ

pq
n

]
. �
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Figure 2. The sets In and Bn(u).

Lemma A.3. If q + q ′ < qmax, then for s, t ∈ (0,1) such that s + t < 1/2,

cov
(
Mq

([0, s]),Mq ′([1 − t,1])) = O
(
(s + t){ζ(q)+ζ(q ′)+1}). (A.17)

Proof. Define l = 1 − s − t and Ml(du) = e−wl(u)M(du). By construction, the measure Ml is
independent of {wl(u)} and Ml([0, s]) is independent of Ml([1 − t,1]). Define the sets As,t and
Bs,t by

As,t = Al(s) \ Al(1 − t), Bs,t = Al(1 − t) \ Al(s).

For u ≤ s and v ≥ 1 − t , define

Cu,v = Al(u) ∩ Al(v),

Ds,u = Cs,v \ Cu,v, D′
s,u = Al(u) \ Al(s),

Et,u = Cu,1−t \ Cu,v, E′
t,v = Al(v) \ Al(1 − t).

See Figure 3 for an illustration. Note that all these sets are above the horizontal line at level
l = 1 − s − t , hence P(A) is independent of Ml and P(A) is independent of P(B), where A,B

are any two of these sets. Note also that
⋃

u≤s,v≥1−t Cu,v = Cs,1−t , Ds,u ⊂ Cs,1−t , Et,v ⊂ Cs,1−t ,
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Figure 3. The sets A,B,C,D,D′,E,E′.

D′
s,u ⊂ D′

s,0 and E′
t,v ⊂ E′

t,1. We moreover have

μ(As,t ) = μ(Bs,t ) = 1,

μ(Cs,1−t ) = − log(1 − s − t),

μ
(
D′

s,0

) = s

1 − s − t
, μ

(
E′

t,1

) = t

1 − s − t
.

Moreover, for u ≤ s and v ≥ 1 − t , we have the following decompositions:

wl(u) = P(As,t ) + P(Cu,v) + P
(
D′

s,u

) + P(Et,v),

wl(v) = P(Bs,t ) + P(Cu,v) + P(Ds,u) + P
(
E′

t,v

)
.

Recall that the random measure P can be split into two independent random measures P0 and P1

such that P = P0 + P1. For i = 0,1 and u ∈ [0, s], define πi,l(u) = Pi(D
′
s,u) + Pi(Cu,1−t ) and

πl(u) = π0,l(u) + π1,l(u).

Similarly, for i = 0,1 and v ∈ [1 − t,1], define π ′
i,l(v) = Pi(E

′
t,v) + Pi(Cs,v) and

π ′
l (v) = π ′

0,l(v) + π ′
1,l(v).
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Let M̄l and M̄ ′
l denote the normalized measures Ml/Ml([0, s]) and Ml/Ml([1 − t,1]) and

ζl = Ml

([0, s]), ξl = Ml

([1 − t,1]),
γl =

∫ s

0

{
eπl(u) − 1

}
M̄l(du), γ ′

l =
∫ 1

1−t

{
eπ ′

l (v) − 1
}
M̄ ′

l (dv),

Rl = (1 + γl)
q − 1 − qγl, R′

l

(
1 + γ ′

l

)q ′ − 1 − q ′γ ′
l .

This yields

Mq
([0, s]) = eqP (As,t )ζ

q
l × {1 + qγl + Rl},

Mq ′([1 − t,1]) = eq ′P(Bs,t )ξ
q ′
l × {

1 + q ′γl + R′
l

}
.

Note that ζl and ξl are independent and independent of πl and π ′
l which are independent of Ml .

Thus, ξl is also independent of γl and Rl , and ζl is independent of γ ′
l and R′

l . Also, P(As,t ) and
P(Bs,t ) are independent of all the other quantities, and E[eqP (As,t )] = E[eqP (Bs,t )] = eψ(q). Thus,

e−ψ(q)−ψ(q ′) cov
(
Mq

([0, s]),Mq ′([1 − t,1]))
= qq ′ cov

(
ζ

q
l γl, ξ

q ′
l γ ′

l

) + qE
[
ξ

q
l ζ

q ′
l γlR

′
l

] − qE
[
ζ

q
l γl

]
E

[
ξ

q ′
l γ ′

l

]
(A.18)

