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We investigate the behavior of the Generalized Likelihood Ratio Test (GLRT) (Fan, Zhang and Zhang [Ann.
Statist. 29 (2001) 153–193]) for time varying coefficient models where the regressors and errors are non-
stationary time series and can be cross correlated. It is found that the GLRT retains the minimax rate of
local alternative detection under weak dependence and non-stationarity. However, in general, the Wilks
phenomenon as well as the classic residual bootstrap are sensitive to either conditional heteroscedasticity of
the errors, non-stationarity or temporal dependence. An averaged test is suggested to alleviate the sensitivity
of the test to the choice of bandwidth and is shown to be more powerful than tests based on a single
bandwidth. An alternative wild bootstrap method is proposed and shown to be consistent when making
inference of time varying coefficient models for non-stationary time series.
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1. Introduction

Specification tests are important in many nonparametric settings. Generally, one is interested in
testing whether certain nonparametric components are significant, or whether they have a more
parsimonious and efficient parametric representation. In the time series context, there is a large
literature devoting to the latter topic, see for instance Hjellvik et al. [18], Fan and Li [16], Dette
and Spreckelsen [9,10], An and Cheng [1] and Paparoditis [31], among others. Many of the
previous results perform specification for stationary time series.

The purpose of the paper is to develop specification tests for nonparametric regression of non-
stationary time series. Specifically, consider the following time-varying coefficient model:

yi = x�
i β(ti) + εi, i = 1, . . . , n, (1)

where ti = i/n, xi = (xi1, xi2, . . . , xip)� are p × 1 dimensional time series of regressors or
predictors, εi are error series satisfying E(εi |xi ) = 0. Here � denotes matrix or vector transpose.
The processes {xi} and {εi} are allowed to be non-stationary and can be cross correlated. We
assume that the regression parameters β(·) := (β1(·), . . . , βp(·))� is a smooth function on [0,1].
Nonparametric specification of model (1) boils down to testing whether β(·) or a component of
it has a certain parametric representation.

Due to their flexility and interpretability in investigating shifting association between the re-
sponse and predictors over time, model (1) and its stochastic coefficient version have attracted
considerable attention in various fields. See, for instance, Orbe et al. [29,30], Cai [3], Brown et
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al. [2] an Stock and Watson [37] for applications in econometrics; Kitagawa and Gersch [23]
and Gersch and Kitagawa [17] for applications in signal processing; Hoover et al. [20] and Ram-
say and Silverman [34] for applications in longitudinal and functional data analysis. Most of the
aforementioned literature on model (1) focused on parameter estimation. However, it seems that
the important issue of model validation or specification of (1) have received little attention.

For varying coefficient models of i.i.d. samples, Fan, Zhang and Zhang [15] proposed the gen-
eralized likelihood ratio test (GLRT) as a general rule for nonparametric specification; see also
Dette [6] for a closely related earlier test based on nonparametric analysis of variance (ANOVA).
We also refer to the excellent review paper of Fan and Jiang [14] and the references cited therein
for a more detailed discussion of the GLRT and related tests. The GLRT has three major advan-
tages. First, it is of simple and intuitively appealing form. For instance, consider testing

H0: β(·) = β0(·) ←→ Ha : β(·) �= β0(·), (2)

where β0(·) is a known function on [0,1]. Then the GLRT statistic is proportional to (RSS0 −
RSSa)/RSS0, where RSS0 and RSSa are residual sum of squares under the null and alternative
hypothesis, respectively. Hence, it is similar in form to the classic analysis of variance. Second,
the GLRT is powerful to apply. Fan, Zhang and Zhang [15] showed that the GLRT can detect lo-
cal alternatives with the optimal rate in the sense of Ingster [22]. Third, the test is asymptotically
nuisance parameter free; known as the Wilks phenomenon. The Wilks phenomenon insures that
the residual wild bootstrap, that is, drawing i.i.d. samples from the centered empirical distribution
of the residuals, is asymptotically consistent for the inference. In fact, the Wilks phenomenon is
shown to hold for a wide range of nonparametric models when testing under the GLRT. See,
for instance, Fan and Jiang [13] for additive models and Fan and Huang [12] for varying co-
efficient partially linear models. For state-domain nonparametric regression for stationary time
series, Hong and Lee [19] showed that the Wilks phenomenon continue to hold when the errors
are conditionally homogeneous.

In this paper, we shall prove that the Wilks phenomenon is sensitive to either conditional het-
eroscedasticity of the errors, non-stationarity or temporal dependence in model (1). In particular,
the Wilks phenomenon fails for model (1) even when the errors and regressors are stationary
and conditionally homogeneous. The latter finding is drastically different from the state domain
regression case in Hong and Lee [19] where the Wilks phenomenon is shown to hold when the
errors are conditionally homogeneous. As a consequence, the residual wild bootstrap fails for
model (1) under dependence since the latter bootstrap generates (conditional) i.i.d. samples and
hence mimics the Wilks type asymptotic behavior. A new robust methodology is needed when
performing model specification for (1) under dependence and non-stationarity.

According to a result on Gaussian quadratic form approximation to the GLRT, we shall pro-
pose in this paper a new wild bootstrap method for the nonparametric specification of model (1).
The latter bootstrap is shown to be consistent under non-stationarity and dependence. We further
discover that the GLRT, though fails to be asymptotically pivotal, retains the minimax rate of lo-
cal alternative detection under weak dependence and non-stationarity. Hence, the GLRT with the
robust wild bootstrap is powerful to apply. Note that Zhou and Wu [43] discussed simultaneous
confidence band (SCB) construction for model (1) which could be used for model specification.
However, the SCB can detect local alternatives with inferior rates than that of the GLRT and
hence is not a powerful tool for specification.
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It is known that nonparametric specification is sensitive to the choice of smoothing bandwidth.
To alleviate the problem, Horowitz and Spokoiny [21] and Fan, Zhang and Zhang [15], among
others, proposed to maximize the test statistic over a wide range of bandwidths. However, for the
GLRT test, the asymptotic behavior of the resulting statistic is unknown even for i.i.d. samples,
which hampers the application of the latter test. It is worth mentioning that Zhang [41] derived
the asymptotic null distribution of the maximum test for a bounded number of bandwidths. On
the other hand, Müller [25] suggested to average the GLRT over a range of bandwidths as an
alternative to the maximum test. The latter suggestion stems from surprising results, such as
Lehmann [24], that the averaged likelihood ratio test can be more powerful than the maximum
likelihood ratio test for complex alternatives. In this paper, we shall propose to use the averaged
test for the specification of model (1) to alleviate the sensitivity of the test to the choice of
bandwidth. We derive the asymptotic distribution and the local power of the averaged test. It
is found that the averaged test is asymptotically at least as powerful as the best test based on
a single bandwidth regardless of the shape of the alternative, the non-stationary dependence
structure of the data or the kernel function. Our finding is potentially interesting for a wide range
of nonparametric specification problems.

Recently, there have been many results on modeling non-stationary time series from the spec-
tral domain. See, for instance, Dahlhaus [4], Nason et al. [26] and Ombao et al. [28], among
others. At the same time, there is a great recent interest in specification of non-stationary time
series in the spectral domain. Examples include, among others, Dahlhaus [5], Neumann and von
Sachs [27], Paparoditis [32,33], Sergides and Paparoditis [36] and Dette et al. [8]. However, for
the varying coefficient regression (1), models from the spectral domain do not seem to be directly
useful for an asymptotic theory. In this paper, we shall adopt the time domain modeling of locally
stationary time series in Zhou and Wu [42]. The latter framework and the associated dependence
measures directly facilitate the theory of the current paper.

The rest of the paper is organized as follows. Section 2 introduces the GLRT statistic and the
non-stationary time series models for the error and regressor series. In Section 3, we shall derive
the asymptotic null distribution and local power of the GLRT for parametric and semi-parametric
null hypotheses. A detailed discussion on the failure of the Wilks phenomenon is included. In
Section 4, we shall introduce the averaged test and the corresponding robust bootstrap and in-
vestigate their asymptotic behavior. In Section 5, we shall construct a monte carlo experiment to
study the finite sample accuracy of the proposed averaged test. Proofs of the asymptotic results
are placed in Section 6.

2. Preliminaries

2.1. The GLRT statistics

Consider the testing problem (2). The GLRT compares the residual sum of squares (RSS) under
the null and alternative hypotheses, and a large difference indicates violation of the null. We refer
to Fan, Zhang and Zhang [15] for a detailed derivation of the statistic. Specifically, the GLRT
statistic

λn = n

2
log

RSS0

RSSa

≈ −n

2

RSSa − RSS0

RSS0
, (3)
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where RSS0 = ∑n
i=1(yi − x�

i β0(ti))
2 is the RSS under the null hypothesis and RSSa =∑n

i=1(yi − x�
i β̂(ti))

2 is the RSS under the nonparametric alternative. Here β̂(·) is the local
linear kernel estimate of β(·) (Fan and Gijbels, [11]), which is defined as

(
β̂bn

(t), β̂
′
bn

(t)
) = argmin

η0,η1∈Rp

n∑
i=1

(
yi − x�

i η0 − x�
i η1(ti − t)

)2
Kbn(ti − t), (4)

where K is a kernel function, bn > 0 is the bandwidth, and Kc(·) = K(·/c), c > 0. Throughout
this paper, we shall always assume that the kernel K ∈ K, the collection of symmetric density
functions K with support [−1,1] and K ∈ C 1[−1,1]. Define

Sn,l(t) = (nbn)
−1

n∑
i=1

xix�
i

[
(ti − t)/bn

]l
Kbn(ti − t)

for l = 0,1, . . . , where 00 := 1, and

Rn,l(t) = (nbn)
−1

n∑
i=1

xiyi

[
(ti − t)/bn

]l
Kbn(ti − t).

