
Bernoulli 19(5B), 2013, 2330–2358
DOI: 10.3150/12-BEJ454

Stable mixed graphs
KAYVAN SADEGHI

Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, United Kingdom.
E-mail: sadeghi@stats.ox.ac.uk

In this paper, we study classes of graphs with three types of edges that capture the modified independence
structure of a directed acyclic graph (DAG) after marginalisation over unobserved variables and condi-
tioning on selection variables using the m-separation criterion. These include MC, summary, and ancestral
graphs. As a modification of MC graphs, we define the class of ribbonless graphs (RGs) that permits the
use of the m-separation criterion. RGs contain summary and ancestral graphs as subclasses, and each RG
can be generated by a DAG after marginalisation and conditioning. We derive simple algorithms to gen-
erate RGs, from given DAGs or RGs, and also to generate summary and ancestral graphs in a simple way
by further extension of the RG-generating algorithm. This enables us to develop a parallel theory on these
three classes and to study the relationships between them as well as the use of each class.

Keywords: ancestral graph; directed acyclic graph; independence model; m-separation criterion;
marginalisation and conditioning; MC graph; summary graph

1. Introduction

Introduction and motivation. In graphical Markov models, graphs have been used to represent
conditional independence statements of sets of random variables. Nodes of the graph correspond
to random variables and edges typically capture dependencies. Different classes of graphs with
different interpretation of independencies have been defined and studied in the literature.

One of the most important classes of graphs in graphical models is the class of directed acyclic
graphs (DAGs) [4,6]. Their corresponding Markov models, often known under the name of
Bayesian networks [8], have direct applications to a wide range of areas including economet-
rics, social sciences, and artificial intelligence. When, however, some variables are unobserved,
that is also called latent or hidden, one can in general no longer capture the implied independence
model among observed variables by a DAG. In this sense, the DAG models are not stable under
marginalisation. A similar problem occurs because DAG models are not stable under condition-
ing [2,9,16].

This makes it necessary to identify and study a class of graphs that includes DAGs and is
stable under marginalisation and conditioning in the sense that it is able to express the induced
independence model after marginalisation and conditioning through an object of the same class.
The methods that have been used to solve this problem employ three different types of edges
instead of a single type.

Three known classes of graphs have previously been suggested for this purpose in the liter-
ature. We specifically call these stable mixed graphs (under marginalisation and conditioning)
and they include MC graphs (MCGs) [5], summary graphs (SGs) [13,16], and ancestral graphs
(AGs) [10].

1350-7265 © 2013 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/12-BEJ454
mailto:sadeghi@stats.ox.ac.uk

Stable mixed graphs 2331

MCGs do not use the same interpretation of independencies, called the m-separation criterion,
as the other types of stable mixed graphs. In this paper, we use similar methods as in [5] to de-
rive a modification of the class of MCGs to use m-separation, which we call ribbonless graphs
(RGs). The class of RGs is exactly the class with three types of edges that is generated after
marginalisation over and conditioning on the node sets of a DAG. More importantly, we extend
the RG-generating algorithm to generate summary and ancestral graphs in a theoretically neat
way. These algorithms are computationally polynomial, even though we shall not go through
their computational complexity in this paper. Defining these algorithms leads to establishing a
parallel theory for the different classes, and studying the similarities, differences, and relation-
ships among them.
Structure of the paper. In the next section, we define some basic concepts of graph theory and
independence models needed in this paper.

In Section 3, we define the class of RGs, give some basic graph-theoretical definitions for
these, and define the m-separation criterion for interpretation of the independence structure on
them.

In Section 4, we formally define marginalisation and conditioning for independence models in
such a way that it conforms with marginalisation and conditioning for probability distributions.
We also formally define stable classes of graphs.

Each of the next three sections of this paper deals with one type of stable mixed graphs. We
discuss RGs in Section 5, SGs in Section 6, and AGs in Section 7. In each section, we introduce
a straightforward algorithm to generate the stable mixed graph from DAGs or from graphs of
the same type. For each type of stable mixed graph, we prove that the graphs and algorithms are
well-defined in the sense that instead of marginalising over or conditioning on a set of nodes,
by splitting the marginalisation or conditioning set into two subsets, one can marginalise over or
condition on the first subset first, and then marginalise over or condition on the second subset and
obtain the same graph. We also prove that the generated graphs induce the modified independence
model after marginalisation and conditioning, meaning that the generated classes are stable under
marginalisation and conditioning.

In Section 8, we scrutinise the relationships between the three types of stable mixed graphs. In
Section 9, we provide a discussion on the use of the different classes of stable mixed graphs.

In the Appendix, we provide the proof of lemmas, propositions, and theorems given in the
previous sections.

2. Basic definitions and concepts

Independence models and graphs. An independence model J over a set V is a set of triples
〈X,Y |Z〉 (called independence statements), where X, Y , and Z are disjoint subsets of V and Z

can be empty, and 〈∅, Y |Z〉 and 〈X,∅|Z〉 are always included in J . The independence state-
ment 〈X,Y |Z〉 is interpreted as “X is independent of Y given Z”. Notice that independence
models contain probabilistic independence models as a special case. For further discussion on
independence models, see [12].

A graph G is a triple consisting of a node set or vertex set V , an edge set E, and a relation that
with each edge associates two nodes (not necessarily distinct), called its endpoints. When nodes

2332 K. Sadeghi

i and j are the endpoints of an edge, these are adjacent and we write i ∼ j . We say the edge is
between its two endpoints. We usually refer to a graph as an ordered pair G = (V ,E). Graphs
G1 = (V1,E1) and G2 = (V2,E2) are called equal if (V1,E1) = (V2,E2). In this case we write
G1 = G2.

Notice that the graphs that we use in this paper (and in general in the context of graphical
models) are so-called labeled graphs, that is, every node is considered a different object. Hence,
for example, graph i j k is not equal to j i k.

We use the notation J G for an independence model defined over the node set of G. Among the
independence models over the node set V of a graph G, those that are of interest to us conform
with G, meaning that i ∼ j in G implies 〈i, j |C〉 /∈ J for any C ⊆ V \ {i, j}. Henceforth, we
assume that independence models J G conform with G, unless otherwise stated. Notice that
henceforth we use the notation i instead of {i} for a subset consisting of a single element i in an
independence statement.
Basic graph theoretical definitions. Here we introduce some basic graph theoretical definitions.
A loop is an edge with the same endpoints. Multiple edges are edges with the same pair of
endpoints. A simple graph has neither loops nor multiple edges.

If a graph assigns an ordered pair of nodes to each edge, then the graph is a directed graph.
We say that the edge is from the first node of the ordered pair to the second one. We use an arrow,
j � i, to draw an edge in a directed graph. We also call node j a parent of i, node i a child of
j and we use the notation pa(i) for the set of all parents of i in the graph.

A walk is a list 〈v0, e1, v1, . . . , ek, vk〉 of nodes and edges such that for 1 ≤ i ≤ k, the edge ei

has endpoints vi−1 and vi . A path is a walk with no repeated node or edge. A cycle is a walk with
no repeated node or edge except v0 = vk . If the graph is simple, then a path or a cycle can be
determined uniquely by an ordered sequence of node sets. Throughout this paper, however, we
use node sequences for describing paths and cycles even in graphs with multiple edges, but we
suppose that the edges of the path are all determined. Usually it is apparent from the context or
the type of the path which edge belongs to the path in multiple edges. We say a path is between
the first and the last nodes of the list in G. We call the first and the last nodes endpoints of the
path and all other nodes inner nodes.

A path (or a cycle) in a directed graph is direction preserving if all its arrows point to one
direction (◦ � ◦ � · · · �◦). A directed graph is acyclic if it has no direction-preserving
cycle.

If in a direction-preserving path an arrow starts at a node j and an arrow points to a node i,
then j is an ancestor of i, and i a descendant of j . We use the notation an(i) for the set of all
ancestors of i.

3. Independence model for ribbonless graphs

Loopless mixed graphs. Graphs that will be discussed in this paper are subclasses of loopless
mixed graphs. A mixed graph is a graph containing three types of edges denoted by arrows, arcs
(two-headed arrows), and lines (solid lines). Mixed graphs may have multiple edges of different
types but do not have multiple edges of the same type. We do not distinguish between i j

and j i or i ≺ �j and j ≺ � i, but we do distinguish between j � i and i �j . Thus

Stable mixed graphs 2333

there are up to four edges as a multiple edge between any two nodes. A loopless mixed graph
(LMG) is a mixed graph that does not contain any loops (a loop may be formed by a line, arrow,
or arc).
Some definitions for mixed graphs. For a mixed graph H , we keep the same terminology intro-
duced before for directed and undirected graphs. We say that i is a neighbour of j if these are
endpoints of a line, and i is a parent of j if there is an arrow from i to j . We also define that i is
a spouse of j if these are endpoints of an arc. We use the notations ne(j), pa(j), and sp(j) for
the set of all neighbours, parents, and spouses of j , respectively.

In the cases of i �j or i ≺ �j , we say that there is an arrowhead pointing to (at) j . A path
〈j = i0, i1, . . . , in = i〉 is from j to i if ji1 is either a line or an arrow from j to i1, and in−1i is
either an arc or an arrow from in−1 to i.

A V-configuration or simply Vs is a path with three nodes and two edges. In a mixed graph,
the inner node of three Vs i � t ≺ j , i ≺ � t ≺ j and i ≺ � t ≺ �j is a collider and
the inner node of all other Vs is a non-collider node in the V or more generally in a path on which
the V lies. We also call a V with collider or non-collider inner node a collider or non-collider V,
respectively. We may mention that a node is collider or non-collider without mentioning the V
or path when this is apparent from the context. Notice that originally [4] and in most texts, the
endpoints of a V are not adjacent whereas we do not use this restriction.

