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We study the least squares estimator in the residual variance estimation context. We show that the mean
squared differences of paired observations are asymptotically normally distributed. We further establish
that, by regressing the mean squared differences of these paired observations on the squared distances
between paired covariates via a simple least squares procedure, the resulting variance estimator is not only
asymptotically normal and root-n consistent, but also reaches the optimal bound in terms of estimation
variance. We also demonstrate the advantage of the least squares estimator in comparison with existing
methods in terms of the second order asymptotic properties.
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1. Introduction

Consider the following nonparametric regression model

yi = g(xi) + εi, 0 ≤ xi ≤ 1, i = 1, . . . , n, (1)

where yi is the observation of the mean function g evaluated at design point xi plus random
error εi . We assume that εi ’s are independent and identically distributed with mean zero and
variance σ 2. Many nonparametric regression methods have been developed to estimate the mean
function g in the literature. Often, for choosing the amount of smoothing, testing goodness of fit
or estimating model complexity, one needs an estimate of σ 2 that does not require estimating the
mean function g first [4,5,19]. For example, an estimate of σ 2 is required in the unbiased risk
criterion for selecting the smoothing parameter in spline smoothing (see Section 3.3 in [17]).

One popular class of estimators of σ 2 which bypasses the estimation of g is the so-called
difference-based estimators. The basic idea of difference-based estimation is to use differences
to remove trend in the mean function. Assume that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. Rice [13] proposed
the first-order difference-based estimator

σ̂ 2
R = 1

2(n − 1)

n∑
i=2

(yi − yi−1)
2. (2)
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Gasser, Sroka and Jennen-Steinmetz [6] and Hall, Kay and Titterington [8] extended the
Rice estimator to the second- and higher-order difference-based estimators, respectively. More
difference-based estimators can be found in [3,12].

Tong and Wang [15] proposed a variation of the difference-based estimator. For simplicity,
consider the equally-spaced design where xi = i/n. Define the lag-k Rice estimators as

sk = 1

2(n − k)

n−k∑
i=1

(yi+k − yi)
2, k = 1,2, . . . . (3)

For any k = o(n), it can be shown that E(sk) = σ 2 + Jdk + o(dk) where J = ∫ 1
0 {g′(x)}2 dx/2

and dk = k2/n2. That is, the lag-k Rice estimator overestimates σ 2 by Jdk . To reduce bias, they
proposed fitting a linear regression model

sk = β0 + β1dk + εk, k = 1, . . . ,m, (4)

where m = o(n) and using the least squares type of estimate of the intercept as an estimate of σ 2.
For ease of notation, let s = (s1, . . . , sm)T , β = (β0, β1)

T , ε = (ε1, . . . , εm)T , 1 = (1, . . . ,1)T ,
d = (d1, . . . , dm)T and X = (1,d) be the design matrix. Then (4) leads to s = Xβ + ε. Note
that sk is the average of (n − k) lag-k differences and there are a total of N = (n − 1) + (n −
2) + · · · + (n − m) = nm − m(m + 1)/2 pairs of differences involved in the regression. Tong
and Wang [15] assigned weight wk = (n − k)/N to the observation sk and then fitted the linear
regression using the weighted least squares with weight matrix W = diag(w1, . . . ,wm). This
results in β̂WLS = (XT W−1X)−1XT W−1s. Consequently, the weighted least squares estimator
of σ 2 is

σ̂ 2 = β̂0,WLS =
m∑

k=1

wksk − β̂1,WLSd̄w, (5)

where d̄w = ∑m
k=1 wkdk and β̂1,WLS = ∑m

k=1 wksk(dk − d̄w)/
∑m

k=1 wk(dk − d̄w)2. For simplic-
ity, the above weighted least squares estimator σ̂ 2 is referred to as the least squares estimator in
this paper. In Section 3, we will show that the above weighted least squares estimator is asymp-
totically equivalent to the ordinary least squares estimator and the generalized least squares esti-
mator which takes into account the correlations between sk’s.