Let η̂bn
(t) = (β̂

�
bn

(t), bn(β̂
′
bn

(t))�)�. Then it can be shown that (Fan and Gijbels, [11])

η̂bn
(t) =

(
Sn,0(t) S�

n,1(t)

Sn,1(t) Sn,2(t)

)−1 (
Rn,0(t)

Rn,1(t)

)
:= S−1

n (t)Rn(t). (5)

We shall omit the subscript bn in η̂, β̂ and β̂
′

hereafter if no confusion will be caused.

2.2. Locally stationary time series models

Throughout this paper, we shall assume that both (xi ) and (εi) belong to a general class of locally
stationary time series in the sense of Zhou and Wu [42] as follows,

xi = G
(
ti , (. . . , εi−1, εi)

)
, i = 1,2, . . . , n,

(6)
εi = H

(
ti , (. . . , ξi−1, ξi)

)
V

(
ti , (. . . , εi−1, εi)

)
, i = 1,2, . . . , n,

where G(·) = (G1,G2, . . . ,Gp)�(·), (εi)i∈Z are i.i.d., (ξi)i∈Z are also i.i.d. and (εi)i∈Z is inde-
pendent of (ξi)i∈Z. Let Fi = (. . . , εi−1, εi) and Gi = (. . . , ξi−1, ξi). We assume that

E
(
H(t, Gi )

) = 0 and Var
(
H(t, Gi )

) = 1,

almost surely for all t ∈ [0,1], in which case V 2(ti , Fi ) is the conditional variance of εi given Fi .
It is clear from (6) that (xi ) and (εi) are non-stationary. Formulation (6) can be interpreted as

physical systems with Fi and Gi being the inputs and xi , εi being the outputs, respectively, and
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G, H and V being the transforms or filters that represent the underlying physical mechanism. By
allowing G, H and V varying smoothly with respect to t , we have local stationarity of (xi ) and
(εi). See also Zhou and Wu [42] for more discussions. The above formulation of covariates and
error processes is very general and includes many settings in the existing time series regression
literature as special cases. To help understand the formulation, we shall consider the following
three cases:

(a) (I.i.d. model). Assume that xi = G0(εi) and εi = H0(ξi). Then (x�
i , εi)

n
i=1 is a random

sample and (εi)
n
i=1 is independent of (xi )

n
i=1. This type of design was discussed extensively in

Fan, Zhang and Zhang [15] and Fan and Jiang [14], among others.
(b) (Exogenous model). In (6), we assume that V (ti, Fi ) = V0(ti). In this case, the regressors

and errors are two independent locally stationary processes. Under further restrictions on the
processes, this type of model was studied in Robinson [35], Orbe et al. [29,30] among others.

(c) (Endogenous model). Assume (6). Note that in this case the errors are correlated with the
regressors since they both depend on inputs Fi . This type of model is suitable when the errors
exhibit heteroscedasticity with respect to time and the regressors. When xi and H(t, Gi ) are
stationary, the case was considered in Cai [3] among others.

Write χi = (εi, ξi)
� and Ri = (. . . , χi−1, χi). For a generic locally stationary time series Zi =

L(ti , Ri ). The strength of the temporal dependence in {Zi} can be measured by how strongly the
‘current’ observation of the time series, Zi , is influenced by the innovation χ0 which occurred i

steps ahead. More specifically, we can define

δp(L, k) = sup
0≤t≤1

∥∥L(t, Rk) − L
(
t, R∗

k

)∥∥
p

where R∗
k = (

R−1, χ
∗
0 , χ1, χ2, . . . , χi

)
(7)

and {χ∗
i } is an i.i.d. copy of {χi}. Implementing the idea of coupling, δp(L, k) measures the effect

of χ0 in generating observations that are k steps away. Therefore, if δp(L, k) decays fast as k gets
large, short range dependence is implied. We refer to Zhou and Wu [42] for more discussions and
examples on the above dependence measures.

3. Asymptotic results

For a family of stochastic processes (L(t, Ri ))i∈Z, we say that it is Lq stochastic Lipschitz
continuous on [0,1] if sup0≤s<t≤1[‖L(t, R0) − L(s, R0)‖q/(t − s)] < ∞. Denote by Lipq

the collection of such systems. Let U p be the collection of processes (L(t, Ri ))i∈Z such that
‖L(t, R0))‖p < ∞ for all t ∈ [0,1]. Let Cl I , l ∈ N, be the collection of functions that have lth
order continuous derivatives on the interval I ⊂ R. We shall make the following assumptions:

(A1) Let M(t) be the p × p matrix with (i, j)th entry mij (t) = E[Gi(t, F0)Gj (t, F0)]. As-
sume that the smallest eigenvalue of M(t) is bounded away from 0 on [0,1] and M(t) ∈ C 2[0,1].

(A2) G(t, Fi ) ∈ U 32 ∩ Lip2 for some r > 0.
(A3) U(t, Ri ) := G(t, Fi )V (t, Fi )H(t, Gi ) ∈ U 4 ∩ Lip2.
(A4)

∑∞
k=0 δ32(G, k) < ∞.

(A5) δ4(V , k) + δ4(H, k) = O((k + 1)−2).
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(A6) δ4(U, k) = O(χk) for some χ ∈ (0,1).
(A7) The smallest eigenvalue of 
(t) is bounded away from 0 on [0,1], where


(t) =
∞∑

i=−∞
cov

(
U(t, R0),U(t, Ri )

)
. (8)

(A8) The coefficient functions βj (·) ∈ C 2[0,1], j = 1, . . . , p.

A few remarks on the regularity conditions are in order. Conditions (A1), (A2) and (A4) in-
sures local stationarity and short memory of the regressor process xi . The existence of the 32rd
moment is for technical convenience only and may be relaxed. The eigenvalue constraint in con-
dition (A1) insures the non-singularity of the design. Conditions (A3), (A5) and (A6) guarantees
the smoothness and short range dependence of the error process εi . Furthermore, condition (A7)
means that the asymptotic covariance matrix of β̂(t) is non-singular.

3.1. The null distributions

Theorem 1. Assume that condition (A) holds and that nb
9/2
n = O(1) and nb4

n/(logn)6 → ∞.
Then under H0, we have

√
bn

{
2λn + K̃(0)

bnV

∫ 1

0
tr
[
H(t)

]
dt + nb4

nμ
2
2

4V

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt

}
⇒ N

(
0, σ 2/V 2), (9)

where

σ 2 =
∫

R

K̃2(t)dt

∫ 1

0
tr
[
H(t)2]dt,

K̃(·) = K ∗ K(·) − 2K(·), H(·) = 
1/2(·)M−1(·)
1/2(·), V = ∫ 1
0 E[V (t, F0)]2 dt , μ2 =∫ 1

−1 x2K(x)dx, ‘∗’ is the convolution operator and ‘tr’ denotes the trace of a matrix.

Theorem 1 reveals the asymptotic behavior of the GLRT for a very wide class of predic-
tor and error processes. In particular, the latter Theorem explains when and why the Wilks
phenomenon fails. In the following, we will consider four special cases to see how endo-
geneity, non-stationarity and temporal dependence influence the Wilks phenomenon. To sim-
plify the discussion, we will assume in the examples below that the asymptotic bias effect,
nb4

nμ2
2

4V
∫ 1

0 [β ′′(t)]�M(t)β ′′(t)dt , is asymptotically negligible in (9). In practice, the latter task
can be achieved by pre-whitening. We will discuss bias reduction techniques for GLRT in Sec-
tion 4.2.

Example 1 (I.i.d. sample without endogeneity). Consider the case when xi = G(εi) and εi =
CH(ζi), where C is a positive constant. In this case, the covarites and errors are two independent
i.i.d. sequences and the conditions in Fan, Zhang and Zhang [15] are satisfied. Note that V = C2,
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(t) = M(t)C2 and H(t) = C2Ip , where Ip is the p × p identity matrix. In particular,∫ 1

0
tr
[
H(t)

]
dt/V = p and

∫ 1

0
tr
[
H(t)2]dt/V 2 = p (10)

in (9). Hence, it is easy to check that

√
bn

{
2λn + pK̃(0)

bn

}
⇒ N

(
0,p

∫
R

K̃2(t)dt

)
,

which coincides with Theorem 5 of Fan, Zhang and Zhang [15] and the Wilks phenomenon
holds.

Example 2 (The effect of temporal dependence). In this case xi = G(Fi ) and εi = CH(Gi ),
where C is a positive constant. Hence, {xi} and {εi} are two stationary processes which are
independent of each other. In particular, neither endogeneity nor non-stationary is assumed in
the model. It is easy to see that, in this case,


(t) = C2
∞∑

i=−∞
E

[
G(F0)G�(Fi )

]
E

[
H(G0)H(Gi )

]
, (11)

V = C2 and M(t) = E[G(F0)G�(F0)]. An important observation is that∫ 1

0
tr
[
H(t)

]
dt/V

= tr

({
E

[
G(F0)G�(F0)

]}−1
∞∑

i=−∞
E

[
G(F0)G�(Fi )

]
E

[
H(G0)H(Gi )

])
,

∫ 1

0
tr
[
H(t)2]dt/V 2

= tr

([{
E

[
G(F0)G�(F0)

]}−1
∞∑

i=−∞
E

[
G(F0)G�(Fi )

]
E

[
H(G0)H(Gi )

]]2)

are no longer nuisance parameter free compared with the results in (10). As a consequence, the
Wilks phenomenon fails to hold in this case. Additionally, it is easy to see that the latter loss of
pivotality is due to the fact that the summands in (11) are generally nonzero for i �= 0, which
is caused by the temporal dependence. Indeed, if the summands are zero for i �= 0 in (11), then

(t) = C2

E[G(F0)G�(F0)] and we have (10). Like in many pivotal tests such as the Wald test,
the term RSS0/n ≈ V in the GLRT serves as a scaling device which cancels out the variance
factor in RSS1 − RSS0 and makes the test pivotal in the i.i.d. case. However, as shown above,
RSS0/n fails to fulfill the latter scaling task under dependence.
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Example 3 (The effect of non-stationarity). Let xi = G(ti , εi) and εi = V (ti)H(ti , ζi). Here
{xi} and {εi} are two independent but non-stationary sequences which are independent of each
other. In this case, we have∫ 1

0
tr
[
H(t)

]
dt/V = p and

∫ 1

0
tr
[
H(t)2]dt/V 2 = p

∫ 1
0 V 4(t)dt

(
∫ 1

0 V 2(t)dt)2
. (12)

Note that the second term in (12) depends on the time-varying variance V 2(t) and hence the

Wilks phenomenon fails to hold in this case. Additionally, observe that
∫ 1

0 V 4(t)dt

(
∫ 1

0 V 2(t)dt)2
≥ 1 and the

equation holds if and only if V (t) is a constant function. Compared with the results in (10), we
conclude that, in this case, non-stationarity in the errors tends to inflate the variance of GLRT.
Furthermore, if {εi} has constant variance, then the Wilks phenomenon holds even if {xi} is a
non-stationary sequence.