Two paths (including Vs or edges) are called endpoint-identical if presence or lack of ar-
rowheads pointing to endpoints on the path are the same in both. For example, i �j ,
i k ≺ �j , and i �k ≺ l ≺ �j are all endpoint-identical as there is an arrowhead
pointing to j but there is no arrowhead pointing to i on the paths.
Ribbonless graphs and its subclasses. The largest subclass of LMGs studied in this paper is the
class of ribbonless graphs.

A ribbon is a collider V 〈h, i, j 〉 such that

1. there is no endpoint-identical edge between h and j , that is, there is no hj -arc in the case
of h≺ � i ≺ �j ; there is no hj -line in the case of h � i ≺ j ; and there is no arrow
from h to j in the case of h � i ≺ �j ;

2. i or a descendant of i is an endpoint of a line or on a direction-preserving cycle.

A ribbonless graph (RG) is an LMG that does not contain ribbons as induced subgraphs.
Figure 1 illustrates ribbons 〈h, i, j 〉. Figure 2(a) illustrates a graph containing a ribbon 〈h, i, j 〉.

Figure 2(b) illustrates a ribbonless graph. Notice that 〈h, i, j 〉 is not here a ribbon since there is a
line between h and j .

Figure 1. (a) A ribbon 〈h, i, j〉, where ne(i) = ∅. (b) A ribbon 〈h, i, j〉.

2334 K. Sadeghi

Figure 2. (a) A graph that is not ribbonless. (b) A ribbonless graph.

The three classes of undirected graphs (UGs) (used for concentration graph models), bidirected
graphs (BGs) (used for covariance graph models), and DAGs are subclasses of RGs. SGs and
AGs, which are studied in this paper, are also subclasses of RGs. We use the notations RG , S G ,
A G , U G , B G and D A G for the set of all RGs, SGs, AGs, UGs, BGs and DAGs, respectively. The
common feature of all these graphs is that these all entail independence models using the same
so-called separation criterion, which is called m-separation and will be shortly defined.
The m-separation criterion for RGs. The following definition was given in [10].

Let C be a subset of the node set V of an RG. A path is m-connecting given M and C if
all its collider nodes are in C ∪ an(C) and all its non-collider nodes are in M . For two other
disjoint subsets of the node set A and B such that M = V \ A ∪ B ∪ C, we may just call the path
m-connecting given C between A and B . We say A ⊥m B|C if there is no m-connecting path
between A and B given C.

Notice that the m-separation criterion induces an independence model Jm(G) on G by A ⊥m

B|C ⇐⇒ 〈A,B|C〉 ∈ Jm(G).

4. Marginalisation, conditioning and stability

Marginal and conditional independence models. Consider an independence model J over a set
V . For M a subset of V , the independence model J after marginalisation over M , denoted by
α(J ;M,∅), is the subset of J whose triples do not contain members of M , that is,

α(J ;M,∅) = {〈A,B|D〉 ∈ J : (A ∪ B ∪ D) ∩ M = ∅

}
.

One can observe that α(J ;M,∅) is an independence model over V \ M .
For a subset C of V , the independence model after conditioning on C, denoted by α(J ;∅,C),

is

α(J ;∅,C) = {〈A,B|D〉: 〈A,B|D ∪ C〉 ∈ J and (A ∪ B ∪ D) ∩ C = ∅

}
.

One can also observe that α(J ;∅,C) is an independence model over V \ C.
Combining these definitions, for disjoint subsets M and C of V , the independence model after

marginalisation over M and conditioning on C is

α(J ;M,C) = {〈A,B|D〉: 〈A,B|D ∪ C〉 ∈ J and (A ∪ B ∪ D) ∩ (M ∪ C) = ∅

}
,

Stable mixed graphs 2335

Figure 3. (a) A directed acyclic graph G1, by which it can be shown that the class of DAGs is not stable
under marginalisation. (∈ M .) (b) A directed acyclic graph G2, by which it can be shown that the class
of DAGs is not stable under conditioning. (∈ C.)

which is an independence model over V \ (M ∪ C).
Notice here that α is a function from the set of independence models and two of their subsets to

the set of independence models. Notice also that operations for marginalisation and conditioning
commute.

Marginalisation and conditioning in probability conform with marginalisation and condition-
ing for independence models. Consider a set N = V \ (M ∪ C) and a collection of random vari-
ables (Xα)α∈N with joint density f(V \M)|C . We associate an independence model to this density.
It can be shown that if J is the associated independence model to the collection of random vari-
ables (Xα)α∈V with joint density fV then the associated independence model to (Xα)α∈N with
joint density f(V \M)|C is α(J ,M,C).
Stability under marginalisation and conditioning for RGs and its subclasses. Consider a family
of graphs T . If, for every graph G = (V ,E) ∈ T and every disjoint subsets M and C of V ,
there is a graph H ∈ T such that Jm(H) = α(Jm(G);∅,C) then T is stable under conditioning,
and if there is a graph H ∈ T such that Jm(H) = α(Jm(G);M,∅) then T is stable under
marginalisation. We call T stable (under marginalisation and conditioning) if there is a graph
H ∈ T such that Jm(H) = α(Jm(G);M,C).

Notice that if the node set of such a graph H is N then N = V \ (M ∪ C).
We shall see that RGs, SGs, AGs, UGs, and BGs are stable. On the other hand, the class of

DAGs is not stable. It can be shown that G1 in Figure 3 is a DAG whose induced marginal inde-
pendence model cannot be represented by a DAG and G2 is a DAG whose induced conditional
independence model cannot be represented by a DAG. We leave the details as an exercise to the
readers.
Stable mixed graphs. As the class of DAGs is not stable, we look for stable classes of graphs
that include the class of DAGs as a subclass. In this paper, we discuss three such types of graphs,
namely RGs (as a modification of MCGs), SGs, and AGs, and specifically call these stable mixed
graphs. We will see that in these graphs arcs are related to marginalisation and lines are related
to conditioning.

For the graph G2 ∈ T for which J G2 = α(Jm(G1);M,C), we use the notation G2 =
αT (G1;M,C). For each type of stable mixed graphs, we later precisely define αT with spe-
cific algorithms. We call αT a generating function or more specifically a T -generating function.

5. Ribbonless graphs

MC graphs and ribbonless graphs. MCGs only contain the three desired types of edges. How-
ever, these are not loopless and, in addition, in MCGs a different separation criterion is used for

2336 K. Sadeghi

inducing the independence model. However, from an MCG that can be generated by marginal-
isation and conditioning over DAGs and by a minor modification one can generate an RG that
induces the same independence model. This modification includes adding edges between pairs
of nodes connected by a ribbon such that the generated edges preserve the arrowheads at the
endpoints of the ribbon, and removing all the loops. We shall not go through the details of this
modification in this paper, but refer readers to [11].

5.1. Generating ribbonless graphs

A local algorithm to generate RGs from RGs. Here we present an algorithm to generate an RG
from a given RG and two subsets of its node set that will be marginalised over and conditioned
on. This algorithm is local in the sense that, after determining the ancestor set of the conditioning
set, it looks solely for all Vs in the graph and not for longer paths. Later in this section, we will
show that a graph generated by the algorithm is an RG and it induces the marginal and conditional
independence model of the input graph by using m-separation.

Suppose that H is an RG and consider M and C two disjoint subsets of the node set. There are
10 possible non-isomorphic Vs in an RG, displayed in Table 1. Notice that this table generates
endpoint-identical edges to the given Vs. We now define the following algorithm, derived from
[16] and [5]. See also the appendix of [13].

Algorithm 1. αRG(H ;M,C) (Generating an RG from a ribbonless graph H):
Start from H .
Generate an endpoint identical edge between the endpoints of collider Vs with inner node in

C ∪ an(C) and non-collider Vs with inner node in M , that is, generate an appropriate edge as
in Table 1 between the endpoints of every V with inner node in M or C ∪ an(C) if the edge of the
same type does not already exist.

Apply the previous step until no other edge can be generated. Then remove all nodes in M ∪C.

Table 1. Types of edge induced by Vs with inner
node in m ∈ M or s ∈ C ∪ an(C)

1 i ≺ m ≺ j generates i ≺ j

2 i ≺ m j generates i ≺ j

3 i ≺ �m j generates i ≺ j

4 i ≺ m � j generates i ≺ � j

5 i ≺ m ≺ � j generates i ≺ � j

6 i m ≺ j generates i j

7 i m j generates i j

8 i ≺ � s ≺ j generates i ≺ j

9 i ≺ � s ≺ � j generates i ≺ � j

10 i � s ≺ j generates i j

Stable mixed graphs 2337

Figure 4. (a) A directed acyclic graph G, ∈ M and ∈ C. (b) The generated graph after applying step 1
of the table. (c) The generated graph after applying step 4. (d) The generated graph after applying step 10.
(e) The generated graph after applying step 8. (f) The generated RG from G.

This method is a generalisation of the method used by [7], called moralisation, as a separation
criterion on DAGs. Notice that the order of applying steps of Table 1 in Algorithm 1 is irrelevant
since adding an edge does not destroy other Vs in the graph.

Figure 4 illustrates how to apply Algorithm 1 step by step to a DAG. We start from step 1 of
Table 1 and proceed step by step. We return to step 1 at the end if there are any applicable steps
left. Since D A G ⊂ RG , one can also use Algorithm 1 to generate an RG from a DAG. Notice
that it is not enough to simply apply steps 1, 4, and 10 of Table 1 to a DAG.
Global interpretation of the algorithm. The following lemma explains the global characteristics
of the process of marginalisation and conditioning.

Lemma 1. Let H be a ribbonless graph. There exists an edge between i and j in the ribbonless
graph αRG(H ;M,C) if and only if there exists an endpoint-identical m-connecting path given
M and C between i and j in H .

Basic properties of αRG. We show here that αRG is an RG-generating function.

Proposition 1. Graphs generated by Algorithm 1 are RGs.

Notice that for every ribbonless graph H , it holds that αRG(H ;∅,∅) = H .
Surjectivity of αRG. The following result shows that the class of RGs is the exact class of graph
that is generated after marginalisation and conditioning for DAGs.