In this paper, we investigate the asymptotic distribution and efficiency of the least squares
estimator. We show that the least squares estimator is asymptotically normally distributed in
Section 2. We further show that the least squares estimator is asymptotically equivalent to the
generalized least squares estimator where correlations among sk are accounted for in Section 3.
In Section 4, we derive the optimal efficiency bound for any estimation procedure and show that
the least squares estimator reaches this optimal efficiency bound. In Section 5, we derived the
mean squared error (MSE) for Müller and Stadtmüller’s [11] estimator and then compare it to
the least squares estimator. A real example is also provided. Finally, we conclude the paper in
Section 6 with some simulation studies.
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2. Least squares estimator

Let y = (y1, . . . , yn)
T , g = (g(x1), . . . , g(xn))

T and ε = (ε1, . . . , εn)
T . Then y = g + ε. Let

γi = E(εi)/σ i for i = 3,4, and
D→ denote convergence in distribution. Assume that γ4 > 1. We

first establish asymptotic normality for the Rice estimator.

Theorem 1. Assume that g has a bounded second derivative. For any k = nr with 0 < r < 3/4,

the lag-k Rice estimator satisfies
√

n(sk − σ 2)
D→ N(0, γ4σ

4) as n → ∞.

Proof of Theorem 1 can be found in Appendix A. Next, we establish asymptotic normality for
the least squares estimator (5). Following the result in [15], the least squares estimator (5) has a
quadratic form σ̂ 2 = yT Dy/ tr(D), where D = (dij )n×n is a symmetric matrix with elements

dij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
k=1

bk +
min(i−1,n−i,m)∑

k=0

bk, 1 ≤ i = j ≤ n,

−b|i−j |, 0 < |i − j | ≤ m,

0, otherwise,

where b0 = bm+1 = 0 and bk = 1 − d̄w(dk − d̄w)/
∑m

k=1 wk(dk − d̄w)2 for k = 1, . . . ,m.

Theorem 2. Assume that g has a bounded second derivative and E(ε6) is finite. Then for any

m = nr with 0 < r < 1/2, the least squares estimator σ̂ 2 satisfies
√

n(σ̂ 2 − σ 2)
D→ N{0, (γ4 −

1)σ 4} as n → ∞.

Proof of Theorem 2 can be found in Appendix B. Given that E(ε6) is finite, Theorems 1 and 2
show that the least squares estimator is more efficient than the Rice estimator. Theorem 2 also
indicates that the least squares estimator is as efficient as the sample variance based on indepen-
dent and identically distributed samples, regardless of whether the unknown mean function is a
constant or not.

Theorem 2 can be used to construct confidence intervals for σ 2. Assume that n > (γ4 − 1)z2
α/2

where zα is the upper αth percentile of the standard normal distribution. Then an approximate
1 − α confidence interval for σ 2 is [σ̂ 2/{1 + zα/2

√
(γ4 − 1)/n}, σ̂ 2/{1 − zα/2

√
(γ4 − 1)/n}].

For the special case when the εi ’s are distributed from N(0, σ 2), we have γ4 = 3. In general, the
parameter γ4 can be replaced by an estimate. Finally, by Box [1] and Rotar [14], the finite sample
distribution of σ̂ 2 can be approximated by the scaled chi-squared distribution, (σ 2/ν)χ2(ν),
where ν = {tr(D)}2/ tr(D2).

3. Generalized least squares estimator

In Appendix C, we show that, for any 1 ≤ b < k = nr with 0 < r < 2/3, Cov(sb, sk) = n−1(γ4 −
1)σ 4 +o(n−1). Combined with the results in Theorems 1, we have Corr(sb, sk) → (γ4 −1)/γ4 as
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n → ∞. In the case when the εi ’s are normally distributed, γ4 = 3 and the correlation coefficients
between the lag-k Rice estimators are all asymptotically equal to 2/3.

In the construction of the least squares estimator in Section 2, we have ignored the correlation
between sk’s. Given that the correlation between lag-k Rice estimators are high, a natural ques-
tion is whether the least squares estimator can be improved by the following generalized least
squares estimator

β̂GLS = (XT 
−1X)−1XT 
−1s, (6)

where 
 = γ4σ
4{(1 − ρ)I + ρ1T 1}/n is the asymptotic variance–covariance matrix, ρ = (γ4 −

1)/γ4, and I is the identity matrix. It is known that β̂GLS is the best linear unbiased estimator
of β [9]. Since 
 has the compound symmetry structure and the first column of X is 1, by
McElroy [10], the generalized least squares estimator β̂GLS is identical to the ordinary least
squares estimator β̂OLS = (XT X)−1XT s. Furthermore, for any m = o(n), it is not difficult to
show that β̂WLS is equivalent to β̂OLS. Therefore, β̂OLS, β̂GLS and β̂WLS are all asymptotically
equivalent.

4. The optimal efficiency bound for estimating σ 2

In this section, we derive the optimal semiparametric efficiency bound for estimating σ 2 in
model (1) for any estimation procedure and show that the least squares estimator reaches this
bound.