Example 4 (The effect of endogeneity). Suppose that xi = G(εi) and εi = V (εi)H(ζi). In this
case {xi} and {εi} are two i.i.d. sequences which are dependent of each other. We obtain∫ 1

0
tr
[
H(t)

]
dt/V = tr

({
E

[
G(ε0)G�(ε0)

]}−1
E

[
G(ε0)G�(ε0)V

2(ε0)
])

/E
[
V 2(ε0)

]
,∫ 1

0
tr
[
H(t)2]dt/V 2 = tr

([{
E

[
G(ε0)G�(ε0)

]}−1
E

[
G(ε0)G�(ε0)V

2(ε0)
]]2)

/
(
E

[
V 2(ε0)

])2
.

Note that if E[G(ε0)G�(ε0)V
2(ε0)] = E[G(ε0)G�(ε0)]E[V 2(ε0)], then we have (10) and hence

the Wilks phenomenon. Due to the dependence of G(ε0) and V (ε0), the latter factorization gen-
erally fails and hence the Wilks phenomenon fails to hold in this case.

In many real applications, one is interested in specifying a component of β(·). For instance,
one may want to test whether βj (·) is significantly different from zero. This leads us to consider
the following hypothesis testing problem where both H01 and Ha1 are nonparametric:

H01: β(1)(·) = β
(1)
0 (·) ←→ Ha1: β(1)(·) �= β

(1)
0 (·), (13)

where

β(t) =
(

β(1)(t)

β(2)(t)

)
, β0(t) =

(
β

(1)
0 (t)

β
(2)
0 (t)

)
and xi =

(
x(1)
i

x(2)
i

)
,

β(1)(t), β
(1)
0 (t) and x(1)

i are p1 < p dimensional and β
(1)
0 (t) is a known function. Define y∗

i =
yi − [β(1)

0 (ti)]�x(1)
i . Then under H01 the functions βj (·), j = p1 + 1, . . . , p can be estimated by

the local linear regression of y∗
i on x(2)

i with bandwidth bn. Throughout the paper we assume that
the bandwidth bn used under H01 is the same as that under Ha1. Asymptotic results can be easily
obtained using the arguments of the paper when the two bandwidths are different. However, the
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resulting asymptotic bias and variance are much more complicated. For the sake of presentational
clarity, we will only consider the case of equal bandwidth.

The GLRT statistic for testing H01 against Ha1 is defined as

λ1n = n

2
log

RSS1

RSSa

= n

2

[
log

RSS1

RSS0
− log

RSSa

RSS0

]
≈ −n

2

RSSa − RSS1

RSS0
, (14)

where RSS1 is the RSS under H01.
Write

M(t) =
(

M11(t) M12(t)

M21(t) M22(t)

)
and 
(t) =

(

11(t) 
12(t)


21(t) 
22(t)

)
,

where M11(t) and 
11(t) are of dimension p1 × p1.
Define p × p matrix H2(t) = diag(0p1,


1/2
22 (t)M−1

22 (t)

1/2
22 (t)). We have the following theo-

rem.

Theorem 2. Assume that condition (A) holds and that nb
9/2
n = O(1) and nb4

n/(logn)6 → ∞.
Then under H01, we have

√
bn

{
2λ1n + K̃(0)

bnV

∫ 1

0
tr
[
H ∗(t)

]
dt + nb4

nμ
2
2

4V

∫ 1

0
ϒ(t)dt

}
⇒ N

(
0, σ 2

1 /V 2),
where H ∗(·) = H(·) − H2(·), ϒ(t) = [β ′′(t)]�M(t)β ′′(t) − {[β(2)(t)]′′}�M22(t)[β(2)(t)]′′ and

σ 2
1 =

∫
R

K̃2(t)dt

∫ 1

0
tr
[{

H ∗(t)
}2]dt.

Theorem 2 unveils the asymptotic null distribution of the test under H01. Following very sim-
ilar arguments as those in Examples 1–4, the Wilks phenomenon can be shown to be sensitive to
non-stationary, temporal dependence and endogeneity in this case as well.

Practitioners and researchers often encounter testing problems where the null is specified up
to a parametric part. For instance, one may want to test whether β(·) is really time varying in
model (1), which amounts to testing β(·) = C for some unspecified constant vector C. Heuris-
tically, since the convergence rate of the local linear estimates is always slower than the

√
n

parametric rate, it is expected that the null distribution will not be altered as long as we plug in
a

√
n consistent estimate of the unspecified parametric part. The following discussion rigorously

confirms the intuition. Consider testing

H̃01: β(1)(·) = β
(1)
0 (·, θ0) for some unknown θ0 ∈ � ⊂ R

q,

where {β(1)
0 (·, θ): θ ∈ �} is a parametric family of smooth functions. Let ỹ∗

i = yi − (β
(1)
0 )� ×

(ti , θ̂ )x(1)
i and R̃SS1 be the residual sum of squares of the local linear regression of ỹ∗

i on x(2)
i

with bandwidth bn. We shall make the following assumptions on the parametric family β
(1)
0 (·, θ)

and the estimate θ̂ :
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(B1) For each t ∈ [0,1], β
(1)
0 (t, θ) is C 2 in θ in a neighborhood � of θ0. Additionally,

sup
t∈[0,1],θ∈�

{∣∣∣∣∂β
(1)
0 (t, θ)

∂θ

∣∣∣∣ +
∣∣∣∣∂2β

(1)
0 (t, θ)

∂θ2

∣∣∣∣} < ∞.

(B2) Under H̃01, ‖θ̂ − θ0‖4 = O(1/
√

n).

Proposition 1. Under H̃01, condition (B) and the assumptions of Theorem 2, we have

R̃SS1 − RSS1 − OP

(√
nb2

n

) = OP(1). (15)

The OP(
√

nb2
n) term on the left-hand side of (15) corresponds to the extra bias introduced by

the estimation error of θ . And the OP(1) term on the right-hand side of (15) corresponds to the
extra variance caused by the latter error. Both terms are asymptotically negligible compared to
the OP(nb4

n) bias and OP(1/bn) variance of RSS1. As a consequence, the results of Theorems 1
and 2 continues to hold if θ is replaced by θ̂ .

3.2. Local power of the GLRT

Proposition 2. Assume the alternative Ha,n: β(·) = β0(·) + n−4/9fn(·), where fn(·) ∈ C 2[0,1].
Further assume that bn = cn−2/9 for some c > 0, that

∫ 1
0 |f′′n(t)|dt = o(n4/9) and that∫ 1

0
f�n (t)M(t)fn(t)dt → F1, n−8/9

∫ 1

0

[
f′′n(t)

]�
M(t)f′′n(t)dt → F2

for some finite constants F1 and F2. Then under condition (A), we have

√
bn

{
2λn + K̃(0)

bnV

∫ 1

0
tr
[
H(t)

]
dt

}
+ c9/2μ2

2

4V

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt + c9/2μ2

2

4V F2 − c1/2

V F1

⇒ N
(
0, σ 2/V 2).

When the errors and regressors are weakly dependent locally stationary time series, Propo-
sition 2 claims that the GLRT can still detect local alternatives with the optimal rate O(n−4/9)

in the sense of Ingster [22]. As a consequence, the GLRT is powerful to apply for nonparamet-
ric model validation of model (1) under non-stationarity and dependence. However, it should be
noted that the GLRT may not be the most powerful among all rate optimal tests. In the literature,
among other examples, Zhang and Dette [40] discovered that other tests may yield smaller vari-
ance than the GLRT for independent samples. From Proposition 2, the asymptotic local power
of the GLRT with level α

βα(c) = �(R1 − z1−α) where R1 = c1/2F1 − c9/2μ2
2F2/4

σ
, (16)
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�(·) and z1−α denote the cumulative distribution function and the 1 − α quantile of the standard
normal distribution. Assume that F1 �= 0 and F2 �= 0, then simple calculations show that the
bandwidth which maximizes the above power is

b̃n = c̃n−2/9 where c̃ =
(

4F1

9μ2
2F2

)1/4

.

Remark 1. A typical example which satisfies F1 �= 0 and F2 �= 0 is when fn(t) = anf(a2
n(t − t0)),

where f ∈ C 2[−1,1], t0 ∈ (0,1) and an = n1/9. Simple calculations show that

F1 =
∫ 1

−1
f�(t)M(t0)f(t)dt, F2 =

∫ 1

−1

[
f′′(t)

]�
M(t0)f′′(t)dt. (17)

Hence F1 �= 0 and F2 �= 0 as long as the corresponding terms in (17) are nonzero.