Proposition 2. The map αRG : D A G → RG is surjective.

2338 K. Sadeghi

5.2. Two necessary properties of RG-generating functions

Here we establish the two important properties that αRG (or every generating function) must
have. In short, it must be well-defined and it must generate a stable class of graphs.
Well-definition of αRG. The following theorem shows that αRG is well-defined. This means that
instead of directly generating an RG we can split the nodes that we marginalise over and condi-
tion on into two parts, first generate the RG related to the first part, then from the generated RG
generate the desired RG related the second part.

Theorem 1. For a ribbonless graph H = (N,F) and disjoint subsets C, C1, M , and M1 of N ,

αRG
(
αRG(H ;M,C);M1,C1

) = αRG(H ;M ∪ M1,C ∪ C1).

Stability of the graphs generated by αRG. Here we introduce the second important property that
αRG must have. This property is the core idea in defining RGs and in general stable mixed graphs.
The modification applied by the function should generate a graph that induces the marginal and
conditional independence model.

Theorem 2. For a ribbonless graph H = (N,F) and disjoint subsets A, B , C, C1, and M of N ,

A ⊥m B|C1 in αRG(H ;M,C) ⇐⇒ A ⊥m B|C ∪ C1 in H.

Corollary 1. For a ribbonless graph H = (N,F) and M and C disjoint subsets of N ,

α
(

Jm(H);M,C
) = Jm

(
αRG(H ;M,C)

)
.

Corollary 2. The class of RGs is stable.

The following result has been implicitly discussed in the literature, for example, see [2].

Corollary 3. The classes of UGs and BGs are stable.

Proof. The result follows from the fact that, from UGs and BGs, Algorithm 1 generates UGs
and BGs, respectively. �

Example. Figure 5 illustrates a DAG as well as two subsets M and C of its node set. Figure 6(a)
illustrates the generated ribbonless graph H using Algorithm 1 as well as two subsets M1 and
C1 of its node set, and Figure 6(b) illustrates the RG generated by the algorithm from H .

For example, consider the graph αRG(H,M1,C1) in Figure 6(b), and let A = {j}, B = {s} and
C = {i, u}. It is seen that v ∈ an(C). We have that A is not m-separated from B given C since
〈j, i, v, t, s〉 is an m-connecting path between A and B given C. By Theorem 2 we conclude
that A is not m-separated from B given C ∪ C1. The same conclusion is made by observing
m-connecting path 〈j, i, v,w, t, r, s〉 in H .

Stable mixed graphs 2339

Figure 5. A directed acyclic graph G with sixteen nodes, ∈ M and ∈ C.

6. Summary graphs

Definition of summary graphs. A summary graph is a loopless mixed graph H = (N,F) which
contains no ◦ ◦ ≺ ◦ or ◦ ◦ ≺ �◦ (arrowhead pointing to line) and no direction-
preserving cycle as subgraph. Notice that there are also no multiple edges in SGs except multiple
edges consisting of an arrow and an arc.

Obviously the class of SGs is a subclass of RGs. Figure 7 illustrates an SG and an RG that is
not an SG. (Because of two reasons: existence of arrowheads pointing to lines and existence of a
double edge containing line and arrow.)

6.1. Generating summary graphs

A local algorithm to generate SGs. We now present a local algorithm (after determining the
ancestor set of the conditioning set) to generate an SG from an SG.

Figure 6. (a) The generated ribbonless graph H = αRG(G,M,C) from the directed acyclic graph G in
Figure 5, ∈ M1 and ∈ C1. (b) The generated ribbonless graph αRG(H,M1,C1) from H .

2340 K. Sadeghi

Figure 7. (a) An SG. (b) An RG that is not an SG.

Algorithm 2. αSG(H ;M,C): (Generating an SG from a summary graph H)
Start from H . Label the nodes in an(C).

1. Apply Algorithm 1.
2. Remove all edges (arrows or arcs) with arrowhead pointing to a node in an(C), and replace

these by the edge with the arrowhead removed (line or arrow) if the edge does not already
exist.

Continually apply step 1 until it is not possible to apply the given step further before moving
to the second step.

Figure 8 illustrates how to apply Algorithm 2 step by step to a DAG. Notice that as it is stated
in the description of the algorithm the order of applying the steps does matter here.
The map αSG and its basic properties. For SGs, we prove analogous results to those for RGs.

Proposition 3. Graphs generated by Algorithm 2 are SGs.

The map αRG.SG and its properties. Notice that step 1 of Algorithm 2 generates an RG before
removing the nodes in C. Hence, step 2 of the algorithm generates an SG from an RG and some
extra nodes that are conditioned on. We denote these two steps by αRG.SG. This shows that for
generating RGs from SGs, an(C) is needed.

Proposition 4. Let H = (N,E) be a ribbonless graph and M and C be subsets of N . It holds
that αSG(H ;M,C) = αRG.SG(αRG(H ;M,C); an(C)).

Surjectivity of αSG. The following result shows that every member of S G can be generated by a
DAG after marginalisation and conditioning.

Figure 8. (a) A directed acyclic graph G, ∈ C. (b) The generated graph after applying step 1, ∈ an(C).
(c) The generated SG after applying step 2.

Stable mixed graphs 2341

Proposition 5. The map αSG : D A G → S G is surjective.

6.2. Two necessary properties of SG-generating functions

Here, we express two important results that have been introduced for graphs generated by αRG
for graphs generated by αSG.
Well-definition of αSG. This property is analogous to the well-definition of αRG as defined in
the previous section. For a proof based on matrix representations of graphs and on properties of
corresponding matrix operators, see [13].

Theorem 3. For a summary graph H = (N,F) and disjoint subsets C, C1, M , and M1 of N ,

αSG
(
αSG(H ;M,C);M1,C1

) = αSG(H ;M ∪ M1,C ∪ C1).

Stability of the graphs generated by αSG. We prove that analogous to RGs, graphs generated by
αSG induce the marginal and conditional independence model. This result can be implied from
what was discussed in [13].

Theorem 4. For a summary graph H = (N,F) and disjoint subsets A, B , C, C1, and M of N ,

A ⊥m B|C1 in αSG(H ;M,C) ⇐⇒ A ⊥m B|C ∪ C1 in H.

Corollary 4. For a summary graph H = (N,F) and M and C disjoint subsets of N ,

α
(

Jm(H);M,C
) = Jm

(
αSG(H ;M,C)

)
.

Corollary 5. The class of SGs is stable.

Example. Figure 9(a) illustrates the generated SG from the DAG in Figure 5 using Algorithm 2
as well as the two subsets M1 and C1 of its node set. Figure 9(b) illustrates the SG generated by
the algorithm from the SG in part (a).

Figure 9. (a) The generated SG from the DAG in Figure 5, ∈ M1 and ∈ C1. (b) The generated SG
from the SG in (a).

2342 K. Sadeghi

Figure 10. (a) An AG. (b) An SG that is not ancestral.

7. Ancestral graphs

An ancestral graph (AG) is a simple mixed graph that has the following properties for every
node i:

1. i /∈ an(pa(i) ∪ sp(i));
2. If ne(i) �= ∅, then pa(i) ∪ sp(i) = ∅.

This means that there is no arrowhead pointing to a line and there is no direction-preserving
cycle, and there is no arc with one endpoint that is an ancestor of the other endpoint in the graph.

AGs are obviously a subclass of SGs, and therefore RGs. Figure 10 illustrates an SG that is
not ancestral. (Because of an arc with one endpoint that is an ancestor of the other.)

7.1. Generating ancestral graphs

A local algorithm to generate AGs. In [10], there is a method to generate AGs (in fact maximal
AGs) globally by looking at the so-called inducing paths. Here we introduce an algorithm to
generate AGs locally (after determining the ancestor set) by looking only for Vs after determining
the ancestor set of the conditioning set.

Algorithm 3. αAG(H ;M,C) (Generating an AG from an ancestral graph H):
Start from H .

1. Apply Algorithm 2.
2. Generate respectively an arrow from j to i or an arc between i and j for V j �k ≺ � i

or V j ≺ �k ≺ � i when k ∈ an(i) if the arrow or the arc does not already exist.
3. Remove the arc between j and i in the case that j ∈ an(i), and replace it by an arrow from

j to i if the arrow does not already exist.

Continually apply each step until it is not possible to apply the given step further before moving
to the next step.

Figure 11 illustrates how to apply Algorithm 3 step by step to a DAG.
The map αAG and its basic properties. Basic properties of Algorithm 3 and its corresponding
function are analogous to the basic properties of RGs and SGs.

Proposition 6. Graphs generated by Algorithm 3 are AGs.

Stable mixed graphs 2343

Figure 11. (a) A directed acyclic graph G, ∈ M . (b) The generated graph after applying step 1. (c) The
generated graph after applying step 2 for V 〈h, j, i〉. (d) The generated AG from G after applying step 3.

As before we consider αAG as a function from the set of AGs and two subsets of their node set
to the set of AGs.

Notice that by the extension of the generated AG to a maximal AG (as explained in [10]) the
same maximal AG as that generated by the method explained in [10] is generated, and hence these
two graphs induce the same independence model. This also explains the global interpretation of
the algorithm. We will not give the details in this paper.
The map αSG.AG and its properties. Notice that step 1 of Algorithm 3 generates an SG. Hence
steps 2 and 3 of the algorithm generate an AG from an SG. We denote these two steps by αSG.AG,
a function from S G to A G .

Proposition 7. It holds that αAG = αSG.AG ◦ αSG.

Surjectivity of αAG. The following result shows that every member of A G can be generated by a
DAG after marginalisation and conditioning.

Proposition 8. The map αAG : D A G → A G is surjective.