+ q ′
E

[
ζ

q
l ξ

q ′
l Rlγ

′
l

] − q ′
E

[
ζ

q
l Rl

]
E

[
ξ

q ′
l γ ′

l

] + E
[
ζ

q
l ξ

q ′
l RlR

′
l

] − E
[
ζ

q
l Rl

]
E

[
ξ

q ′
l R′

l

]
. (A.19)

We will show that all the terms on the right-hand side are of order (s + t)−1
E[ξq

k ]E[ζ q ′
k ]. Since

πl and π ′
l are independent of the measure Ml , using the definition of πl and π ′

l and the fact that
the random measure P ′ has independent increments, and E[eP(A)] = 1 for all measurable set A

with finite μ measure, we have

cov
(
ζ

q
l γl, ξ

q ′
l γl

) = E

[
ζ

q
l ξ

q ′
l

∫ s

0

∫ 1

1−t

cov
(
eπl(u), eπ ′

l (v)
)
M̄l(du)M̄ ′

l (dv)

]

= E

[
ζ

q
l ξ

q ′
l

∫ s

0

∫ 1

t

var
(
eP(Cu,v)

)
M̄l(du)M̄ ′

l (dv)

]

= E

[
ζ

q
l ξ

q ′
l

∫ s

0

∫ 1

1−t

{
eψ(2)μ(Cu,v) − 1

}
M̄l(du)M̄ ′

l (dv)

]

≤ E
[
ζ

q
l

]
E

[
ξ

q ′
l

]{
eψ(2)μ(Cs,1−t ) − 1

} ≤ CE
[
ζ

q
l

]
E

[
ξ

q ′
l

]
(s + t).

If q > 0, a second order Taylor expansion yields that there exists a constant Cq ≥ 1 such that for
all x ≥ −1, ∣∣(1 + x)q − 1 − qx

∣∣ ≤ Cq

(
x2 + |x|q∨2). (A.20)
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Applying (A.20) and Jensen’s inequality (since by definition M̄l is a probability measure on
[0, s]), we obtain, with rl = supu∈[0,s] |eπl(u) − 1|, which is independent of Ml ,

|Rl | ≤ C

∫ s

0

{∣∣eπl(u) − 1
∣∣q∨2 + ∣∣eπl(u) − 1

∣∣2}
M̄l(du) ≤ C

(
r
q∨2
l + r2

l

)
.

Define r ′
l = supu∈[0,s] |eπl(u) − 1| and note that |γl | ≤ rl and |γ ′

l | ≤ r ′
l . We thus get

E
[
ζ

q
l ξ

q ′
l Rlγ

′
l

] ≤ E
[
ζ

q
l ξ

q ′
l

]
E

[(
r2
l + r

q∨2
i

)
r ′
l

] ≤ E
[
ζ

q
l ξ

q ′
l

]
E

1/2[(r2
l + r

q∨2
i

)2]
E

1/2[r ′
l
2]

.

Applying (A.7), we obtain, for any h ≥ 2,

E
[
rh
l

] = O
(
μ(Cs,1−t ) + μ

(
D′

0,s

)) = O(s + t),

E
[
r ′
l
h] = O

(
μ(Cs,1−t ) + μ

(
E′

t,1

)) = O(s + t).

Thus finally

E
[
ζ

q
l ξ

q ′
l Rlγ

′
l

] ≤ C(s + t)E
[
ζ

q
l

]
E

[
ξ

q ′
l

]
.

The remaining terms in (A.18) and (A.19) are dealt with similarly and we obtain

∣∣cov
(
Mq

([0, s]),Mq ′([0, t]))∣∣ ≤ C(s + t)E
[
ζ

q
l

]
E

[
ξ

q ′
l

]
.

The previous considerations also yield that

sζ(q) = E
[
Mq

([0, s])] = eψ(q)
E

[
ζ

q
l

]{
1 + O(s + t)

}
,

tζ(q) = E
[
Mq ′([1 − t,1])] = eψ(q ′)

E
[
ξ

q ′
l

]{
1 + O(s + t)

}
and all the previous bounds finally yield (A.17). �

Lemma A.4. If 2q < qmax, then for k = 1, . . . ,2n − 1,

2nζ(2q)
E[D0,0,n,qD0,k,n,q ] = O

(
k−{ψ(2q)−2ψ(q)+1}). (A.21)

Proof. By the scaling property, and since E[D0,k,n,q ] = 0, we have

2nζ(2q)
E[D0,0,n,qD0,k,n,q ]