4. Tests for locally stationary time series

4.1. The test

Consider the testing problem (2). Two important observations lead to the following modifications
of the original GLRT when testing for non-stationary time series. First, as shown in Examples 2–
4, the denominator RSS0/n is redundant when testing for non-stationary time series. Second, as
we discussed in the Introduction, averaging the test over a range of bandwidths can reduce the
sensitivity of the test with respect to the selection of bandwidth and may also gain power over
tests based on a single (optimal) bandwidth. Based on the above discussions, we suggest using
the following averaged test when specifying model (1) for non-stationary time series:

λ∗
n =

∫ cmax

cmin

(
RSS0 − RSSa

(
zn−γ

))
dz, (18)

where RSSa(b) is the RSS under Ha when bandwidth is chosen as b, 0 < cmin < cmax < ∞.
Large λ∗

n indicates evidence against H0. In the literature, nonparametric ANOVA tests ignoring
the denominator were first proposed in Dette [6] for independent samples. Dette and Hetzler [7]
also considered averaged nonparametric specification tests over a range of bandwidths. The fol-
lowing theorem derives the asymptotic null distribution of the averaged test.

Theorem 3. Assume that condition (A) holds and that 2/9 ≤ γ < 1/4. Then under H0, we have

√
n−γ

{
λ∗

n + nγ K̃(0)
[
log(cmax) − log(cmin)

] ∫ 1

0
tr
[
H(t)

]
dt

+ n1−4γ μ2
2(c

5
max − c5

min)

20

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt

}
⇒ N

(
0,

(
σ ∗)2)

,
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where (
σ ∗)2 =

∫
R

Q2(cmax, t)dt

∫ 1

0
tr
[
H(t)2]dt and

Q(x,y) =
∫ x

cmin

[
2K(y/z) − K ∗ K(y/z)

]
/zdz.

Now we consider the local power of λ∗
n under the alternative Ha,n specified in Proposition 2.

By Theorem 3 and similar arguments as those of Proposition 2, it is easy to show that the asymp-
totic local power of λ∗

n with level α

β∗
α(cmin, cmax) = �(R2 − z1−α)

(19)

where R2 = (cmax − cmin)F1 − (c5
max − c5

min)μ
2
2F2/20

σ ∗ .

Suppose that λn is asymptotically unbiased; namely R1 > 0. From (19) and (16), we observe that
λ∗

n is asymptotically more powerful than λn if and only if R2/R1 > 1. Simple calculations show
that

R2/R1 =
[(cmax − cmin)F1 − (c5

max − c5
min)μ

2
2F2/20]

√∫
R

K̃2(t)dt

[c1/2F1 − c9/2μ2
2F2/4]

√∫
R

Q2(cmax, t)dt

.

An interesting observation from the above equation is that R2/R1 does not depend on the depen-
dence or the non-stationarity structure of the data. Furthermore, we have the following result.

Proposition 3. Under Ha,n and the assumptions of Proposition 2, we have

sup
0<cmin<cmax<∞

β∗
α(cmin, cmax) ≥ sup

0<c<∞
βα(c). (20)

Proposition 3 claims that, asymptotically, the averaged test λ∗
n is at least as powerful as the test

which is based on the maximum generalized likelihood ratio. The result is very general in the
sense that it does not depend on the nature of the local alternative fn(·), the dependence structure
of the data or the kernel function. When we restrict ourselves to a specific kernel function, the
power comparison can be more exact. Let us consider the following example:

Example 5. Suppose that λn is asymptotically unbiased and that the bandwidth for λn is chosen
as cn−2/9. Let cmin = c̃minc for some fixed c̃min ≤ 1 and let cmax = c̃maxc such that c̃max solves
the equation x4 + c̃minx

3 + (c̃min)
2x2 + (c̃min)

3x + (c̃min)
4 = 5. Choosing cmax in the latter way

insures that F1 and F2 do not enter the ratio R2/R1 and hence the power comparison is relatively
simple. Now simple calculations show that

R2/R1 =
(c̃max − c̃min)

√∫
R

K̃2(t)dt√∫
R
(
∫ c̃max
c̃min

[2K(y/z) − K ∗ K(y/z)]/zdz)2 dy

. (21)
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Figure 1. Ratio R2/R1 as a function of c̃min in Example 5. The uniform kernel is used.

An application of the Cauchy–Schwarz inequality similar to the proof of Proposition 3 shows
that sup0<c̃min≤1 R2/R1 ≥ 1 regardless of the kernel function. Now let us consider the uniform
kernel K(x) = I {|x| ≤ 1}/2. Figure 1 shows R2/R1 as a function of c̃min. We observe from the
figure that the averaged test λ∗

n is asymptotically more powerful than λn on (0,1) regardless of
the shape of the alternative. Figure 1 further supports the use of the averaged test.

4.2. Bias reduction and bandwidth range selection

As we see from Theorem 3, the asymptotic bias of λ∗
n involves the second derivative of β(t)

and the estimation of the latter quantity is generally highly nontrivial. Following the idea of Fan
and Jiang [14], a prewhitening technique can be used to alleviate the problem. More specifically,
consider the following null hypothesis:

H̃0: β(·) = β0(·, θ) for some unknown θ0 ∈ � ⊂ R
q,

where {β0(·, θ): θ ∈ �} is a parametric family of smooth functions. Let θ̂0 be a
√

n consistent
estimator of θ0 and define β∗(t) = β(·) − β0(t, θ̂0). Then by the similar arguments as those of
Proposition 1, the asymptotic bias and variance of estimating θ0 is negligible in the current setting
and hence testing H̃0 is equivalent to testing

H̆0: β∗(·) = 0 versus H̆a : β∗(·) �= 0.

Then we can perform λ∗
n to testing H̆0 with transformed regression coefficients β∗(·) and re-

sponse y̆i = yi − x�
i β0(t, θ̂0). Note that the local linear estimator of β∗(·) has no bias under H̆0

and we can avoid the notorious problem of bias estimation .
As mentioned in Fan and Jiang [14], a choice of larger bandwidth favors smoother alternatives

and a smaller bandwidth tends to detect less smooth alternatives. Thanks to the introduction of
the averaged test, the sensitivity of the test to the choice of bandwidth is alleviated due to the
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introduction of a group of bandwidths. On the other hand, the correlation of λn between nearby
bandwidths are usually quite high and hence in practice one only needs to average the test over
a grid of relatively separated bandwidths. Zhang [41] found that the correlation between λn(h)

and λn(ch) is quite high for c = 1.3. As suggested by Fan and Jiang [14], here we recommend
choosing the grid of three bandwidths b̃n/1.5, b̃n and b̃n × 1.5 to represent small, medium and
large bandwidths and average the test over the latter grid. Here b̃n = b∗

n × n−1/45 and b∗
n is the

optimal bandwidth for nonparametric curve estimation.

4.3. The robust wild bootstrap

A direct implementation of the asymptotic distribution in Theorem 3 may not perform satisfacto-
rily in practice due to the following two reasons. First, the convergence rate of test statistic equals
O(n−1/9) when bandwidth bn is chosen optimally. The rate is quite slow and hence the asymp-
totic approximation may not be accurate for moderate samples. Second, as we can see from the
proof of Lemma 7 in Section 6, the asymptotic normal approximation is particularly rough at
the boundaries of the time interval for finite samples. As a remedy, we observe the following
proposition.

Proposition 4. Let the bandwidth range be [cminn
−γ , cmaxn

−γ ] for some 0 < cmin < cmax < ∞.
Suppose that either (1): β0(·) is a linear function or (2): γ > 2/9. Then under H0, condition (A)
and the assumption that γ < 1/4, on a possibly richer probability space, there exist i.i.d. p-
dimensional standard Gaussian random vectors V1, . . . , Vn, such that

λ∗
n = �n + oP

(√
nγ

)
, (22)

where

�n =
∫ cmax

cmin

{
2

n∑
i=1

Ṽ �
i

[
ESn,n(s)(ti)

]−1T̃n,n(s)(ti ) −
n∑

i=1

[
z�
i

[
ESn,n(s)(ti )

]−1T̃n,n(s)(ti )
]2

}
ds

with n(s) = sn−γ , zi = (x�
i ,0�

p )�, Ṽi = (V �
i 
1/2(ti),0�

p )�, T̃n,b(t) = (T̃�
n,0,b(t), T̃�

n,1,b(t))
�

and

T̃n,l,b(t) = (nb)−1
n∑

i=1


1/2(ti)Vi

[
(ti − t)/b

]l
Kb(ti − t), l = 0,1. (23)

Proposition 4 follows easily from (30) and Lemma 5 in Section 6. Details are omitted. The
latter proposition claims that λ∗

n can be well approximated by a Gaussian quadratic form �n.
In particular, we observe from the proofs in Section 6 that the approximation is accurate at the
boundaries due to the fact that it directly mimics the form of the test statistic. When implement-
ing λ∗

n, we recommend generating a large (say of size 1000) sample of i.i.d. copies of �n and
use the resulting empirical distribution to approximate that of λ∗

n under the null hypothesis and
obtain the p-value of the test.
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As we suggested in Section 4.2, in practice, one usually uses a grid of bandwidths B =
{cminn

−γ = b1 < b2 < · · · < bM = cmaxn
−γ } and calculate λ∗

n(B) = ∑M
i=1(RSS0 − RSSa(bi)).

To perform wild bootstrap in those cases, one compares λ∗
n(B) to the simulated quantiles of

�n(B) :=
M∑

j=1

{
2

n∑
i=1

Ṽ �
i

[
ESn,bj

(ti)
]−1T̃n,bj

(ti) −
n∑

i=1

[
z�
i

[
ESn,bj

(ti)
]−1T̃n,bj

(ti)
]2

}

to calculate the p-value of the test. In Section 5, we shall conduct a simulation study to com-
pare the finite sample performance of the wild bootstrap and the direct implementation of the
asymptotic distribution.