Proof. The result follows from Proposition 5, the fact that A G ⊆ S G , and if H ∈ A G then
αSG.AG(H) = H . �

7.2. Two necessary properties of AG-generating functions

Again we discuss the two important properties that we have proven for two other stable mixed
graphs.
Well-definition of αAG. Well-definition of αAG is analogous to the well-definition of αRG and αSG
as defined in the previous sections.

Theorem 5. For an ancestral graph H = (N,F) and disjoint subsets C, C1, M , and M1 of N ,

αAG
(
αAG(H ;M,C);M1,C1

) = αAG(H ;M ∪ M1,C ∪ C1).

2344 K. Sadeghi

Figure 12. (a) The generated AG from the DAG in Figure 5, ∈ M1 and ∈ C1. (b) The generated AG
from the AG in (a).

Stability of the graphs generated by αAG. Analogous to RGs and SGs, graphs generated by αAG
induce marginal and conditional independence models. An analogous result was proven in [10]
for maximal AGs that were generated in that paper.

Theorem 6. For an ancestral graph H = (N,F) and disjoint subsets A, B , C, C1, and M of N ,

A ⊥m B|C1 in αAG(H ;M,C) ⇐⇒ A ⊥m B|C ∪ C1 in H.

Corollary 6 ([10]). For an ancestral graph H = (N,F) and M and C disjoint subsets of N ,

α
(

Jm(H);M,C
) = Jm

(
αAG(H ;M,C)

)
.

Corollary 7. The class of AGs is stable.

Example. Figure 12(a) illustrates the AG generated from the DAG in Figure 5. Figure 12(b)
illustrates the AG generated by the algorithm from the AG in part (a).

8. The relationship between different types of stable mixed
graphs

Thus far, we have defined RGs (as a modification of MCGs), SGs, and AGs, and introduced
algorithms to generate each of these from a graph of the same class or a DAG, and some algo-
rithms that act between these classes. Despite the similarities of these definitions and generating
algorithms of these different classes, as well as the parallel theory developed for these, it is of
interest to investigate the exact relationship between these types of graphs.
Corresponding stable mixed graphs. When one starts from a DAG and generates different types
of stable mixed graphs after marginalisation over and conditioning on two specific subsets of
the node set of the DAG, the generated graphs must induce the same independence models. This
leads us to the definition of corresponding stable mixed graphs. For a directed acyclic graph G

Stable mixed graphs 2345

and two disjoint subsets of its node set M and C, graphs αRG(G;M,C), αSG(G;M,C), and
αAG(G;M,C) are called, respectively, the corresponding RG, SG, and AG.

We observe that the corresponding RGs, SGs, and AGs of a DAG induce the same indepen-
dence model. This fact, without being formulated in this way, was discussed in all three papers
that define these graphs [5,10,13].

Proposition 9. For a directed acyclic graph G = (V ,E) and disjoint subsets C and M of V ,

Jm

(
αRG(G;M,C)

) = Jm

(
αSG(G;M,C)

) = Jm

(
αAG(G;M,C)

)
.

Proof. The result follows from Corollaries 1, 4 and 6. �

As it was shown, in SGs and AGs there are extra properties regarding the structure of the graph.
We know that A G ⊂ S G ⊂ RG . The corresponding AG to an SG can be generated by αSG.AG
as outlined in Proposition 7. However, we cannot generate the corresponding SG to an RG by
only knowing the RG and not the DAG (or the conditioning set of the DAG). For example, DAGs
◦≺ � ◦ � ≺ and ◦≺ �◦, where ∈ M and ∈ C, give the same RG
◦≺ �◦ but different SGs ◦≺ ◦ and ◦≺ �◦ respectively. This is also true for AGs instead
of SGs.

It is possible, however, to introduce an algorithm to generate SGs that induce the same inde-
pendence model as the given RGs, by removing arrowheads pointing to a line or a node that is
an ancestor of a node that is the endpoint of a line.

We have also seen that the image of generating functions is big enough to cover all graphs
included in the set of the related type of stable mixed graphs, since the generating functions
are surjective. On the other hand, it is easy to show that generating functions are not injective.
Therefore, the relationship between the three types of stable mixed graphs is summarised by the
diagram in Figure 13, in which one can only move towards the directions that arrows show.

9. Discussion on the use of different types of stable mixed
graphs

By what we discussed, if G is a DAG with latent variables M and selection variables C then
stable mixed graphs are a class of graphs that represent the independence model implied among

Figure 13. The relationship between D AG , RG , S G and AG .

2346 K. Sadeghi

the remaining variables, conditional on the selection variables. However, each of the three types
has been used in different contexts and for different purposes.
Why MCGs or RGs? MCGs have been introduced in order to straightforwardly deal with the
problem of finding a class of graphs that is closed under marginalisation and conditioning by a
simple process of deriving these from DAGs. In fact, the class of MCGs is much larger than what
one really needs for representing independence models after marginalisation and conditioning.
We have noted that only MCGs that are ribbonless can be generated this way.
Why SGs? The main goal of defining SGs is to trace the effects after marginalisation and con-
ditioning, as will be explained shortly in this section. By using binary matrix representations of
graphs, called edge matrices, and corresponding matrix operators [17], the edge matrix of a SG
is obtained. It contains three types of edge matrices: those for solid lines, dashed lines (corre-
sponding to arcs), and for arrows. In the family of joint Gaussian distributions, solid lines in
concentration graphs correspond to concentration matrices, dashed lines in covariance graphs to
covariance matrices and arrows to equation parameters in structural equation models.

SGs are used when the generating DAG is known. Despite knowledge on the structure of the
generating DAG, SGs are still of interest in at least three situations: (1) For models with large
number of unobserved and selection variables; and (2) for the comparison of models when one
of them has unobserved or selection variables that are a subset of the unobserved or selection
variables of the other; (3) for detecting some types of confounding as shown in [15] and as
described briefly later.
Why AGs? The main goal of defining AGs is to represent and parametrise sets of distributions
obeying Markov properties. Even though, we discussed the class of AGs in this paper to sustain
a parallel theory to RGs and SGs, the class of maximal AGs possess some desired properties
that AGs do not. These include the fact that under the Gaussian path diagram parametrisation
the maximal AG only implies independence constraints, while a general AG implies other types
of constraints. We will give a short discussion on maximality in this section. Maximal AGs are
the simplest structures that capture the modified independence model, and are also of interest
when the generating DAG is not known, but a set of conditional independencies is known. In
the Gaussian case, maximal AGs are identified. In contrast to DAG models with hidden variable,
the models are curved exponential families [10], and conditional fitting algorithm for maximum
likelihood estimation exists [3].
Maximal stable mixed graph. A graph G is called maximal if by adding any edge to G the
independence model induced by ⊥m changes (gets smaller). Therefore, in maximal graphs, every
missing edge corresponds to at least one independence statement in the induced independence
model. This leads to validity of a so-called pairwise Markov property.

In [10], maximality of the subclass of AGs was studied. This result also holds for RGs and says
that a ribbonless graph H is maximal if and only if H does not contain any primitive inducing
paths, which are paths of form 〈j, q1, q2, . . . , qp, i〉, on which i � j and for every n, 1 ≤ n ≤ p,
qn is a collider on the path and qn ∈ an({i} ∪ {j}). We shall not give the details in this paper.

Therefore, to generate a maximal stable mixed graph from a stable mixed graph one should
repeatedly generate arrows from j to i for primitive inducing paths between non-adjacent i and
j where there is no arrowhead pointing to j , and generate arcs between i and j for primitive
inducing paths between non-adjacent i and j where there are arrowheads pointing to i and j .
Notice that by applying this algorithm after the generating algorithms one can generate a maximal
AG, SG, or RG.

Stable mixed graphs 2347

As discussed, maximal AGs possess many desired properties that AGs do not. For SGs, it is
conjectured that maximal SGs possess the same statistical properties that both maximal AGs and
SGs do possess. To show this, further work is needed.
The structure of different types of stable mixed graphs. If we suppose that stable mixed graphs
are only used to represent the independence model after marginalisation and conditioning, then
we can consider all types as equally appropriate. The question then will be reduced to how
simple or fast generating a type of graph is. We have seen that AGs have the simplest structure
among the three types of stable mixed graphs, and RGs are the most complex. Therefore, as we
have also seen, it is more complex to generate an AG than to generate an SG, and to generate
an SG than to generate an RG. On the other hand, the simpler structure allows a faster way of
checking independence statements. Hence, it is a tradeoff that depends on the relative size of the
marginalisation and conditioning sets in graphs.

When generating stable mixed graphs from DAGs, one always loses some information in order
to obtain a simpler structure in stable mixed graphs. RGs have lost the least information among
the three types of stable mixed graphs, while AGs the most. Here we discuss the lost information
in the context of regression analysis.
Multivariate regression and stable mixed graphs. The problem of constructing stable mixed
graphs was originally posed by [16] in the context of multivariate statistics based on regres-
sion analysis. In such literature, the DAG model is defined by sequences of univariate recursive
regressions, called a linear triangular system by [14], that is, for i = 1, . . . , dN − 1, each single
response variable Yi is regressed on Ypa(i), where the parents of i are a subset of {i + 1, . . . , dN }.
Linear triangular systems can be written as AY = ε, where A is an upper-triangular matrix with
unit diagonal elements, and ε is a vector of zero mean and uncorrelated random variables, called
residuals. Here the nonzero regression coefficient of Yi on Yj can be attached the arrow from j

to i in the DAG and is called the direct effect of Yj on Yi ; see [1].
In particular, for linear triangular systems, RGs alert to distortions due to so-called over-

conditioning via multiple edges consisting of a line and an arrow. Over-conditioning arises by
conditioning on a variable that is a response of two variables, one of which itself is a response to
the other one.

For example, in Figure 14, the generating process is given by three linear equations,

Y1 = βY2 + δY3 + ε1, Y2 = γ Y3 + ε2, Y3 = ε3,

where each residual εi has mean zero and is uncorrelated with the explanatory variables on the
right-hand side of the equation.