= kζ(2q) cov

(
Mq

([
0,

1

k

])
,Mq

([
1 − 1

k
,1

]))

− 2τ(q)

(
k − 1

2

)ζ(2q)

cov

(
Mq

([
0,

1

k − 1/2

])
,Mq

([
1 − 1

2k − 1
,1

]))

− 2τ(q)kζ(2q) cov

(
Mq

([
0,

1

k

])
,Mq

([
1 − 1

2k
,1

]))
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− 2τ(q)kζ(2q) cov

(
Mq

([
0,

1

2k

])
,Mq

([
1 − 1

k
,1

]))

+ 22τ(q)(k − 1/2)ζ(2q) cov

(
Mq

([
0,

1

2k − 1

])
,Mq

([
1 − 1

2k − 1
,1

]))

+ 22τ(q)kζ(2q) cov

(
Mq

([
0,

1

2k

])
,Mq

([
1 − 1

2k
,1

]))

− 2τ(q)kζ(2q) cov

(
Mq

([
1

2k
,

1

k

])
,Mq

([
1 − 1

k
,1

]))

+ 22τ(q)(k − 1/2)ζ(2q) cov

(
Mq

([
1

2k − 1
,

2

2k − 1

])
,Mq

([
1 − 1

2k − 1
,1

]))

+ 22τ(q)kζ(2q) cov

(
Mq

([
1

2k
,

1

k

])
,Mq

([
1 − 1

2k
,1

]))
.

Applying Lemma A.3, with s and t replaced by k and 2k and q = q ′, we obtain that each covari-
ance term that appears above is of order k−2ζ(q)−1, which yields 2nζ(2q)

E[D0,0,n,qD0,k,n,q ] =
O(kζ(2q)−2ζ(q)−1), and since ζ(2q) − 2ζ(q) = 2ψ(q) − ψ(2q), the bound (A.21) is proved. �

Lemma A.5. If 4q < qχ , then

E
[
D4

0,n,q

] = O
(
n2−nτ(4q) + 2−2nτ(2q)

)
.

Proof. Let us compute the fourth moment of D0,n,q . For brevity, let the centered random vari-
ables D0,k,n,q be simply denoted by xk . We have

E
[
D4

0,n,q

] = 2n
E

[
x4

0

] +
∑

0≤i 
=j≤2n−1

E
[
x2
i x2

j

] +
∑

0≤i 
=j≤2n−1

E
[
x3
i xj

]
(A.22)

+
∑

1≤i,j,k≤2n

#{i,j,k}=3

E
[
x2
i xj xk

] +
∑

1≤i,j,k,l≤2n

#{i,j,k,l}=4

E[xixj xkxl].

By the scaling property and Lemma A.3, obtain that

2nζ(4q)k−ζ(4q)
E

[
x2

1x2
k

] = O
(
k−2ζ(2q)

)
.

Since ζ(4q) < 2ζ(2q), this yields

∑
0≤i 
=j≤2n−1

E
[
x2
i x2

j

] = O

(
2−nτ(4q)

2n−1∑
k=0

kζ(4q)−2ζ(2q)

)
= O

(
n2−nτ(4q) + 2−2nτ(2q)

)
.

Again, by Lemma A.3, we have

2nζ(4q)k−ζ(4q)
E

[
x3

1xk

] = 2nζ(4q)k−ζ(4q) cov
(
x3

1 , xk

) = O
(
k−ζ(3q)−ζ(q)−1).
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By (3.6), if 4q < qχ , then ψ(4q) > 4ψ(3q)/3 and ψ(3q)/3 > ψ(q), so ζ(4q)− ζ(3q)− ζ(q) <

0, thus

∑
0≤i 
=j≤2n−1

E
[
x3
i xj

] = O

(
2−nτ(4q)

2n−1∑
k=0

kζ(4q)−ζ(3q)−ζ(q)−1

)
= O

(
2−nτ(4q)

)
.

We now calculate the fourth term in the expansion (A.22) of E[D4
0,n,q ]. By stationarity we may

assume i = 0 and without loss of generality assume j < k/2. Set y� = D0,�,log2(k),q for � =
1, . . . , k. Then by the scaling property

E
[
x2
i xj xk

] = (
k/2n

)ζ(4q)
E

[
y2

1yjyk

]
.