If one is interested in the semiparametric testing problem H01 versus Ha1 in (13), then the
corresponding averaged test is

λ∗
1n =

∫ cmax

cmin

(
RSS1

(
zn−γ

) − RSSa

(
zn−γ

))
dz. (24)

Write εi = ([ε(1)
i ]�, [ε(2)

i ]�)� and Vi = ([V (1)
i ]�, [V (2)

i ]�)�, where ε
(1)
i and V

(1)
i are p1 di-

mensional. Define S(2)
n,b , S(2)

n,l,b , z(2)
i , Ṽ

(2)
i , T(2)

n T(2)
nl , T̃(2)

n , T̃(2)
nl and �

(2)
n in the same way as their

counterparts without the superscript (2) with xi , εi , 
(t) and Vi therein replaced by x(2)
i , ε

(2)
i ,


22(t) and V
(2)
i , respectively. We have the following proposition.

Proposition 5. Suppose that 1/4 > γ > 2/9. Then under H01 and condition (A), on a possi-
bly richer probability space, there exist i.i.d. p-dimensional standard Gaussian random vectors
V1, . . . , Vn, such that

λ∗
1n = �n − �(2)

n + oP

(√
nγ

)
. (25)

Note that �n −�
(2)
n is a quadratic form of V1, . . . , Vn. By Proposition 5, in practice, one could

generate a large sample of i.i.d. copies of �n − �
(2)
n to obtain the p-value of testing H01.

4.4. Long-run covariance matrix estimation

By Lemma 9 in Section 6, ESn,n(s)(ti) in Proposition 4 can be well approximated by Sn,n(s)(ti ).
Therefore, in order to implement the wild bootstrap, one only needs to estimate the long-run
covariance matrix 
(·). Here we suggest using the local lag window estimate of 
(·) proposed
in Zhou and Wu [43]. For the sake of completeness, we will briefly introduce the estimator here.
We refer to the latter paper for more details including the derivation of convergence rates of the
estimator and the choice of smoothing parameters.

Define L̂i := xi ε̂i , where ε̂i ’s are the residuals under the alternative. For a window size m and
a bandwidth τn, 
(·) can be estimated by


̂(·) =
n∑

i=1

ω(·, i)�i where ω(·, i) = Kτn(ti − ·)∑n
j=1 Kτn(tj − ·)
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and �i = (
∑m

j=−m L̂i+j )(
∑m

j=−m L̂�
i+j )/(2m + 1). Zhou and Wu [43] showed that 
̂(t) is al-

ways positive semidefinite and has convergence rate O(n−2/7) when m = O(n2/7) and τn =
O(n−1/7).

5. Simulation studies

In this section, we shall design simulations to study the accuracy of the wild bootstrap procedure
of the paper and compare it with that of the bootstrap procedure of Fan and Jiang [14] and
the method of direct implementation of the asymptotic distribution in (9). Let us consider the
following model

yi = β1(ti) + β2(ti)x2i + εi (26)

and the test H0: β1(·) = β2(·) = 0. The following four scenarios are considered in order to
investigate the effects of endogeneity, non-stationarity and temporal dependence.

Scenario (a). In this case x2i ’s are i.i.d. exponential random variables with mean 1 and εi ’s
are i.i.d. standard normal. The two processes {x2i} and {εi} are independent. The latter design
satisfies the conditions in Fan, Zhang and Zhang [15] and hence it is expected that the bootstrap
procedure in Fan and Jiang [14] will work in this case.

Scenario (b). In this scenario x2i ’s are i.i.d. exponential random variables with mean 1 and
εi = x2iζi , where ζi ’s are i.i.d. standard normal and are independent of {x2i}. In scenario (b) we
are interested in investigating the effect of endogeneity on the behavior of GLRT.

Scenario (c). Let x2i ’s be independent student t random variables and the degrees of freedom
of x2i = 5 + 10ti . Let εi = exp(−1/ti)/(100t4

i )ζi , where ζi ’s are i.i.d. standard normal. Further
let x2i ’s and εi ’s be independent. Note that {εi} is a locally stationary process with time-varying
variance and {x2i} is locally stationary process with smoothly varying tail index. In this case, we
are investigating the effect of non-stationarity on the behavior of GLRT.

Scenario (d). Let x2i = εiεi−1, where εi ’s are i.i.d. standard normal. Let εi = 0.5εi−1 + ζi ,
where ζi ’s are i.i.d. standard normal. Further let {εi} be independent of {ζi}. Note {x2i} and {εi}
are two stationary weakly dependent processes. In this case we are interested in investigating the
effect of temporal dependence on the behavior of GLRT.

We consider two different sample sizes, n = 200 and 400. We compare three different methods,
namely the robust wild bootstrap test (22) (WILD), test based on the asymptotic distribution (9)
(ASYM) and the residual bootstrap test of Fan and Jiang [14] (IID). Both the single bandwidth
test λn in (3) and the suggested averaged test λ∗

n in (18) are considered. For the averaged test,
the bandwidth ranges are selected as [b̃n/1.5,1.5b̃n] according to the discussion in Section 4.2.
To investigate the sensitivity of the accuracy of the wild bootstrap method on the choice of band-
width, three different bandwidths, namely 0.15,0.25 and 0.35 are considered in the simulation.
Based on 500 replications, the simulated type I error rates at 10% nominal level are summarized
in Table 1 below.

We observe from Table 1 that, for the robust wild bootstrap, the simulated type I errors of the
averaged test and the single bandwidth test are reasonably close to the nominal and the perfor-
mance is stable for all four cases when n = 400. For n = 200, the robust bootstrap is slightly
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Table 1. Simulated type I error rates (in percentage) for the wild bootstrap test (22) (WILD), test based
on the asymptotic distribution (9) (ASYM) and the bootstrap test of Fan and Jiang [14] (IID) with nominal
level 10% under scenarios (a), (b), (c) and (d). For the averaged test λ∗

n, the bandwidth range is selected as
[b̃n/1.5,1.5b̃n]. Series length n = 200 and 400 with 500 replicates

n = 200 n = 400

Method (a) (b) (c) (d) (a) (b) (c) (d)

Averaged test λ∗
n

WILD b̃n = 0.15 7.5 7.4 10.4 7.1 8.1 8 9.7 9.1
WILD b̃n = 0.25 8.5 8.15 10.2 7.7 8.5 8.4 9.8 9.7
WILD b̃n = 0.35 8.9 8.7 10 7.7 8.7 9.1 9.2 9.8
ASYM b̃n = 0.15 35.4 14.4 18.8 28.2 38.3 18.5 15.0 33
ASYM b̃n = 0.25 39.1 18.5 19.4 33.3 39.9 21.2 17.8 36.3
ASYM b̃n = 0.35 44.1 21.4 18.0 36.2 44.5 23.8 20.7 38.4
IID b̃n = 0.15 10.4 83.6 20.5 68.8 11.9 87.7 15.7 73.3
IID b̃n = 0.25 11.4 79.6 19.1 61.9 9.9 82.7 17.9 63.8
IID b̃n = 0.35 11.0 74.3 17.8 55.9 10.2 78.8 19.8 56.8

Single bandwidth test λn

WILD bn = 0.15 5.0 5.8 10.2 5.8 8.6 7.2 11.2 9.4
WILD bn = 0.25 8.2 7.8 9.4 8.8 9.2 8.2 10.2 11.6
WILD bn = 0.35 9.8 9.2 9.0 8.2 11.2 9.6 11.2 11.4
ASYM bn = 0.15 32.2 13.2 17.8 27.8 27.4 16.8 13.8 30
ASYM bn = 0.25 36.2 19.6 20.4 36.8 29 20.2 16.8 36.6
ASYM bn = 0.35 43.6 21.2 20.4 38.8 34 22 18 38
IID bn = 0.15 8.2 86.8 20.8 73.2 10.8 89 15.2 76.2
IID bn = 0.25 7.8 82.2 20.6 63 9.4 80.2 18 63.4
IID bn = 0.35 10.4 76.2 17.4 55.6 12 77.2 17.8 56.6

anti-conservative in cases (a), (b) and (d) for small bandwidths. As we expected, the averaged
test performs more stably than the single bandwidth test. On the other hand, we observe that tests
based on the asymptotic distribution do not perform well for moderately large samples. As we
discussed in Section 4.3, the reason is due to the slow convergence of the test statistic and the
rough approximation of the asymptotic distribution at the boundaries. The residual wild boot-
strap performs slightly better than our robust wild bootstrap for i.i.d. data without endogeneity.
However, we observe that the residual bootstrap is no longer consistent under non-stationarity,
temporal dependence or endogeneity, which is consistent with our theoretical findings.

6. Proofs

Note that under the null hypothesis H0,

RSSa − RSS0 = 2
n∑

i=1

x�
i εi

(
β(ti) − β̂(ti)

) +
n∑

i=1

{
x�
i

(
β(ti) − β̂(ti)

)}2 := 2In + IIn. (27)
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On the other hand, by (5),

Sn(t)
(
η̂(t) − η(t)

) =
(

b2
nSn,2(t)

(
β ′′(t) + o(1)

)
/2

b2
nSn,3(t)

(
β ′′(t) + o(1)

)
/2

)
+

(
Tn,0(t)

Tn,1(t)

)
:= Bn(t) + Tn(t), (28)

where η(t) = (β�(t), bnβ
′�(t))�, and

Tn,l(t) = r2
n

n∑
i=1

xiεi

[
(ti − t)/bn

]l
Kbn(ti − t), l = 0,1, . . .

with rn := 1/
√

nbn. In (28), Bn(t) corresponds to the bias of the local linear estimate at time t .
Lemmas 1 and 2 below control the asymptotic influence of the bias term Bn(·) on RSSa − RSS0.

Lemma 1. Define zi = (x�
i ,0�

p )�, where 0p is the column vector of p zeros. Under condi-

tion (A), we have −In = Dn1 + OP(
√

nb2
n), where Dn1 := ∑n

i=1 z�
i εiS−1

n (ti)Tn(ti).

Proof. By (27) and (28), we have

−In − Dn1 =
n∑

i=1

z�
i εiS−1

n (ti)Bn(ti).