By conditioning on Y1, the conditional dependence of Y2 on only Y3 is obtained, which consists
of the direct effect γ and an indirect effect of Y2 on Y3 via Y1. This may be seen by direct
calculation, assuming that the residuals εi have a Gaussian distribution, which leads to

E(Y2|Y3) = (
γ − {(

1 − γ 2)/
(
1 − ρ2

13

)}
βρ13

)
Y2, where ρ13 = δ + βγ.

Thus, the direct effect γ is distorted by −{(1 − γ 2)/(1 − ρ2
13)}βρ13. The potential presence of

this distortion is represented in (b) by the addition of an arrow.
In addition, the existence of multiple edges with an arrow and an arc, and arcs with one end-

point ancestor of the other, which are not permissible in AGs, respectively, alerts distortions due
to so-called direct and indirect confounding.

2348 K. Sadeghi

Figure 14. (a) A directed acyclic graph G with node 1 to be conditioned on. (b) The RG generated from
G. (c) The SG or AG generated from G.

With the same generating process as explained for Figure 14, by integrating out Y3 in Fig-
ure 15, the conditional dependence of Y1 on only Y2 is obtained, which consists of the direct
effect β and an indirect effect of Y1 on Y2 via Y3. This leads to

E(Y1|Y2) = (β + δγ)Y2.

Thus, the direct effect β is distorted by δγ . The potential presence of this distortion is represented
in (b) by the addition of an arc. This example indicates a distortion due to direct confounding;
see [15]. Indirect confounding was also studied in [15] for marginalising only over a full set of
background variables and also in [13] more generally relating SGs to corresponding maximal
AGs.

Appendix: Proofs

Here we present the proof of lemmas, propositions, and theorems of this paper, but first we
introduce some observations that are used in our proofs as the following lemmas.

Lemma 2. If i ∈ an(j) in αRG(H ;M,C), then in H one of the following holds: (1) i ∈ an(j);
(2) i or a descendant of i is the endpoint of a line; (3) i ∈ an(C).

Proof. We know that there is a direction-preserving path π = 〈i = i0, i1, . . . , ip = j〉 in
αRG(H ;M,C). Consider the i0i1-edge. By Lemma 1 in H given M and C, there is an m-
connecting path between i0 and i1, on which there is no arrowhead pointing to i0. One can
observe that if this path is not a direction-preserving path then one of the following holds: (1) i0

Figure 15. (a) A directed acyclic graph G with node 3 to be marginalised over. (b) The SG generated from
G. (c) The AG generated from G.

Stable mixed graphs 2349

is an ancestor of a collider node on the path, which is in C ∪ an(C). Hence, i ∈ an(C); (2) i0
is the endpoint of a line or an ancestor of a node that is the endpoint of a line on the path. If
(1) or (2) holds, then we are done, hence assume that i0 ∈ an(i1). By the same argument and by
induction along the nodes of π , we conclude the result. �

Lemma 3. For i and j outside M ∪ C, if i ∈ an(j) in H then one of the following holds: (1) i ∈
an(j) in αRG(H ;M,C); (2) i ∈ an(C) in H .

Proof. We know that there is a direction-preserving path π = 〈i = i0, i1, . . . , ip = j〉 in H .
Consider the i0i1-edge. We now have three cases: (1) If i1 ∈ C, then i ∈ an(C) in H and we are
done. (2) If i1 ∈ M , then Algorithm 1 generates an arrow from i0 to i2. (3) If i1 �∈ M ∪ C, then
i0 ∈ an(i2) in αRG(H ;M,C). By the same argument and by induction along the nodes of π , we
conclude the result. �

The following lemma deals with the concatenation of m-connecting paths. We shall not give
the details of the proof here; see [11].

Lemma 4. In an RG, suppose that given M and C there are m-connecting paths 〈i =
i0, i1, . . . , in, h〉 between i and h and 〈j = j0, j1, . . . , jm,h〉 between h and j . In this case, there
is an m-connecting path given M and C between i and j if one of the following holds:

(a1) 〈in, h, jm〉 is collider and h ∈ C ∪ an(C);
(a2) in = jm with arrowhead pointing to h on the inh-edge and h ∈ C ∪ an(C);
(b1) 〈in, h, jm〉 is non-collider and h ∈ M ;
(b2) in = jm with no arrowhead pointing to h on the inh-edge and h ∈ M .
(c1) 〈in, h, jm〉 is collider and h or a descendant of h is the endpoint of a line or a direction-

preserving cycle;
(c2) in = jm with arrowhead pointing to h on the inh-edge and h or a descendant of h is the

endpoint of a line or a direction-preserving cycle.

Proof of Proposition 1. Graphs generated by Algorithm 1 have obviously three desired types of
edges and are loopless.

Now suppose, for contradiction, that there is a ribbon 〈i, h, j 〉 in a generated graph
αRG(H ;M,C). By Lemma 1 in H given M and C, there are m-connecting paths π1 = 〈i =
i0, i1, . . . , in, h〉 between i and h and π2 = 〈j = j0, j1, . . . , jm,h〉 between h and j such that
there are arrowheads at h on both inh- and jmh-edges. (Notice that it is possible that in = jm and
it is also possible that in = i or jm = j in H .)

We also know that, in αRG(H ;M,C), the node h is the endpoint of a line or on a direction-
preserving cycle or there is a direction-preserving path π = 〈h = h0, h1, . . . , hp = k〉 from h to
k such that k is the endpoint of a line or on a direction-preserving cycle. Now we consider two
cases. In case I, we suppose that such a π does not exist and in case II we suppose that such a π

exists.
Case I. In case I.1, we suppose that h is the endpoint of a line and in case I.2 we suppose that

h is on a direction-preserving cycle.

2350 K. Sadeghi

Case I.1. Suppose that h is the endpoint of an hl-line in αRG(H ;M,C). By Lemma 1 in H

given M and C, there is an m-connecting path between h and l, on which there is no arrowhead
pointing to h or l. One can observe that h is an ancestor of either (1) a collider node on the path
or (2) a node that is the endpoint of a line on the path. Thus, we have the two following cases:

(1) If h is an ancestor of a collider node t , then h ∈ an(C) in H since t ∈ C ∪ an(C). Hence,
by Lemma 4(a), there is an m-connecting path given M and C between i and j in H .

(2) If h is an ancestor of a node that is the endpoint of a line on the path, then by Lemma 4(c)
there is an m-connecting path given M and C between i and j in H .

By Lemma 1, both cases imply that i ∼ j in αRG(H ;M,C) and the ij -edge is endpoint-
identical to the m-connecting path. Therefore, 〈i, h, j 〉 is not a ribbon, a contradiction.

Case I.2. Suppose that h is on a direction-preserving cycle in αRG(H ;M,C). By Lemma 2
in H one of the following holds: (1) h ∈ an(h); (2) h or a descendant of h is the endpoint of a
line; (3) h ∈ an(C). Cases (2) and (3) lead to contradiction as explained in case I.1. Therefore,
suppose that h is on a direction-preserving cycle in H . This by Lemma 4(c) implies that there is
an m-connecting path given M and C between i and j in H , which implies that 〈i, h, j 〉 is not a
ribbon. This is a contradiction.

Case II. By Lemma 2 in H one of the following holds: (1) h ∈ an(k); (2) h or a descendant
of h is the endpoint of a line; (3) h ∈ an(C). Cases (2) and (3) lead to contradiction as explained
in case I.1. Hence, it holds that h ∈ an(k) in H . This together with the same argument as that of
case I (for k instead of h) leads to a contradiction. �

Proof of Lemma 1. (⇒) If an edge between i and j in αRG(H ;M,C) does not exist in H , then
it has been generated by certain intermediate graphs that have each been generated by adding
one edge to the previous graph by one of the steps of Table 1. We denote these graphs by the
sequence 〈H = H0,H1, . . . ,Hn,αRG(H ;M,C)〉, where Hn is the last step before removing M

and C.
We prove by reverse induction on p that in all Hp , 0 ≤ p ≤ n, between i and j there exists a

path on which non-collider inner nodes are in M and collider inner nodes or their descendants
are either in C or the endpoint of a line. For p = n, there is obviously an edge between i and j .
We show that if there is such a path in Hr then we can find the same type of path between i and
j in Hr−1.

If all edges along the path exist in Hr−1, then we should check that a collider node that is an
ancestor of a member of C or an ancestor of a node that is the endpoint of a line in Hr is an
ancestor of a member of C or an ancestor of a node that is the endpoint of a line in Hr−1. If an
arrow has been generated along the direction-preserving path in Hr , then it has been generated
by the Vs 〈i′,m, j ′〉 of the first three steps or the V 〈i′, s, j ′〉 of step 8 of Table 1. If it is step
1, then we can replace the i′j ′-arrow by 〈i′,m, j ′〉 to obtain a direction-preserving path. If it is
steps 2 or 3, then node j ′ is the endpoint of a line and we are done. If it is step 8 then, since
s ∈ C ∪ an(C), the inner node of the V is in an(C) and we are done.

Thus, suppose that an i′j ′-edge along the m-connecting path is the edge that has been gen-
erated by this step. This has been generated by one of Vs of Table 1. Since in all cases the V is
endpoint-identical to the i′j ′-edge, and since all inner nodes of the non-collider Vs are in M and
all inner nodes of the collider Vs are in C ∪ an(C), by placing the V instead of the i′j ′-edge on
the path, we still get a path whose non-collider inner nodes are in M and either whose collider

Stable mixed graphs 2351

inner nodes are in C ∪ an(C) or whose collider nodes or a descendant of them are the endpoint
of a line, as required.

Therefore, by reverse induction, there exists a path, as described above, in H . However, since
H is ribbonless, the path cannot contain a collider V 〈i′, h, j ′〉 such that h or a descendant of h

is the endpoint of a line unless i′ ∼ j ′ and the i′j ′-edge is endpoint-identical to 〈i′, h, j ′〉. In this
case, the i′j ′-edge can be used instead of 〈i′, h, j ′〉 and, by induction, we obtain an m-connecting
path given M and C between i and j .