Consider the estimation of σ 2 in model (1) regardless of how the estimation is carried out.
For simplicity, we omit the subindex i. Under (1), the only assumption is that ε = Y − g(X) are
independent and identically distributed with mean zero, and are independent of X. Denote the
model of the probability density function of ε as η(ε).

The probability density function model of (x, y) can be written as fX(x)η{y − g(x)} =
fX(x)η(ε), where fX(·) is a marginal probability density function model of X and η is a prob-
ability density function model that ensures zero mean, i.e.,

∫
η(ε)dε = 1 and

∫
εη(ε)dε = 0.

Viewing fX,η and g as the nuisance parameters and σ 2 = E(ε2) as the parameter of interest, this
becomes a semiparametric problem and one can derive the efficient influence function through
projecting any influence function onto the tangent space associated with fX , η and g.

Simple calculation yields the tangent space of model (1) to be


T = {h(x) + f (ε) + η′
0(ε)/η0(ε)a(x) :

(7)
∀h,f such that E(h) = 0,E(f ) = E(εf ) = 0, and ∀a},

where η0(·) denotes the true probability density function of ε. Following the procedure in Chap-
ter 4 of [16], we consider an arbitrary parametric submodel, denoted as η(ε,μ). Here μ is a
finite dimensional vector of parameters and there exists μ0, such that η(ε,μ0) = η0(ε). In ad-
dition, η(ε,μ) is a valid probability density function and

∫
εη(ε;μ)dε = 0 for all μ in a local
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neighborhood of μ0. We have ∂
∫

ε2η(ε,μ)dε/∂μ = E(ε2Sμ), where Sμ = ∂ logη(ε,μ)/∂μ is
the score vector with respect to μ. Hence, ε2 − σ 2 is a valid influence function. We decompose
ε2 − σ 2 into

ε2 − σ 2 = {ε2 − σ 2 + γ3σ
3η′

0(ε)/η0(ε)} − γ3σ
3η′

0(ε)/η0(ε).

It is not difficult to verify that ε2 − σ 2 + γ3σ
3η′

0(ε)/η0(ε) satisfies the requirement on f in (7).
Hence, it is a qualified f (ε) function. Letting a(x) in (7) be −γ3σ

3 yields −γ3σ
3η′

0(ε)/η0(ε).
Thus, ε2 − σ 2 ∈ 
T , and consequently it is the efficient influence function. The corre-
sponding efficient estimation variance is n−1E{(ε2 − σ 2)2} = n−1(γ4 − 1)σ 4, which agrees
with the result in Theorem 2. This shows that the least squares estimator is indeed opti-
mal in terms of its estimation variability among the class of all root-n consistent estima-
tors.

In the above derivation, we have not taken into account that Xi ’s are actually equally spaced
instead of being random. However, assuming fX(x) to be uniform or more generally assuming
fX(x) to have any particular form does not change the efficiency result. This is because the
calculation relies on the property of ε only, which is independent of X.

5. Variance estimator of Müller and Stadtmüller

Müller and Stadtmüller [11] proposed a similar least squares type estimator for the equally-
spaced design where xi = i/n. Define

zk = 1

2(n − L)

n−L∑
i=1

(yi+k − yi)
2, 1 ≤ k ≤ L,

where L = L(n) ≥ 1. In the context of testing if the mean function contains jump discontinuities,
Müller and Stadtmüller [11] fitted a linear model that regresses zk on two independent variables,
one for the sum of the squared jump sizes and the other for the integrated squared first derivative,
and then estimate the residual variance as the intercept. In the case when the function is smooth,
that is, when the sum of the squared jump sizes equals to zero, the variance estimator in [11]
reduces to

σ̂ 2
MS = 3

L(L − 1)(L − 2)

L∑
k=1

{3L2 + 3L + 2 − 6(2L + 1)k + 10k2}zk. (8)

The dependent variable zk in [11] uses the first n − L terms in the lag-k Rice estimator sk
while the last L − k terms are ignored. This makes zk a less efficient estimator of σ 2, especially
when L − k is large. In addition, noting that σ̂ 2

MS is a weighted average of zk with larger weights
assigned to small k and more terms are ignored with small k, the efficiency loss of σ̂ 2

MS over σ̂ 2

can be severe for small sample sizes.
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Let a0 = 0 and ak = 3{3L2 +3L+2−6(2L+1)k+10k2}/{L(L−1)(L−2)} for k = 1, . . . ,L.
By Lemma A5 in [11], we have