Define IDn1 = E[(−In − Dn1)
2|Fn] and Pi (·) = E(·|Gi ) − E(·|Gi−1). Recall that Gi =

(. . . , ξi−1, ξi). Using the facts that H(t, Gi ) = ∑i
j=−∞ PjH(t, Gi ) and Pi and Pj are orthogonal

for i �= j , elementary calculations show that

IDn1 =
n∑

i=1

n∑
j=1

n∑
k=−∞

E
[

PkH(ti , Gi )PkH(tj , Gj )
]

× V (ti, Fi )S−1
n (ti)Bn(ti)V (tj , Fj )S−1

n (tj )Bn(tj ).

Let δH (k,p) = 0 if k < 0. Note that

n∑
k=−∞

∣∣E[
PkH(ti , Gi )PkH(tj , Gj )

]∣∣ ≤
n∑

k=−∞

∥∥PkH(ti , Gi )
∥∥∥∥PkH(tj , Gj )

∥∥
≤

n∑
k=−∞

δH (i − k,2)δH (j − k,2)

≤ C
(|i − j | + 1

)−2
.

On the other hand, by Lemma 9, the Hölder’s inequality and similar arguments as those of
Lemma 6 in Zhou and Wu [43], we have

E
∣∣V (ti , Fi )S−1

n (ti)Bn(ti)V (tj , Fj )S−1
n (tj )Bn(tj )

∣∣
≤ ∥∥V (ti , Fi )

∥∥
4

∥∥S−1
n (ti)

∥∥
8

∥∥Bn(ti)
∥∥

8

∥∥V (tj , Fj )
∥∥

4

∥∥S−1
n (tj )

∥∥
8

∥∥Bn(tj )
∥∥

8 ≤ Cb4
n.
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Therefore, EIDn1 ≤ C
∑n

i=1
∑n

j=1(|i − j | + 1)−2b4
n ≤ Cnb4

n. Note that E(−In − Dn1)
2 =

EIDn1. Therefore, this lemma follows. �

Lemma 2. Under condition (A) and the assumption that nb
5/2
n → ∞, we have

IIn = Dn2 + nb4
nμ

2
2

4

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt + oP

(
nb4

n

)
,

where Dn2 := ∑n
i=1{z�

i S−1
n (ti)Tn(ti)}2.

Proof. By (27) and (28), we have

IIn − Dn2 =
n∑

i=1

(
z�
i S−1

n (ti)Bn(ti)
)2 + 2

n∑
i=1

z�
i S−1

n (ti)Bn(ti)z�
i S−1

n (ti)Tn(ti)

:= ID∗
n2 + 2ID∗∗

n2 .

By Lemma 9 and the Hölder’s inequality, it follows that

ID∗
n2 −

n∑
i=1

{
z�
i

[
ESn(ti)

]−1Bn(ti)
}2 = OP

(
nb4

n/
√

nbn

)
.

By condition (A4) and the similar arguments as those in the proof of Lemma 1, we have

n∑
i=1

{
z�
i

[
ESn(ti)

]−1Bn(ti)
}2 − E

[
n∑

i=1

{
z�
i

[
ESn(ti)

]−1Bn(ti)
}2

]
= OP

(√
nb4

n

)
.

It is easy to see that, for i = 1,2, . . . , n,

E
(
z�
i

[
ESn(ti)

]−1Bn(ti)
)2 − b4

nE

(
z�
i

[
ESn(ti)

]−1
(

Sn,2(ti)β
′′(ti)/2

Sn,3(ti)β
′′(ti)/2

))2

= o
(
b4
n

)
.

Additionally, by Lemma 9 and simple algebra, we have

n∑
i=1

E

(
z�
i

[
ESn(ti)

]−1
(

Sn,2(ti)β
′′(ti)/2

Sn,3(ti)β
′′(ti)/2

))2

= nμ2
2

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt/4 + o(n).

Therefore, ID∗
n2 = nb4

nμ
2
2

∫ 1
0 [β ′′(t)]�M(t)β ′′(t)dt/4 + op(nb4

n). Furthermore,

ID∗∗
n2 = r2

n

n∑
j=1

n∑
i=1

z�
i S−1

n (ti)Bn(ti)z�
i S−1

n (ti)xjKbn(ti − tj )εj .

Recall that rn = 1/
√

nbn. Following the similar arguments as those in the proof of Lemma 1, we
have ID∗∗

n2 = OP(
√

b3
n) = oP(nb4

n). Details are omitted. Hence, the lemma follows. �
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Lemma 3. Under condition (A) and the assumption that nb3
n → ∞, we have

Dn1 = D̄n1 + oP(1/
√

bn),

where D̄n1 = ∑n
i=1 z�

i εi[ESn(ti)]−1Tn(ti).

Proof. Let IDn1 = Dn1 − D̄n1 and ISn(t) = S−1
n (t) − [ESn(t)]−1. Then

IDn1 =
n∑

i=1

z�
i εiISn(ti)Tn(ti).

Let An,k = ∑k
i=1 z�

i εiISn(ti) and An,0 = 0. Then by Lemma 9 and the similar arguments as
those of Lemma 1, it is easy to show that max1≤k≤n ‖An,k‖4 ≤ Crn

√
n. Note that

IDn1 =
n∑

i=1

(An,i − An,i−1)Tn(ti) =
n−1∑
i=1

An,i

(
Tn(ti) − Tn(ti−1)

) + An,nTn(tn).

By the similar arguments as those of Lemma 1, we have

max
1≤i≤n

∥∥Tn(ti) − Tn(ti−1)
∥∥

4 ≤ Cr3
n (29)

and ‖Tn(tn)‖4 = O(rn). Therefore,

‖IDn1‖ ≤
n−1∑
i=1

‖An,i‖4
∥∥Tn(ti) − Tn(ti−1)

∥∥
4 + ‖An,n‖4

∥∥Tn(tn)
∥∥

4

≤ C

(
n−1∑
i=1

rn
√

nr3
n + rn

√
nrn

)
= O

(
1/

(√
nb2

n

)) = o(1/
√

bn).

Therefore, the lemma follows. �

Lemma 4. Under condition (A) and the assumption that nb3
n → ∞, we have

Dn2 = D̄n2 + oP(1/
√

bn),

where D̄n2 = ∑n
i=1{z�

i [ESn(ti)]−1Tn(ti)}2.

Proof. Note that Dn2 − D̄n2 = ∑n
i=1 �1(i)�2(i), where �1(i) = z�

i (S−1
n (ti) + [ESn(ti)]−1) ×

Tn(ti) and �2(i) = z�
i (S−1

n (ti) − [ESn(ti)]−1)Tn(ti).

Let S�1(i) = ∑i
j=1 �1(i) for 1 ≤ i ≤ n and S�1(0) = 0. Then

Dn2 − D̄n2 =
n∑

i=1

(
S�1(i) − S�1(i)

)
�2(i) =

n−1∑
i=1

S�1(i)
(
�2(i) − �2(i + 1)

) + S�1(n)�2(n).
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Note that

S�1(i) = r2
n

n∑
k=1

i∑
j=1

z�
j

(
S−1

n (tj ) + [
ESn(tj )

]−1)
Kbn(tk − tj )

(
xkεk

xkεk

[
(tk − tj )/bn

])

= r2
n

n∑
k=1

�1(i, k)εk + r2
n

n∑
k=1

�2(i, k)εk,

where

�1(i, k) =
i∑

j=1

z�
j

(
S−1

n (tj ) + [
ESn(tj )

]−1)
Kbn(tk − tj )z�

k ,

�2(i, k) =
i∑

j=1

z�
j

(
S−1

n (tj ) + [
ESn(tj )

]−1)
Kbn(tk − tj )

(
0�
p ,x�

k

)�
.

By Lemma 9 and the Hölder’s inequality, maxi‖�1(i, k)‖ ≤ Cnbn. Hence by similar condition-
ing arguments as those in the proof Lemma 1,

r2
n max

i

∥∥∥∥∥
n∑

k=1

�1(i, k)εk

∥∥∥∥∥ = O(
√

n).

Similarly, r2
nmaxi‖∑n

k=1 �2(i, k)εk‖ = O(
√

n). Hence, maxi‖S�1(i)‖ = O(
√

n). By similar ar-
guments, we have

max
i

∥∥�2(i) − �2(i + 1)
∥∥ = O

(
r4
n

)
and

∥∥�2(n)
∥∥ = O

(
r2
n

)
.

Therefore

E|Dn2 − D̄n2| ≤
n−1∑
i=1

∥∥S�1(i)
∥∥∥∥�2(i) − �2(i + 1)

∥∥ + ∥∥S�1(n)
∥∥∥∥S�2(n)

∥∥
= O

(
1/

(√
nb2

n

)) = o(1/
√

bn).

The lemma follows. �

Lemma 5. Under condition (A) and the assumption that nb3
n → ∞, we have

D̄n2 = �n + oP(1/
√

bn),

where �n = ∑n
i=1 T�

n (ti)[ESn(ti)]−1
E[ziz�

i ][ESn(ti)]−1Tn(ti).
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Proof. Note that D̄n2 = ∑n
i=1 T�

n (ti)[ESn(ti)]−1ziz�
i [ESn(ti)]−1Tn(ti). Therefore

D̄n2 − �n =
n∑

i=1

T�
n (ti)�n(i),

where �n(i) = [ESn(ti)]−1{ziz�
i − E[ziz�

i ]}[ESn(ti)]−1Tn(ti). Note that

i∑
j=1

�n(j) = r2
n

n∑
k=1

i∑
j=1

[
ESn(tj )

]−1{zj z�
j − E

[
zj z�

j

]}[
ESn(tj )

]−1

× Kbn(tk − tj )

(
xkεk

xkεk

[
(tk − tj )/bn

])
.