Since E[yk] = 0, from the definition of D�,log2(k),q we may write

E
[
y2

1yjyk

] = cov
(
y2

1yj , yk

)
=

∑
l,s,t

βlαsηt cov
(
Mrlq(�1,log2(blk))M

(2−rl )q(�1,log2(blk)) (A.23)

× Mq(�j,log2(bsk)),M
q(�k,log2(bt k))

)
,

where rl ∈ {1,2} and bl, bs, bt ∈ {1,2} indicate whether the scale is k or 2k. Set � = 1 − j/k.
In the notation of Lemmas A.2 and A.3 set C = A�((j − 1)/k, j/k) ∩ A�((k − 1)/k,1), A1 =
A�(1/k, (j − 1)/k), A2 = A�((j − 1)/k, j/k) ∩ A�(0,1/k) and A3 = B�(j/k, (k − 1)/k). So
that Ai ∩ A3 = ∅ for i = 1,2 and Ai ∩ C = ∅ for i = 1,2,3. Also define

ζl,1 = M
rlq
� (�i,log2(blk))M

q
� (�j,log2(bsk)), ζl,2 = M

q
� (�k,log2(bt k)),

which by construction are independent of eP(Ai) and eP(C). Then

Mrlq(�i,log2(blk))M
q(�j,log2(bsk)) = eqrl(P (A1)+P(A2))eq(P (A1)+P(C))ζl,1 × {1 + qγl,1 + Rl,1},

Mq(�k,log2(bt k)) = eq(P (A3)+P(C))ζl,2 × {1 + qγl,2 + Rl,2},

where γl,i and Rl,i are independent of ζl,i , eP(Ai) and eP(C) and satisfy E[γl,1γl,2] = O(1/k),
E[γl,iRl,i] = O(1/k) and E[Rl,1Rl,2] = O(1/k). Finally set Kl,1 = E[ζl,1eqrl (P (A1)+P(A2)) ×
eqP (A1)] and Kl,2 = E[ζl,2eqP (A3)]. Then, for each of the terms in (A.23)

cov
(
Mrlq(�i,log2(blk))M

q(�j,log2(bsk)),M
q(�k,log2(bt k))

)
= Kl,1Kl,2 var(C)

(
1 + O(1/k)

)
(A.24)

= 1

E2[eqP (C)]E
[
Mrlq(�i,log2(blk))M

q(�j,log2(bsk))
]

× E
[
M

q

� (�k,log2(bt k))
]

log(1 − j/k)
(
1 + O(1/k)

)2
.
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Adding up all the terms in (A.23) and using E[Mq
� (�k,log2(bt k))] = O(k−ζ(q)) for all � yields

E
[
y2

1yjyk

] = O(j/k)E
[
y2

1yj

]
kζ(q).

On the other hand, again by the scaling property, and because E[yj ] = 0, E[y2
1yj ] = cov(y2

1 , yj )

and applying Lemma A.3 we have

E
[
y2

1yj

] = O
(
k−ζ(3q)j ζ(3q)−ζ(2q)−ζ(q)−1). (A.25)

By (A.24) and (A.25) we obtain the bound

E
[
x2

0xjxk

] = O
(
2−nζ(4q)j ζ(3q)−ζ(2q)−ζ(q)kζ(4q)−ζ(3q)−ζ(q)−1).

Noting that by convexity of ψ , it holds that 2ψ(q) < ψ(2q), this yields∑
1≤i,j,k≤2n

#{i,j,k}=3

E
[
x2
i xj xk

] = O
(
2−2nτ(2q) + n2−nτ(4q)

)
.

For the last term in (A.22) by stationarity set i = 0, and assume j < � < k and moreover that
� − j < k/2. Write

E[xixj x�xk] = cov(xixj , x�xk) + E[yiyj ]E[y�yk].
The term cov(y1yj , y�yk) can be shown to be of smaller order than the product of expectations.
Thus, applying Lemma A.4, we finally obtain∑

1≤i,j,k,l≤2n

#{i,j,k,l}=4

E[xixj xkx�] = O
(
2−2nτ(q)

)
.

�

Bounds for the MRW, case H > 1/2. Define ãj,k,n,H = ewln (tj,k)δ̃j,k,n,H with

δ̃2
j,k,n,H =

∫
�

(j)
k,n

∫
�

(j)
k,n

|u − v|2H−2Mn(du)Mn(dv)

and for j1 
= j2,

ρ̃H

(
j1, j2, k, k′) =

∫
�

(j1)

k,n

∫
�

(j2)

k′,n
|u − v|2H−2Mn(du)Mn(dv)

δj1,k,n,H δj2,k,n,H

.