∑L
k=1 ak = 1. Then σ̂ 2

MS can be represented as the quadratic form,
σ̂ 2

MS = yT My, where M = (mij )n×n is a symmetric matrix with elements

mij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
i−1∑
k=0

ak, i = j = 1, . . . ,L,

2, i = j = L + 1, . . . , n − L,
n∑

k=i

ak+L−n, i = j = n − L + 1, . . . , n,

−aj−i , 0 < j − i ≤ L and i ≤ n − L,

−ai−j , 0 < i − j ≤ L and j ≤ n − L,

0, otherwise.

Let diag(M) denote the diagonal matrix of M . By Dette, Munk and Wagner [3] we have

MSE(σ̂ 2
MS) = [

(gT Mg)2 + 4σ 2gT M2g + 4gT M diag(M)1σ 3γ3
(9)

+ σ 4 tr[{diag(M)}2](γ4 − 3) + 2σ 4 tr(M2)
]
/ tr(M)2,

where the first term in (9) is the squared bias and the last four terms make up the variance.

Theorem 3. Assume that g has a bounded second derivative. Then for the equally spaced design
with n → ∞, L → ∞ and L/n → 0, we have the following bias, variance, and the mean squared
error for the estimator (8),

Bias(σ̂ 2
MS) = o

(
L2

n2

)
,

var(σ̂ 2
MS) = 1

n
var(ε2) + 73L

70n2
var(ε2) + 9

Ln
σ 4 + o

(
L

n2

)
+ o

(
1

Ln

)
, (10)

MSE(σ̂ 2
MS) = 1

n
var(ε2) + 73L

70n2
var(ε2) + 9

Ln
σ 4 + o

(
L

n2

)
+ o

(
1

Ln

)
+ o

(
L4

n4

)
.

Proof of Theorem 3 can be found in Appendix D. The asymptotical optimal bandwidth is
Lopt = √

630nσ 4/73 var(ε2). Substituting Lopt into (10) leads to

MSE(σ̂ 2
MS(Lopt)) = 1

n
var(ε2) +

√
45990

35
{σ 4 var(ε2)}1/2n−3/2 + o(n−3/2). (11)

The optimal MSE of σ̂ 2 is [15]

MSE(σ̂ 2(mopt)) = 1

n
var(ε2) +

√
567

28
{σ 4 var(ε2)}1/2n−3/2 + o(n−3/2).
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It is clear that both σ̂ 2 and σ̂ 2
MS reach the optimal efficiency bound with the same first order

term. However, the coefficient of the higher order term for σ̂ 2
MS is about seven times of that

for σ̂ 2. Since the higher order term is not negligible for small to moderate sample sizes, σ̂ 2 often
provides a much smaller MSE than σ̂ 2

MS in such situations. See simulation results in Section 6.
Even though the two estimators σ̂ 2 and σ̂ 2

MS look similar for one-dimensional equally spaced
case, there is a fundamental difference behind the motivations for these estimators: the regres-
sion estimator in [15] was developed to estimate variances in nonparametric regression on gen-
eral domains while the regression estimator in [11] was developed for assessing whether a one-
dimensional mean function is smooth. Specifically, consider model (1) with xi ∈ T where T is
an arbitrary subset in a normed space. Let dij = ‖xi − xj‖2 and sij = 1

2 (yi − yj )
2 for all pairs i

and j , where 1 ≤ i < j ≤ n. We fit the following simple linear model

sij = β0 + β1dij + εij , dij ≤ m, (12)

using the least squares where m > 0 is the bandwidth. The estimate of σ 2 is σ̂ 2 = β̂0. The
variance estimator in [11] requires an ordering of the design points which may not be available
for a general domain.

For the purpose of illustration, consider the Lake Acidity Data which contains measurements
of 112 lakes in the southern Blue Ridge mountains area [7]. Of interest is the dependence of
the water pH level (ph) on the calcium concentration in log10 milligrams per liter (t1) and
the geographical location (t2 = (t21, t22) with t21 = latitude and t22 = longitude). For illus-
tration, we consider the nonparametric regression model (1) with three different cases of x:
x = t1, x = t2 and x = (t1, t2). These three cases correspond to three different domains of
one, two and three dimensions, respectively. For the first two cases, we use simple Euclidean
norms. For the third case, we rescale t1 and ‖t2‖ to the same scale before estimating the vari-
ance. Estimates of σ 2 for the above three cases with m = n1/2 are 0.0821, 0.0884 and 0.0544,
respectively, using our method. The method in [11] does not apply to any one of these three
cases.