By the short memory property of xi in condition (A4) and similar arguments as those in the proof
of Lemma 1, we have

max
i

∥∥∥∥∥
i∑

j=1

[
ESn(tj )

]−1{zj z�
j − E

[
zj z�

j

]}[
ESn(tj )

]−1
Kbn(tk − tj )

∥∥∥∥∥ = O(
√

nbn).

Hence by similar conditioning arguments as those in the proof of Lemma 1, we have

max
i

∥∥∥∥∥
i∑

j=1

�n(j)

∥∥∥∥∥ = O(
√

nrn).

Together with (29) and the summation by parts technique used in Lemma 3, it follows that
E|D̄n2 − �n| = O(1/(

√
nb2

n)) = o(1/
√

bn). The lemma follows. �

Lemma 6. Assume condition (A). Then on a possibly richer probability space, there exist i.i.d
standard p dimensional Gaussian random vectors V1, . . . , Vn, such that∣∣�n − �∗

n

∣∣ + ∣∣D̄n1 − D̄∗
n1

∣∣ = OP

(
(logn)3/2/

(
n1/4b

3/2
n

))
, (30)

where

�∗
n =

n∑
i=1

T̃�
n (ti)

[
ESn(ti)

]−1
E

[
ziz�

i

][
ESn(ti)

]−1T̃n(ti),

D̄∗
n1 =

n∑
i=1

Ṽ �
i

[
ESn(ti)

]−1T̃n(ti).

Proof. Recall the definitions of Ṽi , T̃n(t) and T̃n,l(t) in Proposition 4. We will only prove
�n − �∗

n = OP((logn)3/2/(n1/4b
3/2
n )) since D̄n1 − D̄∗

n1 = OP((logn)3/2/(n1/4b
3/2
n )) follows by
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similar arguments. Note that

�n =
n∑

i=1

T�
n (ti)

[
ESn(ti)

]−1
E

[
ziz�

i

][
ESn(ti)

]−1Tn(ti) :=
n∑

i=1

T�
n (ti)�̃n(i).

By Corollaries 1 and 2 of Wu and Zhou [39], on a possibly richer probability space, there exist
i.i.d p dimensional standard Gaussian random vectors V1, . . . , Vn, such that

max
1≤i≤n

|�i | = OP

(
n1/4(logn)3/2), (31)

where �i = ∑i
j=1(εj xj − 
1/2(tj )Vj ). Write �

(1)
n = ∑n

i=1 T̃�
n (ti)�̃n(i). Then∣∣�n − �(1)

n

∣∣
=

∣∣∣∣∣
n∑

i=1

[
T�

n (ti) − T̃�
n (ti)

]
�̃n(i)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

[(
T�

n,0(ti),0�
p

) − (
T̃�

n,0(ti),0�
p

)]
�̃n(i) + [(

0�
p ,T�

n,1(ti)
) − (

0�
p , T̃�

n,1(ti)
)]

�̃n(i)

∣∣∣∣∣
:=

∣∣∣∣∣
n∑

i=1

[
W�

n,0(ti)�̃n(i) + W�
n,1(ti)�̃n(i)

]∣∣∣∣∣.
Write �̃i = (��

i ,0�
p )� and �̃0 = 0. Note that

n∑
i=1

W�
n,0(ti)�̃n(i) = r2

n

n∑
i=1

n∑
k=1

(�̃k − �̃k−1)Kbn(tk − ti )�̃n(i)

= r2
n

n∑
k=1

(�̃k − �̃k−1)

n∑
i=1

Kbn(tk − ti )�̃n(i)

:= r2
n

n∑
k=1

(�̃k − �̃k−1)�n(k).

By the summation by parts formula,∣∣∣∣∣
n∑

k=1

(�̃k − �̃k−1)�n(k)

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=1

�̃k

(
�n(k) − �n(k + 1)

) + �̃n�n(n)

∣∣∣∣∣
≤ max

1≤i≤n
|�̃i |

(
n−1∑
k=1

∣∣�n(k) − �n(k + 1)
∣∣ + ∣∣�n(n)

∣∣).
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By the smoothness of K(·) and the similar arguments as those in the proof of Lemma 1, it follows
that

max
1≤k≤n−1

∥∥�n(k) − �n(k + 1)
∥∥ = O(rn),

∥∥�n(n)
∥∥ = O(1/rn).

Therefore by (31), we have∣∣∣∣∣
n∑

i=1

W�
n,0(ti)�̃n(i)

∣∣∣∣∣ = OP

{
n1/4 log3/2 n

(
nr3

n + rn
)} = OP

(
(logn)3/2/

(
n1/4b

3/2
n

))
.

Similarly, ∣∣∣∣∣
n∑

i=1

W�
n,1(ti)�̃n(i)

∣∣∣∣∣ = OP

(
(logn)3/2/

(
n1/4b

3/2
n

))
.

Hence, |�n − �
(1)
n | = OP((logn)3/2/(n1/4b

3/2
n )). Note that∣∣∣∣∣�(1)

n −
n∑

i=1

T̃�
n (ti)

[
ESn(ti)

]−1
E

[
ziz�

i

][
ESn(ti)

]−1T̃n(ti)

∣∣∣∣∣ =
n∑

i=1

�̂n(ti)
[
Tn(ti) − T̃n(ti)

]
,

where �̂n(ti) = T̃�
n (ti)[ESn(ti)]−1

E[ziz�
i ][ESn(ti)]−1. Hence by similar arguments, it follows

that ∣∣∣∣∣
n∑

i=1

�̂n(ti)
[
T̃n(ti) − Tn(ti)

]∣∣∣∣∣ = OP

(
(logn)3/2/

(
n1/4b

3/2
n

))
.

The lemma follows. �

Lemma 7. Under condition (A) and the assumption that bn → 0, nbn → ∞, we have

√
bn

{
�∗

n − 2D̄∗
n1 − K̃(0)

∫ 1

0
tr
[
H(t)H�(t)

]
dt/bn

}
⇒ N

(
0, σ 2).

Proof. Note that both �∗
n and D∗

n1 are quadratic forms of i.i.d. standard Gaussian random vec-
tors. By Lemma 9 and similar arguments as those in the proof of Lemma 5, it can be shown that
�∗

n − �∗∗
n = OP(1) and D̄∗

n1 − D̄∗∗
n1 = OP(1), where

�∗∗
n =

n∑
i=1

T̃�
n,0(ti)M

−1(ti)T̃n,0(ti),

D̄∗∗
n1 =

n∑
i=1

V �
i 
1/2(ti)M

−1(ti)T̃n,0(ti).



102 Z. Zhou

Note that

�∗∗
n = r4

n

n∑
k=1

n∑
r=1

V �
k 
1/2(tk)

[
n∑

i=1

M−1(ti)Kbn(tk − ti )Kbn(tr − ti )

]

1/2(tr )Vr

and that M−1(ti)Kbn(tk − ti )Kbn(tr − ti ) = 0 if |tk − tr | ≥ 2bn or min{|ti − tr |, |ti − tk|} ≥ bn.
Hence by Lemma 9 and similar arguments as those in the proof of Lemma 5, it follows that

�∗∗
n − �∗∗∗

n = O(1) where �∗∗∗
n = r2

n

n∑
k=1

n∑
r=1

V �
k H̃ (tk)K ∗ Kbn(tk − tr )H̃

�(tr )Vr ,

where H̃ (·) = 
1/2(·)M−1/2(·). Similarly,

D∗∗
n1 − D∗∗∗

n1 = O(1) where D∗∗∗
n1 = r2

n

n∑
k=1

n∑
r=1

V �
k H̃ (tk)Kbn(tk − tr )H̃

�(tr )Vr .

Using the fact that Vi ’s are i.i.d. standard Gaussian, elementary calculations show that

√
bn

{
�∗∗∗

n − 2D̄∗∗∗
n1 − K̃(0)

∫ 1

0
tr
[
H(t)

]
dt/bn

}
⇒ N

(
0, σ 2).

The lemma follows. �

Lemma 8. Under conditions (A1)–(A7), we have∑n
i=1 ε2

i

n
=

∫ 1

0
ϑ2(t)dt + OP(1/

√
n),

where ϑ2(t) = E[V (t, F0)]2.

Proof. Note that Eε2
i = ϑ2(ti). Therefore

n∑
i=1

[
ε2
i − ϑ2(ti)

] =
n∑

k=−∞

n∑
i=1

P ∗
k ε2

i ,

where P ∗
i (·) = E(·|Ri ) − E(·|Ri−1). Since P ∗

i and P ∗
j are orthogonal for i �= j , we have∥∥∥∥∥

n∑
i=1

[
ε2
i − ϑ2(ti)

]∥∥∥∥∥
2

=
n∑

i=1

n∑
j=1

n∑
k=−∞

E
[

P ∗
k ε2

i P ∗
k ε2

j

] ≤
n∑

i=1

n∑
j=1

n∑
k=−∞

∥∥P ∗
k ε2

i

∥∥∥∥P ∗
k ε2

j

∥∥.

Let (χ∗
k ) be an i.i.d. copy of (χk). By Theorem 1 in Wu [38], ‖P ∗

k ε2
i ‖ ≤ ‖ε2

i − ε2
i,k‖, where εi,k =

(Rk−1, χ
∗
k ,χk+1, . . . , χi) if k ≤ i and εi,k = εi otherwise. By the Cauchy–Schwarz inequality,
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we have for i ≥ k∥∥ε2
i − ε2

i,k

∥∥
≤ ‖εi + εi,k‖4‖εi − εi,k‖4 ≤ C

∥∥H(ti, Gi )V (ti , Fi ) − H(ti, Gi,k)V (ti , Fi,k)
∥∥

4

≤ C
{∥∥H(ti, Gi )

∥∥
4

∥∥(V (ti , Fi ) − V (ti , Fi,k)
∥∥

4 + ∥∥V (ti, Fi,k)
∥∥

4

∥∥H(ti, Gi ) − H(ti, Gi,k)
∥∥

4

}
≤ C(i − k + 1)−2.