The fact that in Table 1 the Vs are endpoint-identical to the generated i′j ′-edges implies that
all discussed paths in each Hp are endpoint-identical.

(⇐) Suppose that there is an m-connecting path π given M and C between i and j in Hk ,
0 ≤ k ≤ n−1. We prove as long as r > 0 if there is an m-connecting path given M and C between
i and j in Hk with r inner nodes then there is an m-connecting path given M and C between i

and j in Hk+1 with r − 1 inner nodes. By induction we will finally obtain an m-connecting path
between i and j without inner nodes, that is, an edge between j and i.

Consider an m-connecting path given M and C between i and j in Hk with r > 0 inner nodes.
Consider an arbitrary inner node on the path. If this node is collider, then one of the Vs 8, 9, or
10 of Table 1 is employed to generate an edge between the endpoints of the V in Hk+1. Since
the generated edge is endpoint-identical to the V, one can use the generated edge instead of the V
to obtain an m-connecting path with r − 1 inner nodes. If the arbitrary node is non-collider then
one of the other Vs of Table 1 is used.

It is easy to check that the generated edges are endpoint-identical to the m-connecting paths in
the final graph. This implies the result. �

Proof of Proposition 2. Let H = (N1,F1) ∈ RG . We generate a directed graph G = (V ,E)

from H as follows: We leave arrows that are not on any direction-preserving cycle unchanged.
For direction-preserving cycles, instead of one arbitrary arrow from j to i on the cycle we place
j � ≺ � i, where ∈ M and ∈ C, and leave all other arrows unchanged. Instead
of an arc between j and i we place a V between j and i with inner source node in M . Instead of
a line between j and i we place a V between j and i with inner collider node in C. The graph
G is obviously a directed graph. Furthermore, all newly generated nodes have degree 2 and the
direction of arrows changes on them, hence these cannot be on any direction-preserving cycle. In
addition, if i and j are in N1 and i ∼ j in G then i ∈ pa(j) or j ∈ pa(i) in H . Therefore, the exis-
tence of a direction-preserving cycle in G implies the existence of the same direction-preserving
cycle in H . But by the nature of the construction of G we know that direction-preserving cycles
in H do not make direction-preserving cycles in G, hence G is acyclic.

We should prove that αRG(G;M,C) = H . Let αRG(G;M,C) = (N2,F2). Obviously N1 =
N2. Suppose that i ∼ j (j ∈ pa(i), j ∈ sp(i), or j ∈ ne(i)) in H . Therefore, we have the active
alternating path or one of the Vs between i and j that by Algorithm 1 forms exactly the same
type of edge in αRG(G;M,C).

Conversely, suppose that i ∼ j (j ∈ pa(i), j ∈ sp(i), or j ∈ ne(i)) in αRG(G;M,C). By
Lemma 1 we know that there is an endpoint-identical m-connecting path given M and C in
G. Consider a shortest endpoint-identical m-connecting path π . Since in G there is no transition
node in M , π is active alternating with respect to M and C ∪ an(C). If π has no collider node
in an(C) \ C, then by the nature of the construction of G we know that it has two edges (if both

2352 K. Sadeghi

endpoints are children or parents) or three (if it is from j to i on a direction-preserving cycle)
and that it has been generated by an edge (arrow, arc, or line) in H . Suppose, for contradiction,
that there is a collider node i ∈ an(C) \ C on π . We have that i ∈ N1, and by the process of
generating a DAG explained here, the only place that a node in C has been generated is by a
line or an arrow on a direction-preserving cycle in H . Therefore, i ∈ an(k) for a node k that is
the endpoint of a line or is on a direction-preserving cycle. Hence, H contains a ribbon, or the
endpoints of the collider V with i as inner node are adjacent by an endpoint-identical edge. The
former contradicts that H is ribbonless, and the latter contradicts that π is shortest. �

Proof of Theorem 1. (⇒) If there is an ij -edge in αRG(αRG(H ;M,C);M1,C1), then by
Lemma 1, there is an m-connecting path π = 〈i = i0, i1, . . . , in−1, in = j〉 between i and j given
M1 and C1 in αRG(H ;M,C) that is endpoint-identical to the edge.

For the V 〈i, i1, i2〉 on π , again by Lemma 1, given M and C there are m-connecting paths π1

between i and i1 and π2 between i1 and i2 in H . These paths can be considered m-connecting
given M ∪ M1 and C ∪ C1 and are endpoint-identical to the edges. This implies that if i1 is
collider (or non-collider) on π then on the concatenation of π1 and π2 it remains collider (or
non-collider), or that there is an arrowhead pointing to it (or no arrowhead pointing to it) from a
joint node on π1 and π2. We know that if i1 is non-collider then it is in M1 and if it is collider
then it is in C1 ∪ an(C1) in αRG(H ;M,C). If i1 ∈ an(C1) in αRG(H ;M,C) then, by Lemma 2,
one of the following holds in H : (1) it is in an(C1); (2) it is in an(C); (3) it is the endpoint of
line or an ancestor of a node that is the endpoint of a line. Therefore, by Lemma 4, there is an
m-connecting path between i and i2 given M ∪M1 and C ∪C1 in H , which is endpoint-identical
to the V. By induction along π there is an m-connecting path between i and j given M ∪ M1

and C ∪ C1 in H , which is endpoint-identical to the ij -edge. Therefore, by Lemma 1 there is the
same type of ij -edge in αRG(H ;M ∪ M1,C ∪ C1).

(⇐) If there is an edge between i and j in αRG(H ;M ∪ M1,C ∪ C1) then, by Lemma 1,
there is an m-connecting path π given M ∪ M1 and C ∪ C1 in H that is endpoint-identical to
the ij -edge. All inner nodes of π are either in M ∪ C ∪ an(C) or M1 ∪ C1 ∪ an(C1). Therefore,
π can be partitioned into m-connecting subpaths given M and C and single nodes, where the
endpoints of subpaths and single nodes are in M1 ∪ C1 ∪ an(C1). Therefore, by Lemma 1, in
αRG(H ;M,C) the endpoints of each of the discussed subpaths of π are connected by an edge
that is endpoint-identical to the subpath.

In addition, for each collider V 〈l, k, h〉, where k ∈ an(C1) in H and by Lemma 3, one of the
following holds: (1) k ∈ an(C) in H ; (2) k ∈ an(C1) in αRG(H ;M,C). Case (1) implies that
there is an endpoint-identical lh-edge to the V in αRG(H ;M,C), which can be used instead of
〈l, k, h〉 to generate an m-connecting path.

Hence in αRG(H ;M,C), there is an m-connecting path given M1 and C1 between i and j ,
which is endpoint-identical to π . Therefore, again by Lemma 1, there is the same type of ij -edge
in αRG(αRG(H ;M,C);M1,C1). �

Proof of Theorem 2. To prove the result, it is enough to show that, between nodes i and j

outside C ∪ C1 ∪ M , there is an m-connecting path given C ∪ C1 in H if and only if there is an
m-connecting path given C1 in αRG(H ;M,C).

Stable mixed graphs 2353

(⇒) Suppose that between i and j there is an m-connecting path given C ∪C1 in H . This path
can be partitioned into m-connecting subpaths given C and single nodes, where the endpoints of
subpaths and single nodes are colliders in C1 ∪ an(C1). In addition, for each collider V 〈l, k, h〉,
where k ∈ an(C1) in H and by Lemma 3, one of the following holds: (1) k ∈ an(C) in H ;
(2) k ∈ an(C1) in αRG(H ;∅,C). Case (1) implies that there is an endpoint-identical lh-edge to
the V in αRG(H ;∅,C), which can be used instead of 〈l, k, h〉 to generate an m-connecting path.

Hence by Lemma 1, in αRG(H ;∅,C) there is an m-connecting path given C1 between i

and j . The inner non-collider nodes on this path are either in M or in N \ (M ∪ C ∪ C1). On this
path there are subpaths with only non-collider inner nodes in M , that is, m-connecting subpaths
given M and ∅. By Theorem 1 after marginalisation over M , αRG(H ;M,C) is obtained, in
which, by Lemma 1, the endpoints of each of such subpaths are connected by an edge that is
endpoint-identical to the subpath. In addition, if a collider node is in an(C1) in αRG(H ;∅,C),
then by Lemma 3 (since the conditioning set is empty and case (2) of the lemma does not hold),
the collider node remains in an(C1) in αRG(H ;M,C). Therefore, between i and j there is an
m-connecting path given C1 in αRG(H ;M,C).

(⇐) Suppose that between i and j there is an m-connecting path π given C1 in αRG(H ;M,C).
By Lemma 1, for each edge of π , there is an endpoint-identical m-connecting path given M and
C in H , which is obviously an m-connecting path given C. On the concatenation of these paths
and for the endpoints of the paths we have the two following cases: (1) When the endpoints are
non-collider or there is no arrowhead at them on the concatenation, they are non-collider on π

and therefore outside M ∪ C ∪ C1; (2) When the endpoints are collider or there is an arrowhead
at them, they are collider on π and therefore in C1 ∪ an(C1). Therefore, by Lemma 4, there is an
m-connecting path given C ∪ C1 in H . �

Proof of Proposition 3. Firstly, the graph generated by the algorithm has only the three desired
types of edges and no multiple edge of the same type; therefore, it generates a mixed graph.

Let H be the input summary graph and H0 = αRG(H ;M,C) be the generated graph after
applying step 1 of Algorithm 2. Here in part I we prove that there is no arrowhead pointing to
lines, and in part II we prove that there is no direction-preserving cycle in the generated graph.

Part I. If, for contradiction, there is an arrowhead at i (on an ik-edge) and i is the endpoint of
an ij -line in the generated graph then we have the following cases: (1) The ij -line is an arrow
from i to j in H0; (2) the ij -line is an arrow from j to i in H0; (3) the ij -line is an arc in H0;
(4) the ik-edge is an arrow from k to i in the generated graph and an arc in H0; (5) the ki- and
ij -edges are the same in H0.