6. Simulation studies

In this section, we conduct simulations to compare the performance of the estimators σ̂ 2 and σ̂ 2
MS.

The design points are xi = i/n and εi are independent and identically distributed from N(0, σ 2).
We consider three mean functions, g1(x) = 5x, g2(x) = 5x(1 − x) and g3(x) = 5 sin(2πx).
Note that the first two functions were used in [11] and the last one was used in [15]. We set
coefficients of all three functions to be 5. For each mean function, we consider n = 30, 100
and 1000, corresponding to small, moderate and large sample sizes respectively, and σ 2 = 0.25
and 4, corresponding to small and large variances, respectively. In total, we have 18 combinations
of simulation settings.

For each simulation setting, we generate observations and compute the estimators σ̂ 2(m)

and σ̂ 2
MS(L). For the bandwidth m, we choose ms = n1/2 and mt = n1/3 as suggested in [15].

For the bandwidth L, Müller and Stadtmüller [11] observed that the estimator σ̂ 2
MS is quite stable

and does not vary much with L. Therefore, we also choose Ls = n1/2 and Lt = n1/3 for ease of
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Table 1. Relative mean squared errors for the two estimators with bandwidths ms = Ls = n1/2 and mt =
Lt = n1/3, respectively

n σ 2 g σ̂ 2(ms) σ̂ 2(mt ) σ̂ 2
MS(Ls) σ̂ 2

MS(Lt )

30 0.25 g1 1.33 1.58 3.97 10.80
g2 1.34 1.57 3.97 10.79
g3 8.64 2.19 6.91 11.60

4 g1 1.32 1.57 3.91 10.75
g2 1.32 1.57 3.91 10.75
g3 1.38 1.59 4.02 10.83

100 0.25 g1 1.25 1.43 2.09 5.53
g2 1.25 1.43 2.08 5.55
g3 2.06 1.45 2.30 5.50

4 g1 1.25 1.43 2.09 5.54
g2 1.25 1.43 2.08 5.54
g3 1.27 1.43 2.09 5.52

1000 0.25 g1 1.18 1.30 1.35 1.83
g2 1.18 1.30 1.35 1.83
g3 1.19 1.30 1.35 1.83

4 g1 1.18 1.30 1.35 1.83
g2 1.18 1.30 1.35 1.83
g3 1.18 1.30 1.35 1.83

comparison. The cross-validation method may also be used to select the bandwidth m in σ̂ 2(m)

[15]. Nevertheless, we did not include this option in our simulations since the cross-validation
method is not readily available for the estimator σ̂ 2

MS.
We repeat the simulation 1000 times and compute the relative mean squared errors

nMSE/(2σ 4). Table 1 lists relative mean squared errors for all simulation settings. Note that
neither D nor M is guaranteed to be positive definite. Therefore, σ̂ 2 and σ̂ 2

MS may take negative
values. Simulations indicate that a negative estimate occurs very rarely for σ̂ 2 [15], while σ̂ 2

MS
tends to be negative when L is large [11]. We replace negative estimates by zero in the calculation
of the relative mean squared errors.

We observe that σ̂ 2 has smaller relative mean squared errors than σ̂ 2
MS for all settings except for

the case (n,σ 2, g) = (30,0.25, g3). For this exceptional case, we plot in Figure 1 the histograms
of the nontruncated estimates (including negative estimates) σ̂ 2(ms) and σ̂ 2

MS(Ls). A relatively
large portion of σ̂ 2

MS(Ls) takes negative values. The choice of the bandwidth ms is too large for
σ̂ 2 when n is small [15]. Overall, the estimator σ̂ 2 performs better than σ̂ 2

MS, confirming the
theoretical results in Section 5. Comparisons between σ̂ 2(ms) and σ̂ 2(mt ) are similar to those
in [15].
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Figure 1. Histograms of the variance estimates σ̂ 2(ms) (left) and σ̂ 2
MS(Ls) (right) for the case

(n,σ 2, g) = (30,0.25, g3).

Appendix A: Proof of Theorem 1

For ease of notation, let gi = g(xi), i = 1, . . . , n. Write sk as a sum of three parts, sk = L1 +
L2 + L3, where

L1 = 1

2(n − k)

n∑
i=k+1

(gi − gi−k)
2,

L2 = 1

n − k

n∑
i=k+1

(gi − gi−k)(εi − εi−k),

L3 = 1

2(n − k)

n∑
i=k+1

(εi − εi−k)
2.