Therefore,∥∥∥∥∥
n∑

i=1

[
ε2
i − ϑ2(ti)

]∥∥∥∥∥
2

≤ C

n∑
i=1

n∑
j=1

min(i,j)∑
k=−∞

(i − k + 1)−2(j − k + 1)−2 ≤ Cn.

Hence, ‖∑n
i=1[ε2

i − ϑ2(ti)]‖ = O(
√

n). Note that
∑n

i=1 ϑ2(ti) = n
∫ 1

0 ϑ2(t)dt + O(1). The
lemma follows. �

Lemma 9. Recall that μh = ∫ 1
−1 xhK(x)dx. Under condition (A), we have

sup
0≤t≤1

∥∥S−1
n (t) − [

ESn(t)
]−1∥∥

8 = O

(
1√
nbn

)
.

Additionally, sup0≤t≤1 |[ESn(t)]−1| = O(1). For h = 0,2, we have

sup
bn≤t≤1−bn

∣∣[ESn,h(t)
]−1 − [

μhM(t)
]−1∣∣ = O

(
b2
n

)
.

Proof. The proof follows by the similar arguments as those of Lemma 6 in Zhou and Wu [43].
Details are omitted. �

Proof of Theorem 1. Theorem 1 follows from Lemmas 1–8 above and the Slutsky’s theorem. �

Proof of Theorem 2. Recall that εi = ([ε(1)
i ]�, [ε(2)

i ]�)� and Vi = ([V (1)
i ]�, [V (2)

i ]�)�, where

ε
(1)
i and V

(1)
i are p1 dimensional. Note that, under H01, we have a local linear regression of y∗

i on

x(2)
i . Recall again the definitions of S(2)

n , S(2)
nl , z(2)

i , Ṽ
(2)
i , T(2)

n , T(2)
nl , T̃(2)

n and T̃(2)
nl in Section 4.3.

Following very similar arguments as those in Lemmas 1 to 8, it can be shown that

RSS1 − RSS0 − B(2)
n = �(2)∗

n − 2D̄
(2)∗
n1 + oP(1/

√
bn), (32)

where B(2)
n = nb4

nμ2
2

4

∫ 1
0 {[β(2)(t)]′′}�M22(t)[β(2)(t)]′′ dt + oP(nb4

n),

�(2)∗
n =

n∑
i=1

[
T̃(2)

n (ti)
]�[

ES(2)
n (ti)

]−1
E

[
z(2)
i z(2)�

i

][
ES(2)

n (ti)
]−1T̃(2)

n (ti),
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D̄
(2)∗
n1 =

n∑
i=1

Ṽ
(2)�
i

[
ES(2)

n (ti)
]−1T̃(2)

n (ti).

Note that �
(2)∗
n and D̄

(2)∗
n1 are quadratic forms of i.i.d. Gaussian vectors V1, . . . , Vn. Theorem 2

follows easily from (30) and (32). �

Proof of Proposition 1. Define Y∗ = (y∗
1 , . . . , y∗

n)� and Ỹ∗ = (ỹ∗
1 , . . . , ỹ∗

n)�. Let ε̂i and ε̃i be

the ith residual of the local linear regression of y∗
i and ỹ∗

i on x(2)
i , respectively. From (5), we can

write ε̂i = y∗
i − RiY∗ and ε̃i = ỹ∗

i − RiỸ∗, where Ri is a 1 × n vector which can be written in a
closed form (5). Note also that Ri is functionally independent of the errors εi . Hence,

R̃SS1 − RSS1 =
n∑

i=1

(
ε̃2
i − ε̂2

i

) =
n∑

i=1

(ε̃i − ε̂i )
2 + 2

n∑
i=1

ε̂i (ε̃i − ε̂i ) := I + 2II.

Let δi = −(x(1)
i )�(β

(1)
0 (ti , θ̂ ) − β

(1)
0 (ti , θ0)) and �n = (δ1, . . . , δn). Hence,

E(I ) =
n∑

i=1

‖ε̃i − ε̂i‖2 =
n∑

i=1

‖δi − Ri�n‖2.

From condition (B), it is easy to see that, for sufficiently large n,∥∥∥ max
1≤i≤n

∣∣β(1)
0 (ti , θ̂ ) − β

(1)
0 (ti , θ0)

∣∣∥∥∥
4
= O(1/

√
n).

Therefore, it is easy to derive from condition (A) that

max
1≤i≤n

‖δi‖ = O(1/
√

n) and max
1≤i≤n

‖Ri�n‖ = O(1/
√

n). (33)

Hence, I = OP(1). We now deal with II. Note that, by (28),

ε̂i = εi − (
z(2)
i

)�(
η̂(2)

(ti) − η(2)(ti)
) = εi − (

z(2)
i

)�(
S(2)

n (ti)
)−1[B(2)

n (ti) + T(2)
n (ti)

]
.

Hence,

II =
n∑

i=1

(
z(2)
i

)�(
S(2)

n (ti)
)−1B(2)

n (ti)[ε̃i − ε̂i] +
n∑

i=1

εi[ε̃i − ε̂i]

+
n∑

i=1

(
z(2)
i

)�(
S(2)

n (ti)
)−1T(2)

n (ti)[ε̃i − ε̂i]

:= II∗ + II∗∗ + II∗∗∗.
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By Hölder inequality, condition (A) and (33), the bias term

E
∣∣II∗∣∣ ≤

n∑
i=1

∥∥z(2)
i

∥∥
6

∥∥S(2)
n (ti)

−1
∥∥

6

∥∥B(2)
n (ti)

∥∥
6

[‖δi‖ + ‖Ri�n‖
] = O

(√
nb2

n

)
.

Write Ji = −(x(1)
i )� ∂β

(1)
0 (ti ,θ0)

∂θ
and let J = (J�

1 , . . . , J�
n )�. By second order Taylor expansion of

β
(1)
0 (ti , θ̂ ) at θ0 and condition (B), it is easy to see that

ε̃i − ε̂i = (Ji − RiJ)(θ̂ − θ0) + ri , (34)

with the reminder term ri satisfying max1≤i≤n ‖ri‖ = O(1/n). Therefore,

E
∣∣II∗∗∣∣ ≤

∥∥∥∥∥
n∑

i=1

εi(Ji − RiJ)

∥∥∥∥∥∥∥(θ̂ − θ0)
∥∥ + max

1≤i≤n
‖ri‖

n∑
i=1

‖εi‖

By the similar conditioning arguments as those in the proof of Lemma 1, it is easy to show that
‖∑n

i=1 εi(Ji − RiJ)‖ = O(
√

n). Hence E|II∗∗| = O(1). By similar arguments and elementary
but tedious calculations, it follows that E|II∗∗∗| = O(1). Therefore, the proposition follows. �

Proof of Proposition 2. Let RSS0 = ∑n
i=1 ε2

i . Then RSSa − RSS0 = RSSa − RSS0 −
(RSS0 − RSS0). Under the local alternative β(·) = β0(·) + n−4/9fn(·), we have

RSS0 − RSS0 = n−4/9
n∑

i=1

f�n (ti)xiεi + n−8/9
n∑

i=1

[
f�n (ti)xi

]2
.

By the similar arguments as those in the proof of Lemma 1, it is easy to show that

√
bnn

−8/9
n∑

i=1

[
f�n (ti)xi

]2 = c1/2
∫ 1

0
f�n (t)M(t)fn(t)dt + oP(1),

n∑
i=1

f�n (ti)xiεi = OP

(
n1/2).

On the other hand, by Lemmas 1–8 and the fact that β(·) = β0(·)+ n−4/9fn(·), it is easy to show
that

√
bn

{
RSSa − RSS0 − K̃(0)

bn

∫ 1

0
tr
[
H(t)

]
dt

}
− c9/2μ2

2

4

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt − c9/2μ2

2

4
F2

⇒ N
(
0, σ 2)

and RSS0/n = V + oP(1). Therefore, the proposition follows. �
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Proof of Theorem 3. A careful check of Lemmas 1 and 2 shows that the asymptotic bias of λ∗
n

B∗
n =

∫ cmax

cmin

n(zn−γ )4μ2
2

4
dz

∫ 1

0

[
β ′′(t)

]�
M(t)β ′′(t)dt + oP

(
n1−4γ

)
. (35)

Another careful check of Lemmas 3 to 8 and using Lemma 9 show that

λ∗
n − B∗

n =
∫ cmax

cmin

n∑
k=1

n∑
r=1

V �
k H̃ (tk)

[
2Kzn−γ (tk − tr )

(36)
− K ∗ Kzn−γ (tk − tr )

]
H̃�(tr )Vr/

(
nzn−γ

)
dz + oP

(
n−γ /2).

Since Vi ’s are i.i.d. standard Gaussian, a central limit theorem for λ∗
n − B∗

n can be easily derived.
Now Theorem 3 follows from (35) and (36). Details are omitted. �

Proof of Proposition 3. By the Cauchy–Schwarz inequality,∫
R

Q(cmax, y)2 dy =
∫

R

[∫ cmax

cmin

([
2K(y/z) − K ∗ K(y/z)

]
/
√

z
) × 1/

√
z dz

]2

dy

≤
∫

R

[∫ cmax

cmin

[
2K(y/z) − K ∗ K(y/z)

]2
/zdz

∫ cmax

cmin

1/zdz

]
dy

= (
log(cmax) − log(cmin)

)∫ cmax

cmin

∫
R

[
2K(y/z) − K ∗ K(y/z)

]2
/zdy dz

= (
log(cmax) − log(cmin)

)
(cmax − cmin)

∫
R

K̃2(t)dt.

Consider any fixed c ∈ (0,∞). Plugging the above inequality into (19) and letting cmax ↓ c

and cmin ↑ c, it follows that sup0<cmin<cmax<∞ β∗
α(cmin, cmax) ≥ βα(c). Hence, the proposition

follows. �
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