(1) We have that j ∈ an(C) in H . Hence by Lemma 2 we have one of the two following cases
in H : (a) i or a descendant of i is the endpoint of a line, which, since H is a summary graph, is a
contradiction; (b) i ∈ an(C), which by the algorithm implies that in the generated graph there is
no arrowhead at i on the ik-edge, again a contradiction.

(2), (3) We have that i ∈ an(C) in H , which by the algorithm implies that in the generated
graph there is no arrowhead at i on the ik-edge, a contradiction.

(4), (5) We have that 〈k, i, j〉 still has an arrowhead pointing to a line in H0. By Lemma 1
there is an arrowhead at i in H , hence the line has been generated by the algorithm. Again by
Lemma 1 we observe that one of the following holds: (a) i or a descendant of i is the endpoint
of a line, which, since H is a summary graph, is a contradiction; (b) i ∈ an(C), which by the

2354 K. Sadeghi

algorithm implies that in the generated graph there is no arrowhead pointing to i on the ik-edge,
again a contradiction.

Part II. There is also no direction-preserving cycles in the generated graph: If, for contradic-
tion, there is a direction-preserving cycle in the generated graph then at least one arrow, say from
k to l, should be generated by the algorithm since there is no direction-preserving cycle in H .
This arrow can be generated either by step 1, or by step 2 as an arc replaced by an arrow. If
the kl-arrow is generated by step 2 then we have that k ∈ an(C) in H . Therefore, there are no
arrowheads pointing to k in the generated graph, which means that k cannot be on a direction-
preserving cycle, a contradiction.

Therefore, we can assume that the direction-preserving cycle exists in H0. Since there are no
arrowheads pointing to lines in H and H does not contain a direction-preserving cycle, Lemma 2
implies that a node (and therefore all nodes) of the cycle are in an(C). Hence, the arrows turn
into lines in the generated graph, a contradiction. �

Proof of Proposition 5. We know that S G ⊆ RG . Notice that H is a summary graph. We know
that, for the generated directed acyclic graph G, explained in (a), αRG(G;M,C) = H . Suppose,
for contradiction, that step 2 of Algorithm 2 changes the graph. Thus a node with an arrowhead
pointing to is in an(C), which implies that it is an ancestor of a node that is the endpoint of a line
or on a direction-preserving cycle in H , a contradiction. Therefore, αSG(G;M,C) = H . �

Proof of Theorem 3. We show that there is an edge between i and j in αSG(H ;M ∪M1,C∪C1)

if and only if there is the same type of edge in αSG(αSG(H ;M,C);M1,C1). For this purpose
for summary graphs, it is enough to prove that there is an edge between i and j with arrowhead
pointing to j in αSG(H ;M ∪ M1,C ∪ C1) if and only if there is an edge between i and j with
arrowhead pointing to j in αSG(αSG(H ;M,C);M1,C1).

(⇒) Suppose that in αSG(H ;M ∪ M1,C ∪ C1) there is an ij -edge with arrowhead pointing
to j . We have that j �∈ an(C ∪ C1) in H and in αRG(H ;M ∪ M1,C ∪ C1) there is an ij -edge
with arrowhead pointing to j . By Lemma 1, there is an m-connecting path between i and j given
M ∪ M1 and C ∪ C1 in H with arrowhead pointing to j . By what we showed before in the proof
of Theorem 1 in αRG(H ;M,C) there is an m-connecting path π between i and j given M1 and
C1 with arrowhead pointing to j .

Now notice that by step 2 of Algorithm 2 non-collider nodes remain non-collider. In addition,
if a collider V 〈h, k, l〉 on π turns into non-collider then k ∈ an(C) and therefore by step 1 of the
algorithm there is an endpoint-identical hl-edge that can be used instead of the V to generate an
m-connecting path. Moreover, if the collider node k is in an(C1), and on the direction-preserving
path an arrow turns into a line then k ∈ an(C) in H and once again there is an hl-edge to be
used instead of the V to establish an m-connecting path. Therefore, there is an m-connecting path
between i and j given M1 and C1 in αSG(H ;M,C). We also have that since j �∈ an(C) in H ,
there is an arrowhead pointing j on the path.

Now by Lemma 1 in αRG(αSG(H ;M,C);M1,C1) there is an ij -edge with arrowhead point-
ing j . In addition, in αSG(H ;M,C), j �∈ an(C1): This is because if, for contradiction, j ∈ an(C1)

in αSG(H ;M,C) then, in αRG(H ;M,C), j ∈ an(C ∪ C1). This by Lemma 2 and the fact that H

is a summary graph implies that j ∈ an(C ∪ C1) in H , a contradiction.

Stable mixed graphs 2355

Therefore, since in αSG(H ;M,C), j �∈ an(C1), there is an arrowhead pointing j on the ij -edge
in αSG(αSG(H ;M,C);M1,C1).

(⇐) Suppose that in αSG(αSG(H ;M,C);M1,C1) there is an ij -edge with arrowhead pointing
to j . This implies that j �∈ an(C1) in αSG(H ;M,C). In αRG(αSG(H ;M,C);M1,C1) there is
also an ij -edge with arrowhead pointing to j . By Lemma 1, in αSG(H ;M,C) there is an m-
connecting path π given M1 and C1 between i an j with arrowhead pointing to j on the path.
This implies that j �∈ an(C) in H .

By step 2 of the algorithm, collider nodes on π in αSG(H ;M,C) are colliders in αRG(H ;
M,C). In addition, if a non-collider V 〈h, k, l〉 on π is collider in αRG(H ;M,C) then k ∈ an(C)

in H and therefore by step 1 of the algorithm there is an endpoint-identical hl-edge that can
be used instead of the V to generate an m-connecting path in αRG(H ;M,C). Moreover, if the
collider node k on π is in an(C1), and on the direction-preserving path an arrow is an arc in
αRG(H ;M,C) then the collider node is in an(C) in H and once again there is an hl-edge to
be used instead of the V to establish an m-connecting path. Therefore, there is an m-connecting
path between i and j given M1 and C1 in αRG(H ;M,C) with arrowhead pointing to j on the
path. By what we showed before in the proof of Theorem 1 in H there is an m-connecting path
between i and j given M ∪ M1 and C ∪ C1 with arrowhead pointing to j on the path.

Lemma 1 implies that in αRG(H ;M ∪ M1,C ∪ C1) there is an ij -edge with arrowhead point-
ing to j . We showed before that j �∈ an(C) in H . In addition, in H , j �∈ an(C1): Suppose, for
contradiction, that j ∈ an(C1) in H . This direction-preserving path is also direction-preserving
in αRG(H ;M,C) unless possibly a node t on the path is in M or in C. In the former case one
can skip t and obtain a direction-preserving path. In the latter case j ∈ an(C) in H , which is not
permissible. Therefore, in αRG(H ;M,C), j ∈ an(C1). Hence, since j �∈ an(C) in H , j ∈ an(C1)

in αSG(H ;M,C), a contradiction.
Therefore, j �∈ an(C ∪ C1) in H , and the ij -edge has arrowhead pointing to j in αSG(H ;M ∪

M1,C ∪ C1). �

Proof of Theorem 4. By what we proved in Theorem 2 it is enough to show between i and j

there is an m-connecting path given C1 in αRG(H ;M,C) if and only if there is an m-connecting
path given C1 in αSG(H ;M,C).

(⇒) Consider an m-connecting path given C1 in αRG(H ;M,C) between i and j . There obvi-
ously exists an m-connecting path π given C1 in αRG(H ;M,C). Now by step 2 of the algorithm
non-collider nodes remain non-collider. In addition, if a collider V 〈h, k, l〉 on π turns into non-
collider then k ∈ an(C) and therefore by step 1 of the algorithm there is an endpoint-identical
hl-edge generated that can be used instead of the V to generate an m-connecting path. Moreover,
if the collider node k is in an(C1), and on the direction-preserving path an arrow turns into a line
then k ∈ an(C) in H and once again there is an hl-edge to be used instead of the V to establish
an m-connecting path. Therefore, there is an m-connecting path between i and j given C1 in
αSG(H ;M,C).

(⇐) Consider an m-connecting path π given C1 in αSG(H ;M,C) between i and j . By step
2 of the algorithm, collider nodes on π in αSG(H ;M,C) are colliders in αRG(H ;M,C). In
addition, if a non-collider V 〈h, k, l〉 on π is collider in αRG(H ;M,C) then k ∈ an(C) in H and
therefore by step 1 of the algorithm there is an endpoint-identical hl-edge that can be used instead
of the V to generate an m-connecting path in αRG(H ;M,C). Moreover, if the collider node k

2356 K. Sadeghi

on π is in an(C1), and on the direction-preserving path an arrow is an arc in αRG(H ;M,C)

then k ∈ an(C) in H and once again there is an hl-edge to be used instead of the V to establish
an m-connecting path. Therefore, there is an m-connecting path between i and j given C1 in
αRG(H ;M,C). �

Proof of Proposition 6. To prove that the graph generated by Algorithm 3 is an AG, first notice
that graphs generated by step 1 of Algorithm 3 are summary graphs. Therefore, since steps 2 and
3 do not generate any lines, it is enough to prove that steps 2 and 3 of the algorithm remove all
subgraphs where there is an arc with one endpoint that is an ancestor of the other endpoint in the
generated summary graph, and that these do not generate any direction-preserving cycles.

Step 3 of the algorithm removes all such subgraphs. Step 2 does not generate any direction-
preserving cycles by adding an arrow to the graph: Consider the first iteration of the algorithm,
where, for contradiction, a direction-preserving cycle is generated. If it is generated by generat-
ing an arrow from i to j then we know that there is i �k ≺ �j , where k ∈ an(j). Denote
the direction-preserving path from k to j by π1 and the direction-preserving path from j to i

which, together with the generated ij -arrow, establishes a direction-preserving cycle by π2. It is
seen that in the previous iteration of the algorithm 〈π2, k,π1〉 is a direction-preserving cycle, a
contradiction.