Applying the Taylor expansion, it can be shown that L1 = (k2/n2)J + o(k2/n2) = op(n−1/2)

when k = nr with 0 < r < 3/4. For L2, we have

E(L2
2) = 2σ 2

(n − k)2

{
n∑

i=k+1

(gi − gi−k)
2 −

n−k∑
i=k+1

(gi − gi−k)(gi+1 − gi)

}
= O

(
k2

n3

)
.

This implies that L2 = op(n−1/2) for any k = o(n).
Rewrite L3 as L3 = σ 2 + ∑n

i=k+1 ξi(k)/(n − k), where ξi(k) = (εi − εi−k)
2/2 − σ 2. For any

given k, {ξi(k), i = k + 1, . . . , n} is a strictly stationary sequence of random variables with mean
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zero and autocovariance function

γ (τ) = γ (s, s + τ) =
⎧⎨
⎩

(γ4 + 1)σ 4/2, τ = 0,

(γ4 − 1)σ 4/4, τ = k,

0, otherwise.

Note also that the sequence {ξi(k), i = k+1, . . . , n} is m-dependent with m = k. Thus by the cen-

tral limit theorem for strictly stationary m-dependent sequences [2],
√

n(L3 − σ 2)
D→ N(0, ν2

k )

as n → ∞, where ν2
k = γ (0) + 2

∑k
τ=1 γ (τ) = γ4σ

4. Finally, noting that sk = L1 + L2 + L3 =
L3 + op(n−1/2), we have

√
n(sk − σ 2)

D→ N(0, γ4σ
4) as n → ∞.

Appendix B: Proof of Theorem 2

We first state two lemmas. Lemma 1 is an immediate result from [18]. Lemma 2 was derived, in
essence, in [15].

Lemma 1. Assume that the matrix A = (aij )n×n satisfies aij = ai−j and
∑∞

−∞ a2
k < ∞. Fur-

thermore, assume that E(ε6) is finite. Then

1

n
εT Aε = 1

n

n∑
i=1

n∑
j=1

ai−j εiεj
D−→ N(a0σ

2, σ 2
A), as n → ∞,

where σ 2
A = (γ4 − 3)a2

0σ 4/n + 2σ 4 ∑n
i=1

∑n
j=1 a2

i−j /n2.

Lemma 2. Assume that m → ∞ and m/n → 0. Then

(i)
∑m

k=1 bk = m − 5m2

16n
+ o(m);

(ii)
∑m

k=j bk = m − 9
4j + 5j3

4m2 + o(m),1 ≤ j ≤ m;

(iii)
∑m

k=1 b2
k = 9

4m + o(m);
(iv) gT Dg = O(m4/n2);
(v) gT D2g = O(m5/n2).

Proof of Theorem 2. Noting that y = g + ε and tr(D) = 2N , we have

σ̂ 2 = 1

2N
gT Dg + 1

N
gT Dε + 1

2N
εT Dε. (13)

The first term in (13) corresponds to the bias term of the least squares estimator. By Lemma 2,
we have gT Dg/(2N) = O(m3/n3). Thus, for any m = nr with 0 < r < 5/6,

1

2N
gT Dg = o(n−1/2). (14)
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For the second term in (13), by Lemma 2 we have E(gT Dε/N)2 = gT D2g/N2 = O(m3/n4).
This implies that, for any m = o(n),

1

N
gT Dε = op(n−1/2). (15)

Now we derive the limiting distribution of the third term in (13). Let nD/(2N) = C − H ,
where C = (cij )n×n with elements

cij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n

m∑
k=1

bk/N, 1 ≤ i = j ≤ n,

−nb|i−j |/(2N), 0 < |i − j | ≤ m,

0, otherwise,

and H = diag(h1, h2, . . . , hn) with elements hi = n
∑m+1

min(i,n+1−i,m+1) bk/(2N). Then

1

2N
εT Dε = 1

n
εT Cε − 1

n
εT Hε. (16)

For the matrix C, let cij = ci−j with c0 = n
∑m

k=1 bk/N , ci−j = cj−i = −nb|i−j |/(2N) for
0 < |i−j | ≤ m, and ci−j = cj−i = 0 for |i−j | > m. By Lemma 2, for any m = o(n),

∑∞
−∞ c2

k =
c2

0 + 2
∑m

k=1 c2
k = 1 + o(1) < ∞. Then under the assumption that E(ε6) is finite, by Lemma 1 we

have

√
n

(
1

n
εT Cε − c0σ

2
)

D−→ N(0, σ 2
c ), as n → ∞, (17)

where

σ 2
c = n2(γ4 − 1)σ 4

N2

(
m∑

k=1

bk

)2

+ nσ 4

N2

m∑
k=1

(n − k)b2
k .