Lemma A.6. For p ≥ 1 such that 2pq < qχ and for r ≥ 2, there exist η,C > 0 and uniformly
bounded constants cq,H (k, k′) such that

∣∣2nζH (2q)eψ(2q)l
−ψ(2q)
n E

[
δ̃

2q
j,k,n,H

] − mH (2q)
∣∣ = O

(
2−nη

)
, (A.26)
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∣∣2nζH (2q)eψ(2q)l
−ψ(2q)
n E

[
δ̃
q

0,k,n,H δ̃
q

0,k′,n,H

] − cq,H

(
k, k′)∣∣ = O

(
2−nη

)
, (A.27)

2nζH (2pq)
E

[∣∣a2q

0,k,n,H − ã
2q

0,k,n,H

∣∣p] = O
(
2−nη

)
, (A.28)

2nζH (2pq)
E

[∣∣aq

0,k,n,H a
q

0,k′,n,H
− ã

q

0,k,n,H ã
q

0,0,k′,n,H

∣∣p] = O
(
2−nη

)
. (A.29)

Proof. Note that (A.29) implies (A.27) and (A.28) implies (A.26). By stationarity of increments,
we can assume without loss of generality that k′ = 0. For brevity, denote ak = a0,k,n,H , ãk =
ã0,k,n,H and δ̃k = δ̃0,k,n,H . Generalizing the notation of the proof of Lemma A.2, we can write
a2
k = ξ2

k (Rk + 1) with ξk = eP(In(k))δ̃k , In(k) = Aln(k2−n) \ Aln(2
−n), Bk(u) = Aln(u) \ In(k)

and

Rk =
∫

�k,n

∫
�k,n

{
eP(Bk(u))+P(Bk(v)) − 1

}|u − v|2H−2M̃k(du)M̃k(dv).

Denote rk = supu∈�k,n
|eP(Bk(u)) − 1|. Then |Rk| ≤ (1 + rk)

2 − 1, the sequence {rk, k =
0, . . . ,2n − 1} is independent of the measures M̃k , 0 ≤ k ≤ 2n − 1 and by (A.7) and Hölder’s
inequality, we have, for p ≥ 1, E[|r0|p] = O(

√
μ(B0(2−n)) = O(2−αn/2). Thus

E
[∣∣aq

k − eqP (In(k))δ̃
q
k

∣∣p] ≤ E
[
epqP (In(k))

]
E

[
δ̃
pq

0

]
O

(
2−αn

)
,

which proves (A.28). Since E[eqP (In(k))] ∼ E[eqwln (0)] = eψ(q)l
−ψ(q)
n , this implies that E[δ̃q

0 ] ∼
cl

ψ(q)
n 2−nζH (q). Next, using the bound |(1+x)q −1| ≤ C(|x|+|x|q∧1) valid for x ≥ 0, we obtain

E
[∣∣aq

0 a
q
k − ξ

q

0 ξ
q
k

∣∣p] ≤ E
[
ξ

pq

0 ξ
pq
k

∣∣(R0 + 1)q/2(Rk + 1)q/2 − 1
∣∣p]

≤ E
[
ξ

pq

0 ξ
pq
k

]
E

[∣∣(r0 + 1)q(rk + 1)q − 1
∣∣p] ≤ C2−ηn

E
[
ξ

2pq

0

]
for some η > 0. This proves (A.29). �

Lemma A.7. If 2q < qχ , then

2nζH (2q)
∣∣E[U0,n,0,U0,n,k]

∣∣ ≤ Ck−{ψ(2q)−2ψ(q)+1}. (A.30)

Proof. For k ≥ 1, denote

Uk =
∫ 1/k

0

∫ 1/k

0
|u − v|2H−2M(du)M(dv),

U ′
k =

∫ 1/k

1/2k

∫ 1/k

1/2k

|u − v|2H−2M(du)M(dv),

Vk =
∫ 1

1−1/k

|u − v|2H−2M(du)M(dv),

V ′
k =

∫ 1−1/2k

1−1/k

∫ 1−1/2k

1−1/k

|u − v|2H−2M(du)M(dv).
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Then, by the scaling property, we have