Step 3 does not generate any direction-preserving cycles by replacing an arc by an arrow:
Consider the first iteration of the algorithm, where, for contradiction, a direction-preserving cycle
is generated. If it is generated by replacing an ij -arc by an arrow from i to j , then we know there
is a direction-preserving path π1 from i to j . Denote the direction-preserving path from j to i

which, together with the generated ij -arrow, establishes a direction-preserving cycle by π2. It
is seen that in the previous iteration of the algorithm 〈π1,π2〉 is a direction-preserving cycle, a
contradiction. �

We use the following lemma to prove Theorem 5. For more descriptive proofs for the following
results, see [11].

Lemma 5. Let H be a summary graph and M and C be two subsets of its node set. It holds that
αAG(αSG.AG(H);M,C) = αAG(H ;M,C).

Proof. There are two differences between H and αSG.AG(H): (1) For an ij -arc such that j ∈
an(i) in H , there is an arrow from j to i replaced in αSG.AG(H); (2) for a primitive inducing path
π between i and j in H , there is an endpoint-identical ij -edge in αSG.AG(H).

Notice that an(C) is the same in both graphs. After applying step 1 of Algorithm 2 (a part of
step 1 of Algorithm 3), for each difference, the following occurs:

(1) This step of the algorithm may generate further differences for (1) if there is a kj -edge with
an arrowhead pointing to j and j ∈ C ∪ an(C). In this case, there is a ki-edge in H . However,
such an edge already exists in αSG.AG(H) since 〈k, j, i〉 in H generates an edge by αSG.AG;

(2) This step of the algorithm may generate further differences for (2) if π has more than three
nodes and one of the two following cases occurs: (a) there is an arrowhead pointing to j on π ,
there is a kj -edge with an arrowhead pointing to j , and j ∈ C ∪ an(C); (b) there is a kj -edge
with no arrowhead pointing to j , and j ∈ M . In both cases, by using the 〈i, j, k〉-V a ki-edge is

Stable mixed graphs 2357

generated in αSG.AG(H). In H , by using the 〈h, j, k〉-V, where h is the node adjacent to j on π ,
a kh-edge is generated, which establishes an endpoint-identical primitive inducing path between
i and k in αSG.AG(H);

After applying step 2 of Algorithm 2, the following occurs: (1) This step of the algorithm may
generate further differences for (1) if j ∈ C ∪ an(C). In this case, ij -arc in H turns into an arrow
from j to i, which, however, already exists in αSG.AG(H); (2) This step of the algorithm may
generate further differences for (2) if any of the nodes on π , say l, is in C ∪ an(C). However, in
H , by the previous step of the algorithm, the nodes adjacent to l on π have become adjacent, and
established a shorter primitive inducing path between i and k (or j).

Hence, thus far, the differences between the two generated graphs are the same as the differ-
ences between H and αSG.AG(H). Therefore, by applying steps 2 and 3 of Algorithm 3, the same
graphs will be generated. �

Proof of Theorem 5. Using Theorem 3, Proposition 7, and Lemma 5, we have the following:

αAG
(
αAG(H ;M,C);M1,C1

)

= αAG
(
αSG.AG

(
αSG(H ;M,C)

);M1,C1
) = αAG

(
αSG(H ;M,C);M1,C1

)

= αSG.AG
(
αSG

(
αSG(H ;M,C);M1,C1

)) = αSG.AG
(
αSG(H ;M ∪ M1,C ∪ C1)

)

= αAG(H ;M ∪ M1,C ∪ C1). �

Proof of Theorem 6. By what we proved in Theorem 4, it is enough to show between A and B

there is an m-connecting path given C1 in αSG(H ;M,C) if and only if there is an m-connecting
path given C1 in αAG(H ;M,C).

Let 〈αSG(H ;M,C) = H0,H1, . . . ,Hm〉 be intermediate graphs that have each been gener-
ated by adding one edge to the previous graph by step 2 of Algorithm 3. In addition, let
〈Hm = H ′

0,H
′
1, . . . ,H

′
n = αAG(H ;M,C)〉 be intermediate graphs that have each been generated

by replacing one edge in the previous graph by step 3 of Algorithm 3.
Suppose that in the step between Hp and Hp+1 an arrow from j to i or an arc between i and j

for V j �k ≺ � i or V j ≺ �k ≺ � i, when k ∈ an(i), is generated. It holds that there is an
m-connecting path between A and B given C1 in Hp if and only if there is an m-connecting path
between A and B given C1 in Hp+1. This is because if k ∈ C1 or one of the descendants of k on
the direction-preserving path from k to i is in C1 then the ij -edge and the V j ≺ �k ≺ � i can
be interchanged on the m-connecting path. If these nodes are not in C1 then the ij -edge and the
path made up by the jk-edge and the direction-preserving path from k to i can be interchanged.
By induction in one direction and reverse induction in the other direction, we conclude that there
is an m-connecting path given C1 in αSG(H ;M,C) if and only if there is an m-connecting path
given C1 in Hm.

Now suppose that in the step between H ′
p′ and H ′

p′+1 an arrow from j to i has been replaced
by an arc between j and i, where j ∈ an(i). The only interesting case here is when there is an
edge between j and another node l with arrowhead pointing to j . In this case, an edge has been
already generated between l and i by step 2 of the algorithm. Therefore, again by induction in
one direction and reverse induction in the other direction the result follows. �

2358 K. Sadeghi

Acknowledgements

The author is grateful to Steffen Lauritzen, Nanny Wermuth, and the referees for helpful com-
ments.

References

[1] Cox, D.R. and Wermuth, N. (1993). Linear dependencies represented by chain graphs. Statist. Sci. 8
204–218, 247–283. With comments and a rejoinder by the authors. MR1243593

[2] Cox, D.R. and Wermuth, N. (1996). Multivariate Dependencies: Models, Analysis and Interpretation.
Monographs on Statistics and Applied Probability 67. London: Chapman & Hall. MR1456990

[3] Drton, M. and Richardson, T. (2004). Iterative Conditional Fitting for Gaussian Ancestral Graph Mod-
els. In Proceedings of the Proceedings of the Twentieth Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-04) 130–137. Arlington, VA: AUAI Press.

[4] Kiiveri, H., Speed, T.P. and Carlin, J.B. (1984). Recursive causal models. J. Austral. Math. Soc. Ser. A
36 30–52. MR0719999

[5] Koster, J.T.A. (2002). Marginalizing and conditioning in graphical models. Bernoulli 8 817–840.
MR1963663

[6] Lauritzen, S.L. (1996). Graphical Models. Oxford Statistical Science Series 17. New York: Clarendon
Press. MR1419991

[7] Lauritzen, S.L., Dawid, A.P., Larsen, B.N. and Leimer, H.G. (1990). Independence properties of di-
rected Markov fields. Networks 20 491–505. MR1064735

[8] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The
Morgan Kaufmann Series in Representation and Reasoning. San Mateo, CA: Morgan Kaufmann.
MR0965765

[9] Pearl, J. and Wermuth, N. (1994). When can association graphs admit a causal interpretation? Models
and Data, Artificial Intelligence and Statistics 4 205–214.

[10] Richardson, T. and Spirtes, P. (2002). Ancestral graph Markov models. Ann. Statist. 30 962–1030.
MR1926166

[11] Sadeghi, K. (2012). Graphical representation of independence structures. Ph.D. thesis, Univ. Oxford.
[12] Studeny, M. (2005). Probabilistic Conditional Independence Structures. London, United Kingdom:

Springer.
[13] Wermuth, N. (2011). Probability distributions with summary graph structure. Bernoulli 17 845–879.

MR2817608
[14] Wermuth, N. and Cox, D.R. (2004). Joint response graphs and separation induced by triangular sys-

tems. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 687–717. MR2088296
[15] Wermuth, N. and Cox, D.R. (2008). Distortion of effects caused by indirect confounding. Biometrika

95 17–33. MR2409712
[16] Wermuth, N., Cox, D.R. and Pearl, J. (1994). Explanation for multivariate structures derived from

univariate recursive regressions. Technical Report 94(1), Univ. Mainz, Germany.
[17] Wermuth, N., Wiedenbeck, M. and Cox, D.R. (2006). Partial inversion for linear systems and partial

closure of independence graphs. BIT 46 883–901. MR2285213

Received October 2011 and revised May 2012

http://www.ams.org/mathscinet-getitem?mr=1243593
http://www.ams.org/mathscinet-getitem?mr=1456990
http://www.ams.org/mathscinet-getitem?mr=0719999
http://www.ams.org/mathscinet-getitem?mr=1963663
http://www.ams.org/mathscinet-getitem?mr=1419991
http://www.ams.org/mathscinet-getitem?mr=1064735
http://www.ams.org/mathscinet-getitem?mr=0965765
http://www.ams.org/mathscinet-getitem?mr=1926166
http://www.ams.org/mathscinet-getitem?mr=2817608
http://www.ams.org/mathscinet-getitem?mr=2088296
http://www.ams.org/mathscinet-getitem?mr=2409712
http://www.ams.org/mathscinet-getitem?mr=2285213

	Introduction
	Basic definitions and concepts
	Independence model for ribbonless graphs
	Marginalisation, conditioning and stability
	Ribbonless graphs
	Generating ribbonless graphs
	Two necessary properties of RG-generating functions

	Summary graphs
	Generating summary graphs
	Two necessary properties of SG-generating functions

	Ancestral graphs
	Generating ancestral graphs
	Two necessary properties of AG-generating functions

	The relationship between different types of stable mixed graphs
	Discussion on the use of different types of stable mixed graphs
	Appendix: Proofs
	Acknowledgements
	References