For the second term in (16), note that εT Hε = ∑m
1 hiε

2
i +∑n

n−m+1 hiε
2
i . By Lemma 2, it is easy

to see that

E

(
m∑

i=1

hiε
2
i

)2

= (γ4 − 1)σ 4 n2

4N2

m∑
i=1

(
m+1∑

min(i,n+1−i,m+1)

bk

)2

+ n2σ 4

4N2

(
m∑

i=1

m+1∑
min(i,n+1−i,m+1)

bk

)2

= O(m2).
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Similarly, we have E(
∑n

n−m+1 hiε
2
i )

2 = O(m2). This leads to E(εT Hε/n)2 = O(m2/n2). Fur-
ther, for any m = nr with 0 < r < 1/2,

1

n
εT Hε = op(n−1/2). (18)

Combining (14), (15), (17) and (18), and applying the Slutsky theorem, we have
√

n(σ̂ 2 − c0σ
2)

σc

D−→ N(0,1), as n → ∞. (19)

Note also that, by Lemma 2,

c0 = n

nm − m(m + 1)/2

{
m − 5m2

16n
+ o(m)

}
= 1 + O

(
m

n

)
,

σ 2
c = n2(γ4 − 1)σ 4

N2

(
m∑

k=1

bk

)2

+ nσ 4

N2

m∑
k=1

(n − k)b2
k = (γ4 − 1)σ 4 + o(1).

Thus for any m = nr with 0 < r < 1/2, we have
√

n(c0 − 1) = o(1). In addition, (γ4 −
1)σ 4/σ 2

c → 1 as n → ∞. Then by (19) and the Slutsky theorem,

√
n(σ̂ 2 − σ 2)√
(γ4 − 1)σ 4

= σc√
(γ4 − 1)σ 4

{√
n(σ̂ 2 − c0σ

2)

σc

+
√

n(c0 − 1)σ 2

σc

}

D−→ N(0,1), as n → ∞. �

Appendix C: Derivation of covariances between Rice estimators

For any 1 ≤ b < k = o(n), we have

E(sbsk) = 1

4(n − b)(n − k)

×
{

n∑
i=k+1

E(yi − yi−k)
2(yi−k+b − yi−k)

2 +
n∑

i=k+1

E(yi − yi−k)
2(yi − yi−b)

2

+
n∑

i=k+b+1

E(yi − yi−k)
2(yi−k − yi−k−b)

2 +
n−b∑

i=k+1

E(yi − yi−k)
2(yi+b − yi)

2

+
∑

(i,j)∈E
E(yi − yi−k)

2(yj − yj−b)
2

}

= 1

4(n − b)(n − k)
(I1 + I2 + I3 + I4 + I5),
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where E = {(i, j) : i = k + 1, . . . , n; j = b + 1, . . . , n; i �= j ; i �= j − b; i − k �= j ; i − k �= j − b}.
It is easy to verify that I1 + I2 = 2(n − k)(γ4 + 3)σ 4 + O(k2/n), I3 + I4 = 2(n − k − b)(γ4 +
3)σ 4 + O(k2/n) and I5 = 4{(n − k)(n − b) − 2(2n − 2k − b)}σ 4 + 4σ 2(n − b)(n − k)(b2 +
k2)J/n2 + O(k3/n). Therefore,

E(sbsk) = 2n − 2k − b

2(n − b)(n − k)
(γ4 − 1)σ 4 + σ 4 + b2 + k2

n2
Jσ 2 + O

(
k3

n3

)
.

Note also that E(sb) = σ 2 + Jdb + O(b3/n3) + o(1/n2) and E(sk) = σ 2 + Jdk + O(k3/n3) +
o(1/n2). Thus,

Cov(sb, sk) = 2n − 2k − b

2(n − b)(n − k)
(γ4 − 1)σ 4 + O

(
k3

n3

)
+ o

(
1

n2

)
.

Finally, for any k = nr with 0 < r < 2/3, we have k3/n3 = o(1/n) and therefore Cov(sb, sk) =
(γ4 − 1)σ 4/n + o(1/n).