2nζH (2q)
E[U0,n,0U0,n,k]

= kζH (2q) cov
(
U

q
k ,V

q
k

) − 2τH (q)(k − 1/2)ζH (2q) cov
(
U

q
k ,V

q

2k

)
− 2τH (q)kζH (2q)

{
cov

(
U

q
k ,V ′

k
q) − cov

(
U

q

2k,V
q
k

) + cov
(
U ′

k
q
,V

q
k

)}
+ 22τH (q)(k − 1/2)ζH (2q)

{
cov

(
U

q

2k,V
q

2k

) + cov
(
U ′

k
q
,V

q

2k

)}
+ 22τH (q)kζH (2q)

{
cov

(
U

q

2k,V
′
k
q) + cov

(
U ′

k
q
,V ′

k
q)}

.

All the covariance terms are of the same order, and we only consider the first one, cov(U
q
k ,V

q
k ).

Denote l = 1 − 2/k, define the measure Ml(du) = e−wl(u)M(du) and

ζk,H =
∫ 1/k

0

∫ 1/k

0
|u − v|2H−2Ml(du)Ml(dv),

ξk,H =
∫ 1

1−1/k

∫ 1

1−1/k

|u − v|2H−2Ml(du)Ml(dv),

Ak = Al(1/k) \ Al(1 − 1/k), Bk = Al(1 − 1/k) \ Al(1/k),

Āk(u) = Al(u) \ Ak, B̄k(u) = Al(u) \ Bk,

πk(u, v) = P0
(
Āk(u)

) + P0
(
Āk(v)

)
,

π ′
k(u, v) = P0

(
B̄k(u)

) + P0
(
B̄k(v)

)
,

α̃k = ζ−1
k,H

∫ 1/k

0

∫ 1/k

0
|u − v|2H−2πk(u, v)Ml(du)Ml(dv),

β̃k = ξ−1
k,H

∫ 1

1−1/k

∫ 1

1−1/k

|u − v|2H−2π ′
k(u, v)Ml(du)Ml(dv).

Then we can write

U
q
k = e2qP (Ak)ζ

q
k,H + e2qP (Ak)ζ

q
k,H α̃k + e2qP (Ak)ζ

q
k,H Rk,

V
q
k = e2qP (Bk)ξ

q
k,H + e2qP (Bk)ξ

q
k,H β̃k + e2qP (Bk)ξ

q
k,H R′

k,

with

Rk =
(∫ 1/k

0

∫ 1/k

0
|u − v|2H−2eP(Āk(u))+P(Āk(v))M̃l(du)M̃l(dv)

)q

− 1 − qα̃k,

R′
k =

(∫ 1

1−1/k

∫ 1

1−1/k

|u − v|2H−2eP(B̄k(u))+P(B̄k(v))M̃ ′
l (du)M̃ ′

l (dv)

)q

− 1 − qβ̃k.
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Note that P(Āk(u)), P(B̄k(u)), ζk and ξk are mutually independent and by (A.20),

|Rk| ≤ C sup
u,v∈[0,1/k]

∣∣eP(Āk(u))+P(Āk(v)) − 1
∣∣q∨2 + C sup

u,v∈[0,1/k]

∣∣eP(Āk(u))+P(Āk(v)) − 1
∣∣2

+ C sup
u,v∈[0,1/k]

∣∣eP(Āk(u))+P(Āk(v)) − 1 − πk(u, v)
∣∣.

Applying now the bounds (A.7) and (A.8) we obtain that

E
[
U

q
k

] = e2ψ(q)
E

[
ζ

q
k,H

]{
1 + O

(
k−1)} + qe2ψ(q)

E
[
ζ

q
k,H α̃k

]
,

E
[
V

q
k

] = e2ψ(q)
E

[
ξ

q
k,H

]{
1 + O

(
k−1)} + qe2ψ(q)

E
[
ξ

q
k,H β̃k

]
,

E
[
U

q
k V

q
k

] = e4ψ(q)
E

[
ζ

q
k,H

]
E

[
ξ

q
k,H

]{
1 + O

(
k−1)} + qe2ψ(q)

{
E

[
ξ

q
k,H

]
E

[
ζ

q
k,H α̃k

]
+ E

[
ζ

q
k,h

]
E

[
ξ

q
k,H β̃k

]}
.

Combining these bounds yields the requested bound for cov(U
q
k ,V

q
k ) and (A.30). �
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