Appendix D: Proof of Theorem 3

Lemma 3. Assume that g has a bounded second derivative. Then for the equally spaced design
with n → ∞, L → ∞ and L/n → 0, we have

(i) tr(M) = 2(n − L);
(ii) tr[{diag(M)}2] = 4n − 134L/35 + o(L);

(iii) tr(M2) = 4n − 134L/35 + 18n/L + o(L) + o(n/L);
(iv) gT M2g = O(L3/n2);
(v) gT M diag(M)1 = O(L2/n).

Proof. It is easy to verify that
∑L

k=1 ak = 1,
∑i

k=1 ak = 9i/L − 18i2/L2 + 10i3/L3 + o(i/L)

for 1 ≤ i ≤ L,
∑L

k=1 a2
k = 9/L + o(1/L),

∑L
k=1 kak = O(L) and

∑L
k=1 k2ak = O(L2).

(i) tr(M) = 2L
∑L

k=1 ak + 2(n − 2L)
∑L

k=1 ak = 2(n − L).
(ii) Note that a0 = 0 and

∑n
k=n−L+i ak+L−n = 1 − ∑i−1

k=0 ak . We have

tr[{diag(M)}2] = 4(n − 2L) +
L∑

i=1

(
1 +

i−1∑
k=0

ak

)2

+
L∑

i=1

(
1 −

i−1∑
k=0

ak

)2

= 4n − 6L + 2
L∑

i=1

{
9i

L
− 18i2

L2
+ 10i3

L3
+ o

(
i

L

)}2

= 4n − 134

35
L + o(L).
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(iii) By (ii), we have

tr(M2) = tr[{diag(M)}2] +
L∑

i=1

(
L∑

k=1

a2
k +

i−1∑
k=0

a2
k

)
+ 2

n−L∑
i=L+1

L∑
k=1

a2
k +

L∑
i=1

L∑
k=i

a2
k

= tr[{diag(M)}2] + 2(n − L)

L∑
k=1

a2
k

= 4n − 134

35
L + 18n

L
+ o(L) + o

(
n

L

)
.

(iv) Noting that M is a symmetric matrix, we have gT M2g = (Mg)T Mg � hT h where h =
Mg = (h1, . . . , hn)

T . Under the condition that g has a bounded second derivative, it is easy to
verify that for i ∈ [L + 1, n − L],

hi =
L∑

k=1

ak(gi − gi−k) −
L∑

k=1

ak(gi+k − gi) = − 1

n2
g′′

i

L∑
k=1

k2ak + o

(
m3

n2

)
= O

(
L2

n2

)
.

Similarly, we can show that for i ∈ [1,L] or i ∈ [n − L + 1, n], hi = O(L/n). Finally,

gT M2g = hT h =
L∑

i=1

h2
i +

n−L∑
i=L+1

h2
i +

n∑
i=n−L+1

h2
i = O

(
L3

n2

)
.

(v) Note that gT [M diag(M)1] = (Mg)T diag(M)1 = hT diag(M)1. We have

gT [M diag(M)1] =
L∑

i=1

hi · O(1) +
n−L∑

i=L+1

hi · O(1) +
n∑

i=n−L+1

hi · O(1) = O

(
L2

n

)
.

�

Proof of Theorem 3. By Müller and Stadtmüller [11], Bias(σ̂ 2
MS) = gT Mg/ tr(M) = o(L2/n2).

Note that the last four terms in (9) make up the variance. By Lemma 3 and the facts that L/n → 0
and σ 4(γ4 − 3) = var(ε2) − 2σ 4, we have

var(σ̂ 2
MS) = 1

4(n − L)2

[
{var(ε2) − 2σ 4}

{
4n − 134

35
L + o(L)

}

+ 2σ 4
{

4n − 134

35
L + 18n

L
+ o(L) + o

(
n

L

)}]

= 1

4(n − L)2

{(
4n − 134

35
L

)
var(ε2) + 36n

L
σ 4 + o(L) + o

(
n

L

)}

= 1

n
var(ε2) + 73L

70n2
var(ε2) + 9

Ln
σ 4 + o

(
L

n2

)
+ o

(
1

Ln

)
.
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Finally, we have

MSE(σ̂ 2
MS) = 1

n
var(ε2) + 73L

70n2
var(ε2) + 9

Ln
σ 4 + o

(
L

n2

)
+ o

(
1

Ln

)
+ o

(
L4

n4

)
. �
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